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�
ABSTRACT 

 

     After geodetic networks (e.g., horizontal control, levelling, GPS etc.) are monumented, 

relevant measurements are made and point coordinates for the control points are estimated by 

the method of least squares and the ‘goodness’ of the network is measured by a precision 

analysis making use of the covariance matrix of the estimated parameters. When such a 

network is designed, traditionally this again uses measures derived from the covariance 

matrix of the estimated parameters. This traditional approach is based upon propagation of 

random errors. 

     In addition to this precision analysis, reliability (the detection of outliers/gross 

errors/blunders among the observations) has been measured using a technique pioneered by 

the geodesist Baarda. In Baarda’s method a statistical test (data-snooping) is used to detect 

outliers. What happens if one or more observations are burdened with an error? It is clear that 

these errors will affect the observations and may produce incorrect estimates of the 

parameters. If the errors are detected by the statistical test then those observations are 

removed, the network is readjusted, and we obtain the final results. 

     Here the consequences of what happens when errors are not detected by Baarda’s test are 

considered. This may happen for two reasons: (i) the observation is not sufficiently checked 

by other independent observations; and, (ii) the test does not recognize the gross error. By 

how much can these undetected errors influence the network? If the influence of the 

undetected errors is small the network is called robust, if it is not it is called a weak network. 
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     In the approach described in this dissertation, traditional reliability analysis (Baarda’s 

approach) has been augmented with geometrical strength analysis using strain in a technique 

called robustness analysis. Robustness analysis is a natural merger of reliability and strain 

and is defined as the ability to resist deformations induced by the maximum undetectable 

errors as determined from internal reliability analysis. 

     To measure robustness of a network, the deformation of individual points of the network 

is portrayed by strain. The strain technique reflects only the network geometry and accuracy 

of the observations. However, to be able to calculate displacements caused by the maximum 

undetectable errors, the initial conditions have to be determined. Furthermore, threshold 

values are needed to evaluate the networks. These threshold values are going to enable us to 

assess the robustness of the network. If the displacements of individual points of the network 

are worse than the threshold values, we must redesign the network by changing the 

configuration or improving the measurements until we obtain a network of acceptable 

robustness. 

     The measure of robustness should be independent of the choice of a datum so that the 

analysis of a network using a different datum will give the same answer. Robustness should 

be defined in terms of invariants rather than the primitives (the descriptors for deformation, 

e.g., dilation, differential rotation and shear) since a datum change will change the strain 

matrix and therefore the primitive values. Since dilation, differential rotation and total shear 

are invariants in 2D, whatever the choice of the datum is the results for dilation, differential 

rotation and total shear will be identical. Moreover this should be the case for 3D robustness 

analysis. 
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     Robustness of a network is affected by the design of the network and accuracy of the 

observations. Therefore the points that lack robustness in the network may be remedied either 

by increasing the quality of observations and/or by increasing the number of observations in 

the network. A remedial strategy is likely to be different for different networks since they 

have different geometry and different observations. There might not be a solution fitting all 

networks but in this thesis a general strategy is given. 

     In this dissertation first the initial conditions for 2D networks have been formulated then 

the threshold values for 2D networks have been developed. Application of robustness 

analysis to 1D networks has been investigated and the limitation of robustness analysis for 

1D networks is addressed. The initial condition for 1D networks has also been formulated. 

Application of robustness analysis to 3D networks has been researched. Moreover, the initial 

conditions have been formulated. To evaluate 3D networks, the threshold values have been 

developed. Strain invariants in 3D have been researched. It is proven that dilation and 

differential rotation are invariants in 3D. It has been discovered that total shear is not 

invariant in 3D Euclidean space. Therefore the maximum shear strain in eigenspace has been 

extended into a 3D formulation. The relation between 3D and 2D in terms of invariants has 

been shown. For the networks which need to be improved, a remedial strategy has been 

described. 
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CHAPTER ONE 

INTRODUCTION 

 

     This chapter introduces the developments and problems in robustness analysis. In section 

1.1 the developments which have been made about robustness analysis so far are briefly 

mentioned and further developments are addressed. Section 1.2 provides a literature review. 

The contribution of this research is outlined in section 1.3 and in section 1.4 an outline of this 

dissertation is given. 

 

 

1.1 Research Motivation 

 

     After geodetic networks (e.g., horizontal control, levelling, GPS etc.) are established, 

relevant measurements are made and point coordinates are estimated by the method of least 

squares. However, the method of least squares does not give any information about the 

robustness of networks. To measure robustness of a network the degree of the deformation of 

individual points of the network is measured by strain. 

     In statistical literature robustness means insensitivity to gross errors or outliers in the data. 

In the approach described in this dissertation, traditional reliability analysis (Baarda’s 

approach) has been augmented with geometrical strength analysis using strain in a technique 

called robustness analysis. This is�RXWOLQHG�LQ�9DQtþHN�HW�DO��>����@�IRU��'�QHWZRUNV��,Q�WKH�
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developments which are addressed in this thesis displacements (‘potential deformation’ that 

could be introduced by the undetected errors in the observations) are quite different than 

what is descriEHG�LQ�9DQtþHN�HW�DO��>����@��6R�KRZ�FDQ�WKHVH�GLVSODFHPHQWV�EH�REWDLQHG�LQ��'�

networks? In order to be able to do that, first the initial conditions (coordinates which are 

obtained minimizing the norm of the displacement vectors at all points in the network) need 

to be determined. Having obtained the initial conditions the displacements can be computed 

for 2D networks. However some threshold values (the values which displacements are 

compared against which ideally should not be exceeded) are needed to evaluate the networks. 

These threshold values are going to enable us to assess the robustness of networks. 

Furthermore, how can robustness analysis be applied to 1D networks? Can it be applied 

directly or is there a limitation? Are the applications of robustness analysis to 3D networks 

the same as the application of robustness analysis to 2D networks? 

�����,Q�9DQtþHN�HW�DO��>����@�D�FRPSOHWH�DQG�GHWDLOHG�GHVFULSWLRQ�RI�WKH�SRWHQWLDO�QHWZRUN�

deformation in terms of three independent measures representing robustness in scale, in 

orientation and in configuration are given (these are also called ‘robustness primitives’ or 

‘robustness measures’) for 2D networks. However robustness should be defined in terms of 

invariants (unaffected by a designated operation. In the case described in this dissertation, 

unaffected by translation, scale and rotation of a coordinate system) rather than the 

primitives. Hence we use primitives with the property of invariants. Therefore the primitives 

which are not invariant will not be empOR\HG�� 9DQtþHN� HW� DO�� >����@� VKRZV� WKDW� WKH�

primitives; dilation, differential rotation and total shear are invariants in 2D. It means that no 

matter what the choice of the datum is the results for dilation, differential rotation and total 
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shear will be identical. Moreover this should be also the case for 3D robustness analysis. So 

what are the invariants in 3D? 

     Furthermore can the invariants in 2D be obtained from the 3D solution? How can this 

transformation be achieved? In geodetic networks some points might lack robustness. If there 

is lack of robustness according to the robustness analysis of a network, what should be the 

remedial strategy? 

     In this thesis, application of robustness analysis to 3D and 1D networks is going to be 

investigated. Threshold values for 2D and 3D networks are going to be determined. Then, to 

be able to talk about robustness analysis of geodetic networks in 3D, the research is going to 

be expanded to determine the invariants in 3D. 

 

 

1.2 Literature Review 

 

     Love [1944] gives a historical background for the mathematical theory of elasticity and 

investigates the general theory of strain and analysis of strain. Information about analysis of 

strain may also be obtained in Sokolnikoff [1956] and Timoshenko and Goodier [1970]. 

These authors are either mathematicians or from the field of engineering mechanics. 

     Terada and Miyabe [1929] used strain to describe deformation of the earth surface caused 

by earthquakes. According to Pope [1966], in a series of papers in the Bulletin of the Institute 

for Earthquake Research of the University of Tokyo, Terada, Miyabe, Tsuboi and others 

described these techniques and applied them to various areas in Japan and Taiwan. The next 
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scientist interested in strain analysis was Kasahara. In Kasahara [1957], [1958a], [1958b] and 

[1964], the work of Terada, Miyabe and Tsuboi were referenced and the earlier analysis was 

extended. Burford [1965] computed the components of strain for an arc of triangulation in 

Southern California. Independently, Frank [1966] derived methods for computation of strain 

components and pointed out their advantages and disadvantages. The above authors are 

geologists or geophysicists [Pope, 1966]. Pope (the first known geodesist to deal with strain 

analysis) also used this technique for application to repeated geodetic surveys to determine 

crustal movements. 

     The use of strain to analyze the strength of a geodetic network was first attempted at 

University of New Brunswick, this was performed by Thapa [1980]. In this study, the impact 

of incompatible observations in horizontal geodetic networks was investigated using strain 

DQDO\VLV��9DQtþHN�HW�DO��>����@�HODERUDWHG�RQ�WKLV�DSSURDFK��,Q�'DUH�DQG�9DQtþHN�>����@�D�

new method for strain analysis of horizontal geodetic networks based on the measurement of 

the network deformation was presented. Dare [1983] developed a method for the strength 

analysis of geodetic networks using strain; also studied was the effect of scale change, twist 

or shear. In Craymer et al. [1987] a program package called NETAN for the interactive 

FRYDULDQFH��VWUDLQ�DQG�VWUHQJWK�DQDO\VLV�RI�QHWZRUNV�ZDV�LQWURGXFHG��9DQtþHN�HW�DO��>����@�

combined the reliability technique introduced by Baarda and the geometrical strength 

analysis method into one technique cDOOHG�µUREXVWQHVV�DQDO\VLV¶��9DQtþHN�DQG�2QJ�>����@�

investigated the datum independence problem in robustness analysis. In Krakiwsky et al. 

[1993] further developments of robustness analysis were given, such as singularities in 

robustness, precision of robustness measures and interpretation of robustness measures. 
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Szabo et al. [1993] described robustness analysis of horizontal geodetic networks. Craymer et 

al. [1993a], [1993b] and [1995] presented further findings about robustness analysis. 

Robustness analysis of horizontal geodetic networks was also studied by Ong [1993] and 

$PRX]JDU�>����@��9DQtþHN�HW�DO��>����@�GHVFULEH�D�PRUH�HFRQRPLFDO�DOJRULWKP�IRU�VHDUFKLQJ�

for the most influential observations in large networks, investigated alternative methods of 

defining the local neighborhood for which strain measures are computed for each point, and 

proposed a method of network classification that takes into account both precision (random 

HUURUV�� DQG� DFFXUDF\� �V\VWHPDWLF� ELDVHV�� RI� SRLQW� SRVLWLRQV��9DQtþHN� HW� DO�� [2001] (with 

DPHQGPHQWV�LQ�&UD\PHU�DQG�9DQtþHN�>����@��VXPPDUL]HG�WKH�ILQGLQJV�DERXW�UREXVWQHVV�

analysis and gave an explicit proof for the robustness datum independence. In this 

dissertation, the above references have been used and further developments are addressed. 

 

 

1.3 Contribution of this Research 

 

• $SSOLFDWLRQ�RI�UREXVWQHVV�DQDO\VLV�WR��'�QHWZRUNV�LV�RXWOLQHG�LQ�9DQtþHN�HW�DO��>����@ 

DQG�&UD\PHU�DQG�9DQtþHN�>����@��+RZHYHU�WR�EH�DEOH�WR�FDOFXODWH�GLVSODFHPHQWV�FDXVHG�

by maximum undetectable errors, the initial conditions have to be determined. In this 

dissertation the initial conditions for 2D networks have been formulated. 

• In order to be able to assess the goodness of geodetic networks some threshold values are 

needed. In this thesis the threshold values for 2D networks have been developed. 
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• Application of robustness analysis to 1D networks has been investigated and the 

limitation of robustness analysis for 1D networks is addressed. The initial condition for 

1D networks has also been formulated. 

• Application of robustness analysis to 3D networks has been researched. Moreover, the 

initial conditions have been formulated. 

• To evaluate 3D networks, the threshold values have been developed. 

• Strain invariants in 3D have been researched. It is proven that dilation and differential 

rotation are invariants in 3D. It has been discovered that total shear is not invariant in 3D 

Euclidean space. Therefore the maximum shear strain in eigenspace has been adopted in 

3D formulation. 

• The relation between 3D and 2D in terms of invariants has been shown. 

• If a network is not robust (i.e., there are some points that lack robustness) at a required 

level it needs to be improved. In this dissertation a remedial strategy to overcome the lack 

of robustness has been described. 

 

 

1.4 Outline of Dissertation 

 

     The logical progression of thought is presented as concise as possible. In order not to 

interrupt the flow of the arguments, all the derivations are provided in the appendices. 

     Chapter 2 gives a review of robustness analysis and shows the application of robustness 

analysis to 3D, 2D and 1D geodetic networks. 
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     Chapter 3 explains how displacements at networks points are computed and it addresses 

how threshold values for 2D and 3D networks are determined. 

     Chapter 4 presents the numerical examples for 2D and 3D networks. If the networks are 

not all robust at the required level, they need to be remedied. In Chapter 4 the remedial 

strategies are described. And it also opens a discussion about how geodetic networks should 

be assessed. 

     Chapter 5 analyzes the invariants in 3D and provides the numerical results for 3D 

invariants. Since it is shown that total shear is not invariant in 3D, maximum shear strain is 

extended to 3D. It also outlines the relation between 3D and 2D in terms of invariants. 

     Chapter 6 concludes the thesis and lists the recommendations for further research. 

     Appendix-I shows how strain matrix is estimated for 1D, 2D and 3D cases. 

     Appendix-II explains how initial conditions are determined. 

     Appendix-III outlines the use of principal strains in 3D. 

     Appendix-IV gives the proofs for rotational invariance in 3D. 

     Finally a complete reference list and the author’s vita are presented. 
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CHAPTER TWO 

APPLICATION OF ROBUSTNESS ANALYSIS 

 

     This chapter outlines the application of robustness analysis to different dimensions. In 

section 2.1 a review of robustness analysis is given. In section 2.2 application of robustness 

analysis to 3D networks, in section 2.3 application of robustness analysis to 2D networks and 

in section 2.4 application of robustness analysis to 1D networks are addressed. 

 

 

2.1 A Review of Robustness Analysis 

 

     After geodetic networks (e.g., horizontal control, levelling, GPS etc.) are established, they 

are measured and point coordinates are estimated by the method of least squares. What 

happens if one or more observations are burdened with errors? It is clear that these errors will 

affect the observations and may produce incorrect estimates of the parameters. Therefore 

they normally should be detected and corrected. Generally in practice they are removed and 

the network is readjusted. To detect the errors among the observations Baarda’s method of 

statistical testing (data-snooping) is often used. What happens if these errors are not detected 

by the test? This may happen for two reasons: (i) the observation is not sufficiently checked 

by other independent observations; and, (ii) the test does not recognize the gross error. These 

situations were first investigated by Baarda [1968]. 
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     An element of the maximum undetectable error vector ûO  among the observations which 

would not be detected by a statistical test is given by Baarda [1968] as 

     

i

l
0i

r
ûO i

σ
λ=          (2.1) 

where 0λ is the value of the shift (non-centrality parameter) of the postulated distribution 

in the alternative hypothesis. 
il

σ is the a priori value of standard deviation of the i
th

 

observation and ri is the redundancy number of the i
th

 observation. Redundancy number is a 

number between 0 and 1 and it gives the ‘controllability’ of the observation. If it is 1, it is 

said that the observation is very well controlled. If it is 0, it means that only the minimum 

number of observations are connecting the point to the rest of the network. The estimate for 

the displacements û[  caused by the maximum undetectable errors ûO  in the observations is 

given by 

     ( ) lPAPAAû[ ∆=
− T1T

        (2.2) 

where A is the design matrix and P is the weight matrix. The entire procedure of computing 

x∆ � LV�H[SODLQHG�DPSO\�ERWK�LQ�9DQtþHN�HW�DO��>����@�DQG�>����@��,Q�WKLV�GLVVHUWDWLRQ�WKH�

correlations among the observations are not considered. In case of correlations the reliability 

measures must be reformulated. For more information about the correlated cases, interested 

readers are referred to Chen and Wang [1996] and Schaffrin [1997]. 

     The non-centrality parameter 0λ  in eq. (2.1) is function of both the probability of 

committing a Type-,�HUURU��.��DQG�WKH�SUREDELOLW\�RI�FRPPLWWLng a Type-,,�HUURU������7KH�

YDOXHV�WR�XVH�IRU�.�DQG���DUH�QRW�HDV\�WR�GHILQH��7KH�SUREOHPV�DVVRFLDWHG�ZLWK�WKLV�LVVXH�DUH�
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discussed in Krakiwsky et al. [1993]. Krakiwsky et al. [1993] state that Baarda used 0.1% for 

.� EXW� GLG�QRW� UHDOL]H� WKDW� WKLV� YDOXH� FRUUHVSRQGV� WR�.�Q� IRU� LQ-context testing (for more 

information about in-context testing interested readers are referred to Krakiwsky et al. 

>����@���)XUWKHUPRUH��LQ�RUGHU�WR�REWDLQ�D�UHDVRQDEOH�.��H�J���������KDG�WR�WDNH�RQ�D�KLJK�

value of 20%. But they also articulated that 20% is too large to use in geodetic practice so 

LQVWHDG�WKH\�UHFRPPHQG�D�PRUH�FRQVHUYDWLYH���YDOXH�RI�����7KHUHIRUH�WKURXJKRXW�WKLV�WKHVLV�

���IRU�.�DQG����IRU���DUH�DVVXPHG��2Q� WKH�RWKHU�KDQG�RQH�PLJKW� WKLQN�WKDW�E\�VLPSO\�

changing the vDOXH�RI���WKH�GLVSODFHPHQWV�FDQ�EH�WDLORUHG�WR�PHHW�DQ\�VSHFLILHG�YDOXH��1RWH�

that higher confidence (1-.��DQG�SRZHU�OHYHOV���-���ZRXOG�OHDG�WR�D�ODUJHU�QRQ-centrality 

parameter and thus require better network design and redundancy to achieve the same 

accuracy. This in turn leads to higher costs that may render the survey uneconomical. 

     One may be interested in measuring the deformations using strain on a local scale such as 

engineering applications or regional and global scale such as crustal dynamics analysis. Let 

us start by saying that within the context of geodetic network coordinate estimation 

robustness analysis can be applied wherever the Least Squares Method is applied. However 

one must not get the false impression that when using robustness analysis one is dealing with 

an actual deformation (physical movement of points) due to external forces such as crustal 

motions. With robustness analysis one is dealing with potential deformation that could be 

introduced into the coordinates by undetected errors in the observations. So throughout this 

dissertation the term ‘displacements’ means ‘potential deformation’ that could be introduced 

by the undetected errors in the observations and this will be considered as a kind of potential 

‘displacements’. On the other hand strain analysis has been utilized in crustal dynamics 
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analysis for many years; interested readers are referred to Pietrantino and Riguzzi [2004] for 

examples and details. 

     Nonetheless, the problem with the displacements in eq. (2.2) is that their estimates are 

datum dependent. This means that these estimates depend not only on the geometry of the 

network and the accuracy of the observations but also on the selection of constraints for the 

adjustment; this has nothing to do with the network deformation. Robustness of a network 

should depend only on the network geometry and accuracy of the observations. Therefore the 

strain technique is used as it is independent of adjustment constraints and reflects only the 

network geometry and accuracy of the observations. To measure robustness of a network the 

degree of deformation at individual points of the network is measured by strain. Traditional 

reliability analysis (Baarda’s approach) has been augmented with the strain technique and 

termed robustness analysis; this is outlined in the following sections. 

 

 

2.2 Robustness Analysis of 3D Networks 

 

�����9DQtþHN�HW�DO��>����@�IRUPXODWHG�WKH�H[SUHVVLRQV�IRU�WKH�YDULRXV�GHIRUPDWLRQ�SULPLWLYHV�LQ�

3D. However the problem was that geodetic networks are inherently only 2D in nature since 

they lie on the surface of the Earth whose variations in height are much smaller than those in 

the horizontal dimension. In other words the configuration of geodetic networks are usually 

nearly two-dimensional, i.e., superficial, as the heights may not differ too much from each 

other. Then the strain in the dimension perpendicular to the surface may become ill-defined. 
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Coordinates can be curvilinear or cartesian. The problem with the curvilinear coordinates is 

that when the points have the same height, the height difference between points relative to 

each other is zero. In this case it is thought that instead of curvilinear coordinates cartesian 

coordinates can be used. In this thesis two coordinate systems are used: Conventional 

Terrestrial (CT) system and Local Geodetic (LG) system (for more information about the 

coordinate V\VWHPV�VHH�9DQtþHN�DQG�.UDNLZVN\�>����@���1DWXUDOO\�PRVW�VDWHOOLWH�SRVLWLRQLQJ�

work is done in CT system and most traditional horizontal positions are given in LG system. 

Since the magnitude (length) of the displacement vector is independent of the coordinate 

system, networks can be assessed in any coordinate system. 

     If 1
st
, 2

nd
, 3

rd
 order etc. geodetic networks are taken into account, generally horizontal 

distances between/among these points are of the order of a few kms whereas the heights 

between/among these points do not vary much especially in urban areas. In this dissertation 

these types of networks are analyzed whereas special networks such as high precision 

networks for engineering projects or open pit mines are not considered. 

     Let us denote the displacement of a point Pi by 
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where u is the displacement in the x direction, v is the displacement in the y direction and w 

is the displacement in the z direction. Then the strain matrix is [Love, 1944; Sokolnikoff, 

1956 and Timoshenko & Goodier, 1970] 
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This may be applied to geodetic networks as follows: 
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where all the partial derivatives as well as the absolute terms ai, bi, ci and the coordinates Xi, 

Yi and Zi refer to point Pi and point Pj is connected (by an observation) to the point of 

interest, point Pi. The estimation of E may be seen in Appendix I. The strain matrix can be 

decomposed into two as follows 

     )(
2

1
)(

2

1 TT
EEEEE −++=        (2.8) 

     E = S + A          (2.9) 

where the matrix S describes symmetrical differential deformation and the matrix A 

describes anti-symmetrical differential deformation at a point as 
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and 
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Thus robustness primitives in 3D can be calculated for each point in the network accordingly, 

IRU�H[DPSOH��6RNROQLNRII�>����@��5DPVD\�>����@��9DQtþHN�HW�DO. [1991] show that: 
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     Simple shear (yz)  
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     Total shear (xy)  
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2.3 Robustness Analysis of 2D Networks 

 

     Robustness analysis of 2D networks may be thought as a special case of 3D analysis. In 

9DQtþHN�HW�DO��>����@�D�GLVSODFHPHQW�RI�D�SRLQW�3i is denoted as 
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where u is the displacement in the x direction and v is the displacement in the y direction. 

Then the tensor gradient with respect to position is 
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The estimation of E may be seen in Appendix I. Using eq. (2.8) the strain matrix E can be 

decomposed into its symmetric S and anti-symmetric A parts; i.e., 

     E = S + A          (2.27) 

where 
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and the primitives can be formulated as follows, for example, see Frank [1966], Ramsay 

>����@��9DQtþHN�HW�DO��>����@� 
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2.4 Robustness Analysis of 1D Networks 

 

     Classical Geodetic height networks are measured utilizing Trigonometric Heighting or 

Differential Levelling techniques. ‘Measurements’ are the height differences between/among 

the points. Thus heights are determined well whereas horizontal coordinates are only 

approximately known. Therefore in this type of network, one concentrates on the 

displacements in the vertical direction. In sections 2.2 and 2.3 it was shown how the strain 

technique is applied to 3D and 2D networks but how can it be applied to 1D networks? 

     Let us denote the displacement of a point Pi by 

     [ ] [ ]iii wz =∆=û[          (2.34) 

where w is the displacement in the z direction. Then the tensor gradient with respect to 

position is 

     
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
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∂
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=
z

w i
iE .         (2.35) 

The estimation of E may be seen in Appendix I. However since there is only one component 

in the strain matrix not all the primitives (e.g., dilation, pure shear, simple shear, differential 

rotation and total shear) can be defined. Only expansion may be defined which is dilation. 

     With eq. (2.35) one must not get the false impression that the application of robustness 

analysis to the vertical dimension views the problem as purely one dimensional. This 

formulation does not assume that all points in the network lie on a vertical line located at a 

single horizontal position. As one may envisage the control points have their horizontal 

coordinates as well. However as it is indicated above, in 1D networks, heights are determined 
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well whereas horizontal coordinates are only approximately known. Obviously if horizontal 

coordinates are only approximately known it means that the displacements in 2D cannot be 

determined properly. That is why in this type of network one only concentrates on the 

displacements in the vertical direction. 

     On the other hand in 1D networks there are some issues which need a closer look. Strain 

is calculated as 

     
l

ll
e

−′
=           (2.36) 

where l′  is the deformed length and l is the original length of the object. This is the 

definition in the theory of elasticity, whereas in Geodesy distances (in 1D networks the 

height differences between the points) can be thought of as beams of rigid length. Then in 1D 

networks one might run into a problem. When two points have nearly the same height (a 

common occurrence) the strain with respect to height may become extremely large and 

mislead the results. 

     To overcome this problem finite strain could be used since the strain with respect to 

height might become very large. In eq. (2.36), if the ratio of numerator to denominator 

becomes large, it is said that the strain is no longer infinitesimal strain; under these 

circumstances it becomes finite strain. The difference between finite strain and infinitesimal 

strain is that in finite strain the higher-order differentials of displacements are considered 

(Love [1944]). Furthermore if the two points have exactly the same height finite strain would 

not help because as can be seen in eq. (2.37), the result would be infinity since 

     ∞=
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l

l

l
e .         (2.37) 
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     Moreover it was investigated that the height from a surface such as ellipsoid or geoid 

could be defined but then the physical changes from that surface to the point of interest 

would not be explained; see Fig. 2.1. 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Height from a surface. 

If the strain is calculated by taking into account the height from a reference surface, we write 

     
ZH

)ZH(ZH
e

+
+−′+

=
ZH

Z

+
∆

=        (2.38) 

where H is the height of the point of interest (Pi) (at which the strain is sought) from a 

reference surface, Z is the height difference between the point of interest and a connected 

point (Pj), Z′  is the deformed height DQG�û=�LV�WKH�GLVSODFHPHQW��1HYHUWKHOHVV�WKHUH�LV�QRW�DQ�

immediate answer for application of robustness analysis to 1D networks. Computation of 

displacements and threshold values are given in Chapter 3. 

 

Pj 

Pi 

H 

Z' Z 

¨= 

Earth surface 

Deformed Earth surface 

Reference surface 

Level surface through Pi 
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CHAPTER THREE 

THRESHOLD VALUES FOR GEODETIC NETWORKS 

 

     This chapter addresses how threshold values are determined for 2D and 3D networks. To 

accomplish this in section 3.1 computations of displacements are shown. In sections 3.2 and 

3.3 determination of threshold values for 2D and 3D geodetic networks are addressed. 

 

 

3.1 Computation of Displacements 

 

     In robustness analysis the deformation caused by the maximum undetectable errors is 

estimated through strain analysis. In other words by using strain analysis one moves from 

displacement field to strain field. However, here some threshold values for the robustness 

primitives are sought. This means that one has to return from strain field to displacement 

field to determine how much the displacements caused by maximum undetectable errors a 

network could “handle”. To be able to compute the threshold values for networks firstly 

initial conditions for networks must be determined. Only then can the threshold values for 

robustness primitives be calculated. 

     Application of robustness analysis to geodetic networks has been outlined in Chapter 2. 

But how can the displacements be calculated? It is postulated that displacements in 3D are 

computed as follows 
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where u is the displacement in the x direction and v is displacement in the y direction and w 

is displacement in the z direction. In 2D, displacements are calculated as 
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In eqs. (3.1) and (3.2), the coordinates Xi, Yi and Zi refer to point Pi, which is the point of 

interest and X0, Y0 and Z0 are the initial conditions. 

     Equations (3.1) and (3.2) are a system of first order differential equations. In order to 

VROYH�WKHP��WKH\�VKRXOG�EH�LQWHJUDWHG��WKH�LQWHJUDWLRQ�SURFHVV�LV�H[SODLQHG�LQ�9DQtþHN�DQG�

Kwimbere [1988]. Here the idea is that to solve the system of differential equations, one 

ordinarily needs the boundary values. However in our case we have no idea what the 

boundary values should be. Thus instead the boundary values are replaced by a condition that 

the norm of all displacement vectors at all points in the network should be a minimum. This 

is similar to a generalized inverse solution. It turns out that this minimization yields a set of 

useful ‘initial conditions’, the condition that the displacement of the centroid be equal to 0. 
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Fig. 3.1 Representation of initial conditions 

     In Fig. 3.1, the network in black was the network before the deformation. After the 

deformation, it is deformed and became the network in red. In the circle window one of the 

points in this network is zoomed in. In this window d is the total displacement at this point. 

To determine the initial conditions the norm of these displacement vectors at all points in the 

network is minimized. If the norm of the displacement vectors at all points in the network is 

minimized, the initial conditions are attained. Essentially these initial conditions tell us 

where the network was before the deformation. The calculation of initial conditions may be 

seen in Appendix II. One thing should be emphasized here that without determining the 

initial conditions this research would not be possible. After computing the displacements for 

each point in the network, the total displacement at each point in 3D is calculated from 

d 
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     2
i

2
i

2
ii wvud ++=         (3.3) 

and accordingly in 2D it can be calculated from 

     2
i

2
ii vud += .         (3.4) 

 

 

3.2 Threshold Values for 2D Networks 

 

     As it is expressed in section 2.1, the displacements computed using eq. (2.2) are datum 

dependent. This is the reason that strain analysis is introduced to robustness analysis since 

the strain technique is independent of adjustment constraints and reflects only the network 

geometry and accuracy of the observations. On the other hand to assess the displacements 

VRPH�WKUHVKROG�YDOXHV�DUH�QHHGHG��9DQtþHN�HW�DO��>����@�VWDWH�WKDW�WKH�UHODWLYH�FRQILGHQFH�

region represents the relative accuracy between the two stations. It is not datum dependent 

and is most often used to define the accuracy of a network. This is the main reason that the 

following specifications are used to determine the threshold values. 

     The specifications given by the Canadian Geodetic Survey Division (GSD) are used to 

compute threshold values. The GSD specifications are given in GSD [1978]. 

     A survey point of a network is classified according to whether the semi-major axis of the 

95% confidence region, with respect to other points of the network, is less than or equal to: 

     rij = C (dij + 0.2)         (3.5) 
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where rij is in centimetres, dij is the distance in kilometres between points Pi and Pj and C is a 

dimensionless factor assigned according to the order of survey as given in Table 3.1. 

 

Table 3.1 The values for factor C for different orders of geodetic networks. 

Order Average Length Factor C 

1
st
 20 km 2 

2
nd

 15 km 5 

3
rd

 10 km 12 

4
th

 5 km 30 

 

     In robustness analysis the effect of the maximum undetectable errors which would not be 

detected by the statistical test on the network are searched for. Although the GSD 

specifications are given for random errors it means that by definition some certain amount of 

error is accepted in the GSD networks. Here a tacit acceptance has been made of certain 

values as ‘acceptable’, random or systematic. In this thesis these specifications are used as an 

example but they will likely vary from country to country. As the GSD specifications relate 

to pairs of points, in this dissertation the following formula is implemented: 

     ( ) ( )2ij
2

ijr vvuu
ij

−+−=δ        (3.6) 

where i and j are the points in question and 
ijrδ is the relative displacement between points Pi 

and Pj. 

     Here the relative displacements are calculated using eq. (3.6) to be able to compare them 

with the specifications used by GSD. The absolute displacements are also calculated at 

network points using eq. (3.4) for help in the interpretation and graphical display. 

     j,i∀ ; i,j=1,2,…,n, 
ijrδ is calculated and compared with rij. If for j,i∀ : 

ijrδ < rij then the 



 25 

network is robust at the required level of probability. If for some i,j: 
ijrδ > rij, the network is 

weak, i.e., some of the points do not meet the required level of robustness (at the required 

level of probability). Numerical examples are shown in Chapter 4. 

     While working on 2D networks, having in mind that the configuration of geodetic 

networks are usually nearly two-dimensional (i.e., superficially, the heights may not differ 

too much from each other) the application of robustness analysis to 3D networks was a very 

distant possibility. So the GSD specifications which are given in GSD [1978] are used to 

compute threshold values in 2D. As time went by it seemed that the application of robustness 

analysis to 3D networks might be possible. To accomplish this, the threshold values for 3D 

networks needed to be determined. This is explained in the following section. 

 

 

3.3 Threshold Values for 3D Networks 
 

     The “Accuracy Standards for Positioning” GSD [1996] are used to compute threshold 

values. The standard ellipse representing the one-sigma network accuracy of the adjusted 

horizontal coordinates at point Pi, is defined by its major (a) and minor (b) semi-axes. Using 

the elements of the covariance matrix of the parameters, they are computed as can be seen in 

eqs. (3.7) and (3.8). Derivations of these equations may be found in Mikhail and Gracie 

[1981], page 227, equation numbers 8-56 and 8-57. Since the accuracy standards for control 

points in geodetic networks are sought, eigenvalues of the covariance matrix are calculated as 

     ( )[ ] 2/1
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xa q2/

iii
+σ+σ=σ        (3.7) 
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−σ+σ=σ        (3.8) 

where qi is an intermediate result calculated as follows 
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and where 

 

2
x i

σ is the variance of X coordinate (m
2
) 

2
y i

σ  is the variance of Y coordinate (m
2
) 

ixyσ  is the covariance of X and Y coordinates (m
2
) 

 

To obtain semi-axes of the 95% confidence ellipse, we write 

     
ii95 aa 45.2 σ=σ          (3.10) 

     
ii95 bb 45.2 σ=σ .         (3.11) 

     The 95% confidence interval representing the network accuracy of the ellipsoidal height is 

obtained by multiplying ihσ  (in units of metres), which is extracted from the covariance 

matrix, by the expansion factor 1.96 for a single variate probability distribution. Therefore in 

this dissertation the following formula is implemented: 

     2
h

2
b

2
ai

i95i95i95
σ+σ+σ=δ        (3.12) 

where 
95aσ  is semi-major axis of the 95% confidence ellipse, 

95bσ  is semi-minor axis of 

the 95% confidence ellipse, 
95hσ  is 95% confidence interval of height component and iδ  is 

the threshold value which the displacements are compared against. In this equation the 

horizontal semi-axes must be scaled by (2.795/2.447) and the vertical interval by 
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(2.795/1.960). So first one needs to replace the 2D expansion factor and the 1D expansion 

factor with the 3D expansion factor before forming the 3D limit which is an approximation 

of the 3D confidence ellipsoid. 

     The confidence ellipsoid could be used to determine the accuracy of adjusted coordinates 

at network points for GPS networks since one may have the full covariance matrix for GPS 

observations. However, with the traditional approach of classical (terrestrial) three 

dimensional networks, horizontal and vertical coordinates are obtained separately so 

generally a full variance covariance matrix is not available. Therefore in this thesis the 

general case which has already been suggested by GSD of Canada is implemented. 

     Here the displacements are calculated using eq. (3.3) to be able to compare them with the 

threshold values. The threshold values for each point in the network are computed using eq. 

(3.12). Since the magnitudes (lengths) of displacements are invariant from coordinate 

systems, comparison can be made in any coordinate system. 

     di�LV�FDOFXODWHG�DQG�FRPSDUHG�ZLWK�/i. If for :Pi:n,...,2,1i =∀  di���/i it means that the 

network is robust at the required level of probability. If for some i: di�!�/i the network is 

weak at Pi, i.e., some of the points do not meet the required level of robustness (at the 

required level of probability). Numerical examples are shown in Chapter 4. 
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CHAPTER FOUR 

NUMERICAL RESULTS 
 

     In this chapter the robustness analysis technique is applied to simulated, terrestrial and 

GPS networks. In section 4.1 numerical examples for 2D networks and in section 4.2 

numerical examples for 3D networks are presented. If there is lack of robustness according to 

the robustness analysis of a network, it needs to be improved and this is explained in section 

4.3. Section 4.4 opens a discussion about the application of robustness analysis to geodetic 

networks. 

 

 

4.1 Numerical Examples for 2D Networks 

 

     The following examples are based on a datum specified by minimal constraints. If more 

than minimal constraints are used, one faces a very different problem which is an 

overconstrained solution. An overconstrained solution shows a deformation different from 

that of a minimally constrained solution. The additional deformation due to introduced 

constraints over and above the minimal ones is not considered in this dissertation. 

     To be able to show the power of the technique three different networks are examined. The 

first network is the HOACS2D network. It is a synthetic horizontal network, shown in Fig. 

4.1. The network consists of 11 points, one of which (point 1) is fixed, 38 directions, 19 

distances and 1 azimuth from point 6 to point 5. The distances are assigned a realistic 
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standard deviation of 3 mm + 2 ppm while the directions are assigned a standard deviation of 

0.5". The datum orientation is defined by the azimuth with a standard deviation of 1". 

     In this network all directions and distances are measured. On the other hand, as can be 

seen from Fig. 4.1, the geometry of the network is not good. The redundancy numbers of the 

observations at the edge of the network are low compared to the other observations in the 

network. Hence bigger displacements are obtained at edge points. 

     From the detailed analysis of the original observations it is found out that since the 

distances between the points 8-10, 8-11, 9-10 and 10-11 are longer than the other distances in 

the network, their standard deviations are larger compared to the other distance observations 

in the network. Hence bigger displacements are obtained at these points. 
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Fig. 4.1 Displacements in HOACS2D network. 

 

     The displacements are computed using eq. (3.4) and plotted in Fig. 4.1. Then relative 

displacements are calculated using eq. (3.6) and compared with the specifications from eq. 

(3.5); the comparisons are given in Table 4.1. In this network for :)PP(:n,...,2,1:ij ji∀  
ijrδ < 

rij so it is a totally robust network. 
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Table 4.1 Relative displacements and threshold 

                values for HOACS2D network (m). 

Points /Uij rij 

1-2 0.40 1.59 

1-3 0.35 2.82 

2-3 0.07 1.43 

2-4 0.13 1.34 

3-4 0.08 1.51 

3-5 0.10 1.45 

4-5 0.09 0.88 

4-6 0.06 0.99 

4-7 0.12 0.79 

5-6 0.04 1.82 

6-7 0.18 0.84 

6-8 0.20 0.57 

6-9 0.22 0.42 

7-8 0.03 0.97 

8-9 0.02 1.33 

8-10 0.08 0.76 

8-11 0.13 0.62 

9-10 0.08 0.59 

10-11 0.10 0.76 

 

     The second network is called Realnet and is shown in Fig. 4.2. It is an example of a real 

horizontal terrestrial network in southern Quebec consisting of 58 points, one of which (point 

1) is fixed, 307 directions, 125 distances and 1 azimuth observation from point 1 to point 3. 

The range of the standard deviations for the direction observations are 0".6-2".0 for the 

distance observations 1-34 cm and the standard deviation for the azimuth observation is 1". 

Note that the robustness of 4 points (#19, 23, 25, 55) is undefined. This is due to a singularity 

at these points which are linked to the rest of the network by only one observation. 

6LQJXODULW\�FDVHV�KDYH�EHHQ�DGGUHVVHG�E\�9DQtþHN�HW�DO��>����@� 
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Fig. 4.2 Displacements in Realnet network. 

     As can be seen from Fig. 4.2, the geometry of the network is not good there are some very 

low controlled points such as points 10, 11 and 16. Moreover, most of the distances in the 

network were not measured. Therefore the redundancy numbers of these observations are 

rather low. Hence very big displacements are obtained at these points. Therefore in this 

network for some pair of points 
ijrδ > rij; these pairs of points are identified in Table 4.2 by 

an asterisk. 

     The displacements are computed using eq. (3.4) and plotted in Fig. 4.2 and then relative 

displacements are calculated using eq. (3.6) to be able to compare them with the 

specifications; the comparisons are given in Table 4.2. 
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Table 4.2 Relative displacements and threshold values for Realnet network (m). 
Points /Uij rij Points /Uij rij Points /Uij rij Points /Uij rij 

1-27 0.20 0.88 8-34 0.47 1.39 *17-57 0.66 0.45 32-34 0.09 1.59 

1-12 0.34 1.43 *8-48 1.23 0.81 20-51 0.39 0.93 32-33 0.30 2.93 

1-14 0.42 1.79 9-37 0.63 0.81 20-44 0.28 0.91 33-49 0.25 2.11 

1-21 0.33 0.50 *9-36 0.64 0.48 20-53 0.22 0.88 33-34 0.29 2.04 

1-13 0.11 1.13 9-21 0.44 0.86 21-22 0.19 1.50 33-48 0.56 0.84 

1-38 0.23 0.66 9-38 0.47 0.68 21-40 0.36 0.64 34-49 0.30 2.33 

1-36 0.33 1.60 9-13 0.19 1.10 21-14 0.51 1.29 34-48 0.77 1.28 

1-37 0.34 1.49 *10-12 2.75 2.60 21-39 0.38 0.46 35-49 0.29 2.32 

1-9 0.30 0.57 *11-12 2.99 2.20 21-38 0.20 0.44 36-37 0.17 1.30 

1-2 0.45 0.98 *12-17 1.38 0.71 21-27 0.20 0.55 38-39 0.28 0.52 

1-5 0.31 0.63 *12-56 1.20 0.89 21-31 0.22 0.47 39-40 0.06 0.59 

1-3 0.21 1.03 *12-45 1.72 1.56 22-31 0.09 0.81 39-42 0.18 0.81 

1-6 0.18 0.60 12-53 0.44 1.61 22-39 0.19 0.52 40-42 0.19 1.00 

*2-4 0.76 0.65 12-15 0.47 0.92 22-27 0.14 0.53 *40-41 0.57 0.55 

2-3 0.65 0.92 12-44 0.27 1.61 24-26 0.48 0.76 *41-57 1.13 0.42 

2-5 0.14 0.57 12-16 1.77 1.97 24-51 0.69 0.92 *41-56 1.02 0.51 

2-9 0.19 0.70 12-18 0.21 0.59 *24-52 1.12 0.53 42-44 0.06 0.48 

*3-10 2.24 1.78 12-14 0.11 1.11 26-51 0.41 1.79 42-50 0.19 0.41 

*3-11 2.54 2.38 12-42 0.27 0.45 27-28 0.25 0.95 43-50 0.40 0.43 

3-12 0.54 2.08 12-13 0.23 1.58 27-31 0.07 1.71 44-45 1.60 2.61 

3-6 0.33 0.55 12-40 0.40 0.50 27-29 0.37 0.45 44-53 0.38 2.56 

*3-5 0.52 0.51 12-28 0.59 0.95 28-58 0.58 0.92 44-51 0.14 0.43 

*3-4 1.39 0.91 12-30 0.31 0.61 28-30 0.43 0.89 44-50 0.17 0.55 

*4-5 0.88 0.50 12-41 0.35 0.44 28-31 0.31 0.78 46-47 0.21 0.48 

*6-8 0.68 0.64 *12-58 1.11 0.87 28-3 0.54 1.13 46-49 0.81 1.68 

6-48 0.56 0.67 13-38 0.31 0.48 28-29 0.54 1.51 46-48 0.19 0.46 

6-29 0.43 0.45 13-39 1.12 0.51 *28-48 0.53 0.45 48-58 0.31 0.84 

6-27 0.07 0.47 13-14 0.31 1.11 29-48 0.28 1.78 48-49 0.81 0.88 

7-47 0.92 0.92 14-15 0.39 1.59 *30-58 0.84 0.83 50-15 0.69 0.99 

*7-46 0.80 0.42 14-50 0.53 0.61 30-41 0.47 2.62 50-51 0.04 0.42 

7-49 0.04 2.59 14-43 0.27 0.42 30-40 0.10 0.62 *50-52 0.55 0.46 

7-48 0.79 0.48 *14-16 1.66 1.45 30-31 0.13 0.45 *51-52 0.56 0.56 

7-8 0.50 0.84 14-39 0.42 0.88 31-40 0.15 0.63 53-54 0.37 0.41 

8-33 0.69 3.04 14-42 0.37 0.67 32-49 0.24 1.85 53-56 1.19 1.50 

8-49 0.51 0.82 15-18 0.66 0.80 32-35 0.23 0.57 *54-56 1.23 0.89 

*8-46 1.28 0.58 *17-56 2.35 0.92 32-48 0.83 1.49 57-58 1.70 1.74 

 

     As can be seen in Fig. 4.2, the identified pairs of points have a big displacement at least at 

one of the points. The reasons for these displacements are, first, the distances are not 

measured (discovered from detailed analysis of the original observations) and, second, the 
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points are not well controlled. 

     However, if the redundancy number of the observations increases the displacements get 

smaller. For example, although the distances from point 17 to the connected points were not 

measured, the redundancy number of the observations is higher at point 17 compared to 

points 10, 11 and 16. This causes the displacement at point 17 to be smaller than the 

displacements at points 10, 11 and 16 and similarly for points 24, 56 and 57. 

     The third network is called Northwest Territories Network; it is shown in Fig. 4.3. It is an 

example of a real GPS network. It consists of 33 points, one of which (point 1) is fixed, and 

402 coordinate differences. The range of the baseline component standard deviations are 8-

774 mm since it is a rather old GPS network. Note that although GPS networks are 

intrinsically 3D, only the horizontal (2D) component of the network is analyzed here. 
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Fig. 4.3 Displacements in Northwest Territories network. 

 

     As can be seen from Fig. 4.3 generally the displacements are bigger at the edge of the 

network since the redundancy number of the observations is rather small compared to the 

other points in the network. However, as soon as the redundancy number of the observations 

increases the displacements get smaller. For example, at point 9 there are 3 connections 

whereas at point 20 there are 4 connections and the displacement is smaller at point 20 than 

at point 9. Nevertheless, points 8, 10, 13 and 33 have some observations which have large 

standard deviations (see Table 4.3). Therefore the displacements at these points are larger 

compared to the other points in the network. However, at point 2, standard deviations of the 
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observations are smaller compared to the maximum standard deviations at points 8, 10, 13 

and 33. Similar situations also occur at points 31 and 32. 

 

Table 4.3 Standard deviations of some of the observations in NWT network (m). 

Points 1û; 1û< Points 1û; 1û< 

2-5 0.083 0.063 13-10 0.111 0.078 

2-3 0.060 0.042 13-5 0.121 0.067 

2-31 0.051 0.018 33-32 0.147 0.100 

2-22 0.034 0.027 33-13 0.095 0.046 

8-20 0.028 0.018 33-6 0.125 0.091 

8-11 0.152 0.072 33-10 0.036 0.041 

8-10 0.068 0.064 33-26 0.072 0.069 

8-9 0.083 0.054 33-17 0.060 0.077 

8-7 0.024 0.012 33-13 0.093 0.053 

13-31 0.038 0.025 10-32 0.110 0.097 

13-26 0.079 0.073 10-33 0.036 0.041 

13-33 0.093 0.053 10-6 0.088 0.103 

13-32 0.073 0.053 10-7 0.123 0.099 

13-22 0.050 0.044 10-8 0.068 0.064 

13-17 0.054 0.067 10-20 0.104 0.094 

 

In Table 4.3 1¨; is the standard deviation for the coordinate difference in the x direction and 

1¨< is the standard deviation for the coordinate difference in the y direction. The 

displacements are calculated using eq. (3.4) and plotted in Fig. 4.3 and then relative 

displacements are calculated using eq. (3.6) to able to compare them with the specifications; 

the comparisons are given in Table 4.4. In this network for :)PP(:n,...,2,1:ij ji∀  
ijrδ < rij so 

it is a totally robust network. 
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Table 4.4 Relative displacements and threshold values for NWT Network (m). 
Points /Uij rij Points /Uij rij Points /Uij rij Points /Uij rij 

1-15 0.05 1.55 5-32 0.07 3.51 10-20 0.11 4.46 15-25 0.10 2.06 

1-16 0.06 1.44 5-27 0.06 1.58 10-13 0.13 2.97 15-27 0.02 1.56 

1-17 0.07 1.28 5-28 0.05 2.61 11-14 0.08 3.62 16-23 0.12 3.30 

1-26 0.08 1.68 5-30 0.07 2.13 11-19 0.14 1.99 16-24 0.09 1.54 

1-27 0.07 2.52 6-14 0.05 1.85 11-21 0.13 1.56 16-17 0.01 2.71 

1-6 0.09 2.95 6-7 0.04 1.68 11-20 0.05 2.10 16-18 0.13 1.84 

2-22 0.03 2.37 6-10 0.08 2.14 12-23 0.03 1.94 16-25 0.09 2.49 

2-3 0.12 2.28 6-21 0.05 2.86 12-24 0.04 1.48 17-26 0.01 0.63 

2-31 0.03 1.84 6-17 0.09 2.96 12-18 0.13 2.49 17-27 0.01 2.27 

2-5 0.06 3.67 6-26 0.09 2.53 12-16 0.14 3.01 17-33 0.10 2.48 

3-31 0.14 2.84 6-33 0.02 2.39 12-14 0.12 2.93 18-23 0.15 1.70 

3-5 0.07 2.20 6-32 0.08 3.69 12-21 0.09 1.67 18-24 0.10 1.62 

3-22 0.14 2.13 7-11 0.06 1.72 13-26 0.12 1.76 18-25 0.07 2.61 

3-27 0.13 3.28 7-14 0.03 3.16 13-33 0.02 1.43 19-21 0.10 1.06 

3-28 0.09 3.64 7-19 0.10 2.14 13-31 0.13 2.12 21-24 0.08 2.39 

3-30 0.04 1.48 7-20 0.02 2.27 13-32 0.11 1.13 22-31 0.01 1.27 

4-25 0.24 1.71 7-8 0.05 2.14 13-17 0.11 2.16 22-32 0.05 2.46 

4-27 0.16 1.84 7-9 0.34 2.79 13-22 0.13 1.74 23-24 0.05 2.26 

4-28 0.11 1.15 7-21 0.07 2.55 14-15 0.05 2.94 25-28 0.14 2.84 

4-29 0.06 2.59 7-10 0.09 2.70 14-16 0.04 1.83 26-33 0.10 1.86 

4-30 0.05 3.49 8-11 0.01 3.69 14-17 0.04 2.25 27-28 0.06 1.28 

5-13 0.05 2.43 8-20 0.05 2.97 14-19 0.08 1.69 27-30 0.13 2.42 

5-17 0.07 2.14 8-10 0.15 1.85 14-21 0.05 2.66 28-29 0.17 1.65 

5-26 0.07 2.45 8-9 0.29 1.97 14-24 0.08 1.91 28-30 0.07 2.35 

5-33 0.04 3.64 9-11 0.29 3.56 15-17 0.01 2.17 29-30 0.11 1.81 

5-22 0.08 1.67 10-32 0.08 2.44 15-16 0.01 1.80 31-32 0.06 2.22 

5-31 0.08 2.93 10-33 0.11 1.58 15-18 0.14 3.25 32-33 0.09 1.30 

 

     In Table 4.4, rij values have been obtained using eq. (3.5). Clearly in this equation 

threshold values depend on the distance and order of the network. Since Northwest 

Territories network is a very large network, accordingly rij values are large. It seems that 

threshold values are much larger compared to relative displacements and one might think 

about the economics and question the quality of the measurements. However, note that this is 

a first order network and with threshold values we are talking about threshold values for any 

geodetic network. In this case threshold values for 2D networks. 
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4.2 Numerical Examples for 3D Networks 

 

     Two GPS networks have been examined. The first network called Simple GPS network is 

shown in Fig. 4.4. It is a small real GPS network consisting of 7 points, one of which (point 

1) is fixed, and 42 coordinate differences. The range of the baseline component standard 

deviations are 0.7-3.1 mm. 

     As can be seen from Fig. 4.4 some of the displacements are bigger at the edge of the 

network. However, as soon as the redundancy number of the observations increases the 

displacements get smaller. For example, at point 5 there are 5 connections whereas at point 1 

there are 3 connections and the displacement is smaller at point 5 than at point 1. Standard 

deviations in this network are quite small therefore the displacements are quite small. 
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Fig. 4.4 Displacements in Simple GPS network. 

     The displacements are calculated using eq. (3.3) and plotted in Fig. 4.4 and the threshold 

values are computed using eq. (3.12) and then the displacements are compared against the 

threshold values. The comparisons are given in Table 4.5. Since for :Pi:n,...,2,1i =∀  in the 

network the displacements are less than the threshold values this is a totally robust network. 

Table 4.5 Displacements and threshold 

                values for Simple GPS network (m). 

Points di /i 

2 0.002 0.005 

3 0.000 0.005 

4 0.002 0.006 

5 0.000 0.005 

6 0.001 0.005 

7 0.002 0.007 
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     The second network is the same Northwest Territories Network used in section 4.1; it is 

shown in Fig. 4.5. It consists of 33 points, one of which (point 1) is fixed, and 402 coordinate 

differences. The range of the baseline component standard deviations are 8-774 mm; these 

values look quite large since it is a rather old GPS network. 

     As can be seen from Fig. 4.5 generally the displacements are bigger at the edge of the 

network since the redundancy number of the observations is rather small compared to the 

other points in the network. However, as soon as the redundancy number of the observations 

increases the displacements get smaller. For example, at point 9 there are 3 connections 

whereas at point 20 there are 4 connections and the displacement is smaller at point 20 than 

at point 9. 

     It is seen from detailed analysis of the original observations that points 5 and 22 have 

some observations which have large standard deviations. These less precise observations 

affect the points in their vicinity; therefore we get a large displacement at point 22. And also 

points 12, 21 and 24 have some observations which have large standard deviations. 

Consequently, these observations affect that area of the network and we get some significant 

displacements at these points. At point 29 not only is the redundancy number of the 

observations low but also the observations have large standard deviations therefore we obtain 

the largest displacement of the whole network at this point. Most of the other points are in 

the middle of the network therefore their redundancy numbers are quite high compared to the 

other points at the edge of the network, thus we do not get large displacements at these 

points. 
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Fig. 4.5 Displacements in Northwest Territories network. 

 

     The displacements are computed using eq. (3.3) and plotted in Fig. 4.5 and the threshold 

values are calculated using eq. (3.12) and then the displacements are compared with the 

threshold values the comparisons are given in Table 4.6. For some points in this network 

displacements are larger than the threshold values so it is not a robust network. Therefore the 

network is not robust at all the points at the required level and so it needs to be improved. 

These points are identified in Table 4.6 by an asterisk. 
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Table 4.6 Displacements and threshold values for NWT network (m). 

Points di /i Points di /i 

*2 0.91 0.14 *18 0.16 0.13 

3 0.07 0.14 *19 0.25 0.19 

*4 0.23 0.14 *20 0.28 0.15 

5 0.09 0.12 *21 0.20 0.13 

6 0.05 0.15 *22 0.63 0.12 

*7 0.17 0.15 23 0.13 0.23 

8 0.14 0.15 *24 0.28 0.23 

*9 0.93 0.25 *25 0.18 0.15 

10 0.14 0.14 26 0.07 0.08 

11 0.14 0.25 27 0.08 0.14 

*12 0.25 0.17 28 0.11 0.13 

13 0.12 0.12 *29 1.02 0.27 

14 0.02 0.10 *30 0.76 0.13 

*15 0.12 0.11 *31 0.54 0.12 

16 0.03 0.08 32 0.13 0.15 

17 0.01 0.06 33 0.09 0.13 

 

     In Table 4.6, /i values have been obtained using eq. (3.12). In this equation threshold 

values depend on the semi-axes of the 95% confidence ellipse and the 95% confidence 

interval of height component which are obtained using the variances and covariances of the 

coordinDWHV��7KHUHIRUH�/i values are quite close to the di values. In this 3D case it seems that 

threshold values are more realistic. Therefore some of the points do not meet the robustness 

requirements. One thing that should be emphasized here is that the threshold values we are 

talking about are threshold values for any geodetic network. 

     This is the same network which is used in section 4.1 for 2D analysis. Nonetheless the 

results seem very different. The results are different because in the 2D analysis the relative 

displacements are calculated and compared with the threshold values which are developed 

for 2D. For 3D analysis the absolute displacements are calculated and compared with the 

threshold values which are developed for 3D. As it is pointed out above, the formulation of 
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threshold values in 2D and 3D are quite different. Due to the theory of robustness analysis (in 

2D and 3D cases; design matrix A, weight matrix P, redundancy numbers and therefore the 

maximum undetectable errors are different) the results for the strain matrix in 2D and 3D are 

different. Accordingly, the invariants in 2D and 3D are different, therefore the relation 

between 2D and 3D in terms of invariants needs to be investigated; this is outlined in section 

5.7. 

     In sections 4.1 and 4.2 geodetic networks have been analyzed in 2D and 3D. It turns out 

that some of the networks are not all robust at the required level and they need to be 

remedied. The remedial strategies are described in the following section. 

 

 

4.3 Remedial Strategy 

 

     Robustness of a network is affected by the design of the network and accuracy of the 

observations. Therefore the points that lack robustness in the network may be remedied either 

by increasing the quality of observations and/or by increasing the number of observations 

(controllability) in the network. 

     A remedial strategy is likely to be different for different networks since they have 

different geometry and different observations. There might not be a solution fitting all 

networks but here a general strategy is given. 

     Increasing the number of observations increases the redundancy of the network, therefore 

we get lower primitive values. Adding an observation should never deteriorate the solution 
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because the current network will already be there. In fact by adding an observation the 

current network is only improved since the redundancy in the network is improved. 

     If we add an observation and its quality is not good enough, this observation might not 

contribute to the solution at all. Let us say we have an observation with an infinite standard 

deviation then its weight will be zero therefore it will not affect the solution. 

     Increasing the quality of the observations or increasing the number of observations in a 

network generally affects the points the observations are connected to. Increasing the quality 

of direction observations at network points affects the points around these points since the 

decreased standard deviation affects the surrounding points. 

     If there is lack of robustness in terms of scale (scale is represented by dilation) at a 

network point distance observations should be added to the network. If there is lack of 

robustness in terms of differential rotation at a network point adding direction observations 

or some distance observations should improve the robustness. Adding these observations is 

going to tighten the network for that area. In addition because GPS observations provide both 

scale and direction information and are cheaper to perform over long distances they may be 

incorporated as well. 

     Some things still need to be investigated, for example if we get a big value of, let us say, 

pure shear. How can this problem be cured? What is the source of this problem? 
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4.4 Discussion 

 

     In robustness analysis, the deformation caused by the maximum undetectable errors is 

measured through strain analysis. In other words by using strain analysis one moves from 

displacement field to strain field. First the threshold values are determined in the strain field 

using the relations among the primitives. Preliminary thoughts are addressed in Berber et al. 

[2003]. However at that time we could not quite succeed in this venture. Therefore we 

needed to return from strain field to displacement field to define the threshold values. To be 

able to compute the threshold values for networks, firstly initial conditions must be 

determined. Only after that the threshold values can be determined for robustness primitives. 

That is why the specifications from GSD are utilized to determine threshold values. By 

definition these specifications give the amount of error which is accepted in the GSD 

networks. 

     After expanding robustness analysis to 3D, another problem which is needed to overcome 

was the determination of the invariants in 3D. In the examples in sections 4.1 and 4.2 one 

datum is selected and the results are produced. However, the robustness measure should not 

depend on the choice of a datum. Robustness should be defined in terms of invariants rather 

than the primitives since a datum change will change the strain matrix and therefore the 

primitive values. 

�����9DQtþHN� HW� DO�� >����@� VKRZV� WKDW� GLODWLRQ�� GLIIHUHQWLDO� URWDWLRQ� DQG� WRWDO� VKHDU� DUH�

invariants in 2D. This means that no matter what the choice of the datum is the results for 

dilation, differential rotation and total shear will be the same for each solution. This should 
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also be the case for 3D robustness analysis. So the search for invariants in 3D is crucial. 

These issues are addressed in Chapter 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 47 

CHAPTER FIVE 

INVESTIGATIONS ON INVARIANTS 
 

     In this chapter invariants in 3D are investigated. First, in section 5.1 strain invariants are 

introduced. In section 5.2 the investigations which have been made on invariants in 3D are 

addressed. In section 5.3 the proofs about invariants in 3D are given. In section 5.4 the proofs 

are supported by numerical results. Further developments about the shear invariant are 

addressed in section 5.5. In section 5.6 numerical results for principal strains in 3D are given. 

In section 5.7 the relation between 3D and 2D in terms of invariants is shown. 

 

 

5.1 Strain Invariants 

 

     The three principal axes of a strain ellipsoid which are the eigenvalues of the following 

equation (see Appendix III for their derivation) are obtained from 

     0III 32
2

1
3 =−σ−σ−σ         (5.1) 

where 

     zzyyxx1I σ+σ+σ=  

     zzyyzzxxyyxx
2
yz

2
xz

2
xy2I σσ−σσ−σσ−σ+σ+σ=     (5.2) 

     2
xyzz

2
xzyy

2
yzxxyzxzxyzzyyxx3 2I σσ−σσ−σσ−σσσ+σσσ=  

where zzxyxx ,...,, σσσ  are the components of the symmetrical part of the strain matrix. I1, I2 
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and I3 are invariants of strain and must be the same for all choices of coordinate axes x,y,z. In 

fact invariant theory originates from linear algebra as outlined in linear algebra text books, 

for example, Paige and Swift [1961], Shields [1964], Kaplansky [1969] and Kaye and 

Wilson [1998]. 

     Derivation of invariants is based on the assumption that there exist three mutually 

perpendicular planes at a point O (origin) on which the shear strain vanish. The remaining 

normal strain components on these three planes are called principal strains. Correspondingly, 

the three mutually perpendicular axes that are normal to the three planes are called principal 

axes. Under a deformation of a body any infinitesimal sphere in the body is deformed into an 

infinitesimal ellipsoid called the strain ellipsoid. The principal axes of the strain ellipsoid 

have the directions of the principal axes of strain. So using only the principal values, the 

invariants are derived from eq. (5.1) [Boresi et al. 1993]. Finding the three roots of eq. (5.1), 

the three principal axes of the strain ellipsoid (which are the eigenvalues of this equation) can 

be defined. 

 

 

5.2 Investigations on Invariants in 3D 

 

     The aim of the following sections is to show the useful strain invariants in 3D, i.e., those 

that are useful for geodetic analysis. Since linear combinations of invariants are also 

invariant, one can obtain an infinite number of invariants. However since we use primitives 

in robustness analysis here we concentrate on dilation, differential rotation and shear 
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invariants. The invariants are summarized for 2D in Table 5.1. On top of these “useful” 

invariants, there are some others listed, for instance, by Love [1944]. 

Table 5.1 Invariants in 2D. 

Robustness primitives 2D 

Dilation invariant 

Pure shear not invariant 

Simple shear not invariant 

Differential rotation invariant 

Total shear invariant 

Maximum shear strain invariant 

 

 

5.2.1 Dilation 

 

     The ‘dilation invariant’ is the only linear invariant. It is given by (see Appendix IV for 

more information) 

     ∑ σ=σ=∀
=

n

1i
i

n

n

1
:3,2,1n        (5.3) 

where n is the dimensionality of the problem. The relation between the two and three 

dimensional cases is 

     ( )32
3

1
σ+σ=Σ          (5.4) 

where the two dimensional dilation invariant is denoted by 
2σ or simply by σ. σ3 represents 

the dilation in third dimension. Σ denotes the dilation invariant in 3D. 

     Dilation invariant is equal to the first invariant which is given in eq. (5.2). In other words 

Σ=I1 and it is an invariant in 3D. If an invariant is multiplied by a value, the result is again an 
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invariant. Thus the fraction in eq. (5.4) should not confuse the readers. Conventions about 

strain tensor notation are addressed in Sokolnikoff [1956]. 

 

5.2.2 Differential Rotation 

 

     The ‘differential rotation magnitude invariant’ is a quadratic invariant. It is postulated to 

be given by the following expression in 3D 

     
2

yz

2

xz

2

xy ω+ω+ω=Ω .        (5.5) 

While in 2D the invariant 2ω � LV�VLPSO\�D�VFDODU�TXDQWLW\�>9DQtþHN�HW�DO������@��WKLV��'�

invariant Ω  can be interpreted as the square of the length of the ‘differential rotation vector’, 

where the components are equal to the 2D scalar invariants yzxzxy and, ωωω  in the 

coordinate planes xy, xz and yz respectively. It is known from the investigation of the 2D 

invariants that these invariants are nothing else but magnitudes of differential rotation vectors 

iω  i=1,2,3 that are perpendicular to the coordinate planes xy, xz and yz respectively. In other 

words xy1 ω=ω , xz2 ω=ω  and yz3 ω=ω . 

 

5.2.3 Shear 

 

     The total shear invariant in 2D is defined as follows 

     2
xy

2
xyxy υ+τ=γ         (5.6) 
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Total shear in 3D is postulated to be given by 

     2

yz

2

xz

2

xy γ+γ+γ=Γ         (5.7) 

where the formulae for yzxzxy and, γγγ  are given in eqs. (2.22), (2.23) and (2.24) 

respectively. Since pure shear (τ) and simple shear (ν) are normally thought of as scalar 

quantities, it is not immediately obvious how they should be interpreted geometrically. 

Neither is it obvious how the 2D scalar invariants are to be shown geometrically. But the fact 

is that they are invariant under a rotation of the 2D coordinate system in the corresponding 

PDQLIROG�>9DQtþHN�HW�DO������@� 

 

 

5.3 Proof of Invariance in 3D 

 

     IQ�9DQtþHN�HW�DO��>����@�WKH�LQYDULDQWV�LQ��'�DUH�LQYHVWLJDWHG��%XW�ZKDW�KDSSHQV�LI�ZH�

expand our research from 2D to 3D? In 3D, as it was the case in 2D, since translations do not 

affect strain, the solutions based on datums with different origins will be the same. In 3D, the 

solutions for scale change should be identical to each other since scale change has only a 

second order effect. However the solution for orientation change will be different. Consider 

two analyses of a network, the first using coordinate system (x, y, z) where 
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and the strain matrix is as follows 
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The second analysis uses coordinate system (x
*
, y

*
, z

*
) which is rotated clockwise about Ox 

(along x axis) by an�DQJOH�.�DQG�WKHQ�VXEVHTXHQWO\�URWDWHG�FORFNZLVH�DERXW�2\��DORQJ�\�D[LV��

E\�DQ�DQJOH����QH[W�DIWHU�WKH�.�DQG���URWDWLRQV�WKH�D[HV�DUH�URWDWHG�FORFNZLVH�DERXW�2]��DORQJ�

]�D[LV��E\�DQ�DQJOH����7KHQ 
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Rx         (5.10) 

where R is the rotation matrix and the strain matrix is 

     



























∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

=

*

*
i

*

*
i

*

*
i

*

*
i

*

*
i

*

*
i

*

*
i

*

*
i

*

*
i

*
i

z

w

y

w

x

w

z

v

y

v

x

v

z

u

y

u

x

u

E .       (5.11) 

     From now on, for simplicity, subscript i is going to be omitted. The proof for dilation 

invariant may be shown as 

     










∂

∂
+

∂

∂
+

∂

∂
=Σ
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       (5.12) 

where the equivalents of 
*

*

x

u

∂

∂
, 

*

*

y

v

∂

∂
 and 

*

*

z

w

∂

∂
 are given in Appendix IV. After replacing the 
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partials in eq. (5.12) and performing the necessary algebraic manipulations we see that 

     Σ=
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*

*
* .    (5.13) 

,W�PHDQV�WKDW���ZKLFK�LV�HTXDO�WR�,1 is invariant under a rotation of a coordinate system. 

     Under an orientation change if the partials are expressed using tensor analysis summation 

convention we write (see Appendix IV) 

     
s*

r*

s*

r*

x

x

x

u

u

u

x

u

∂

∂

∂

∂

∂

∂
=

∂

∂ β

β

α

α
        (5.14) 

where Greek indices imply summation over the values (1,2,3). r and s are the free indices 

(information on indices’ role can be found in Boresi and Chong [2000]). Since our jacobian 

matrix (a jacobian matrix is a matrix containing partial derivatives) is the rotation matrix we 

can write 

     T* RERE =          (5.15) 

where 

















βαγα−γβαγα+γβα
βαγα+γβαγα−γβα

β−γβγβ
=

CosCosCosSinSinSinCosSinSinCosSinCos

CosSinCosCosSinSinSinSinCosCosSinSin

SinSinCosCosCos

R  (5.16) 

It means that using eq. (5.15) we can transform the strain matrix from first coordinate system 

(x, y, z) to second coordinate system (x
*
, y

*
, z

*
). Using eq. (2.8) the strain matrix can be 

decomposed into its symmetric S and anti-symmetric A parts. If we do that we can write 

     TT* RARRSRE +=         (5.17) 

This means that the transformation from first coordinate system to second coordinate system 
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is commutative. The proof may be seen in Appendix IV. 

     Now whether Ω  is invariant in a rotation of a coordinate system in 3D is investigated. For 

invariance we require that 

     
*Ω=Ω           (5.18) 

which is equivalent to 
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If eqs. (2.19), (2.20) and (2.21) are substituted in eq. (5.19) we get 
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           (5.20) 

     Equation (5.20) is equal to Ω  which is given in eq. (5.5). It means that Ω  is invariant 

under a rotation of a coordinate system. Intermediate derivations may be seen in Appendix 

IV. Numerical results are given in section 5.4. 

     According to investigations which have been carried out regarding total shear Γ , it is not 

invariant in a rotation of a coordinate system in Euclidean space. The proof may be seen in 

Appendix IV. In eq. (IV.69) it is hypothesized that the total shear in the rotated system would 

be different than the one in the original system. This means that eq. (IV.102) must not be 

equal to zero. It seems that eq. (IV.102) might be equal to zero for two reasons: (i) if all the 

differentials in this equation are zero - this means that there is no deformation; and, (ii) if the 

YDULDEOH�.�LV�]HUR�- this means that there is no rotation. However these are not the case with 

the robustness analysis of geodetic networks. On the other hand despite extensive efforts, it 

has not been possible to prove mathematically that eq. (IV.102) will not be zero for all other 
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possible cases. Instead it has been shown numerically that the total shear in the rotated 

system is different than the one in the original system - the numerical results may be seen in 

Table 5.2. 

     One might think that the expression for 3D total shear in eq. (IV.75) should reduce to the 

2D expression by setting to zero all differentials involving w and z. However this argument 

is valid from eq. (IV.70) to eq. (IV.72). Indeed in these equations if w and z (which represent 

the third dimension) are set to zero then 3D total shear reduces to 2D total shear. 

Nevertheless if the equivalents of simple and pure shears from (2.13) to (2.18) are substituted 

in eq. (IV.72) this argument is no longer valid because in eq. (IV.73) if all the differentials 

involving w and z are set to zero, 3D total shear will not reduce to 2D total shear - some 

strain matrix components will remain in the equation. So it means that from now on we do 

not have any control over the total shear in 3D. Besides it is not known how simple and pure 

shear ‘behave’. Therefore in the evaluation of 3D total shear, the role that pure and simple 

shears play is worth investigating in order to be able to understand total shear in 3D. That is 

why this issue is addressed in section 6.2 as a recommendation for further research. On the 

other hand this argument is valid on differential rotation. Because if all the differentials 

involving w and z in the equations from (IV.63) to (IV.65) are set to zero, differential 

rotation in 3D always reduces to differential rotation in 2D however this is not the case with 

total shear. 

     As can be seen from the results in Tables 5.2, total shear is not invariant under a rotation 

of a coordinate system in 3D. This agrees with the hypothesis made in eq. (IV.69). Since it 

can be assumed now that total shear is not invariant in 3D, it will not used as a measure in 
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robustness analysis. Therefore maximum shear strain is recommended instead. This is 

explained in section 5.5. 

 

 

5.4 Numerical Results for 3D Invariants 
 

     In order to be able to show the invariants in 3D numerically, Northwest Territories 

network in Fig. 4.5 is used. First in CT system dilation, differential rotation and total shear 

are calculated then using eq. (5.15) strain matrix is transformed to LG system and then once 

again dilation, differential rotation and total shear are computed. The results are given in 

Table 5.2. 
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Table 5.2 Values for Northwest Territories Network. 

 � 
 + 

 CT LG CT LG CT LG 

1 17.1E-06 17.1E-06 13.2E-05 13.2E-05 1.46E-04 1.37E-04 

2 9.6E-06 9.6E-06 68.5E-06 68.5E-06 7.43E-05 7.15E-05 

3 1.2E-06 1.2E-06 11.9E-06 11.9E-06 1.37E-05 1.21E-05 

4 3.3E-06 3.3E-06 24.2E-06 24.2E-06 2.95E-05 2.56E-05 

5 1.4E-06 1.4E-06 12.6E-06 12.6E-06 1.45E-05 1.28E-05 

6 -0.1E-06 -0.1E-06 10.3E-06 10.3E-06 1.11E-05 1.04E-05 

7 -5.2E-06 -5.2E-06 27.5E-06 27.5E-06 3.02E-05 2.97E-05 

8 -6.4E-06 -6.4E-06 15.1E-06 15.1E-06 1.87E-05 2.00E-05 

9 -6.7E-06 -6.7E-06 36.0E-06 36.0E-06 4.24E-05 3.77E-05 

10 2.0E-06 2.0E-06 12.5E-06 12.5E-06 1.35E-05 1.32E-05 

11 -4.6E-06 -4.6E-06 33.5E-06 33.5E-06 3.63E-05 3.49E-05 

12 -11.7E-06 -11.7E-06 80.1E-06 80.1E-06 8.83E-05 8.36E-05 

13 -2.3E-06 -2.3E-06 20.1E-06 20.1E-06 2.32E-05 2.08E-05 

14 -4.2E-06 -4.2E-06 19.4E-06 19.4E-06 2.25E-05 2.11E-05 

15 3.5E-06 3.5E-06 12.1E-06 12.1E-06 1.67E-05 1.47E-05 

16 6.7E-06 6.7E-06 20.2E-06 20.2E-06 2.39E-05 2.47E-05 

17 4.6E-06 4.6E-06 21.4E-06 21.4E-06 2.39E-05 2.37E-05 

18 17.4E-06 17.4E-06 48.6E-06 48.6E-06 5.87E-05 6.06E-05 

19 -23.0E-06 -23.0E-06 83.4E-06 83.4E-06 9.52E-05 9.61E-05 

20 -6.7E-06 -6.7E-06 18.1E-06 18.1E-06 2.16E-05 2.31E-05 

21 -18.8E-06 -18.8E-06 74.2E-06 74.2E-06 8.38E-05 8.37E-05 

22 16.3E-06 16.3E-06 42.2E-06 42.2E-06 5.22E-05 5.47E-05 

23 16.2E-06 16.2E-06 54.3E-06 54.3E-06 6.28E-05 6.37E-05 

24 -11.7E-06 -11.7E-06 80.1E-06 80.1E-06 8.83E-05 8.36E-05 

25 -17.7E-06 -17.7E-06 53.0E-06 53.0E-06 6.32E-05 6.49E-05 

26 3.4E-06 3.4E-06 23.7E-06 23.7E-06 2.72E-05 2.46E-05 

27 -1.0E-06 -1.0E-06 21.7E-06 21.7E-06 2.38E-05 2.19E-05 

28 4.9E-06 4.9E-06 8.1E-06 8.1E-06 1.44E-05 1.36E-05 

29 1.9E-06 1.9E-06 10.8E-06 10.8E-06 1.22E-05 1.28E-05 

30 -8.0E-06 -8.0E-06 68.2E-06 68.2E-06 7.53E-05 7.02E-05 

31 16.3E-06 16.2E-06 42.2E-06 42.2E-06 5.22E-05 5.47E-05 

32 -1.5E-06 -1.5E-06 6.7E-06 6.7E-06 8.80E-06 7.63E-06 

33 5.0E-06 5.0E-06 28.3E-06 28.3E-06 3.13E-05 3.06E-05 

 

$V�FDQ�EH�VHHQ�IURP�WKH�UHVXOWV�RQO\�GLODWLRQ���DQG�GLIIHUHQWLDO�URWDWLRQ� Ω  are invariant 

under a rotation of a coordinate system in 3D. 
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5.5 Shear in terms of Principal Strains in 3D 

 

     In section 5.3 it is indicated that total shear Γ  is not invariant in a rotation of a coordinate 

system in 3D Euclidean space. However in order to be able to see the displacements caused 

by maximum undetectable errors in terms of shear, we need a measure which is going to 

represent the shear and be invariant in a rotation of a coordinate system. Grafarend and 

Voosoghi [2003] showed that in eigenspace the maximum shear strain is invariant in 2D. 

Here maximum shear strain is extended to 3D. 

     Maximum shear strain is defined as the difference between maximum and minimum 

eigenvalue. Therefore the eigenvalues in 3D should be computed. The three principal axes of 

strain ellipsoid which are the eigenvalues of eq. (5.1) are calculated. Grafarend and Voosoghi 

>����@�XVHV�+�DV�D�V\PERO�WR�UHSUHVHQW�WKH�PD[LPXP�VKHDU�VWUDLQ�LQ��'��KRZHYHU��KHUH�WKLV�

symbol has already been used to represent total shear in 3D. Hence the symbol M is going to 

be used to represent the maximum shear strain in 3D. 

     sb σ−σ=Μ          (5.21) 

ZKHUH�1b�LV�WKH�PD[LPXP�HLJHQYDOXH�DQG�1s is the minimum eigenvalue. Since eigenvalues 

are computed using the symmetrical part of the strDLQ�PDWUL[��LQ�HT���������WKH�YDOXHV�IRU�1b 

DQG�1s will be always real. 

     If we think about an infinitesimal sphere at a network point in the undeformed state, in the 

deformed state this infinitesimal sphere becomes an infinitesimal ellipsoid. It means that the 

infinitesimal sphere is deformed along the principal axis therefore the direction of the 

maximum shear strain follows the direction of the maximum eigenvalue. 
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5.6 Numerical Results for Principal Strains in 3D 

 

     For numerical tests the Northwest Territories network in Fig. 4.5 is used. First in CT 

system invariants and principal strains are calculated then using eq. (5.15) the strain matrix is 

transformed into the LG system and then once again invariants and principal strains are 

computed. The results are given in Tables 5.3 and 5.4. 
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Table 5.3 Results for Northwest Territories Network in CT system. 

 I1 I2 I3 1σ  2σ  3σ  

1 5.13E-05 1.75E-08 5.38E-15 1.61E-04 -1.09E-04 -3.07E-07 

2 2.87E-05 4.69E-09 3.53E-16 8.44E-05 -5.56E-05 -7.53E-08 

3 3.74E-06 1.40E-10 -2.03E-17 1.38E-05 -1.02E-05 1.44E-07 

4 1.00E-05 6.01E-10 1.59E-16 3.01E-05 -1.99E-05 -2.65E-07 

5 4.17E-06 1.58E-10 -4.82E-17 1.47E-05 -1.08E-05 3.03E-07 

6 -4.17E-07 1.07E-10 -3.68E-17 9.98E-06 -1.07E-05 3.43E-07 

7 -1.57E-05 7.52E-10 -1.65E-16 2.05E-05 -3.64E-05 2.21E-07 

8 -1.91E-05 2.14E-10 4.20E-17 8.05E-06 -2.70E-05 -1.93E-07 

9 -2.00E-05 1.25E-09 2.40E-16 2.69E-05 -4.67E-05 -1.91E-07 

10 6.02E-06 1.54E-10 -1.50E-17 1.57E-05 -9.82E-06 9.70E-08 

11 -1.38E-05 1.12E-09 3.11E-17 2.72E-05 -4.10E-05 -2.79E-08 

12 -3.52E-05 6.41E-09 -2.18E-15 6.42E-05 -9.97E-05 3.41E-07 

13 -7.01E-06 4.10E-10 -3.17E-17 1.70E-05 -2.41E-05 7.75E-08 

14 -1.27E-05 3.69E-10 1.76E-16 1.42E-05 -2.64E-05 -4.70E-07 

15 1.06E-05 1.56E-10 5.11E-17 1.90E-05 -8.01E-06 -3.36E-07 

16 2.01E-05 4.07E-10 1.04E-16 3.27E-05 -1.23E-05 -2.57E-07 

17 1.37E-05 4.63E-10 -6.43E-17 2.94E-05 -1.58E-05 1.38E-07 

18 5.22E-05 2.33E-09 3.20E-17 8.10E-05 -2.87E-05 -1.38E-08 

19 -6.89E-05 6.93E-09 -4.04E-15 5.52E-05 -1.25E-04 5.86E-07 

20 -2.00E-05 3.18E-10 3.93E-17 1.06E-05 -3.04E-05 -1.23E-07 

21 -5.65E-05 5.49E-09 3.79E-16 5.11E-05 -1.08E-04 -6.89E-08 

22 4.88E-05 1.80E-09 6.84E-17 7.33E-05 -2.45E-05 -3.81E-08 

23 4.85E-05 2.93E-09 -3.98E-16 8.35E-05 -3.52E-05 1.36E-07 

24 -3.52E-05 6.41E-09 -2.18E-15 6.42E-05 -9.97E-05 3.41E-07 

25 -5.32E-05 2.85E-09 1.06E-15 3.33E-05 -8.61E-05 -3.69E-07 

26 1.02E-05 5.59E-10 -7.90E-17 2.92E-05 -1.92E-05 1.41E-07 

27 -2.98E-06 4.73E-10 -9.66E-17 2.02E-05 -2.34E-05 2.05E-07 

28 1.46E-05 7.52E-11 2.97E-17 1.87E-05 -3.68E-06 -4.32E-07 

29 5.63E-06 1.35E-10 -6.80E-18 1.47E-05 -9.16E-06 5.03E-08 

30 -2.41E-05 4.65E-09 1.86E-15 5.74E-05 -8.12E-05 -3.98E-07 

31 4.88E-05 1.80E-09 6.84E-17 7.33E-05 -2.45E-05 -3.81E-08 

32 -4.43E-06 4.86E-11 -2.92E-18 5.06E-06 -9.55E-06 6.05E-08 

33 1.49E-05 8.13E-10 3.94E-17 3.70E-05 -2.20E-05 -4.86E-08 

 

     If the results in Table 5.3 are compared with the results in Table 5.4, it is seen that the 

results for invariants and principal strains are virtually identical (since these are very small 

numbers, there will be some slight differences due to rounding errors) for each solution. This 
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is based on the eigenvalue theorem which is introduced in section 5.1. 

Table 5.4 Results for Northwest Territories Network in LG system. 

 I1 I2 I3 1σ  2σ  3σ  

1 5.13E-05 1.75E-08 5.37E-15 1.61E-04 -1.09E-04 -3.06E-07 

2 2.87E-05 4.69E-09 3.52E-16 8.44E-05 -5.56E-05 -7.51E-08 

3 3.74E-06 1.40E-10 -2.03E-17 1.38E-05 -1.02E-05 1.44E-07 

4 1.00E-05 6.01E-10 1.58E-16 3.01E-05 -1.99E-05 -2.65E-07 

5 4.17E-06 1.58E-10 -4.82E-17 1.47E-05 -1.08E-05 3.03E-07 

6 -4.15E-07 1.07E-10 -3.68E-17 9.98E-06 -1.07E-05 3.44E-07 

7 -1.57E-05 7.52E-10 -1.65E-16 2.05E-05 -3.64E-05 2.21E-07 

8 -1.91E-05 2.14E-10 4.20E-17 8.06E-06 -2.70E-05 -1.93E-07 

9 -2.00E-05 1.25E-09 2.40E-16 2.69E-05 -4.67E-05 -1.91E-07 

10 6.02E-06 1.54E-10 -1.50E-17 1.57E-05 -9.82E-06 9.70E-08 

11 -1.38E-05 1.12E-09 3.11E-17 2.72E-05 -4.10E-05 -2.78E-08 

12 -3.52E-05 6.41E-09 -2.18E-15 6.42E-05 -9.97E-05 3.41E-07 

13 -7.01E-06 4.10E-10 -3.17E-17 1.70E-05 -2.41E-05 7.75E-08 

14 -1.27E-05 3.69E-10 1.76E-16 1.42E-05 -2.64E-05 -4.70E-07 

15 1.06E-05 1.56E-10 5.10E-17 1.90E-05 -8.01E-06 -3.35E-07 

16 2.01E-05 4.07E-10 1.03E-16 3.27E-05 -1.23E-05 -2.57E-07 

17 1.37E-05 4.63E-10 -6.44E-17 2.94E-05 -1.58E-05 1.39E-07 

18 5.22E-05 2.33E-09 3.20E-17 8.10E-05 -2.87E-05 -1.38E-08 

19 -6.89E-05 6.93E-09 -4.04E-15 5.52E-05 -1.25E-04 5.86E-07 

20 -2.00E-05 3.18E-10 3.93E-17 1.06E-05 -3.04E-05 -1.23E-07 

21 -5.65E-05 5.49E-09 3.74E-16 5.11E-05 -1.08E-04 -6.81E-08 

22 4.88E-05 1.80E-09 6.81E-17 7.33E-05 -2.45E-05 -3.79E-08 

23 4.85E-05 2.93E-09 -3.98E-16 8.35E-05 -3.52E-05 1.36E-07 

24 -3.52E-05 6.41E-09 -2.18E-15 6.42E-05 -9.97E-05 3.41E-07 

25 -5.32E-05 2.85E-09 1.06E-15 3.33E-05 -8.61E-05 -3.69E-07 

26 1.02E-05 5.59E-10 -7.93E-17 2.92E-05 -1.92E-05 1.42E-07 

27 -2.98E-06 4.73E-10 -9.66E-17 2.02E-05 -2.34E-05 2.05E-07 

28 1.46E-05 7.52E-11 2.97E-17 1.87E-05 -3.68E-06 -4.31E-07 

29 5.64E-06 1.35E-10 -6.78E-18 1.47E-05 -9.16E-06 5.02E-08 

30 -2.41E-05 4.65E-09 1.86E-15 5.74E-05 -8.12E-05 -3.98E-07 

31 4.88E-05 1.80E-09 6.81E-17 7.33E-05 -2.45E-05 -3.79E-08 

32 -4.43E-06 4.86E-11 -2.92E-18 5.06E-06 -9.54E-06 6.04E-08 

33 1.49E-05 8.12E-10 3.90E-17 3.69E-05 -2.20E-05 -4.80E-08 

 

     If the maximum shear strain values are computed in both CT and LG systems, it would be 

possible to see if maximum shear strain is invariant in 3D. The results are given in the 
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following table. 

 

Table 5.5 Maximum shear strain values in 3D. 

 CT system LG system 

1 1.61E-04 1.61E-04 

2 8.43E-05 8.43E-05 

3 1.37E-05 1.37E-05 

4 2.98E-05 2.98E-05 

5 1.44E-05 1.44E-05 

6 1.04E-05 1.04E-05 

7 3.62E-05 3.62E-05 

8 2.68E-05 2.68E-05 

9 4.65E-05 4.65E-05 

10 1.56E-05 1.56E-05 

11 4.10E-05 4.10E-05 

12 9.94E-05 9.94E-05 

13 2.40E-05 2.40E-05 

14 2.59E-05 2.59E-05 

15 1.87E-05 1.87E-05 

16 3.24E-05 3.24E-05 

17 2.93E-05 2.93E-05 

18 8.10E-05 8.10E-05 

19 1.24E-04 1.24E-04 

20 3.03E-05 3.03E-05 

21 1.08E-04 1.08E-04 

22 7.33E-05 7.33E-05 

23 8.34E-05 8.34E-05 

24 9.94E-05 9.94E-05 

25 8.57E-05 8.57E-05 

26 2.91E-05 2.91E-05 

27 2.32E-05 2.32E-05 

28 1.83E-05 1.83E-05 

29 1.46E-05 1.46E-05 

30 8.08E-05 8.08E-05 

31 7.33E-05 7.33E-05 

32 9.49E-06 9.48E-06 

33 3.70E-05 3.69E-05 
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As can be seen from the results, ignoring small computational rounding errors, maximum 

shear strain is invariant under a rotation of a coordinate system in 3D. Now we can 

summarize the invariants both in 2D and 3D as shown in Table 5.6. 

 

Table 5.6 Invariants in 2D and 3D. 

Robustness primitives 2D 3D 

Dilation invariant invariant 

Pure shear not invariant not invariant 

Simple shear not invariant not invariant 

Differential rotation invariant invariant 

Total shear invariant not invariant 

Maximum shear strain invariant invariant 

 

 

5.7 Relation between 3D and 2D in terms of Invariants 
 

     In the previous sections the invariants in 3D have been shown. Now the question is: how 

are the 3D invariants related to the 2D invariants? This question is crucial if we want to do 

the strain analysis of geodetic networks in 3D and obtain the results in 2D. Or if we want to 

compare the invariants in 2D with their 3D counterparts. These may be predicated for 

verification purposes, for example, having the 3D solution at hand and the 2D solution may 

be required, or the older equivalent 2D network can be analyzed. 

     The relation between 3D and 2D in terms of dilation has been developed in eq. (5.4). 

However, how can the relation between 3D and 2D in terms of differential rotation be 

shown? At the outset of the research the 3D solution (which is coming from the CT system) 

was to be compared with the solution on the 2D manifold (xy plane) in the LG system. 
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Several approaches have been tested, nonetheless the problem has not been overcome. 

Eventually it is realized that this transformation was not possible due to a dimensionality 

problem. The dimensionality problem is that the solution coming from CT system is in 3D 

whereas the solution on the 2D manifold in LG system is in 2D. From eqs. (2.19) and (2.32) 

it is known that the formula for differential rotation in 3D in xy plane and the formula for 

differential rotation in 2D are the same. Thus the results coming from 3D solution and 2D 

solution must be the same. Actually since measurements are taken in the Local Astronomic 

(LA) system (distances are independent of the system) and later on transformed to the LG 

system, this comparison should have been done in the LG system. If the results coming from 

the 3D solution and 2D solution are compared in the LG system, it is seen in section 5.8 that 

they are the same. 

     The differential rotation in 3D is given in section 5.2.2. However the differential rotation 

in 2D may be understood as the length of rotation vector ω
&

 that stands out of the 2D 

manifold. The displacement û[�= (u, v)
T
 of a 2D position x = (x, y)

T
 due to the differential 
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This equation can be written equivalently using the three dimensional symbolism as 
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Another, equivalent way of writing this equation is 
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where × denotes the vector product. 

     In the last equation, the differential roWDWLRQ�YHFWRU�>������&@T�LV�D�YHFWRU�RI�PDJQLWXGH�&��

perpendicular to the xy plane, or &1 in our alternative notation (see section 5.2.2), so that 

     x&û[ ×−= 1          (5.25) 

Similarly, we may show that &2 and &3 are perpendicular to planes xz and yz respectively. 

This shows that the 2D matrix multiplication is equivalent to a vector multiplication by the 

‘rotation vector’ that is perpendicular to the 2D manifold. 

     For clarity the alternative notation which was introduced section 5.2.2 is used. Using that 

we write 
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which is a vector fixed in space implied by the strain matrix, but its magnitude is invariant in 

any coordinate transformation. This can be seen by realizing that under any rotation of the 

original coordinate system, neither the magnitudes, nor the configuration or the triad (&1, &2, 

&3) change. 

     The simplest way of computing the projection of 
 onto the normal to the 2D manifold 

�WR�JHW�WKH�YDOXH�RI�&� �&1,2 that is sought) is to first rotate the 3D coordinate system into a 

position where the xy plane coincides with the 2D manifold. The rotation can be done by the 

standard formula: 
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R
 =*           (5.27) 

where R is the rotation matrix (see section 5.3) that transforms coordinates from the original 

3D coordinate system into the coordinate system which is denoted by an asterisk in which the 

xy plane is identical to the 2D. The z coordinate of 
*�LV�WKH�VFDODU�&�WKDW�LV�VRXJKW� 

     Having completed the solution for differential rotation it is time to move onto shear. Then 

the question is: how can the relation between 3D and 2D in terms of shear be shown? At the 

beginning it is thought that the relation could be achieved simply using projection methods. 

Nevertheless it turned out that the answer was not that easy. Afterwards it is found out that 

total shear is not invariant in 3D (see section 5.3). Therefore maximum shear strain is 

employed in eigenspace. 

     The 3D system of principal axes is not related to the 2D system of principal axes in any 

obvious way hence the relation has to be worked out in a step-by-step manner. The maximum 

shear strain in 3D and the maximum shear strain in 2D are two scalars but different in 

themselves. This is why for comparison the maximum shear strain in 3D must be 

transformed to 2D. If the vector of strain eigenvalues (Λ1, Λ2, Λ3)
T
 = ΛΛ from the standard 

formula are computed we get 

     ( ) 32
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3
IIIdet −Λ−Λ−Λ=− S�,        (5.28) 

where I1, I2, I3 are the invariants in 3D. The solution for cubic equations is outlined in 

Dickson [1914]. If we set 

     
3

I
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we get a reduced cubic equation 
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Using Cardan’s formula [see Dickson, 1914; MacDuffee, 1954] the three roots of eq. (5.30) 

are obtained as 
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and 
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However, if the symmetric part of the strain matrix (S) is used, the three roots are always real 

[Boresi et al., 1993]. In this case the above equations are simplified to the following 

equations [MacDuffee, 1954]. 
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Then the roots of eq. (5.28) are obtained as follows 
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If we look at the formulae in eq. (5.36) closely, because y1 > y2 > y3 we see that the biggest 

root is 1Λ  and the smallest root is 3Λ . Since the maximum shear strain is defined as the 

difference between the biggest and the smallest eigenvalue, to compute the maximum shear 

in 3D we write 

     31M Λ−Λ=          (5.37) 

If 1Λ  and 3Λ  are substituted in eq. (5.37) we reach 
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In the 2D case, if the vector of strain eigenvalues (λ1, λ2)
T
 = λλ from the standard formula are 

computed we get 

     ( ) 21

2 JJdet −λ−λ=− S�-         (5.39) 

where J1 and J2 are the invariants in 2D. The roots of eq. (5.39) are obtained from 
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It is clear that 21 λ>λ . So to compute the maximum shear in 2D, we write 

     21 λ−λ=µ          (5.41) 

If we substitute λ1 and λ2 in eq. (5.41) we arrive at 

     2
2
1 J4J +=µ          (5.42) 

We want to move from the maximum shear in 3D to the maximum shear in 2D. As can be 

seen, eqs. (5.38) and (5.42) only depend on the invariants. However the invariants in 3D and 

2D are different. Therefore we should find a relation between the invariants in 3D and 

invariants in 2D. If we look at eq. (5.2) we see that the following relation is valid 

     zz11 JI σ+=          (5.43) 

where zzσ  is one of the components of the symmetrical part of the strain matrix. So we need 

to get I1 out of eq. (5.38). Let us start with 
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If the necessary algebraic manipulations are performed we obtain I1 as 
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Using eq. (5.43) we can write 
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If eq. (5.47) is substituted in eq. (5.42) we get 
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This is the equation which has been sought. However, as can be seen, computing the 

maximum shear strain in 2D from the maximum shear strain in 3D is very cumbersome 

operation. That is why instead of computing the maximum shear strain in 2D from the 

maximum shear strain in 3D, the maximum shear strain in 2D should be calculated 

separately. 

 

 

5.8 Numerical Results for 3D and 2D in terms of Invariants 
 

     Let us start with a simulated strain matrix in the CT system 
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Then using the eqs. (2.19), (2.20) and (2.21) the differential rotation vector in 3D is obtained 
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as 
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So we can calculate the differential rotation in 3D as 
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3,2CT =ω+ω+ω=Ω        (5.51) 

If we transform this strain matrix in (5.49) utilizing the rotation of the strain matrix in eq. 

(5.15) we write 

     T
CTLG RERE =          (5.52) 

and we get the values in ELG as follows 

     
















−−=

4235.17989.80977.5

0377.15367.50308.3

9083.45822.21132.17

LGE       (5.53) 

where 

     

















−−
−=

8837.03235.03383.0

07227.06911.0

4680.06108.06387.0

R       (5.54) 

This is the rotation matrix which is used to transform the strain matrix from CT system to LG 

system. Since we want to compare the 3D solution coming from CT system with the one on 

the 2D manifold (xy plane) in LG system, the differential rotation coming from the top-left 

side of this strain matrix should be computed. This is because the top-left side of this matrix 

corresponds the xy plane in LG system. If we do that we get 
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     







−

=
5367.50308.3

5822.21132.17
LGE        (5.55) 

The symmetrical and anti-symmetrical part of this matrix are as follows 

     







−

=
5367.58065.2

8065.21132.17
LGS        (5.56) 

     






 −
=

02243.0

2243.00
LGA        (5.57) 

So the differential rotation in xy plane in LG system is 

     2243.0xy −=ω          (5.58) 

As can EH� VHHQ�� WKH�YDOXH�RI�&xy�GRHV�QRW�PDWFK�ZLWK�&1,2 in (5.50). This is due to the 

dimensionality problem. If we calculate the differential rotation vector in LG system in 3D 

we get 

     

















−
−
−

=
















ω
ω
ω

=
2243.0

0947.0

9183.4

2,1

3,1

3,2

LG
        (5.59) 

The differential rotation vector in 3D in LG system is 

     25.242

2,1

2

3,1

2

3,2LG =ω+ω+ω=Ω        (5.60) 

This proves that the magnitude of the differential rotation vector is invariant under a rotation 

of a coordinate system. 

     From eqs. (2.19) and (2.32) we know that as long as the 2D manifold consists of the xy 

plane in 3D, the formula for differential rotation in 3D in xy plane and the formula for 

differential rotation in 2D are the same. Thus the results coming from 3D solution and 2D 
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solution must be the same. Actually since measurements are taken in LA system and later on 

transformed to LG system, this comparison should have been done in LG system. We already 

have the results for differential rotation in 3D in LG system. So what we need to do is 

calculate the differential rotation in 2D in LG system. Let us extract the 2D strain matrix 

from 3D strain matrix in LG system using top-left side of the strain matrix. If we do that we 

get 

     







−

=
5367.50308.3

5822.21132.17
LGE        (5.61) 

Using eq. (2.8) we can calculate the symmetrical and anti-symmetrical part of the strain 

matrix as follows 

     







−

=
5367.58065.2

8065.21132.17
LGS        (5.62) 

     






 −
=

02243.0

2243.00
LGA        (5.63) 

From the anti-symmetrical part of the strain matrix it is clear that the differential rotation in 

3D xy plane and the differential rotation in 2D in LG system (5.57) are the same. Since 

(5.63) gives the differential rotation in xy plane in 3D we can rotate the 3D coordinate system 

using eq. (5.27) into a position where the xy plane coincides with the 2D manifold. 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

 

     This chapter concludes the developments which have been made throughout this thesis. In 

section 6.1 the conclusions are addressed and in section 6.2 recommendations for further 

research are outlined. 

 

 

6.1 Conclusions 

 

     Application of robustness analysis to 2D networks is known. However, in order to be able 

to calculate the displacements in 2D networks the initial conditions must be computed. In 

this dissertation the initial conditions for 2D networks have been formulated. Furthermore 

the threshold values are needed to evaluate the networks. These threshold values enable us to 

assess the robustness of networks. In this thesis the specifications given by Geodetic Survey 

Division are used to compute the threshold values. The results prove that this approach 

works well. 

     Robustness analysis is a very powerful technique capable of providing a picture of the 

analyzed network. If a network has some defects, the robustness analysis technique reveals 

them and portrays them. 
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     When the redundancy number of the observations is lower we obtain bigger 

displacements. If a network has some deficiency (such as if the distances are not measured) 

we can determine the weakness of the network for these points. This lack of measurements 

also lowers the redundancy number of the observations in the network. However, if the 

redundancy number of the observations increases the displacements get lower. The 

observations with large standard deviations cause bigger displacements at the connected 

points. 

     In 1D networks since there is only one component in the strain matrix not all the 

primitives can be defined. Only dilation may be defined. Moreover when two points have 

very nearly the same height (a common occurrence) the strain with respect to height might 

become extremely large and mislead the results. Therefore in 1D networks there are some 

issues which one should be aware of. 

     As well as 1D networks the robustness analysis technique cannot be directly applied to 3D 

networks. Because if two points have very nearly the same height, the strain with respect to 

height might become extremely large. In this case it is thought that instead of curvilinear 

coordinates cartesian coordinates can be used. Since magnitudes (length) of displacements 

are independent from the coordinate system, networks can be assessed in any coordinate 

system. 

     Since displacements are computed from a system of first order differential equations, to 

solve them, these equations should be integrated. Therefore the initial conditions have to be 

determined. In this thesis the initial conditions for 3D networks have been developed. 

Furthermore the threshold values are needed to evaluate 3D networks. These threshold values 
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enable us to evaluate the robustness of 3D networks. 

     In this dissertation accuracy standards for positioning given by GSD are used to compute 

threshold values for 3D networks. The confidence ellipsoid could be used to determine 

accuracy of adjusted coordinates at network points for GPS networks since one may have the 

full covariance matrix for GPS observations. However, with the traditional approach, 

horizontal and vertical coordinates are obtained separately so generally a full variance 

covariance matrix is not available for the points in the classical (terrestrial) three dimensional 

networks. Therefore in this thesis the combination of 2D and 1D networks is implemented 

following the suggestion made by Geodetic Survey Division of Canada. 

     Robustness of a network should be defined in terms of invariants rather than the 

primitives since a datum change will change the strain matrix therefore the primitive values. 

So in this thesis invariants in 3D are investigated. According to the results, in 3D Euclidean 

space, dilation and differential rotation are invariants and maximum shear strain is invariant 

in eigenspace. This means that no matter what the choice of the datum is the results for these 

invariants will be the same for each solution. It has been shown that total shear is not 

invariant in 3D. 

     In this dissertation it is shown how the 3D invariants are related to the 2D invariants. This 

is crucial if we want to do the strain analysis of geodetic networks in 3D and obtain the 

results in 2D. Or if we want to compare the invariants in 2D with their 3D counterparts. It 

has been shown that maximum shear strain should be calculated in 2D rather than being 

determined via its 3D counterpart. 

     Robustness of a network is affected by the design of the network and accuracy of the 
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observations. Therefore the points that lack robustness in the network may be remedied either 

by increasing the quality of observations and/or by increasing the number of observations in 

the network. A remedial strategy is likely to be different for different networks since they 

have different geometry and different observations. There might not be a solution fitting all 

networks but in this thesis a general strategy has been developed. 

 

 

6.2 Recommendations for Further Research 
 

     In this dissertation the norm of the displacement vectors at all points in the network is 

minimized. However there is an infinite number of solutions to obtain the displacements 

from strain; for example, minimizing the mean displacement for the network, or the largest 

displacement, or the sum of absolute displacements or the median displacement etc. The 

mentioned solutions might be developed and tested. 

     When two points have very nearly the same height (a common occurrence) the strain with 

respect to height might become extremely large and mislead the results. Therefore a 

technique which is going to handle the problem of application of robustness analysis to 1D 

networks should be developed. 

     According to the investigations which have been carried out about total shear, in 3D, total 

shear is not invariant in a rotation of a coordinate system in Euclidean space however in this 

thesis it is shown that in 3D, maximum shear strain is invariant in eigenspace. Therefore the 

relation between total shear and maximum shear strain needs to be investigated. 
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     In the evaluation of 3D total shear, the role that the pure and simple shears play is worth 

investigating in order to be able to understand total shear in 3D. 

     Some things still need to be investigated for example if we get a big value of, let us say 

pure shear. How can this problem be cured? What is the source of this problem? In order to 

be able to answer these questions a synthetic network should be simulated and all the 

observations in that network should be built one by one. 

     In this thesis the correlations among the observations are not considered. However to 

obtain rigorously correct results, the correlations among the observations may be considered. 
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APPENDIX I: ESTIMATION OF STRAIN MATRIX 
 

 

I.1 Estimation of Strain Matrix in 2D 
 

�����,Q�9DQtþHN�HW�DO��[2001] a displacement of a point Pi is denoted as 

     
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where u is the displacement in the x direction and v is the displacement in the y direction. 

Then the tensor gradient with respect to position is 
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For j∀  = 0,1,...,t (t is the number of connection) the displacements u and v can be calculated 

DV�IROORZV��VHH�DOVR�&UD\PHU�DQG�9DQtþHN�>����@�� 
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where all the partial derivatives as well as the absolute terms ai, bi and the coordinates Xi, Yi 

refer to point Pi. In matrix form: 
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If these equations are solved using the method of least squares, we get 
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Assembling (I.7) and (I.8) into a hypermatrix, we reach 
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Since we are looking for the relation between the displacement vector and the strain matrix, 

absolute terms are no interest to us. So we can eliminate the first row of the Qi matrix. If we 

show the reduced matrix with T and substitute the eqs. (I.1) and (I.2) in eq. (I.9), we get 

     network in the i∀  ( ) iiivec û[TE =       (I.10) 

Using eq. (2.2) in eq. (I.10), we obtain 

     network in the i∀  ( ) lPAPAATE ∆= − T1T
ii )(vec     (I.11) 

 

 

I.2 Estimation of Strain Matrix in 1D 
 

     Let us denote the displacement of a point Pi by 

     [ ] [ ]iii wz =∆=û[          (I.12) 

where w is the displacement in the z direction. Then the tensor gradient with respect to 

position is 
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For all j = 0,1,...,t the displacement w can be calculated as follows 
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w
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where Zi is the height of the point of interest, Zj is the height of the connected point. It means 

that there will be one equation for each connection. In matrix form: 
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If this equation is solved using LSE as it is shown in section I.1, the following equation is 

obtained. 
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Using the same reasoning in section I.2 and substituting from eqs. (I.12) and (I.13), we get 

     network in the i∀  iii )(vec û[TE =       (I.17) 

Using eq. (2.2) in eq. (I.17), we obtain 

     network in the i∀  ( ) ( ) lPAPAATE ∆=
− T1T

iivec     (I.18) 

 

 

I.3 Estimation of Strain Matrix in 3D 

 

     Let us denote the displacement of a point Pi by 
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then the tensor gradient with respect to position is [Love, 1944; Sokolnikoff, 1956 and 

Timoshenko and Goodier, 1970] 
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This may be applied to geodetic networks as follows where ui, vi and wi are the 

displacements of point Pi relative to point Pj: 
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where all the partial derivatives as well as the absolute terms ai, bi ci and the coordinates Xi, 

Yi and Zi refer to point Pi and point Pj is connected (by an observation) to the point of 

interest, point Pi. In matrix form: 
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Using LSE, we obtain 

     network in the i∀  ( ) iii

T

i

1

i

T

i

i

i

i

i

z

u

y

u
x

u

a

uQuKKK ==

























∂
∂
∂
∂
∂
∂

−
    (I.27) 

     network in the i∀  ( ) iii

T

i

1

i

T

i

i

i

i

i

z

v

y

v
x

v

b

vQvKKK ==

























∂
∂
∂
∂
∂
∂

−
    (I.28) 



 89 

     network in the i∀  ( ) iii

T

i

1

i

T

i

i

i

i

i

z

w

y

w
x

w

c

wQwKKK ==

























∂
∂
∂

∂
∂

∂

−
    (I.29) 

Assembling (I.27), (I.28) and (I.29) into a hypermatrix, we get 
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Using the same reasoning in section I.2 and substituting from eqs. (I.19) and (I.20), we obtain 

     network in the i∀  ( ) iiivec û[TE =       (I.31) 

Substituting eq. (2.2) in eq. (I.31), we get 

     network in the i∀  ( ) lPAPAATE ∆= − T1T
ii )(vec     (I.32) 
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APPENDIX II: DETERMINATION OF INITIAL CONDITIONS 
 

 

II.1 Determination of Initial Conditions for 2D Networks 
 

     It is clear that eq. (3.2) is a system of first order differential equations. In order to solve 

the system, it should be integrated. Therefore the initial conditions have to be determined. In 

order to be able to calculate the initial conditions, the displacements caused by maximum 

undetectable errors in network points should be minimized. This means that the norm of the 

displacement vectors for all points in the network should be minimum. i.e., 

     
( ) ( )

∑ +=∑ ∆
=∈=∈

n

1i

2
i

2
i

RY,X

n

1i
iRY,X

)vu(minrmin
0000

&

     (II.1) 

Here we are looking for the relation between the initial conditions and the strain parameters, 

therefore the absolute terms ai and bi are no interest to us. So if the absolute terms are 

removed from eqs. (I.3) and (I.4) and then if these reduced equations are employed, we get 
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If this equation is differentiated with respect to X0, we can write 
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We get 
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Using the same reasoning above, the constant terms are removed. So we write 
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If they are taken into parentheses, we can write 
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If this equation is expressed in the following form, 
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We can write that 
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If the same equation is differentiated with respect to Y0, we can write 
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We get 
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If this equation is expressed in the following form, 
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If these system of linear equations (II.7) and (II.13) are solved with the compact form, we 

obtain the initial conditions X0 and Y0 as follows 
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The initial conditions X0, Y0 are substituted in eq. (3.2) to calculate the displacements u and 

v for each point in the network. 
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II.2 Determination of Initial Condition for 1D Networks 
 

     In geodetic height networks the height differences between/among the points are the 

measurements. Therefore heights are determined well whereas horizontal coordinates are 

only approximately known. So in 1D networks one concentrates on the displacements in z 

direction. Then we start with 
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Using the similar approach which is expressed in section II.1, if eq. (I.14) is employed, we 

get 
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If this equation is differentiated with respect to Z0 we can write 
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We get 
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Since constants are no interest to us we write 
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The initial condition Z0 is substituted in the following equation to calculate the displacement 

w for each point in the network 
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II.3 Determination of Initial Conditions for 3D Networks 
 

     Equation (3.1) is a system of first order differential equations. In order to solve the 

system, it should be integrated. Therefore the initial conditions (X0, Y0, Z0) have to be 

determined. In order to be able to calculate the initial conditions, the displacements caused by 

maximum undetectable errors in network points should be minimized. This means that the 

norm of the displacement vectors for all points in the network should be minimum. 
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Using the similar approach which is expressed in section II.1, if eqs. (I.21), (I.22) and (I.23) 

are employed, we obtain 
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If this equation is differentiated with respect to X0, we can write 
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We get 
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Since constants are no interest to us we write 
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To simplify this equation it can be expressed in the following form, 
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If the same equation is differentiated with respect to Y0, we can write 
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We get 
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To simplify this equation it can be expressed in the following form, 
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If the same equation is differentiated with respect to Z0, we can write 
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We get 
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To simplify this equation it can be expressed in the following form, 
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           (II.47) 

If these equations (II.29), (II.36) and (II.43) are solved with the compact form, we obtain the 

initial conditions X0, Y0 and Z0 as follows 
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The initial conditions X0, Y0 and Z0 are substituted in eq. (3.1) to calculate the displacements 

u, v and w for each point in the network. 
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APPENDIX III: PRINCIPAL STRAINS IN 3D 

 

     If we change our notation to distinguish between the symmetrical and anti-symmetrical 

part of the strain matrix we write 

     ijijije ω+σ=          (III.1) 

where eij are the components of strain matrix, ijσ are the components of symmetrical part of 

the strain matrix and ijω are the components of anti-symmetrical part of the strain matrix. 

The strain vectors 1x, 1y and 1z are written as follows 

     kji1 xzxyxxx σ+σ+σ=  

     kji1 yzyyyxy σ+σ+σ=         (III.2) 

     kji1 zzzyzxz σ+σ+σ=  

where i, j and k are the unit vectors. Now consider the strain vector 1P on an arbitrary 

oblique plan P through point O see Fig. III.1. 

 

 

 

 

 

 

 



 100 

 

 

 

 

 

 

 

 

 

 

Fig III.1 Strain vector on an oblique plane having a normal N. 

The unit normal vector to plane P is 

     N = l i + m j + n k         (III.3) 

where l, m and n are the direction cosines of unit vector N. The ratios of areas OBC, OAC 

and OBA to area ABC equal to l, m and n respectively. Therefore we can write 

     zyxP nml 1111 ++=         (III.4) 

1P can also be written in terms of its projections as follows: 

     kji1
zyx PPPP 111 ++=         (III.5) 

Using eq. (III.4) we can write 

     zxyxxxP nml
x

σ+σ+σ=σ  

     zyyyxyP nml
y

σ+σ+σ=σ        (III.6) 

C 
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B 

1p 
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Z 
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k 
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     zzyzxzP nml
z

σ+σ+σ=σ  

The normal strain�1PN on the plane P is the projection of the vector 1P in the direction of N 

that is 

     N1PPN =σ          (III.7) 

Substituting eqs. (III.3), (III.5) and (III.6) in eq. (III.7) we get 

     ( ) ( ) ( )yxxyzxxzzyyzzz
2

yy
2

xx
2

PN lmnlmnnml σ+σ+σ+σ+σ+σ+σ+σ+σ=σ  

     xyxzyzzz
2

yy
2

xx
2

PN lm2ln2mn2nml σ+σ+σ+σ+σ+σ=σ   (III.8) 

     Let x,y,z and X,Y,Z denote two rectangular coordinate systems with a common origin. 

The cosines of the angles between the coordinate axes are given in the table below. 

Table III.1 Direction cosines 

between the coordinate axes 

 x y z 

X l1 m1 n1 

Y l2 m2 n2 

Z l3 m3 n3 

 

The strain components 1XX��1YY��1ZZ,… are defined with reference to X,Y,Z axes in the same 

PDQQHU�DV�1xx��1yy��1zz�«DUH�GHILQHG� UHODWLYH� WR� WKH�D[HV�[�\�]��1XX is the normal strain 

FRPSRQHQW�RQ�D�SODQH�SHUSHQGLFXODU�WR�D[LV�;�DQG�1XY�DQG�1XZ are shear strain components 

on this plane. Hence using eq. (III.8) we can write 

     xy11zx11yz11zz
2
1yy

2
1xx

2
1XX ml2ln2nm2nml σ+σ+σ+σ+σ+σ=σ   (III.9) 

     xy22zx22yz22zz
2
2yy

2
2xx

2
2YY ml2ln2nm2nml σ+σ+σ+σ+σ+σ=σ  (III.10) 

     xy33zx33yz33zz
2
3yy

2
3xx

2
3ZZ ml2ln2nm2nml σ+σ+σ+σ+σ+σ=σ   (III.11) 
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1XY is the Y component of the strain vector 1X acting on the plane perpendicular to the X 

axis. TKXV�1XY may be evaluated by forming the scalar product of the vector 1X with a unit 

vector parallel to the Y axis which is 

     kjiN 2222 nml ++=         (III.12) 

%\�HTV���,,,������,,,����DQG��,,,�����1XY is determined as 

     1Y2XXY N1N1 ==σ  

     ( ) yz1221zz21yy21xx21XY nmnmnnmmll σ++σ+σ+σ=σ  

    ( ) ( ) xy1221zx1221 mlmlnlnl σ++σ++      (III.13) 

Using similar procedures 

     ( ) yz1331zz31yy31xx313XXZ nmnmnnmmll σ++σ+σ+σ==σ N1  

    ( ) ( ) xy1331zx1331 mlmlnlnl σ++σ++      (III.14) 

     ( ) yz2332zz32yy32xx323YYZ nmnmnnmmll σ++σ+σ+σ==σ N1  

    ( ) ( ) xy2332zx2332 mlmlnlnl σ++σ++      (III.15) 

     There exist three mutually perpendicular planes at point O on which the shear strain 

vanish. The remaining normal strain components on these three planes are called principal 

planes. The strain vector on principal planes is given by 

     N1 σ=P           (III.16) 

ZKHUH�1�LV�WKH�PDJQLWXGH�RI�WKH�VWUDLQ�YHFWRU�1P and N the unit normal to a principal plane. 

Projections of 1P along x,y,z, axes are 

     l
xP σ=σ  
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     m
yP σ=σ          (III.17) 

     n
zP σ=σ  

Hence by eq. (III.6) we obtain 

     ( ) 0nml xzxyxx =σ+σ+σ−σ  

     ( ) 0nml yzyyxy =σ+σ−σ+σ        (III.18) 

     ( ) 0nml zzyzxz =σ−σ+σ+σ  

For eqs. (III.18) to posses nontrivial solutions, the determinant of the coefficients of l, m and 

n must vanish. Thus 

     0

zzyzxz

yzyyxy

xzxyxx

=
σ−σσσ

σσ−σσ
σσσ−σ

       (III.19) 

Expanding the determinant we get 

     0III 32
2

1
3 =−σ−σ−σ         (III.20) 

where 

     zzyyxx1I σ+σ+σ=  

     zzyyzzxxyyxx
2
yz

2
xz

2
xy2I σσ−σσ−σσ−σ+σ+σ=     (III.21) 

     2
xyzz

2
xzyy

2
yzxxyzxzxyzzyyxx3 2I σσ−σσ−σσ−σσσ+σσσ=  

I1, I2 and I3 are invariants of strain and must be the same for all choices of coordinate axes 

x,y,z [Boresi et al. 1993]. 
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APPENDIX IV: ROTATIONAL INVARIANCE IN 3D 
 

 

IV.1 Derivation of Partials in the Rotated System 
 

     Consider two analysis of a network, the first using coordinate system (x, y, z) where 

     
















=

















∆
∆
∆

=∆

i

i

i

i

i

i

i

w

v

u

z

y

x

x         (IV.1) 

then the strain matrix is 

     

























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

z

w

y

w

x

w

z

v

y

v

x

v

z

u

y

u

x

u

iii

iii

iii

iE .        (IV.2) 

The second analysis uses coordinate system (x
*
, y

*
, z

*
) which is rotated clockwise about Ox 

(along x axis) E\�DQ�DQJOH�.�DQG�WKHQ�VXEVHTXHQWO\�URWDWHG�FORFNZLVH�DERXW�2\��DORQJ�\�D[LV��

E\�DQ�DQJOH���QH[W�DIWHU�WKH�.�DQG���URWDWLRQV�WKH�D[HV�DUH�URWDWHG�FORFNZLVH�DERXW�2]��DORQJ�

]�D[LV��E\�DQ�DQJOH����7KXV 

     
















=



















=∆

i

i

i

*
i

*
i

*
i

*
i

w

v

u

w

v

u

Rx         (IV.3) 

and the strain matrix is 
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

























∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

=

*

*
i

*

*
i

*

*
i

*

*
i

*

*
i

*

*
i

*

*
i

*

*
i

*

*
i

*
i

z

w

y

w

x

w

z

v

y

v

x

v

z

u

y

u

x

u

E .       (IV.4) 

For simplicity subscript i is from now on going to be omitted. Where 

     

















βαγα−γβαγα+γβα
βαγα+γβαγα−γβα

β−γβγβ
=

CosCosCosSinSinSinCosSinSinCosSinCos

CosSinCosCosSinSinSinSinCosCosSinSin

SinSinCosCosCos

R       (IV.5) 

The displacement vector in the second system is 

     xRx ∆=∆ *          (IV.6) 

then we can write 

















βα+γα−γβα+γα+γβα
βα+γα+γβα+γα−γβα

β−γβ+γβ
=∆

wCosCosv)CosSinSinSinCos(u)SinSinCosSinCos(

wCosSinv)CosCosSinSinSin(u)SinCosCosSinSin(

wSinvSinCosuCosCos
*

x  

           (IV.7) 

Since the rotation matrices are orthogonal the displacement vector in the first system is 

     *T xRx ∆=∆          (IV.8) 

where 

     

















βαβαβ−
γα−γβαγα+γβαγβ
γα+γβαγα−γβαγβ

=
CosCosCosSinSin

CosSinSinSinCosCosCosSinSinSinSinCos

SinSinCosSinCosSinCosCosSinSinCosCos
T

R  

           (IV.9) 
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Then we can write 

















βα+βα+β−
γα−γβα+γα+γβα+γβ
γα+γβα+γα−γβα+γβ

=∆
***

***

***

wCosCosvCosSinuSin

w)CosSinSinSinCos(v)CosCosSinSinSin(uSinCos

w)SinSinCosSinCos(v)SinCosCosSinSin(uCosCos

x  

           (IV.10) 

The partials with respect to first coordinate system are 

     γβ=
∂

∂
CosCos

u

u*

         (IV.11) 

     γβ=
∂
∂

SinCos
v

u
*

         (IV.12) 

     β−=
∂
∂

Sin
w

u
*

         (IV.13) 

     γα−γβα=
∂
∂

SinCosCosSinSin
u

v
*

      (IV.14) 

     γα+γβα=
∂
∂

CosCosSinSinSin
v

v
*

      (IV.15) 

     βα=
∂
∂

CosSin
w

v
*

         (IV.16) 

     γα+γβα=
∂

∂
SinSinCosSinCos

u

w
*

      (IV.17) 

     γα−γβα=
∂

∂
CosSinSinSinCos

v

w
*

      (IV.18) 

     βα=
∂

∂
CosCos

w

w*

         (IV.19) 

The partials with respect to second coordinate system are 
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     γβ=
∂

∂
CosCos

x

x

*
         (IV.20) 

     γα−γβα=
∂
∂

SinCosCosSinSin
y

x
*

      (IV.21) 

     γα+γβα=
∂
∂

SinSinCosSinCos
z

x
*

      (IV.22) 

     γβ=
∂
∂

SinCos
x

y
*

         (IV.23) 

     γα+γβα=
∂
∂

CosCosSinSinSin
y

y
*

      (IV.24) 

     γα−γβα=
∂
∂

CosSinSinSinCos
z

y
*

      (IV.25) 

     β−=
∂
∂

Sin
x

z
*

         (IV.26) 

     βα=
∂
∂

CosSin
y

z
*

         (IV.27) 

     βα=
∂

∂
CosCos

z

z

*
         (IV.28) 

Using the chain rule for differentiation 

     
x

w

w

u

x

v

v

u

x

u

u

u

x

u ****

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂

∂
      (IV.29) 

     
y

w

w

u

y

v

v

u

y

u

u

u

y

u ****

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂

∂
      (IV.30) 
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u ****

∂
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∂
∂

+
∂
∂

∂
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∂
∂

∂
∂

=
∂

∂
      (IV.31) 
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x

w
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v ****
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∂
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∂
∂

∂
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∂
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      (IV.32) 
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v ****
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      (IV.33) 
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v ****
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∂
      (IV.34) 
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w ****
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∂
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      (IV.37) 

Using the chain rule for differentiation 

     
*

*

*

*

*

*

*
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∂
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∂
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∂

∂
∂

∂
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∂
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∂
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      (IV.38) 
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∂
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∂
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∂

∂
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∂
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∂
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∂
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∂

∂
      (IV.39) 
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∂
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      (IV.40) 
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∂
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∂
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∂
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∂
+

∂

∂
∂
∂

=
∂

∂
      (IV.41) 
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      (IV.42) 
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*
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∂
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∂
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∂
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∂
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∂
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∂

∂
      (IV.43) 
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∂
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∂
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∂
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∂
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∂
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∂

∂
      (IV.44) 
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      (IV.45) 
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∂
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∂
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∂

∂
∂

∂
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∂
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∂

∂
      (IV.46) 

Using tensor analysis summation convention the eqs. from (IV.38) to (IV.46) can be 

expressed as 

     
*

*

*

*

x

x

x

u

u

u

x

u

∂

∂

∂

∂

∂

∂
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∂
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α
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*

*

*
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y
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∂
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*

x

x
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u

u
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x
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∂
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∂
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α
        (IV.50) 
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        (IV.51) 
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*
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u
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∂

∂

∂

∂

∂

∂
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∂
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        (IV.52) 
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*

*

*

*

x

x

x

u

u

w

x

w

∂

∂

∂

∂

∂

∂
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∂

∂ β

β

α

α
        (IV.53) 

     
*

*

*

*

y

x

x

u

u

w

y

w

∂

∂

∂

∂
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∂
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α
        (IV.54) 

     
*
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*
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u
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w

∂

∂

∂

∂

∂

∂
=

∂

∂ β

β

α

α
        (IV.55) 

Using tensor analysis summation convention, the eqs. from (IV.47) to (IV.55) can be 

expressed as 

     
s*

r*

s*

r*

x

x

x

u

u

u

x

u

∂

∂

∂

∂

∂

∂
=

∂

∂ β

β

α

α
        (IV.56) 

where Greek indices imply summation over the values (1,2,3). r and s are the free indices. 

Indices’ role can be found in Boresi and Chong [2000]. 

 

 

IV.2 Invariance of Dilation 
 

     Dilation is given in 3D as follows 

     










∂

∂
+

∂

∂
+

∂

∂
=Σ

*

*

*

*

*

*
*

z

w

y

v

x

u

3

1
       (IV.57) 

From the eqs. (IV.38), (IV.42) and (IV.46), we write 
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)Sin)(
z

w
Sin

z

v
SinCos

z

u
CosCos(

SinCos)
y

w
Sin

y

v
SinCos

y

u
CosCos(

CosCos)
x

w
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x

v
SinCos

x

u
CosCos(

x

u
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β−
∂
∂

β−
∂
∂

γβ+
∂
∂

γβ+

γβ
∂
∂
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∂
∂

γβ+
∂
∂

γβ+

γβ
∂
∂

β−
∂
∂

γβ+
∂
∂

γβ=
∂
∂

    (IV.58) 

and 

βα
∂
∂

βα+
∂
∂

γα+γβα+
∂
∂

γα

−γβα+γα+γβα
∂
∂

βα+
∂
∂

γα

+γβα+
∂
∂

γα−γβα+γα−γβα

∂
∂

βα+
∂
∂
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∂
∂

γα−γβα=
∂
∂

CosSin)
z
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z

v
)CosCosSinSinSin(

z

u
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CosSinSin(()CosCosSinSinSin)(
y
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y

v
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SinSinSin(
y

u
)SinCosCosSinSin(()SinCosCosSinSin(
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x

w
CosSin

x

v
)CosCosSinSinSin(

x

u
)SinCosCosSinSin((

y

v
*

*

           (IV.59) 

and then 

βα
∂
∂

βα+
∂
∂

γα−γβα+
∂
∂

γα+γβα

+γα−γβα
∂
∂

βα+
∂
∂
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+
∂
∂

γα+γβα+γα+γβα
∂
∂
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∂
∂
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∂
∂
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∂
∂
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z
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z

u
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y
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y

v
)CosSinSinSinCos(

y

u
)SinSinCosSinCos(()SinSinCosSinCos)(

x

w
CosCos

x

v
)CosSinSinSinCos(

x

u
)SinSinCosSinCos((

z

w
*

*

 

           (IV.60) 

If 
*

*

x

u

∂

∂
, 

*

*

y

v

∂

∂
 and 

*

*

z

w

∂

∂
 are replaced in eq. (IV.57) and the necessary algebraic manipulations 

are performed we see that 
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     Σ=







∂
∂

+
∂
∂

+
∂
∂

=





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
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∂

∂
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∂

∂
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∂
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z
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x

u

3

1

z

w

y

v

x

u

3

1

*

*

*

*

*

*
*     (IV.61) 

,W�PHDQV�WKDW���LV�LQYDULDQW�XQGHU�D�URWDWLRQ�RI�D�FRRUGLQDWH�V\VWHP� 

 

 

IV.3 Invariance of Differential Rotation 
 

�����6LQFH�ZKHWKHU�
�LV�LQYDULDQW�LQ�D�URWDWLRQ�RI�D�FRRUGLQDWH�V\VWHP�LQ��'�LV�LQYHVWLJDWHG��ZH�

require 

     
*Ω=Ω           (IV.62) 

which is equal to 

     
222 *

yz
*
xz

*
xy

2
yz

2
xz

2
xy ω+ω+ω=ω+ω+ω       (IV.63) 

where 
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+  (IV.64) 

After eliminating the constants we can write 

2

*

*

*

*
2

*

*

*

*
2

*

*

*

*222

y

w

z

v

x

w

z

u

x

v

y

u

y

w

z

v

x

w

z

u

x

v

y

u












∂

∂
−

∂

∂
+











∂

∂
−

∂

∂
+











∂

∂
−

∂

∂
=








∂
∂

−
∂
∂

+







∂
∂

−
∂
∂

+







∂
∂

−
∂
∂

           (IV.65) 

If we open the parentheses on the right hand side, we get 
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If the eqs. from (IV.47) to (IV.55) are employed 
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which is equal to 
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 (IV.68) 

Equation (IV.68) is evaluated using MAPLE software. Numerical results are given in section 

5.4. 

 

 

IV.4 Total Shear 
 

     It is postulated here that total shear Γ  is invariant in a rotation of a 3D coordinate system 

in Euclidean space. So we postulate that 
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     0
* =Γ−Γ           (IV.69) 

From eq. (5.7) we know that 
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If we substitute eqs. (2.22), (2.23) and (2.24) in eq. (IV.70), we get 
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If we substitute eqs. from (2.13) to (2.18) in eq. (IV.72), we obtain 
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We know that an invariant remains invariant after it is multiplied by a constant so we can 

write 
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If we open the parentheses we get 
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           (IV.75) 

For total shear in the rotated system we write 
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If we substitute eqs. (2.22), (2.23) and (2.24) in eq. (IV.76), we get 
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If we substitute eqs. from (2.13) to (2.18) in eq. (IV.78), we obtain 
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Using the same reasoning about invariants we can write 
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If we open the parentheses we get 
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An invariant must be invariant for any rotation changes therefore in the rotation matrix in 
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Substituting these differentials in the differentials from (IV.29) to (IV.46) and using MAPLE 

software, eq. (IV.81) yields 
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If the necessary algebraic manipulations are performed eq. (IV.100) is simplified to 
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So we see that 
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If it can be shown that eq. (IV.102) is not equal to zero, that would prove that total shear is 

not invariant in a rotation of a coordinate system in Euclidean space. This is discussed in 

section 5.3. 

 

 

IV.5 Commutativeness of Strain Matrix 
 

     The strain matrix can be decomposed into two as follows 

     )(
2

1
)(

2

1 TT EEEEE −++=       (IV.103) 

     E = S + A         (IV.104) 
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The strain matrix in the rotated system is computed as 

     T* RERE =         (IV.105) 

Substituting eq. (IV.104) in eq. (IV.105), we get 

     ( ) T*
RASRE +=         (IV.106) 

     ( ) T*
RARSRE +=        (IV.107) 

     
TT*

RARRSRE +=        (IV.108) 

This is the equation which is given in eq. (5.17) and this proves that the transformation from 

first coordinate system to second coordinate system is commutative. 

 

 

IV.6 Dilation in 2D and 3D 
 

     In section 2.2, dilation in 3D is given as 
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If 
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 are represented by 1σ , 2σ  and 3σ  respectively, and the dilation in 3D is 

shown by σ3
, we can write 
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In fact this is the result produced by eq. (5.3) for the 3D case. For the 2D case, eq. (5.3) 

produces the following 
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σ+σ=σ .        (IV.111) 

If 
2σ is shown by σ we can write 
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σ+σ=σ         (IV.112) 

     212 σ+σ=σ         (IV.113) 

and σ3
 is shown by Σ, using eq. (IV.110) we can write 
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σ+σ=Σ .        (IV.114) 

This is the equation which is given in eq. (5.4). 
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