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ABSTRACT 

 
 
 

 Today’s very high spatial resolution satellite sensors, such as QuickBird and 

IKONOS, pose additional problems to the land cover classification task as a consequence of 

the data’s high spectral variability.  This problem is further emphasized in the use of fine 

resolution pan-sharpened imagery in the place of coarser multispectral data for land cover 

classification. To address this challenge, the object-based approach to classification 

demonstrates considerable promise.     

 In general, it is claimed that the object-oriented classification methodology is better 

able to deal with highly textured data.  Consequently, we hypothesize that an object-oriented 

approach is better suited to reveal the true benefits of fused imagery over original 

multispectral data in land cover classification.  In pursuit of this goal, we propose to use 

eCognition, an object-oriented classification application developed by Definiens Imaging, to 

test the classification accuracy achievable using both original multispectral and UNB Pan-

Sharpened QuickBird imagery.   

 Furthermore, the success of the object-oriented approach remains highly dependent 

on the successful segmentation of the input image.  Image segmentation using the Fractal 

Net Evolution Approach has been very successful by exhibiting visually convincing results 

at a variety of scales.  However, this segmentation approach relies heavily on user 

experience in combination with a trial and error approach to determine the appropriate 

parameters to achieve a successful segmentation.  This thesis proposes a fuzzy approach to 

supervised segmentation parameter selection to optimize the selection of segmentation 

 ii



 iii

parameters in a time efficient manner.  

 Results demonstrate that UNB Pan-Sharpened imagery offers a noticeable visual 

improvement over classification with original multispectral data.  In addition, testing of the 

fuzzy segmentation parameter selection tool demonstrates significant promise to improve the 

object-based classification workflow.  This improvement is realized by producing excellent 

segmentation results in a highly efficient manner suitable for the first time user without an 

understanding of the underlying segmentation process. 
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Chapter 1 
 

Introduction 
 

 
 

I think the major challenge is…the mounting and increasing demands, in 

our case, for volume, for accuracy, for currency, for completeness, rapid 

turn around, rapid update – everything’s got to be done faster and faster 

and faster with greater and greater accuracy and currency. 

    [James R. Clapper Jr., Director NGA] 

 

1.1  Rapid Advancement in Sensor Technology 

 

 Launched in September 1999, Space Imaging's IKONOS satellite ushered in the 

modern era of very high spatial resolution (VHR) earth observation.  Demonstrating the 

capability to capture one metre panchromatic and four metre multispectral imagery, this 

achievement quickly had far reaching effects through a broad spectrum of applications.  

Today, IKONOS is only one of a growing number of VHR space-borne sensors including 

DigitalGlobe’s QuickBird and OrbImage’s OrbView-3.  Through the emergent collection 

of orbital platforms providing competition and keeping prices reasonable, VHR satellite 

imagery has seen widespread use by government, industry, and scientific communities.  

However, limitations on their application also persist as processing techniques endeavor 

to keep pace with the rapid improvement of sensor technology.  

 Striving to maintain its leadership status in the global market, the United States 

government is heavily investing in the commercial remote sensing sector.  The United 

States Commercial Remote Sensing Policy instituted in April 2003 seeks to foster further 
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development of commercial remote sensing technologies to meet government 

requirements and keep the competitive edge in the global marketplace [Office of Science 

and Technology Policy, 2005].  Improved spatial resolution is one of the key 

requirements in this development.   

 To meet government imagery and geospatial needs, next generation sensors will 

have the capability to collect at least 0.5 metre panchromatic and 2.0 metre multispectral 

imagery.  Scheduled for orbit within the next two years, DigitalGlobe’s next generation 

WorldView satellite and OrbImage’s OrbView-5 satellite are two examples of this 

capability [DigitalGlobe, 2005; OrbImage, 2005].  Together, these sensors demonstrate 

the technological innovation that will continue to challenge the automated processing of 

high spatial resolution imagery into the foreseeable future.   

  

 

1.2  Current Trends and Problems for Land Cover Classification 

 

 Image analysis conducted by the human analyst is quickly becoming less viable 

given the quantity and currency requirements of data being managed in today’s 

geographic information systems (GISs).  Increasingly important are accurate automatic 

methods for information extraction.  In particular, automatic land cover classification of 

satellite imagery is considered fundamental and critical to the information extraction 

problem [Swiewe et al., 2001; Huiping et al., 2003].  To a large degree, problems 

encountered using automatic per-pixel land cover classification techniques are a result of 

the trend toward higher spatial resolution sensors.  These problems are well documented 
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in literature [see Aplin et al., 1999; Schiewe et al., 2001; Schiewe, 2002; Huiping et al., 

2003; Carleer et al., 2005; Frauman and Wolff, 2005]. 

 In general, the intent of classification “is to replace visual analysis of the image 

data with quantitative techniques for automating the identification of features in a scene” 

[Lillesand and Kiefer, 1994].  This task is often carried out through the use of pixel-based 

classification techniques that rely on the spectral pattern of individual pixels to label them 

with the appropriate land cover class in a supervised or unsupervised manner.  Supervised 

classification relies on the analyst training the classification system through the choice of 

representative pixels for each land cover type.  Unsupervised classification statistically 

groups spectrally similar pixels in clusters that the user must then identify and label as 

representing a particular land cover class.  Both methods see wide use today. 

 The trend toward higher spatial resolution sensors is challenging these traditional 

methods for a number of reasons.  First, pixels in VHR imagery represent individual 

components of land cover objects and often these components exhibit varying degrees of 

reflectance [Baschke and Strobl, 2001; Ehlers et al., 2003].  As an example, modern 

sensors are able to detect individual objects on a rooftop such as skylights, heating and 

cooling units, shadows, and different building materials.  Each object has its own 

characteristic reflectance and the result is a high degree of texture within a specific land 

cover class.  This complicates classification based solely on pixel spectral properties. 

Secondly, VHR data has a characteristically high panchromatic spatial resolution 

and significantly lower resolution in the multispectral bands.  This lack of detail in colour 

imagery has led to the development of a number of new image fusion algorithms that 

combine these images to produce a higher resolution result [Genderen and Pohl, 1994; 
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Pohl and Genderen, 1998].  The advancements achieved in this area are remarkable and it 

is reasonable to expect that research into new pan-sharpening techniques will continue so 

long as resolutions differ between panchromatic and multispectral data sets.  However, 

the application of pan-sharpened data to the classification task is relatively unproven. 

 Thirdly, there exists an unavoidable tradeoff between spatial and spectral 

resolution of a space-borne sensor.  As the sensor’s instantaneous field of view (IFOV) 

decreases, the spectral resolution is limited owing to the requirement to maintain an 

adequate signal to noise ratio.  The result is the relatively weak spectral resolution that is 

characteristic of current VHR sensors [Munechika et al., 1993; Carleer et al., 2004]. 

Combined, pixel variability from original or pan-sharpened data sets and weak spectral 

resolution make per-pixel classification methods increasingly inadequate as the spatial 

resolution continues to improve into the next generation of sensors.   

  

 

1.3  Object-Oriented Classification 

 

 To permit automated processing of imagery captured by modern sensors, new 

methods are being developed to intelligently manage these attributes.  Emphasizing the 

need to take advantage of information beyond that provided in the spectral domain by 

arbitrarily defined pixels, these new methods use spatial pattern recognition techniques to 

augment spectral-based classification procedures.  Object-oriented classification shows 

promise in this regard. 

 The arbitrary spatial units that form an image are a direct consequence of the 
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sensor’s IFOV.  The pixels are arbitrary in the sense that they are characteristic to the 

sensor and have no relationship to the scene content or topology.  For remotely sensed 

imagery, this trait represents a specific case of the Modifiable Areal Unit Problem 

(MAUP) whereby there exists a vast number of combinations through which an image 

can be divided and analyzed [Openshaw and Taylor, 1979; Marceau, 1999; Marceau and 

Hay, 1999, Hay et al., 2003].  Although a number of solutions to this problem have been 

proposed, the use of pixels grouped into meaningful image objects “represents the 

clearest way out of MAUP, as an analyst works with spatially discrete entities rather than 

arbitrarily defined areal units” [Hay et al., 2003].  In this way, meaningful topological 

objects exhibit characteristic texture, shape and contextual features, which can be used to 

augment spectral features and result in a better overall classification.   

 Object-oriented classification, therefore, is an approach aimed at solving the 

problems encountered using per-pixel classification methods on VHR imagery [Definiens 

Imaging GmbH, 2004a].  Generally, two steps are needed in object-oriented 

classification: (1) segmentation, and (2) classification.  Segmentation involves 

partitioning the image into contiguous groups of pixels called objects.  Ideally, these 

objects correspond to real world objects of interest [Hofmann and Reinhardt, 2000].  

Once the objects have been identified within the image, the second step commences with 

the classification of these objects based on spectral, textural, size, shape, and contextual 

features.  In the end, the use of successfully segmented images may lead to improved 

classification accuracy when compared to pixel-based classification methods [Janssen 

and Molenaar, 1995; Aplin et al., 1999; Carleer et al. 2004]. 
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1.4  Existing Problems and Limitations  

1.4.1  Pan-Sharpened Data for Classification 

 

 Pan-sharpening as a pre-processing technique used to condition data prior to 

classification has seen increased use in recent years [see Bauer and Steinnocher, 2001; 

Meinel et al., 2001; Neubert, 2001; Davis and Wang, 2002; Shackelford and Davis, 

2003].  In fact, Hofmann [2001] goes so far as to recommend pan-sharpening as a useful 

pre-processing step prior to classification using the object-oriented methodology.  

However, very limited literature was found that actually evaluates the effect of pan-

sharpening on the classification accuracy of the result.   

In the context of the MAUP, a number of studies examined the effect of 

resolution on classification accuracy using pixel-based techniques [see Latty and Hoffer, 

1981; Markham and Townshend, 1981; Cushnie, 1987].  The general conclusion was that 

spatial resolution could have a significant effect on classification accuracy with a general 

trend toward lower accuracy with increasing pixel resolution [Marceau and Hay, 1999].  

Consequently, pan-sharpened data cannot be directly compared to original data by means 

of pixel-based classification techniques.  For this reason, an approach based on common 

object scales (degree of object abstraction) is much more appropriate for comparative 

purposes.  This approach will be used in this research to examine UNB Pan-Sharpening 

as a pre-processing technique for object-based classification.  
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1.4.2  Classification of Geographic Entities 

 

 As object-oriented techniques continue to evolve, some problems persist in their 

implementation that limit their full potential from being realized.  One of the major 

limitations is the concept of segmentation at optimal scales.  Humans have a natural 

ability to perform this cognitive task through the grouping of pixels into meaningful 

objects.  The difficulty arises when we try to define automatic techniques to perform this 

function.  Deducing the optimal scales and selecting those scales that are most 

appropriate to form a classification hierarchy are key problems in the realization of the 

multi-scale object-based approach [Hay et al., 2003].  Further complicating this issue is 

the lack of a theory that indicates the sensitivity of classification results to the scale of 

analysis [Burnett and Blaschke, 2003].  These issues currently restrict the 

operationalization of this approach. 

 Of the segmentation approaches that have been developed and employ the multi-

scale methodology, few are available commercially and even less provide convincing 

results.  In fact, an empirical investigation conducted by Neubert and Meinel [2003] 

reported that eCognition, by Definiens Imaging GmbH, demonstrated the best overall 

results in a comparison with a number of other segmentation schemes.  Employing the 

Fractal Net Evolution Approach (FNEA), eCognition has been successful in providing 

realistic and visually convincing image objects in a number studies and over a variety 

landscapes [see Blaschke and Strobl, 2001; Schiewe et al., 2001; Hay et al., 2003]. 

 While successful in many respects, FNEA requires that the user define the 

segmentation parameters for each desired scale.  The user must simultaneously consider 

 7



spectral, shape, and textural features and conduct extensive experimentation in order to 

achieve the desired scale segmentation [Hay et al., 2003].  Frauman and Wolff [2005] 

attempted to establish a rule between object size and object scale to simplify the 

parameter selection problem, but even though a link has been established, the rule 

remains elusive.  Therefore, the parameter selection problem continues to limit this 

technique.  In this research, we propose that a parameter selection method based on fuzzy 

logic could operationally enhance the FNEA technique by relying on a user’s visual 

perception to delineate the objects of interest at a particular scale. 

 

 

1.5  Objectives 

 

 The main objectives of this thesis are:   

a. To evaluate the capacity of object-oriented classification to manage VHR 

imagery, including a comparison of pan-sharpened and original 

multispectral images; and   

b. To develop a supervised fuzzy approach to improve the efficiency of 

segmentation in the object-oriented classification workflow. 

 A number of important tasks support the achievement of these main objectives.  

In support of the first objective, these tasks are: 

a. To compare the effect of pan-sharpened imagery and original 

multispectral data on segmentation and classification; 

b. To establish the most effective channels (panchromatic, blue, green, red, 
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and/or near infrared) for successful segmentation; and 

c. To determine the most appropriate data for object-oriented classification 

(original multispectral or pan-sharpened) based on visual assessment and 

statistical analysis. 

The tasks supporting the achievement of the second objective are: 

a. To outline the requirement for a system to guide the segmentation process 

within an object-oriented classification workflow; 

b. To determine the applicability of a fuzzy logic control structure to the 

problem of segmentation parameter selection; 

c. To define appropriate fuzzy variables by which to measure the state of 

segmentation within a system; 

d. To develop a fuzzy inference system to guide the segmentation process 

with supervision; and 

e. To qualitatively evaluate and compare the results of segmentation 

achieved with and without the fuzzy inference system based on the 

improved simplicity and efficiency of the proposed technique.  

 

 

1.6  Thesis Outline  

 

 The material presented in this thesis is divided into eight chapters.  To maintain a 

progressive and logical approach, chapters providing the theoretical background 

necessary to understand the technical developments and results will always be provided 
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in advance of such discussion. 

 The introduction comprises the first chapter.  This chapter sets the stage as a 

snapshot of where remote sensing technology is today with a look into the near future.  

The impact of recent technological advancement on land cover classification is discussed 

leading to the objectives of this research.  The chapter closes with a brief outline of the 

thesis.  

 The second chapter outlines the methodology employed to complete this project. 

This chapter proceeds to outline VHR sensor characteristics and data used to conduct this 

research.  The chapter ends with a discussion of important limitations and constraints 

identified during the conduct of this project. 

 Chapter three covers the theoretical background of object-oriented classification 

and its application to VHR multispectral and pan-sharpened imagery.  This chapter will 

begin with the subject of image fusion and its application to the classification problem.  

Image fusion will be covered in general terms followed by a brief discussion of 

University of New Brunswick (UNB) Pan-Sharpening.  With this background, the 

discussion will shift to emphasize object-oriented classification.  This research 

implements object-oriented classification using eCognition, an application developed by 

Definiens Imaging GmbH.  Primarily, segmentation will be the topic of importance since 

this is the key task that determines, to a large degree, the overall classification success 

and is essential to our discussion in follow on chapters.  The chapter will close by 

covering the process of classifying objects by means of fuzzy membership in eCognition.  

 Implementation using multispectral and pan-sharpened data sets will be the topic 

of chapter four.  This chapter will begin with segmentation followed by classification of 
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these data sets.  Specifically, segmentation problems incurred during implementation will 

be identified and discussed in detail.    

 Based on segmentation problems identified during classification, the fifth chapter 

will develop a fuzzy tool to improve the efficiency of segmentation parameters in 

eCognition.  The theory of fuzzy logic as a control structure will be covered and will 

specifically highlight the application to our problem of segmentation parameter selection.  

To facilitate understanding of the proposed tool, fuzzy logic will be discussed in detail to 

include basic set theory, fuzzy variables, fuzzy sets, fuzzy operators, rule bases, 

implication, aggregation, and defuzzification all within the context of a fuzzy inference 

system (FIS).  Having covered the necessary background theory, the new technique will 

be developed and explained commencing with the creation of the workflow for 

segmentation parameter determination.  Finally, using this workflow as a guide, we will 

logically progress through the problem of FIS development.    

 Chapter six will implement the new fuzzy tool developed in this research.  The 

imagery used for this implementation phase will focus on pan-sharpened imagery due to 

its characteristically high spatial resolution.  A number of different land cover types will 

be tested to examine the success and robustness of the system. 

  Chapter seven will focus on the results achieved.  This chapter will begin with a 

comparison of pan-sharpened and original multispectral classifications.  Following this 

comparison, the segmentation results achieved using the proposed fuzzy logic tool for 

segmentation will be discussed and assessed.  Improvements over the previously 

available methods will be highlighted and graphical results in both cases are compiled 

here to augment the discussion.   
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 Chapter eight will draw conclusions based on these research results and will end 

by formulating recommendations for future research in this subject area. 
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Chapter 2 
 

Project Overview 
 

 
 

While numerous segmentation strategies and variants have been 

proposed,…the tailoring of segmentation parameters to expected scene 

thematic content is critical and holds more promise for improved 

performance than the search for new segmentation and edge detection 

methods.  

    [Matsuyama, 1987; Guindon, 1997] 

 

The main objectives of this research are twofold: (1) to evaluate the capacity of 

object-oriented classification to manage VHR imagery, including a comparison of pan-

sharpened and original multispectral images, and (2) to develop a supervised fuzzy 

approach to improve the efficiency of segmentation in the object-oriented classification 

workflow.   

Relating to the first objective, Section 2.1 will discuss the concept of pan-

sharpening, the essential properties for its application to the classification problem, and 

the recent development and success of UNB Pan-Sharpening.  Section 2.2 will discuss 

the different approaches to classification and evaluate the most appropriate method to 

examine the applicability of pan-sharpened data to the classification problem.  With the 

emphasis in this research on the object-based approach, the concept of segmentation will 

be covered in Section 2.3 leading to an overview of the parameter selection problem and 

the second objective of this research.  Finally, having discussed the research aims, we 

will proceed to outline VHR sensor characteristics as background relating to the source of 
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our data (Section 2.4), the data set and software used (Sections 2.5 and 2.6), and finally 

the constraints and limitations encountered during the course of this project (Section 2.7).  

 

 

2.1  Pan-Sharpened Imagery for Land Cover Classification  

 

 “Image fusion is the combination of two or more different images to form a new 

image by using a certain algorithm” [Genderen and Pohl, 1994].  In the context of this 

research, we are specifically interested in the fusion of panchromatic and multispectral 

imagery acquired by VHR satellite sensors such as IKONOS or QuickBird.  These 

techniques are particularly attractive since they allow the user to preserve the spatial 

detail characteristic of the panchromatic channel while retaining the spectral information 

of the original multispectral bands.  The result is colour imagery with the same spatial 

resolution as the panchromatic image.  The use of fine resolution pan-sharpened imagery 

in the place of coarser multispectral data is an attractive option for land cover 

classification and a technique that is seeing increased use as new image fusion algorithms 

are developed.  However, there is little research that examines the applicability of this 

data to the classification problem.  

For the purpose of classification, fusion techniques that maintain the radiometric 

characteristics of the imagery are of primary interest [Munechika et al., 1993].  Although 

pan-sharpening methods based on the separation of spectral and spatial components (ie. 

principal component analysis) have been used for classification, an examination of their 

classification suitability could not be found in literature.  A visual evaluation of this 
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category of techniques often presents a degree of colour distortion and raises the question 

of suitability in this regard.  Munechika et al [1993] suggest that techniques “more 

statistically rigorous in its attempt to maintain radiometric fidelity” are required.  

 In 2002, the University of New Brunswick (UNB) patented a new automatic 

fusion method called UNB Pan-Sharpening.  By employing a least squares approach, this 

automatic method has produced convincing results as to the spectral integrity of fused 

VHR imagery [Zhang, 2002; Cheng et al, 2003].  To date, this method has been 

incorporated into PCI Geomatica as well as Digital Globe’s production line.  Given the 

recent success of this technique based on its visually convincing result and backed by the 

statistical rigor of least squares, this approach offers sound classification potential.  As a 

result, UNB Pan-Sharpening will be the fusion method evaluated in this research. 

 

 

2.2  Classification Approaches 

2.2.1  Pixel-Based Classification 

 

 Through the use of pixel-based classification methods, it is very difficult to assess 

whether or not classification results using pan-sharpened imagery are superior to those 

using the original data set.  This difficulty exists for four reasons: (1) different resolutions 

between original and pan-sharpened data sets, (2) uncertainty of spectral integrity, (3) 

high pixel variability, and (4) MAUP. 

 In the first instance, comparison of classification accuracies is difficult when 

using imagery of different resolutions.  In the case of QuickBird this means comparing 
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the classification of 2.8 metre original multispectral and 0.7 metre pan-sharpened 

imagery.  Classification accuracy is resolution dependent and no single resolution is ideal 

for all land cover classes [Marceau and Hay, 1999; Huiping et al., 2003].  As a result, we 

would expect to see accuracy improvement in some classes while degradation in others.  

This would not allow for a meaningful basis of comparison.  

 Secondly, the spectral integrity of UNB Pan-Sharpened imagery is relatively 

unproven.  Although visually convincing and mathematically rigorous, we must establish 

the suitability of the spectral properties of pan-sharpened imagery to the classification 

task.  This remains difficult to perform without first controlling the effects of different 

resolutions.  For example, if the classification accuracy of a given land cover class is 

worse using pan-sharpened imagery, it is difficult to deduce if the degradation should be 

attributed to the resolution difference or lack of spectral integrity.   

  Thirdly, traditional pixel-based classification techniques have an inherent 

difficulty dealing with the high information content resulting from the high spatial 

resolution of modern satellite sensors.  This problem is further emphasized when 

classifying pan-sharpened multispectral imagery as a result of the increased spectral 

variability over the original multispectral data.  Often this difficulty becomes apparent in 

the so-called salt and pepper effect of the classified image.   

Finally, and most importantly, the pixel-based approach does not address the 

modifiable areal unit problem.  Therefore, to address all these issues and reveal the true 

benefits of UNB Pan-Sharpened imagery, this research will employ the object-oriented 

approach to land cover classification. 
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2.2.2  Object-Oriented Classification 

 

 Approaching our classification problem using the object-oriented methodology, 

implemented in this research through FNEA, classification can be carried out at similar 

object scales.  By examining and comparing similar sized objects in both the original 

multispectral and pan-sharpened data sets, we will alleviate the problems associated with 

comparing classifications at different resolutions.  This will, in turn, permit the 

examination of the spectral integrity of the fused imagery and its applicability to the 

classification problem.  Although work-around pixel-based solutions could be 

implemented to permit a comparison of the results (ie. resampling), the object-oriented 

methodology will permit us to carry out the classification in a manner better suited to 

modern VHR sensors and highly textured data while addressing the MAUP. 

 

 

2.3  Segmentation  

 

 Segmentation is the division of an image into “its constituent parts and extracting 

these parts of interest (objects)” [Zhang, 1996].  The algorithms by which segmentation is 

carried out have been the focus of significant research in the past two decades [Zhang, 

1997; Carleer et al., 2004].  Using the object-oriented approach, only a successfully 

segmented image will lead to a convincing classification.  In general, these algorithms 

can be classed into two distinct categories:  boundary-based and region-based [Gonzalez 

and Woods, 1992; Janssen et al., 1995; Zhang, 1997; Carleer et al., 2004].  Boundary-
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based algorithms depend on the detection of contours through discontinuity in gray levels 

within the image.  On the other hand, region-based algorithms associate pixels with 

similar characteristics into contiguous regions [Zhang, 1997; Carleer et al., 2004].  

Regardless of the category, many segmentation algorithms rely on user selected 

parameters to perform the segmentation.  The appropriate selection of these “parameters 

(thresholds) is very important and has a great influence on the segmentation results” 

[Carleer et al., 2004].  

 

 

2.3.1  Segmentation Control 

 

 Control of the segmentation process can be classed as image-driven or 

knowledge-driven depending on the method by which the segmentation parameters are 

determined [Guindon, 1997; Definiens Imaging GmbH, 2004b].  Image-driven 

segmentation, also called “bottom-up control”, begins at the pixel level and extracts 

contiguous objects across the entire image based on image features.  Knowledge-driven 

segmentation, or top-down as it is also known, relies on the establishment of a model by 

which to extract corresponding objects.  Both systems have their own advantages and 

disadvantages but a hybrid system using the strengths of each will undoubtedly prove the 

most effective [Guindon, 1997].  This research will implement a hybrid approach by 

establishing an object model to guide the selection and refinement of image segmentation 

parameters in the context of a region-growing algorithm. 

 

 18



2.3.2  Segmentation Parameter Selection 

 

 The motivation for this research originates from the requirement that many 

segmentation algorithms need some degree of user input for the segmentation of an 

image.  Take the case of image segmentation using a thresholding technique.  In this 

example the user must determine the appropriate threshold in order to achieve the best 

results for a given application.  Consequently, a common approach to determine these 

parameters is trial and error until a satisfactory result is achieved.  Further compounding 

this problem is a vague understanding of what result constitutes ‘satisfactory’ 

segmentation and how best to measure it [Zhang, 1997].  Unfortunately, without a 

systematic form of segmentation control, trial and error is inherently a very time-

consuming process, especially when the analyst continues to apply this approach without 

a clear definition as to when he should cease his efforts.   

 Faster and more sophisticated methods to determine segmentation parameters are 

required to improve segmentation results in modern imagery characterized by very high 

spatial resolution and increased texture.  In pursuit of this goal, we hypothesize that a 

control structure based on fuzzy logic is well suited to this task owing to its ability to 

manage vague input and deliver a definite result.  Since successful segmentation is 

essential to achieving a convincing classification, this research will develop and 

implement a supervised fuzzy methodology to guide the segmentation process in 

eCognition with a view to decreasing time required for parameter selection, improving 

segmentation and increasing classification accuracy.  
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2.4  Sensor Characteristics 

 

 Data for this project relied on QuickBird imagery.  Nevertheless, imagery from 

any of today’s VHR sensors experience the common problems associated with 

classification owing to their high information content and relatively weak spectral 

resolution.  For comparison purposes characteristics for QuickBird and IKONOS, 

together providing some of the highest resolution imagery currently available on the 

commercial market, are outlined in Table 2.1.   

 

Table 2.1 
Characteristics of QuickBird and IKONOS [DigialGlobe, 2004; Space Imaging, 2004] 

Characteristic QuickBird IKONOS 
Inclination 98 degrees; sun-synchronous 98.1 degrees; sun-synchronous 
Altitude 450 km 680 km 
Period 93.4 minutes 98 minutes 
Revisit Rate 3.5 days 3 days  
Bands Spectral 

Range 
(nm) 

GSD 
(m) 

Radiometric 
Resolution 

(bits) 

Spectral 
Range 
(nm) 

GSD 
(m) 

Radiometric 
Resolution 

(bits) 
Panchromatic 
 

445 - 900 0.70 11 450 - 900 1.00 11 

Multi-spectral 
(Blue) 

450 - 520 2.80 11 450 - 520 4.00 11 

Multi-spectral 
(Green) 

520 - 600 2.80 11 510 - 600 4.00 11 

Multi-spectral 
(Red) 

630 - 690 2.80 11 630 - 700 4.00 11 

Multi-spectral 
(Near IR) 

760 - 900 2.80 11 760 - 850 4.00 11 
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2.5  Data Set 

 

 This research used QuickBird basic imagery.  Data of this type is the least 

processed of all of DigitalGlobe’s imagery products with only radiometric, internal 

sensor geometry, optical, and sensor distortions corrected [DigitalGlobe, 2004].  The 

minimal processing of this imagery was crucial to maintaining the original radiometric 

properties of the imagery as much as possible.  This was particularly important for both 

the image fusion and classification problems. 

 The images that were selected included one rural and one suburban scene.  The 

rural scene was selected because of its relative simplicity, while the suburban scene was 

selected due to its complexity.  In this manner, the success of the classification 

methodology could be established for different types of image content.  In addition, each 

of these scenes provided a broad spectrum of land cover types by which to evaluate the 

success of the segmentation parameters determined by the proposed parameter selection 

tool. 

 The first image (Figure 2.1) shows a rural scene located approximately 50 km 

southeast of Fredericton, New Brunswick, Canada, in the training area of Canadian 

Forces Base Gagetown.  The second image (Figure 2.2) is the suburban scene centered on 

the town of Oromocto, New Brunswick, Canada.  Specific details relating to these scenes 

are outlined in Table 2.2. 
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Table 2.2 
Project metadata 

Data Set Sensor Acquisition 
Date 

Acquisition 
Time 

Size 

Rural QuickBird 26 July 2002 15:21 UTC 3.2km x 2.6km 
Suburban QuickBird 08 August 2002 15:16 UTC 3.2km x 2.6km 

 

 

 

Figure 2.1 
Original multispectral QuickBird image of rural study area 
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Figure 2.2 
Original multispectral QuickBird image of suburban study area 

 

 Georeferencing was not carried out on this imagery to avoid the resampling 

effects associated with this procedure.  Instead, we chose to leave this processing step to 

the end of the classification process.  In each case, the multispectral imagery was 

registered to the panchromatic layer.  Once completed, the two scenes were subsequently 

pan-sharpened using PCI Geomatica’s Pan-Sharpening module.  Subsets of the original 

multispectral (Figures 2.3 and 2.5) and pan-sharpened results (Figures 2.4 and 2.6) are 

shown below. 
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Figure 2.3 
Rural area subset of original multispectral QuickBird image  
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Figure 2.4 
Rural area subset of pan-sharpened QuickBird image 
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Figure 2.5 
Suburban area subset of original multispectral QuickBird image  
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Figure 2.6 
Suburban area subset of pan-sharpened QuickBird image  

 

 To test the parameter selection tool developed in the second part of this thesis, 

subsets were selected from the pan-sharpened suburban data set.  Each subset was 

selected to focus on a particular land cover class.  These subsets are identified in Figure 

2.7. 
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Figure 2.7 
Test areas for segmentation parameter selection tool 

 

 

2.6  Software 

 

 Definiens Imaging GmbH released its eCognition software in fall 2000.  This 

application employs an object-oriented approach for the classification of land cover.  

eCognition accomplishes this by using a “Region-Merging” technique [Darwish et al., 

2003; Carleer et al., 2004] called “Fractal Net Evolution” to extract image object-

primitives in varying resolutions [Baatz and Schape, 1999].  Classification of meaningful 
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image object-primitives instead of pixels separates eCognition from most other 

commercial classification approaches.  Through multiresolution segmentation followed 

by the application of a fuzzy rule base for classification, eCognition has been designed to 

overcome the challenges associated with the classification of textured data that is 

characteristic of modern VHR sensors.  The specifics of object-oriented classification, the 

Fractal Net Evolution Approach (FNEA), and its realization in eCognition will be 

covered in detail in Chapter 3.  This research will use eCognition version 4.0 for the 

object-oriented land cover classification task.   

  

 

2.7  Constraints and Limitations 

  

 The limitations encountered in the conduct of this project were not considered to 

be of a serious nature nor did they compromise the research at any point.  They are 

worthy of note, however, and will be discussed in this section. 

 Availability of the data was the first limitation.  The QuickBird data was acquired 

over and around the Canadian Forces Base Gagetown military training ranges.  

Consequently, a large selection of rural data was gathered but very limited urban data 

was available.  Arguably, the application of object-oriented classification and the 

proposed fuzzy tool offer the largest advantage in the complex urban environment.  

Therefore, other urban images would have assisted in the development, evaluation and 

testing phases of this research.   

 Size of the study areas was also limited.  This was primarily due to the 
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computational time required for eCognition to perform the lowest level segmentation 

(starting from individual pixels).  This process often took on the order of several minutes 

to complete corresponding to the size of the input images.  Since it was necessary to 

repeat these processes several times in the course of the research, the time factor was 

substantial.  Therefore, any images of larger size would have been impractical for this 

research application. 

 Finally, eCognition Professional was granted to UNB under a six month research 

license.  This was enough time to permit completion of classification accuracy 

assessment for the test data sets.  After the license expired, however, further classification 

testing was limited.  This included limiting evaluation of the fuzzy tool through measured 

improvement on classification accuracy.  
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Chapter 3 
 

Object-Oriented Classification 
 

 
 

The classification of an entity relies upon the context within which it is 

embedded.  Establishing the context of an entity, however depends on the 

ability to group like entities, and therefore requires some form of 

classification.  The latter is the segmentation problem. 

    [Flack, 1996; de Kok et al., 2000] 

 

 The aim of this chapter is to outline the general theory of object-oriented 

classification and the specific details of how it is realized in eCognition.  Starting with the 

image segmentation problem, the approaches used to extract image objects from remotely 

sensed imagery will be discussed in general terms.  This will be followed by a detailed 

discussion of eCognition’s implementation of the FNEA.  The chapter will then move to 

a discussion on object classification and conclude with an overview of fuzzy 

classification in eCognition. 

 

 

3.1  Image Segmentation  

 

 Classification of meaningful image objects, instead of pixels, separates object-

oriented classification from most other classification approaches.  The grouping of pixels 

together to form image objects is carried out in the preliminary segmentation stage.  The 

result from the segmentation process is an image divided into a number of contiguous 
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regions that serve as “building blocks and information carriers for subsequent 

classification” [Definiens Imaging GmbH, 2004b]. 

 

 

3.1.1  Image Objects and Image Object Primitives 

 

 As the user selected segmentation parameters vary, the resulting objects will 

change.  After each segmentation is complete, it remains the user’s responsibility to 

determine what the resulting objects represent.  When working with a new data set, it is 

common for the initial extracted objects to have very little meaning.  For example, an 

object representing a patch of grass in a large grass sports field has little significance.  

These objects are more aptly called object primitives.  Therefore, a distinction is made 

between objects and object primitives.  The goal of segmentation in a subsequent step 

should be merge object primitives together into meaningful image objects.  In our 

example, a meaningful object would be one object that represents the entire sports field.  

In this way, we can take advantage of the spectral and spatial properties of the object in 

the classification stage.  

 It is impractical to expect that all objects will exactly represent the land cover 

objects as perceived by the user (image objects).  Although it should be the goal of the 

user to extract these objects from the imagery, a realistic expectation is the extraction of 

object primitives that are as meaningful as possible.  In this thesis, we will refer to all 

objects as image objects with the understanding that meaningful image object primitives 

are the practical realization of this goal.  In other words, the extracted objects may not 
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exactly represent the actual land cover objects as perceived by the user, but are as close 

as possible using the segmentation routine and will therefore be referred to as image 

objects. 

 

 

3.1.2  General Approaches to Segmentation 

 

  “Segmentation of non-trivial images is one of the most difficult tasks in image 

processing” and remains the focus of significant research [Gonzalez and Woods, 2002]. 

As mentioned in Section 2.2, segmentation approaches can be classed as either boundary- 

based or region-based [Gonzalez and Woods, 1992; Janssen et Molenaar, 1995; Zhang, 

1997; Carleer et al., 2004].  The different techniques within each category are too 

numerous to cover in any degree of detail nor is it required since very few are robust 

enough to be useful in an operational environment [Definiens Imaging GmbH, 2004b].    

However, the general concept of each approach along with some of the more prominent 

techniques will be discussed during the remainder of this section. 

 

 

3.1.2.1 Boundary-Based Approach 

 

 Boundary-based algorithms rely on discontinuity detection techniques to extract 

the structure of image objects.  One of the simplest methods to accomplish this task in the 

spatial domain is the use of a spatial mask for edge detection.  Employing a first order 
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derivative approach, the Prewitt and Sobel operators are among the most popular but 

suffer from their sensitivity to noise within the image [Gonzalez and Woods, 2002].  The 

second order derivative, implemented through the Laplacian mask is even more sensitive 

to noise and for this reason it is often implemented after a smoothing filter.  Once edge 

detection is complete, the image must be post-processed to close the pertinent objects 

while reducing the edge effects due to noise and other spurious results which often appear 

in highly textured data [Gonzalez and Woods, 2002].  For this reason, discontinuity based 

techniques are less than ideal for VHR satellite imagery with a characteristically high 

spectral variance. 

 

 

3.1.2.2  Region-Based Approach 

  

 Region-based algorithms associate pixels with similar characteristics into 

contiguous regions [Zhang, 1997; Carleer et al., 2004].  Thresholding remains one of the 

most straightforward region-based segmentation techniques.  In its simplest form, a 

threshold (i.e. gray value) is selected based on trial and error or through an analysis of the 

image histogram by the user or specified algorithm.  Examining the entire image 

histogram to determine the threshold is a global operation that aims to separate regions 

based solely on gray level.  In a more sophisticated form, thresholding can be performed 

by taking into consideration local properties (local thresholding) and pixel locations 

within the image (adaptive thresholding) [Gonzalez and Woods, 2002].  Although these 

techniques are relatively easy to implement and can be applied to multispectral imagery, 
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more sophisticated techniques such as region growing and region merging offer further 

promise in terms of their robustness and applicability across a variety of data sets.  

 Region growing refers to a procedure that starts with a number of “seed” points 

and through the definition of similarity criteria, regions are formed by grouping similar 

pixels to the associated “seeds” [Gonzalez and Woods, 2002].  Region merging works in 

a similar fashion, but focuses on merging groups of pixels that have been previously 

created by some method [Gonzalez and Woods, 2002].  If you consider single pixels as 

the regions from which to start, the two methods cannot be distinguished.  This is the case 

that we will focus on. 

 In the most general case, n regions extracted from the image R through a region 

merging routine must satisfy the following criteria [Gonzalez and Woods, 2002]: 

 a. U . 
n

i
i RR

1=

=

 b. Ri is a connected region, where i = 1,2,…,n. 

 c.   for all i and j, ∅=ji RR I ji ≠ . 

 d. P(Ri) = TRUE for i = 1,2,…,n, where P(Ri) is a logical predicate. 

 e. P(Ri RU j) = FALSE for any adjacent regions Ri and Rj. 

In this instance, a connected region refers to a region whose pixels are, according to some 

definition, related as neighbors.  In addition, the predicate P(Rk) is the condition that is 

applied to all the pixels that comprise the region Rk.  For a region merging routine, this 

predicate is normally a condition of similarity in some sense. 

 Starting at the pixel level with single pixel regions and merging these regions to 

form meaningful image objects requires the definition of a stopping criteria [Baatz and 

Schape, 2000; Gonzalez and Woods, 2002].  Problems arise when the stopping rule relies 

 35



solely on local characteristics of the objects and do not take the region merging history 

into account.  To overcome this shortfall, additional criteria that consider size and shape 

of the resulting objects add considerable effectiveness to this approach, but rely on some 

degree of a priori  knowledge of the objects of interest [Gonzalez and Woods, 2002].  The 

region-based approach to segmentation is used in eCognition. 

 

 

3.1.3  Region Merging in eCognition 

 

 Combining the “fractal structure of the world and of semantics with object 

orientation”, Definiens Imaging designed and implemented a region merging approach to 

segmentation called ‘Fractal Net Evolution’ [Baatz and Schape, 1999].  This technique 

was designed with the view to meeting six aims including the [Baatz and Schape, 2000]: 

 a.      Production of homogeneous image object-primitives; 

 b. Adaptability to different scales; 

 c. Production of similar segment sizes for a chosen scale; 

 d. Applicability to a variety of data sets; 

 e. Reproducibility of segmentation results; and 

 f. Requirement for reasonably fast performance. 

The first three are the most important for our discussion and will be discussed in further 

detail during the remainder of this section. 
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3.1.3.1  Defining the Similarity Condition 

 

 Using the basic concept of region merging, accomplishment of the first aim 

outlined above, required the establishment of a logical predicate condition to evaluate 

whether or not to merge two adjacent image objects.  The resulting condition was a 

definition of the degree of fitting between two objects based on homogeneity criteria.   

 To determine the degree of fitting, eCognition focuses on two distinct features:   

(1) spectral heterogeneity change, hspectral, and (2) shape heterogeneity change, hshape.  

[Baatz and Schape, 2000; Definiens Imaging GmbH, 2004b].  The overall spectral 

heterogeneity change, hspectral, is a measure of the object heterogeneity difference 

(similarity in feature space) resulting from the potential merge of two adjacent objects 

(obj1 and obj2) and is given by [Definiens Imaging GmbH, 2004b]: 

  ( )( )∑ ⋅+⋅−⋅= +
+

c

Obj
cObj

Obj
cObj

ObjObj
cObjObjcspectral nnnwh 2

2
1

1
21

21 σσσ           (3.1) 

where c represents the different raster layers, wc are the weights associated with each 

layer, n is the number of pixels comprising the objects, and  σc is the standard deviation 

of pixel values within each layer.  On the other hand, the overall shape heterogeneity 

change, hshape, is the weighted average of compactness heterogeneity change, hcompact, and 

smoothness heterogeneity change, hsmooth, as given by [Definiens Imaging GmbH, 

2004b]: 

   smoothcompactcompactcompactshape hwhwh ⋅−+⋅= )1(        (3.2) 

where wcompact is the weight associated with the compactness heterogeneity change. 

Conceptually, the most compact form describes a circle while the most smooth form 

describes a rectangle.  Compactness heterogeneity change, hcompact, is defined as 
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[Definiens Imaging GmbH, 2004b]: 
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 n is the number of pixels comprising the objects and l is the perimeter of the 

  

objects.  Smoothness heterogeneity change is defined as [Definiens Imaging GmbH, 

2004b]: 
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where n is the number of pixels comprising the objects, l is the perimeter of the objects, 

te to a single value that is indicative 

and b is the perimeter of the object’s bounding box. 

 Together, hspectral and hshape quantities evalua

of the overall heterogeneity change for the potential merge of two objects.  This overall 

value is the so-called ‘fusion’ value.  The fusion value, f, for the potential merge between 

two objects is given by [Definiens Imaging GmbH, 2004b]: 

    shapespectral hwhwf ⋅−+⋅= )1(        (3.5) 

eight associated with spectra heterogeneit  changwhere w  is the user assigned w l y e.  The 

merge between two objects will be considered if the fusion value falls below the square 

of a user specified threshold referred to as the “scale parameter”.  The relationships 

between these quantities are graphically represented in Figure 3.1. 
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Fusion Value

+

Figure 3.1 
Composition of the fusion value criterion 

 

In the context of this calculation, it is the user’s responsibility to select all of the 

.1.3.2  Optimization 

The above discussion outlines how the region merging similarity condition is met 

+ 

 

weighting elements and the scale factor.  Ultimately the weights determine the 

heterogeneity change and the scale factor is compared to the fusion value to establish the 

stopping criteria.  The sums of the weights are always normalized such that their sum is 

one.  In this way, the sums of the weighted heterogeneity change quantities provide the 

weighted average in each case. 

 

 

3

 

 

through the fusion value and the scale parameter.  There is further requirement, however, 

to provide a decision mechanism in the event that more than one object satisfies the 

h2
spectralh1

spectral hc
spectral

w    1 

Raster Layer 1 Raster Layer 2 Raster Layer c 

 w 1-w 

hh shape

+ 

spectral
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similarity condition.  For example, take the case of four objects as shown in Figure 3.2.  

If we start with Object A, and determine that both Object B and Object D meet the 

similarity criteria, we must have a method to determine which merge is the optimal 

choice.  

 
Figure 3.2 

Optimization of object merging 
 

In eCognition, this problem is addressed through an optimization procedure that 

ms to

 

ai  minimize the overall heterogeneity change.  In our example, the merge of Object 

A and B provides the minimum change.  At this point, the optimization routine looks to 

Object B as the starting point and determines which object merge provides the minimal 

heterogeneity change.  If Object A is identified as the optimal choice, the merge proceeds 

since the two objects are mutually the best choice.  If another object, for example Object 

C, is the optimal choice for the merge with Object B, then the optimization routine looks 

to Object C as the starting point to find the object that provides the minimal heterogeneity 

change.  The process continues in this fashion, following the gradient of homogeneity 

within the image until mutually best fitting objects can be found [Baatz and Schape, 

2000]. 
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3.1.3.3  Scale, Size, and the Stopping Criterion 

The scale parameter is an adjustable quantity designed to meet the second 

gmen

 treatment order over the entire image, regions 

.2 Fuzzy Classification 

Employing the object-oriented approach, eCognition is able to take advantage of a 

 

 

se tation aim outlined in Section 3.1.3.  Recall that scale in this context refers to the 

degree of object abstraction.  As a result, the scale parameter in eCognition is simply a 

threshold value limiting the degree of object abstraction by monitoring the degree of 

heterogeneity change as objects iteratively merge.  Consequently, as the scale parameter  

increases the region merging algorithm will permit more merges and the regions grow 

larger.  While scale refers to the degree of object abstraction, size refers to the actual 

physical dimension of the object.  Therefore, in eCognition there is a distinct difference 

between scale and size, although they are closely related in the context of this procedure.  

The stopping criterion is met when there are no longer any merges that satisfy the 

threshold established by scale parameter.   

 By employing an evenly distributed

grow at a similar rate across the image.  More homogenous regions will tend to grow 

larger as would be expected from our definition of heterogeneity as discussed above.  In 

general, however, the regions can be described as similar in size for any user-defined 

scale, achieving the third segmentation aim in Section 3.1.3. 

 

 

3
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diverse array of features for classification based on tone, texture, size, shape, and context 

[Definiens Imaging GmbH, 2004a].  eCognition employs these features in a classification 

scheme based on fuzzy logic, which provides the user with a powerful tool to manage the 

inherent complexities that arise using the object-based approach.  While a detailed 

theoretical discussion of fuzzy logic will be presented in Chapter 5, the remainder of this 

chapter will focus on the general concepts by which fuzzy classification is carried out in 

eCognition. 

 

 

3.2.1  Membership Functions 

Each class in the classification hierarchy is described by one or more fuzzy sets.  

)       (3.6) 

 

 

Fuzzy sets are built using features and user-defined membership functions.  In this way, 

membership functions map feature values to the interval 0 to 1.  For example, the class 

‘water’ can be described by an object’s low mean value in the near infrared (NIR) band.  

We will make the assumption that this class can be defined sufficiently using only this 

one condition.  Therefore, to define this class we must define a membership function to 

describe the fuzzy set Low_NIR such that Low_NIR: Mean_NIR_Band  [0,1].  Since 

this is the only condition, the following rule can be formulated: 

  μwater(object) = μLow_NIR(Mean_NIR_Band(object)

where each object will be assigned a membership value to the class ‘water’ that is equal 

to the membership of the object to the fuzzy set Low_NIR through the feature 

Mean_NIR_Band. 
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 In the case where more complex class descriptions are required, membership 

functions can be combined through fuzzy operators.  Let us assume that a lake can be 

described as being composed of water and having a very compact shape.  Combining the 

conditions we can create a rule to describe membership to the class ‘lake’ according to: 

 μlake(object)=[μLow_NIR(Mean_NIR_Band(object)) ∩  μCompact(Compactness(object))] (3.7) 

in

e organized within a classification hierarchy, 

omple

where the membership to the class ‘lake’ is the m imum of the object’s membership to 

fuzzy set Low_NIR and fuzzy set Compact. 

 Since the class descriptions (rules) ar

c x rules can be simplified.  Using results from classification on a previous level of 

the hierarchy, such as the classification of class ‘water’, we can proceed to use this result 

for the classification of class ‘lake’.  Through this approach, equation (3.7) becomes: 

            μlake(object)=[ μwater(object) ∩  μCompact(Compactness(object))].              (3.8) 

methodology permits objects to partially belong to any class.  In the 

This simplifies the situation considerably, and the result is a hierarchical classification 

knowledge base.   

 This fuzzy 

end, however, the defuzzification process evaluates the highest membership value for a 

particular object and assigns the object to the appropriate class.  In other words, the result 

is a classification of each object as we would expect from any other conventional form of 

classification with each object assigned to a land cover type, the only difference being 

that an object may have partial membership to other classes as well.   
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3.2.2 Nearest Neighbor Functions 

For very complicated class descriptions requiring the use of numerous object 

nerally 

e nearest neighbor 

lassifi

 

 

features, the membership function approach does not work well and can be handled much 

better using a nearest neighbor approach in multidimensional feature space [Definiens 

Imaging GmbH, 2004b].  Nearest neighbor works in a similar manner to the minimum 

distance supervised classification technique which is common to the pixel-based 

approach.  The overall implementation is simplified using the case of a segmented image 

since training areas are simply the objects themselves, each object containing a number of 

representative pixels.  Once the samples have been identified, all remaining objects in the 

image are assigned the same class as the closest training object in feature space.   

 Lillesand and Keifer [1994] note that the minimum distance classifier is ge

not used on data with high variance due to problems separating the classes in 

multispectral space.  Using objects, however, there are two distinct advantages over the 

minimum distance classifier as conventionally applied to pixels in multispectral space: 

(1) high multispectral variability is managed well through the use of image objects, and 

(2) features available to the user through the use of objects instead of pixels promises 

better overall separation in feature space than in multispectral space.   

 Since eCognition is based on a fuzzy classification scheme, th

c er must also associate a fuzzy membership value to each class in the hierarchy.  To 

accomplish this, the membership value is calculated as a function of distance in feature 

space between the object being classified and the nearest training object for each class.  

Therefore, in the context of the resulting classification knowledge base it does not matter 
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which technique is employed (nearest neighbor or membership function) since they both 

generate a fuzzy classification result. 
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Chapter 4 

Implementation of Pan-

 

Things which we see are not by themselves what we see….  It remains 

    [Immanuel Kant] 

 

Approaching the classification problem using the object-oriented methodology, 

 
Sharpened Data for Classification 

 

 

completely unknown to us what the objects may be by themselves and 

apart from the receptivity of our senses.  We know nothing but our manner 

of perceiving them. 

 

realized through eCognition, classification can be carried out at similar object scales.  

This will permit a comparison as to the applicability of original multispectral and UNB 

Pan-Sharpened data to the classification problem.  In addition to permitting a reliable 

comparison, the object-oriented methodology has the potential to provide better overall 

classification results than other pixel-based methods since this approach is a seemingly 

better suited alternative for modern VHR sensors and textured data.  This chapter will 

outline the classification process as applied to our data set comprised of the original and 

pan-sharpened suburban and rural QuickBird images (see Chapter 2), show results, and 

identify problems encountered in this implementation.  The accuracy analysis and results 

comparison will be described in Chapter 7. 
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4.1  Image Classification 

ion 

Segmentation of imagery into meaningful image objects is essential to 

lassifi

.1.1.1  Spectral Band Selection and Weighting 

The first step in segmentation involves the selection of weights, wc, that 

4.1.1  Stage 1 - Segmentat

 

 

c cation success.  Given the number of user-defined parameters to accomplish this 

task in eCognition, segmentation is likely the most difficult and time-consuming process 

in the object-oriented classification workflow.  Throughout the remainder of this section, 

we will describe the segmentation of our data set and the reasoning behind our selection 

of parameters. 

 

 

4

 

 

correspond to each raster layer, c, in the input data set.  For the QuickBird imagery used 

in this research, each of the five bands (panchromatic, blue, green, red, and near-infrared) 

must be assigned an appropriate weight in an effort to successfully segment the image 

into meaningful image objects.  Two problems arise in this task.  First, the pan-sharpened 

data set already has the information of the panchromatic channel incorporated into the 

multispectral bands through the fusion process.  On the other hand, the original 

multispectral data does not contain this information.  Inclusion of the panchromatic 

channel as a separate input layer into the segmentation process, therefore, would seem 

somewhat redundant for the pan-sharpened data but would seem necessary for the 
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original multispectral data.  The second problem concerns the issue of weighting factors 

other than zero (excluded from the segmentation process) or one (included in the 

segmentation routine).  Once the user decides which layers to use, increased or reduced 

weights can be assigned to certain layers in an effort to improve the overall segmentation 

results.  The appropriate selection of these weights, however, is not a straightforward 

task.  Incorrect selection of the input bands and inappropriate weights can result in poor 

objects and consequently an unsatisfactory classification [Wong et al., 2003].  

 To address the first problem and to examine the benefit offered by the 

 
Table 4.1 

Data set composition f r scene segmentation 
 

panchromatic image channel for each scene (rural and suburban), two segmentations 

were carried out on the original imagery and two segmentations were performed on the 

pan-sharpened imagery.  The first segmentation excluded the panchromatic layer and 

focused solely on the information contained in the multispectral bands.  The second 

segmentation in each case was performed using both the panchromatic and multispectral 

image layers.  This approach resulted in four segmentations (designated A through D) for 

each image scene (Table 4.1).   

o

Segmentation
Data 

 C D A B

Blue X X   
Green X X   
Red X X   Pan-Sharpened Multisp

frared 

ectral 

Near In X X   
Panchromatic Panchromatic X  X  

Blue   X X 
Green   X X 
Red   X X Original Multispectral 

Near Infrared   X X 
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 The second problem identified above regarding the weights associated with the 

different channels is not so simple to evaluate.  In this case, it is up to the user to specify 

the weights according to experience and results achieved through trial and error 

segmentation.  Unfortunately, trial and error by nature is very time-consuming and the 

difficulty selecting the appropriate raster layer weights along with all of the other user 

specified parameters (see Figure 3.1) quickly becomes an overwhelming task.  The user 

could easily spend many hours trying different combinations, but realistically, only a 

small number of combinations at each segmentation level are tried before the user is 

forced to accept the segmentation and move to the classification stage. 

 In this research, all the layers were given equal weighting for segmentation of the 

rural imagery.  This simple approach appeared to work reasonably well given the relative 

simplicity of the rural data set.  In the case of the suburban data set, layer weights were 

modified by trial and error in an attempt to improve the overall segmentation owing to 

the complexity of the imagery.  The difficulty encountered in the segmentation of urban 

areas was identified by Hofmann [2001] and in a large part attributed to the spectral 

similarity of the different bands in VHR sensors.  Hence, specific weights for the 

different suburban image channels were used to achieve a reasonable segmentation.  

 In both rural and suburban cases, segmentation was carried out using a bottom-up 

approach [Hofmann, 2001].  Therefore, starting at the lowest level (smallest objects), four 

levels of image objects were created with each level containing objects larger than the 

level previous.  The selection of four object levels was determined somewhat arbitrarily 

ensuring that sufficient levels were created to adequately represent all of the different 

land cover types to be classified.  In the absence of any scaling rules or specific guidance 
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in this regard, this seemed a reasonable deduction.  Since the object sizes were different 

at each level, it permitted land cover classification at the most appropriate level, while 

allowing refinement and extraction of other objects at smaller scales.  The raster layer 

weights for these four levels of segmentation are shown in Tables 4.2 through 4.5.   

 

Table 4.2 
Layer weights for rural imagery segmentation with panchromatic layer 

Segmen
Level 

 
tation Layer 

 Panchromatic Blue Red Near-IR Green  
1 1.0 1.0 1.0 1.0 1.0 
2 1.0 1.0 1.0 1.0 1.0 
3 1.0 1.0 1.0 1.0 1.0 
4 1.0 1.0 1.0 1.0 1.0 

 
 

Table 4.3 
Layer weights for rural imagery segm atic layer 

Segme
Level 

entation without panchrom
 

ntation Layer 

 Panchromatic Blue Red Near-IR Green  
1 0.0 1.0 1.0 1.0 1.0 
2 0.0 1.0 1.0 1.0 1.0 
3 0.0 1.0 1.0 1.0 1.0 
4 0.0 1.0 1.0 1.0 1.0 

 
 

Table 4.4 
Layer weights for suburban imagery segmentation with panchromatic layer 

Segm
Level 

 
entation Layer 

 Panchromatic Blue Red Near-IR Green  
1 1.0 1.0 1.0 1.0 1.0 
2 1.0 1.0 1.0 1.0 2.0 
3 1.0 1.0 1.0 1.0 1.0 
4 1.0 0.0 0.0 0.0 1.0 
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Table 4.5 
Layer weights for suburban imagery segmentation without panchromatic layer 

Segm
Level 

 
entation Layer 

 Panchromatic Blue Red Near-IR Green  
1 0.0 1.0 1.0 1.0 1.0 
2 0.0 1.0 1.0 1.0 2.0 
3 0.0 1.0 1.0 1.0 1.0 
4 0.0 0.0 0.0 0.0 1.0 

 

.1.1.2  Scale, Shape, and Compactness Parameter Selection 

To complete the segmentation at each of the four levels discussed above, the user 

e as possible but small enough to ensure separation  

ies should be weighted as high as possible while the shape  

. erties of the  

hese les ar nerality.  This creates difficulty in the 

 

4

 

 

must select appropriate scale, shape (versus spectral), and compactness (versus 

smoothness) parameters.  To aid in this task, eCognition provides the following guidance 

[Definiens Imaging GmbH, 2004b]: 

 a. Scale should be as larg

  of different land cover classes.  In this way, objects are abstracted as much 

  as possible without growing so large as to join with other land cover  

  regions. 

 b. Spectral propert

  parameter should be weighted only as high as necessary. 

 c The importance given to compactness depends on the prop

  objects of interest in the imagery. 

T ru e useful but suffer from their ge

selection of appropriate segmentation parameters that will ultimately lead to a convincing 
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segmentation.  This difficulty was highlighted by Schiewe et al [2001]. 

Considering the transparency of the software in use it has to be stated 
that with increasing complexity the control and understanding 

As long  Definiens Imaging 

 they were selected 

significantly decrease.  For instance, the effects of the abstract scale 
parameter settings can be hardly predicted. Here, the aim to combine 
various parameters to one number makes the initial use easier, but the 
actual, iterative process more difficult [Schiewe et al., 2001]. 
 
 as the trial and error process is the approach recommended by

[2004b], the iterative segmentation process will remain a difficult and time-consuming 

task.  Nevertheless, it remains crucial to successful classification. 

 In the absence of a tool to guide the selection of parameters,

based on trial and error until a visually pleasing result was achieved.  Keeping in mind 

that different raster layers were used for segmentation of the same scene, shape and 

compactness parameters were left unchanged for equivalent hierarchy levels.  In addition, 

since scale is a measure of object abstraction, the scale parameter was further adjusted 

between segmentations to ensure that the average size of the resulting objects were as 

close as possible.  This was particularly important at the higher segmentation levels due 

to the disparity in textures present in the different data sets, and was a necessary step to 

ensure comparability between the resulting classifications.  Absence of this refinement 

may have been possible, but the sensitivity of classification to scale is not yet predictable.  

Tables 4.6 and 4.7 specify the parameters chosen. 
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Table 4.6 
 Rural scene segmentation parameters  

Scale
 

 Level A B C D actness Smoothness Spectral Shape Comp

1 15 15 15  15 0.9 0.1 0.9 0.1 
2 42 43 40 39 0.8 0.2 0.8 0.2 
3 82 86 80 79 0.7 0.3 0.8 0.2 
4 136 145 140 141 0.7 0.3 0.8 0.2 

 
 

Table 4.7 
Suburban scene segm

Sca

entation parameters 
 

le Level A B C D Smoothness Spectral Shape Compactness 

1 12 12 12  12 0.9 0.1 0.9 0.1 
2 30 30 34 32 0.8 0.2 0.8 0.2 
3 50 51 49 48 0.6 0.4 0.8 0.2 
4 200 180 197 169 0.8 0.2 0.8 0.2 

 

 
 

.1.1.3  Segmentation Results 

Each segmentation level in the object hierarchy was created through the selection 

4

 

 

of a unique set of segmentation parameters as outlined in the previous section.  The 

parameter that had the largest impact on the size of the resulting objects was the scale 

parameter.  By successively increasing the scale parameter at each level, we created the 

different levels of abstraction in the object hierarchy.  An example created using 

eCognition demonstrates the four object level hierarchy in Figures 4.1 through 4.4. 
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Figure 4.1 
Example of segmentation at level 1 

Figure 4.2 
Example of segmentation at level 2 

 

  

Figure 4.3 
Example of segmentation at level 3 

Figure 4.4 
Example of segmentation at level 4 

 

For comparison purposes, a subset of the resulting segmentations (A through D)  

at level 2 for the rural data set can be seen in Figures 4.5 through 4.8.  It is immediately 

obvious that the objects in each case are different.  This is what we would expect from 

region-merging and is not of concern so long as the each object being classified 

represents only one land cover class and do so in a way that is representative of the class 

shape.  This requirement is fulfilled in the following results. 
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Figure 4.5 
Subset of segmentation A (B, G, R, NIR layers) at level 2  

 

 

Figure 4.6 
Subset of segmentation B (Pan, B, G, R, NIR layers) at level 2  
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Figure 4.7 
Subset of segmentation C (B, G, R, NIR layers) at level 2  

 

 

Figure 4.8 
Subset of segmentation D (Pan, B, G, R, NIR layers) at level 2 
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The segmentation of the suburban scene demonstrates similar characteristics but 

is not shown here.  Instead, the final classified results for both scenes will be presented in 

the next section. 

 

 

4.1.2  Stage 2 - Classification 

 

 Once each data set has been partitioned, a classification knowledge base must be 

developed and used to classify the images.  In eCognition this knowledge base employs 

both user-defined fuzzy membership function and nearest neighbor supervised 

classification approaches (see Section 3.2).  For this project, membership function 

classification was the method of choice and nearest neighbor was only applied to refine 

certain classes as a last resort.  This provided a large degree of control over the resulting 

classification, but at the cost of a great deal of time in the creation of the knowledge base. 

 

 

4.1.2.1  Knowledge Base Development 

 

 The knowledge base was developed within eCognition using a top-down approach 

[Hofmann, 2001].  This approach involved classification of appropriate classes on the 

highest level first and refinement of the classification at each successively lower level.  

By following this method, land cover could be extracted at the most appropriate level and 

then refined.  Shape, texture, and relational features were exploited as much as possible 
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to augment spectral features and create the best classification possible.  In the rural scene, 

vegetated and non-vegetated areas were separated on the highest level (level 4, largest 

objects).  At this level of abstraction, some refinement was possible resulting in a number 

of specific non-dense vegetation classes.  At the next lower level, classification results 

from level 4 were refined permitting trees and grass to be extracted and allowing the level 

4 pavement class to be further refined into separate classes that were distinguishable in 

level 3 (gravel, pavement, and urban). The refinement continued in this manner to the 

lowest level and resulted in a total of six classes including: (1) grass, (2) gravel/soil, (3) 

pavement, (4) trees, (5) urban, and (6) water (Figures 4.9 through 4.12).   

 

 

 

Figure 4.9 
Example of classification hierarchy level 4 

as developed using eCognition 

Figure 4.10 
Example of classification hierarchy level 3 

as developed using eCognition 
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Figure 4.11 
Example of classification hierarchy level 2 

as developed using eCognition 

Figure 4.12 
Example of classification hierarchy level 1 

as developed using eCognition 
 

 

 For the suburban scene the same top-down method was used.  In this scene a total 

of nine classes were extracted including: (1) deep water, (2) shallow water, (3) marsh, (4) 

pavement, (5) grass, (6) sparse vegetation, (7) sand/soil/gravel, (8) urban, and (9) trees.   

 

 

4.1.2.2  Classification Results 

 

 Upon completion of the knowledge base for each data set, the imagery was 

classified using eCognition.  Classification of the rural data sets (Figures 4.13 through 

4.16) and suburban data sets (Figures 4.17 through 4.20) are shown below.  A thorough 

discussion and assessment of these results are presented in Chapter 7. 
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Figure 4.13 
Rural scene classification using segmentation A (B, G, R, NIR layers) 
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Figure 4.14 
Rural scene classification using segmentation B (Pan, B, G, R, NIR layers) 
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Figure 4.15 
Rural scene classification using segmentation C (B, G, R, NIR layers) 
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Figure 4.16 
Rural scene classification using segmentation D (Pan, B, G, R, NIR layers) 
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Figure 4.17 
Suburban scene classification using segmentation A (B, G, R, NIR layers) 
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Figure 4.18 
Suburban scene classification using segmentation B (Pan, B, G, R, NIR layers) 
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Figure 4.19 
Suburban scene classification using segmentation C (B, G, R, NIR layers) 
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Figure 4.20 
Suburban scene classification using segmentation D (Pan, B, G, R, NIR layers) 

 

 

4.2  Problems Identified during Classification 

 

 Discussion in Section 4.1.1 outlined the severe segmentation difficulties 

encountered when implementing object-oriented classification in eCognition.  The 

segmentation process is far from straight forward and extremely time-consuming through 
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trial and error.  Yet segmentation is the pivotal process leading to either success or failure 

during classification.   

To date, very limited work has been completed in an effort to simplify the 

parameter selection process.  Frauman and Wolff [2005] suggested: 

If a link can be established between the size of the objects contained in 
the image and the heterogeneity criterion, a user friendly rule could be 
derived that would allow any user to get over the time-consuming stage 
of finding the best segmentation before any other image analysis. 

 
In their research, they maintained the spectral and shape criterion at a default value 

throughout while focusing solely on the scale parameter.  This is an unrealistic 

simplification and does not take full advantage of these parameters.  Furthermore, the 

discovery of a simple rule may be possible using spectral heterogeneity properties, but it 

becomes increasingly complex with the addition of shape descriptors.  However, they 

concluded that a link does exist between object size and the scale parameter, but the 

actual rule governing this relationship remains elusive.   

 Therefore, the common criticism of the object-oriented image analysis is the 

requirement for the analyst to have significant knowledge of land cover objects of 

interest.  The analyst must then apply this knowledge in the selection of optimal 

segmentation parameters with the aim of successfully extracting these objects [de Kok et 

al., 1999; Flanders et al., 2003; Hay et al., 2003].  Unfortunately, the user who is “aware 

of the spatial and spectral behaviour of the objects [and] understand[s] the underlying 

processing…does not always exist” [Flanders et al., 2003].  Consequently, a number of 

problems persist, namely: (1) determining the number of levels that should be extracted; 

(2) the selection of appropriate segmentation parameters for each level in a timely 
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manner; and (3) a method of evaluation of segmentation results beyond that which is 

visually pleasing. 

A tool designed to aid the user in this regard would prove extremely useful.  

Therefore, a sophisticated tool based on a fuzzy engine for parameter selection seems a 

logical choice.  Such a tool will be proposed, developed, and implemented over the next 

two chapters. 
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Chapter 5 
 

Fuzzy Parameter Selection 
 

 
 

We say that a heap is a collection of parts….  We cannot really identify the 

exact number of objects that must remain in the collection in order for it to 

qualify as a heap, because we would probably still be willing to call it a 

heap, even if we removed one more item. 

    [Klir et al., 1997] 

 

5.1  Introduction to Fuzzy Logic Theory 

 

 Fuzzy set theory was introduced by Lotfi A. Zadeh in 1965 to manage 

“uncertainty resulting from vagueness of linguistic terms in natural language” [Klir et al., 

1997].  Prior to this introduction, uncertainty was dealt with using probability theory, the 

essence of which was prediction of future random events based on current knowledge.  

Although probability theory was widely accepted and used, it could not deal with all 

types of uncertainty and therefore was not applicable to all situations.  For example, the 

expectation that a young person will walk into a university classroom can be described by 

probability theory, but the concept of ‘young’ is imprecise.  The term ‘young’ cannot be 

described by probability theory.  Consequently, Zadeh introduced the notion of fuzzy sets 

to provide a tool to manage uncertainty in situations involving vague natural language.   

 Distinguishing itself from the traditional concept of the crisp set, fuzzy set theory 

was able to conceptualize the idea of a set whose boundary was not sharply defined [Klir 

et al., 1997].  In this way members did not have to be categorized as fully included or 
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fully excluded from a particular set.  Instead, members could partially belong to a set.  

For the example cited above, this concept could be used to describe the extent to which a 

person can be considered ‘young’.  The concept of partial membership introduced a new 

method to manage uncertainty in a simple, yet powerful manner. 

 Employing the concepts of fuzzy set theory, fuzzy logic lends itself particularly 

well to managing vague and imprecise input in a manner similar to human decision 

making [Kaehler, 1998].  While not initially conceived as a control system methodology, 

fuzzy logic performs very well in this regard and is likely the most successful area of 

application [Klir et al., 1997; Kaehler, 1998].  For our application, the imprecise nature of 

segmentation and the selection of its associated parameters make fuzzy logic seemingly 

well suited to this task.  First, however, it is necessary to explore the realization of fuzzy 

control through the fuzzy inference system (FIS). 

 

 

5.2  Fuzzy Inference System (FIS) 

 

 A fuzzy inference system can best be understood by breaking it down into a five 

step process.  This process starts with the input one or more variables and through a 

number of sequential steps produces a definite result.  The intermediate steps in this 

process can be generalized as [The Mathworks, 2005]: 

 a. Fuzzification of inputs; 

 b. Application of fuzzy operations in the antecedent; 

 c. Implication; 

 71



 d. Aggregation (or inferencing); and 

 e. Defuzzification. 

Figure 5.1 demonstrates how these steps work together to form the FIS.  The concept 

behind each step in this process will be discussed in detail during the next few sections. 

Rule #1 

Rule #2 

U

U

Step 1 - 
Fuzzify 

Step 2 – Apply 
Fuzzy Operator 

Input #1 Input #2 

Step 3 – 
Implication 

Step 4 – 
Aggregation 

Step 5 – 
Defuzzification 

Figure 5.1 
Fuzzy inference system workflow (after The Mathworks [2005, p. 2-29]). 

 

 

5.2.1  Variables, Sets and Membership Functions 

 

 Any particular variable input into a system can assume a range of different values 

all of which come from the universal set of that variable.  In other words, the universal 

set contains all possible values of a particular variable.  This can be represented by: 

     A = { a | P(a) }        (5.1) 

where the universal set A is composed of elements a such that each element a has the 

property P. 
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 To be used in a fuzzy inference system, input variables must be assigned a 

membership value, μ, to a fuzzy set.  This process of mapping the universal set of a 

variable, say A, to a particular fuzzy set is carried out through a user-defined membership 

function B such that: 

     B : A  [0,1].         (5.2) 

In this manner, each element Aa ∈  has an associated membership value μ to the fuzzy 

set B such that: 

     μB = B(a).         (5.3) 

This process is referred to as fuzzification and establishes the first step in the fuzzy 

inference system. 

 

 

5.2.2  Operators  

 

 Fuzzy sets can be combined using a diverse array of fuzzy operations.  This 

discussion will focus on the most important operations for our application.  For the most 

part these operations are standard fuzzy operations, but where appropriate, a discussion of 

some non-standard operations will be covered. 

 

 

5.2.2.1  Fuzzy Complement   

 

 Given the fuzzy set B from equation 5.3, the standard fuzzy complement B  is the 
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 fuzzy set which expresses the degree to which a does not belong to fuzzy set B [Klir et 

al., 1997].  Formally, the complement is defined as: 

     )(1)( aBaB −= .        (5.4) 

This relationship can be seen graphically depicted in Figure 5.2 by way of example.  In 

this example, membership to fuzzy set Inexperienced is a function of credit hours.  Using 

the complement operator, we can proceed to define the fuzzy set Experienced using 

equation 5.4.  In this way, the fuzzy set of inexperienced students and its complement, 

experienced students, are both defined.  

 

Figure 5.2 
Fuzzy set of inexperienced students and its complement (from Klir et al. [1997, p. 91]). 

 

 The relationship between a fuzzy set and its complement have some specific 

differences from their classical set theory counterparts.  One important difference to note 

is that a fuzzy set and its complement overlap.  Therefore, an input element can have 

partial membership to both fuzzy sets.  Given a specific number of credit hours, the input 

element can have partial membership to both fuzzy set Inexperienced and fuzzy set 

Experienced.  This is an important characteristic to fuzzy complements and an attribute 
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that will be revisited during the development of the fuzzy segmentation parameter 

selection tool. 

 

 

5.2.2.2  Fuzzy Union 

 

 The fuzzy union operator, U , is used to describe both standard and non-standard 

union operations.  The union operator is best described as a logical OR operation.  The 

standard fuzzy union interpretation of OR is a maximum operation which results in the 

maximum value between two fuzzy sets.  Assuming that fuzzy sets B and C are defined 

over the universal set A, the fuzzy union between B and C can be formalized by: 

   )](),(max[))(( aCaBaCB =U          (5.5) 

for all .  The standard fuzzy union operation is depicted graphically in Figure 5.3 

where the union between fuzzy set Experienced and its complement is shown. 

Aa ∈

 

 

Figure 5.3 
Union of fuzzy set Experienced and its complement (from Klir et al. [1997, p. 93]). 
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The union operation can be further complicated when dealing with fuzzy sets.  Although 

the maximum operator is the standard union operator, other OR operations can be 

defined.  These operations are collectively referred to as non-standard union operations. 

 One example of a non-standard union operator is referred to as the probabilistic 

OR operator and is defined in Matlab [The Mathworks, 2005] as: 

   cbcbaCaBproboraCB
prob

⋅−+== )](),([))(( U       (5.6) 

for all , , and   Other non-standard OR operations are possible and find 

use depending upon the circumstances, but this research focussed solely on the above two 

definitions. 

Aa ∈ Bb ∈ .Cc ∈

 

 

5.2.2.3  Fuzzy Intersection 

 

 The fuzzy intersection operator, I , is a logical AND operation.  The standard 

fuzzy intersection operation is a minimum operation.  Once again, assuming that fuzzy 

sets B and C are defined over the universal set A, the fuzzy intersection between B and C 

can be formalized by: 

   )](),(min[))(( aCaBaCB =I          (5.7) 

for all .  The standard fuzzy intersection operation is depicted graphically in Figure 

5.4 where the minimum between fuzzy set Experienced and its complement is shown. 

Aa ∈

 76



 

Figure 5.4 
Intersection of fuzzy set Experienced and its complement (from Klir et al. [1997, p. 94]). 
 

 Once again, non-standard intersection operations are possible.  This research used 

the non-standard product AND operator given by: 

   cbaCaBprodaCB
prod

⋅== )](),([))(( U        (5.8) 

for all , , and Aa ∈ Bb ∈ .Cc ∈   This research focussed specifically on the above two 

definitions for the AND operator. 

 

 

5.2.2.4  Standard and Non-Standard Operations 

 

 To complete the discussion of fuzzy operators, it is necessary to understand why 

there is a distinction between standard and non-standard operations.  Classical set theory 

has a number of properties such as distributivity, associativity, and commutativity.  When 

working in the realm of fuzzy set theory, the lack of sharp boundaries defining fuzzy sets 

causes certain operations to fail to meet some of these classical properties.  As a result, 
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standard and non-standard fuzzy operations are defined by the properties that they 

maintain.   

 Standard fuzzy operations are defined as those operations that meet all the 

classical set properties except law of the excluded middle (union operation) and law of 

contradiction (intersection operation).  Meanwhile, non-standard fuzzy operations fail to 

meet other properties as well [Klir et al., 1997].  Although standard operations perform 

satisfactorily in most applications, the “expressive power” of non-standard operations 

may offer advantages in some circumstances [Klir et al., 1997].  This research will use 

both types of operators to achieve the desired result. 

 

 

5.2.3  Implication and Rule Bases 

 

 To this point, we have explored the concepts of fuzzy sets and fuzzy operations.  

Combining fuzzy sets using fuzzy operators using “if-then” statements creates rules.  The 

“if” part of the statement, also called the “antecendent”, is composed of one or more 

fuzzy sets combined using fuzzy operators.  The “then” part of the statement is composed 

of a single fuzzy set called the “consequent”.  Once evaluated, the antecedent result is a 

single value that describes the firing strength of the rule.  The process of applying this 

antecedent result to the consequent is known as implication. 

 Implication is carried out through the application of a fuzzy operator between the 

antecedent result and the consequent.  Generally speaking, the result of implication is a 

modified fuzzy set in output space (see Figure 5.1).  Although this is the most common 
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practice, it is also possible that the consequent be a singleton (spike) in output space.  In 

this case, the singleton can be defined by a constant, first order, or higher order function.   

 In the case of a constant function, the output singleton is stationary in output 

space.  The only effect on the output for each rule is the firing strength.  This 

simplification can work very well for specific applications.  Linear functions offer the 

advantage that the singletons move around in output space as a first order function of the 

input elements.  This permits additional flexibility at the cost of slightly increased 

complexity by allowing the output to adapt to the input.  Finally, higher than first order 

functions are possible but offer little advantage at the cost of significant complexity [The 

Mathworks, 2005].  The use of constant singletons in output space instead of fuzzy sets is 

shown in Figure 5.5. 

 

Figure 5.5 
Using singletons in output space (from The Mathworks [2005, p. 2-79]). 
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  To this point we have discussed the components that make up a single rule.  The 

power of a fuzzy inference system, however, comes from the combination of a number of 

rules together.  This set of rules is called a rule base and the interaction between the rules 

is called aggregation.  A rule base needs only to be defined once, and can continually be 

applied as a control structure to the same situation.  As the input changes, the results will 

change, but the same rule base will always be applied to a given situation. 

 

 

5.2.4  Aggregation 

 

 Aggregation, also called inferencing, is the heart of the FIS.  In this step, the 

output from all rules in the rule base are combined together to form a single fuzzy set or a 

set of singletons.  The method of combination will vary according to the intended use of 

the output.  The combination of outputs could be as simple as summation or as 

complicated as the user desires.  Regardless of the method of combination, the result 

from this step must be converted into a single useful output value.  This is the last step in 

the FIS and will be discussed next. 

 

 

5.2.5  Defuzzification 

 

 The aim of defuzzification is to take the aggregated fuzzy result produced in the 

previous step and produce a single value that is representative of the combination of input 
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rules.  In the case of an aggregated fuzzy set, the output can be determined in a number of 

different ways.  One of the most popular methods is to take the overall centroid value of 

the fuzzy set, but many other methods are also possible.  If the aggregated result is a set 

of singletons, the defuzzification method is more restrictive.  The weighted average or 

weighted sums are two useful approaches where the weights are defined by the firing 

strength of each singleton.  With the defuzzification complete, the user now has a single 

definite result that is useful to the control application at hand. 

 

 

5.3  Development of the Parameter Selection Tool 

 

 The success of the object-oriented approach to classification is highly dependent 

on the successful segmentation of the input image.  Currently, eCognition relies heavily 

on user experience in combination with a trial and error approach to determine the 

appropriate parameters for segmentation.  This is often a difficult and time-consuming 

process.  A tool designed to aid the user in this regard would prove extremely useful. 

 To this point, we have explored fuzzy logic as a control methodology and can see 

it is a powerful tool given its ability to manage vague input and produce a definite output.  

This property, combined with its flexible and empirical nature, make this control 

methodology ideally suited to the task of segmentation parameter selection.  The 

workflow and fuzzy inference systems to accomplish this task are developed in detail 

during the remainder of this chapter.     
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5.3.1 Design Requirements for the Proposed Tool 

 

 Recall from Chapter 4 that the major problems with parameter selection are: 

(1) determining the number of levels that should be extracted; (2) the selection of 

appropriate segmentation parameters for each level in a timely manner; and (3) a method 

of evaluation of segmentation results beyond that which is visually pleasing.  Currently, 

eCognition is designed to provide “knowledge-free extraction” of objects through the 

selection of parameters based on the user’s experience [Definiens Imaging GmbH, 

2004b].  Once an object level is completed, the user must determine what it is that the 

objects best represent.  Upon determining this, the level can be used for further 

segmentation by creating other object levels or classification if the objects represent land 

cover of interest.  In many cases, different land cover types will require different object 

levels for optimal extraction, especially if shape features are to be used for classification.   

 A tool developed to address these issues should meet the following requirements: 

a. Each execution of the tool is aimed at extracting one land cover type and 

results in one level of the object hierarchy; 

b. Segmentation must be controlled and refined in an iterative manner based 

on an object model; 

c. The tool must rely on an initial segmentation as a start state; 

d. Scale, shape, and smoothness parameters must be determined; 

e. Parameter selection must be reproducible; and 

f. The tool must demonstrate reasonably fast and efficient performance. 
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 The segmentation of an input image is performed on a number of different levels 

to permit objects of different scales to be extracted on their own level.  By using this 

approach, objects can be classified on the level where the segments are the most 

meaningful and best represent the object of interest.  This infers that the user must have a 

specific land cover class in mind when segmenting the image so that the parameters can 

be best estimated and then refined through trial and error.  As a result, the fuzzy tool must 

aim to extract one particular land cover type each time it is executed.  By running the tool 

a number of times, a hierarchy of object levels can then be developed. 

 To define a particular land cover type, modelling of the land cover object of 

interest would seem the logical approach.  This method is supported by Hay et al [2003] 

whereby they hypothesized that the “intrinsic scale of the dominant landscape objects 

composing a scene” guide the selection of scale on multiple levels.  To accomplish this, 

the analyst should define the model in a supervised manner by selecting the sub-objects 

(SO) that make up the dominant landscape object of interest or model object (MO).  

Object properties such as size, shape, tone, and texture can then be established and used 

to guide the segmentation process to a high quality result.  This approach addresses the 

first two requirements above. 

 Selection of the sub-objects that make up the model object implies that 

segmentation has already been carried out.  If not, the user would be forced to select all 

of the pixels that make up the object of interest.  This would offer limited initial 

information to estimate the scale parameter and would be a tedious task for the user, 

especially for large objects.  A more reasonable approach would be to start with an initial 

segmentation of the image to allow the user to select those objects that make up the 
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object of interest.  In addition, the scale parameter used for this initial segmentation 

would offer very useful information to aid in the estimation of the most appropriate scale 

parameter for the land cover type to be extracted.  Finally, when establishing subsequent 

levels, the system must have the ability to build upon the previously extracted level. 

 To ensure that the initial segmentation is useful, it should be performed at a small 

scale with most weight on the spectral properties of the image.  The small scale will 

ensure that the object of interest is over segmented.  The focus on spectral properties will 

ensure that the initial segments are representative of only one land cover class.  Together, 

these initial objects will provide the building blocks to extract the object of interest and 

will allow the user to model the exact object. 

 Finally, the most important parameters for segmentation are scale, shape, and 

smoothness.  Although unique band weighting is also possible, the improvement to 

segmentation would come at the cost of significant complexity.  Therefore, it is most 

important for the proposed system to determine the three primary parameters.  In order to 

ensure the operational relevance of the proposed tool, the selection of scale, shape, and 

smoothness must be carried out in a manner that is reproducible and reasonably fast. 

 

 

5.3.2  Proposed Workflow 

 

 Having outlined the design requirements, we can proceed to establish a workflow 

to meet these criteria.  The proposed workflow for the fuzzy segmentation parameter 

selection tool is shown in Figure 5.6.   
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 In accordance with this diagram the start state is an initial segmentation of the 

input image.  This segmentation should be conducted using a small scale parameter with 

little or no weight given to the shape parameter.  This approach produces an over 

segmented image with the emphasis on spectrally homogeneous objects.  In this manner 

small details in the image, and more importantly the land cover object of interest, are 

retained.   

 
Figure 5.6 

Proposed fuzzy segmentation parameter selection workflow 
 

 

 Once complete, the user must select the sub-objects (SO) that form the model 

object (MO) being extracted.  During the first iteration, the union of all sub-objects will 

exactly define the model.  This is the ideal case, but as the region merging routine 
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progresses, this may cease to be true.  A threshold must be established to determine the 

point at which a sub-object ceases to be considered part of the model-object.  This is 

easily accomplished by ensuring a minimum fractional area of each sub-object falls 

inside the model object.  In this manner, the set M of sub-objects m that form the model 

object can be formalized by: 

  M = { m | [area(mIMO) / area(m)] >T} for all Im ∈       (5.9) 

where T specifies the fractional area threshold, and I denotes the entire image.  However, 

if at any point MO is completely inside one sub-object, then that sub-object will be the 

only object comprising the set M. 

 Using this definition for the sub-objects that form the model object, the user must 

input the current segmentation parameters, sub-object (SO) features, and model object 

(MO) features into the system (the definition of these features will be discussed in detail 

later).  The system will use the SO features to evaluate the current segmentation status 

and compare these results to the desired final segmentation state described by the MO 

features.  This comparison is conceptually based on discrepancy evaluation of image 

object quality thereby providing the theoretical foundation for this approach (see Zhang, 

1996; Zhang, 1997).  By using object feature discrepancy, smoothness, scale, and shape 

parameters can be estimated, each using their unique fuzzy inference system (FIS) to 

perform this operation.  Due to the interrelationship between scale and shape, the 

estimated scale parameter is further modified as a function of the estimated shape 

parameter.  This is necessary since the FIS features that describe scale are purely 

dependent on the spectral properties of the object, yet scale is a function of both spectral 

and shape characteristics (see Section 3.1.3.1). Finally, segmentation is performed using 
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the estimated parameters and convergence to the model object solution is tested based on 

feature discrepancy measures.  If not yet converged, the system will continue to iterate to 

a solution.  Therefore, convergence will only be achieved once the result is of suitable 

quality as determined through feature discrepancy measures between the sub-object and 

model object based on scale and size comparison at each iteration. 

 This workflow was implemented using Matlab and the Fuzzy Logic Toolbox 

extension. 

 

 

5.4 FIS Development 

 

 The first step in applying a fuzzy control structure to this problem requires the 

definition of input variables.  In this application, the variables will be SO features that are 

representative of the current status of the segmentation process.  In turn, these features 

will be used to guide the process to its successful completion.  Selection of the 

appropriate features requires an in-depth understanding of the region-merging routine 

used by eCognition (see Section 3.1.3).  Definition of these features for each FIS will be 

discussed individually in the following sections. 

 

 

5.4.1    Scale FIS 

 

 Recall that region-merging in eCognition is based upon the notion that the 
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“average heterogeneity of image objects weighted by their size should be minimized” 

[Definiens Imaging GmbH, 2004b].  Although heterogeneity change is a function of both 

spectral and shape properties, the effect of the latter on the overall heterogeneity 

calculation cannot be determined since it is not estimated when the scale parameter is 

determined.  For this reason and to ensure that our scale parameter is as large as possible 

(see Section 4.1.1.2) we make our initial estimate of the scale parameter based solely on 

the spectral properties of the sub-objects in the initial segmentation.  In fact, this 

simplification works very well since the spectral information is the primary information 

in the image and our initial segmentation is based almost entirely on spectral information.  

 Also recall from equation 3.1 that spectral heterogeneity change, hspectral, is a 

function of individual spectral band weights, wc.  To ensure simplicity of the system is 

not compromised, the weight of each band will be set to unity.  Hoffman [2001] suggests 

that this assumption is reasonable for most applications given the relatively high 

correlation between the different spectral bands in VHR imagery.  With these 

simplifications made to reduce the inherent complexity of the scale parameter, we can 

proceed to feature definition for the scale FIS. 

 

 

5.4.1.1  Proposed Feature Definitions  

 

 Determining the spectral features that will best monitor and guide the selection of 

the scale parameter is not an easy task.  Based on experience using the eCognition 

software and equation 3.1, we know that spectral variance (texture) is the primary tool 
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used to measure spectral heterogeneity.  Within a user defined model object, texture can 

be described by the internal texture of each sub-object (pixel variance) as well as the 

texture resulting from the different spectral mean between sub-objects.  Therefore, two 

fuzzy input variables are defined for the scale parameter FIS as developed in this 

research:  (1) mean object texture, Texture, and (2) object stability, Stability.  In this way, 

Texture will establish the internal sub-object feature and Stability will establish the 

external sub-object feature.  Together, they will be used to estimate the current 

segmentation status as well as the final desired segmentation state.   

 Texture, as proposed in this research, is a feature defined by: 

  Texture(m objects) = ∑ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
⋅

m c

obj
cobj

merge

m

m c
n

n
σ11                 (5.10) 

where  is the standard deviation of object m in spectral layer c, c is the number of 

spectral layers,  is the number of pixels comprising object m, m represents the 

number of sub-objects comprising the model object, and n

mobj
cσ

mobjn

merge is the number of pixels in 

the resulting merged object.  Understanding that spectral variance is an important value in 

the calculation of hspectral, and that spectral variance continues to grow with the size of the 

objects, this feature is a key indicator in determining the current state of segmentation.   

 The proposed Stability feature defines the spectral similarity between objects.  

Sub-objects that are spectrally homogeneous internally may be very different from each 

other.  The greater the spectral difference between the sub-objects, the higher the scale 

will have to be to merge them.  To ensure an appropriate definition for the Stability 

feature we will apply eCognition’s built-in Mean_Difference_to_Neighbors feature as 

defined by [Definiens Imaging GmbH, 2004b]: 

 89



    [ ]∑ −⋅⋅=Δ
p

obj
c

obj
c

obj
s

obj
c

pmpm ssl
l

s 1      (5.11) 

where mobj
cs  is the spectral mean value of layer c for the object of interest, pobj

cs is the 

spectral mean value of layer c of direct neighbour object p, p represents the number of 

objects that are direct neighbours to the object of interest, l is the border length of the 

object of interest, and  is the length of shared border between object of interest and 

direct neighbour object p.  Using this feature we are able to define our own Stability 

feature to evaluate the similarity of each sub-object m to its neighbour objects.    Stability 

in this research is defined as: 

pobj
sl
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where m represents the number of sub-objects. 

 

 

5.4.1.2    Fuzzy Set and Rule Base Development 

  

 The Texture and Stability features defined above are applied to the sub-objects 

comprising the model object to evaluate the current segmentation status of the system.  

Using the same features and applying them to the model object can measure the 

segmentation state that we want to achieve.  In doing so, these MO feature values play an 

important role in defining the membership functions.  The shape of each membership 

function is a result of empirically evaluated success of the system.  Therefore, if the 

system needs to be adjusted to produce better estimates for the scale parameter, the 
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membership function can simply be modified until the FIS produces improved results. 

Both Texture and Stability membership functions are graphically defined in Figures 5.7 

and 5.8.   
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Figure 5.7 
Texture feature membership functions 

 

Figure 5.8 
Stability feature membership functions 

0 

1 

� 

Stability(SO) Stability(MO) 

Unstable Stable Very_Stable 

2(Stability(MO)) 

 

 With membership functions defined, the rules forming the rule base are formed.  

The rules for the scale FIS as proposed in this research are: 

 a. μIncrease = [ μLow_Variance(Texture(SO))   μI Unstable(Stability(SO)) ] 

   b. μIncrease  = [ μLow_Variance(Texture(SO))  μI Stable(Stability(SO)) ] 

 c. μIncrease = [ μMod_Variance(Texture(SO)) I  μUnstable(Stability(SO)) ]  

 d. μMaintain = [ μLow_Variance(Texture(SO)) I  μVery_Stable(Stability(SO)) ] 
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 e. μMaintain = [ μMod_Variance (Texture(SO))  μI Stable (Stability(SO)) ] 

 f. μMaintain = [ μHigh_Variance(Texture(SO)) I  μUnstable(Stability(SO)) ]  

 g. μReduce = [ μMod_Variance (Texture(SO))  μI Very_Stable (Stability(SO)) ] 

 h. μReduce = [ μHigh_Variance (Texture(SO))  μI  Stable (Stability(SO)) ] 

 i. μReduce = [ μHigh_Variance (Texture(SO))  μI Very_Stable (Stability(SO)) ] 

 During successive iterations, the singletons that compose the three output 

membership functions (Increase, Maintain, and Reduce) are shifted.  Since the singletons 

do not move during the iteration they are considered zero order functions (constant).  The 

three output membership functions are formally defined as: 

 a. μReduce = Reduce(x); 

 b. μMaintain = Maintain(y); and 

 c. μIncrease = Increase(z). 

In this case, x is defined as the scale from the previous iteration, y is the current scale, 

and z is a predicted scale.  An element of history is ensured by using the previous scale to 

define μReduce while a prediction is made as to the next scale according to: 

     mnxyz merge ⋅+−= 2           (5.13) 

where nmerge is the number of pixels comprising the merged object and m is the number of 

sub-objects forming the model object. 
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5.4.1.3  Aggregation and Defuzzification 

 

 The use of constant membership functions in output space instead of a modified 

fuzzy set permits aggregation and defuzzification to be completed in one step.  In the 

scale FIS, this combined step is performed using a weighted average of x, y, and z where 

each value (location) is weighted by the membership value determined from the firing 

strength of each rule in the rule base.  The result is a single scale value that is the estimate 

for the next iteration. 

 

 

5.4.2  Shape FIS 

 

 The balance between spectral and spatial information in the calculation of the 

scale parameter is a critical one.  Recall from Section 4.1.1.2 that the spectral information 

should be weighted as much as possible, while using only as much shape information as 

necessary.  This makes perfect sense since spectral information is the primary 

information in the image.  However, as objects grow larger shape plays an increasingly 

important role.  This is particularly true if one or more of the sub-objects that form the 

object of interest have significantly different spectral information.  In this case, the 

region-merging routine may tend to merge with objects outside the object of interest if 

they are spectrally similar.  To prevent this from happening, shape information becomes 

increasingly important to successful segmentation, but too much shape information and 
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we lose our connection to the spectral information in the image.  A correct balance must 

be determined to achieve a visually convincing result.  

 

 

5.4.2.1  Proposed Feature Definitions  

 

 Defining features that aid in the prediction of an appropriate shape parameter is 

not easy.  Consequently, three different features were defined for this task.  The first two 

features focus on local properties.  In other words, the properties of sub-objects as they 

relate to the model object.  The primary reason for these features is to identify any 

particularly large spectral difference or size difference between the sub-objects.  Such 

occurrences can have adverse effects on merging when relying only on spectral 

information as a result of the texture information they contain.  The last feature focuses 

on a global property and emphasises the importance of sub-object absolute size to the 

determination of the shape parameter.  The larger that sub-objects grow, the more 

important shape becomes.  Together, these features will determine the shape parameter 

that best suits the situation. 

 The first proposed feature determines which sub-object, m, has the maximum 

spectral difference compared to the desired model object, M.  The identified sub-object is 

then used to calculate the Spectral_Mean feature.  This feature is particularly important 

for urban areas where problems often arise when one object (ie. air conditioning unit) 

may be particularly bright while the rest of the rooftop is dark.  The larger the spectral 

difference between the one object and the average rooftop value, the more difficult it may 
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be to merge the objects together based on spectral properties.  Instead, maintaining the 

overall shape of the roof may play increased importance to achieve a satisfying result. 

 Given the set M, composed of m sub-objects, the subset of objects, A, which has 

the largest mean spectral difference as defined in this research is given by: 

      A={ a | a = m for all objects Mm ∈ where 
⎭
⎬
⎫

⎩
⎨
⎧

−∑
c

obj
c

obj
c

Mm ss
c
1max  is True}     (5.14) 

where mobj
cs  is the spectral mean value of layer c for the sub-object of interest,  Mobj

cs  is 

the spectral mean value of layer c for the model object, and c is the number of spectral 

layers.  In all likelihood, the set A will contain a single object unless two or more objects 

are found with an identical maximum mean spectral difference.  If this should happen, the 

object with the largest size should be selected.  In any case, the object with the maximum 

mean spectral difference is used to determine the proposed Spectral_Mean feature given 

by: 

  Spectral_Mean(m objects) =  ∑
c

obj
c

as
c
1  for object .    (5.15) Aa ∈

 The second feature assesses the size of the object identified in equation 5.5.  This 

feature explores the size difference between sub-object a and the average sub-object size.  

This aids in determining the degree to which shape should be increased to successfully 

merge the sub-objects.  If the air conditioning unit from the previous example is only 

small, then there is an increased chance that it will merge with the surrounding objects 

based on spectral properties.  However, if it is large in size, then the texture change is 

large and may not merge well with surrounding objects based solely on spectral 

properties.  In this case, shape takes on greater importance. 

 Size_Difference feature as proposed in this thesis is defined by: 
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  Size_Difference(m objects) = 
am obj

m
obj nn

m
−⎟

⎠

⎞
⎜
⎝

⎛ ∑1      (5.16) 

where m is the number of objects forming the model object,  is the number of pixels 

comprising object m, and is the number of pixels forming object a, where object a is 

the object that satisfies equation 5.14.   

mobjn

aobjn

 Finally, the global largest size feature is used to monitor the growth of sub-

objects.  In general, the larger an object grows the more shape is required to achieve a 

visually convincing result.  The proposed Lg_Size feature is defined as: 

  Lg_Size(m objects) = { }
mobjnmax  for all objects Mm ∈     (5.17) 

where  is the number of pixels comprising object m. 
mobjn

 

 

5.4.2.2  Fuzzy Set and Rule Base Development 

 

 The membership functions comprising the above features are graphically shown 

in Figures 5.9 through 5.11.   

 

Figure 5.9 
Spectral_Mean feature membership function 
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Figure 5.10 
Size_Difference feature membership function 

 

Figure 5.11 
Lg_Size feature membership function 
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 In this instance, there is only one membership function defined for each feature.  

By using the logical NOT or compliment operation, we can create other membership 

functions without defining them outright.  With these membership functions defined, the 

rules forming the rule base are created.  The rules for the shape FIS are: 

 a. μLess = [ μStandard(Spectral_Mean(SO)) μ
prod
I Small(Size_Difference(SO)) ] 

 b.        μAverage=[μ ¬ Standard(Spectral_Mean(SO)) μ
prod
I ¬ Small(Size_Difference(SO))] 

 c. μMore= [ μLarge(Lg_Size(SO)) ] 

 The singletons that compose the three output membership functions (More, 

Average, and Less) remain constant at all times since the universe of discourse for the 
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shape parameter is limited to the interval [0,0.9].  The maximum value for shape is 0.9 

because at least part of the heterogeneity criteria has to come from the image itself (ie. 

spectral information).  The singletons were balanced in the output space occupying 

positions of 0.1, 0.5, and 0.9 ensuring at least a little of both shape or spectral criteria in 

the calculation of heterogeneity change, even at the extremes.  The three output 

membership functions are defined as: 

 a. μLess = Less(0.1); 

 b. μAverage = Average(0.5); and 

 c. μMore = More(0.9). 

 

 

5.4.2.3  Aggregation and Defuzzification 

 

 For the shape FIS, aggregation and defuzzification is carried out by means of a 

weighted average once again.  Defuzzification is not so apparent in this case since the 

result is fuzzy itself and is used directly as a weight parameter in the calculation of the 

heterogeneity. 

 

 

5.4.3  Smoothness FIS 

 

 In the last section, we discussed the critically important balance between spectral 

and shape heterogeneity.  As the importance of shape increases, the smoothness 
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parameter grows in importance since smoothness and compactness describe the shape of 

an object.  If the emphasis is placed on object compactness, then objects are more likely 

to merge if they form a compact shape as a result of the reduced heterogeneity change in 

the object merge.  As a result, the tendency will be to grow compact objects. 

 Different from the spectral versus shape relationship, compactness versus 

smoothness are not mutually exclusive terms.  An object can be both compact and 

smooth.  The smoothness parameter simply identifies which is the most important to user 

by permitting the selection of this weighting element. 

 According to the workflow in Figure 5.6, the smoothness FIS is evaluated only 

once and the parameter is left unchanged throughout for the duration of the remaining 

iterations.  The reason for this is that the shape properties of the model object constitute 

the only important factor to the determination of the smoothness parameter.  If the model 

object is compact, then the emphasis should be placed on compactness.  The model object 

does not change and so the weight value associated to compactness does not change 

either.  The parameter that does change is the overall shape parameter, and this will affect 

the compactness of the objects that result.  Therefore, the smoothness parameter is 

calculated only once and its importance is modified for each iteration using the shape 

parameter. 
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5.4.3.1  Proposed Feature Definitions  

 

 Recall from equation 3.3 that a compact object conceptually describes a circle 

with compactness increasing as the radius increases.  When dealing with pixels, however, 

the ideal compact object becomes a square due to the difficulty synthesising a circular 

form from square pieces.  Also recall from equation 3.4 that an ideal smooth object is 

formed by a rectangle.  Using these two equations, we will proceed to identify features 

that describe these different forms and in this way, determine which description is most 

important to achieving the model object form. 

 Smoothness is described using a black-box eCognition feature called Rectangular 

Fit.  This feature creates a rectangle of the same area and length-to-width ratio as the 

object being rated.  Once complete, the rectangle is fit to the object and the object area 

outside the rectangle is compared to the object area inside [Definiens Imaging GmbH, 

2004b].  The fit is then described with a value between 0 (no fit) and 1 (perfect fit) and 

constitutes the Rect_Fit feature that will be employed in this FIS. 

 Compactness is more easily defined using the ratio of the object perimeter to the 

object area.  This feature is defined identically to the definition of compactness used by 

eCognition for segmentation.  The Compact feature is defined mathematically as: 

    Compact(MO) = 
Mobjn

l       (5.18) 

where l is the model object’s border length and is the number of pixels (area) of the 

model object. 

Mobjn
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5.4.3.2  Fuzzy Set and Rule Base Development 

 

 The membership functions comprising the above features are graphically shown 

in Figures 5.12 and 5.13.  Independent membership functions add to the flexibility of the 

overall system.  This was particularly important in this FIS since objects can be both 

smooth and compact.  Using the compliment, a change in one membership function 

results in a change in the others, but with this approach, the membership functions could 

be modified independently.  This demonstrated reasonable results in this FIS. 
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Figure 5.12 
Compact feature membership functions  

Figure 5.13 
Rect_Fit feature membership functions 
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 The rules for this FIS are:  

ct_ it(MO)) μLow(Compact(MO)) ] 

ons (Increase, 

ainta

nd 

.4.3.3  Aggregation and Defuzzification 

For the smoothness FIS, aggregation and defuzzification are carried out the same 

 a. μIncrease = [ μHigh(Re F I  

 b. μMaintain = [ μHigh(Rect_Fit(MO))  μHigh(Compact(MO)) ] I

 c. μDecrease = [ μLow (Rect_Fit(MO))  μHigh(Compact(MO)) ] I

 d. μDecrease = [ μLow (Rect_Fit(MO)) I  μLow(Compact(MO)) ] 

 The singletons that compose the three output membership functi

M in, and Decrease) remain constant at all times since the universe of discourse for 

smoothness is limited to the interval between 0 and 1.  Through experience with the 

software and as a result of the literature review, it was decided that compactness on the 

order of 0.2 is an average value and exhibits reasonable results.  Therefore, the three 

output membership functions are defined as: 

 a. μDecrease = Decrease(0.0); 

 b. μMaintain = Maintain(0.2); a

 c. μIncrease = Increase(1.0). 

 

 

5

 

 

way as with all previous FISs.  A weighted average of each singleton in output space is 

assessed and the defuzzified result is used to guide segmentation to its successful 

conclusion. 
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5.4.4  Scale Modification, Segmentation, and Convergence 

In section 5.4.1, we defined two features based on object spectral properties to 

 modified to account for the shape 

arame

 

 

guide the selection of an appropriate scale parameter.  In reality, the fusion value is a 

function of both shape and spectral properties.  The rate of change of hshape with respect 

to object size, however, is much larger than the rate of change of hspectral.  The resultant 

scale value calculated in the scale FIS is appropriate for a fusion value calculated solely 

on the basis of spectral properties, but with part of the fusion value based on shape, the 

objects grow too quickly and soon become too large.   

 To resolve this problem, the scale value must be

p ter determined in the shape FIS.  This modification is defined by: 

   Modified Scale Parameter = Scalew ⋅− )1(      (5.19) 

le FIS, and w

d out using the three primary segmentation parameters as 

eterm

 

where Scale is the parameter determined in the sca  is the shape parameter 

determined in the shape FIS. 

 Segmentation is carrie

d ined in each FIS.  Once completed, the convergence to the model object is 

evaluated based on the change in scale from the last iteration and the difference between 

model object and sub-object size.  If these values fall under a specified threshold, the 

system is considered to have converged and the segmentation process is terminated. 

 

 

 

 

 103



Chapter 6 

Implementation of the D rameter Selection Tool 

 

Knowledge must come through action; you can have no test which is not 

    [Sophocles] 

 

.1  Data Set and Land Cover Objects 

To demonstrate the application of the fuzzy segmentation selection tool we will 

 implementation of this tool will focus on four separate land cover objects, 

 
eveloped Pa

 

 

fanciful, save by trial.  

6

 

 

use the pan-sharpened data set of the suburban scene.  Pan-sharpened data was selected 

over original multispectral due to the challenge presented by the increased information 

content and the pleasing results obtained by the pan-sharpened data in Chapter 4.  

Furthermore, the suburban scene was selected over the rural scene as a result of its 

complexity and the importance that shape plays in a complex and spectrally confusing 

urban environment.  The tool as proposed here will be most useful in these difficult 

situations. 

 The

each with their own unique attributes.  The four land cover objects will include (Figures 

6.1 through 6.4): (1) a high contrast building; (2) a low contrast building with shadow; 

(3) a ball diamond; and (4) a tree.  Each land cover object is shown with its initial 

segmentation completed.  The sub-objects making up the model object are highlighted in 

red.   
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Figure 6.1 
Initial segmentation of a high contrast building 

 

 

Figure 6.2 
Initial segmentation of a low contrast building 
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Figure 6.3 
Initial segmentation of a ball diamond 

 

 

Figure 6.4 
Initial segmentation of a tree 
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6.2  Implementation and Results 

6.2.1  Initial Segmentation 

 

 In the initial segmentation, the objects of interest are oversegmented.  The 

parameters for this initial segmentation are user selected, but ensure that the emphasis is 

placed on the spectral properties of the objects during this initial segmentation.  The 

resulting sub-objects are small and spectrally homogeneous, retaining the detail of each 

object of interest intact.  For example, the corners of the buildings are well defined in 

Figures 6.1 and 6.2, the shadow can be separated from the low contrast building in Figure 

6.2, the turf is separate from the soil in the Figure 6.3, and the tree is distinctly separated 

from the surrounding grass in Figure 6.4.  The parameters for these initial segmentations 

are shown in Tables 6.1 through 6.4 as the first iteration.   

 

Table 6.1 
Segmentation parameters for object in Figure 6.5 

Iteration Parameter 1 2 3 4 
Number of sub-objects 6 2 2 1 
Scale 25 52 85 120 
Shape 0.1 0.723 0.410 0.410 
Smoothness 0.1 0.868 0.868 0.868 

 
 

Table 6.2 
Segmentation parameters for object in Figure 6.6 

Iteration Parameter 1 2 3 4 
Number of sub-objects 8 1 1 1 
Scale 20 54 40 32 
Shape 0.1 0.585 0.511 0.533 
Smoothness 0.1 0.399 0.399 0.399 
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Table 6.3 
Segmentation parameters for object in Figure 6.7 

Iteration Parameter 1 2 
Number of sub-objects 3 1 
Scale 50 76 
Shape 0.1 0.621 
Smoothness 0.1 0.248 

 

Table 6.4 
Segmentation parameters for object in Figure 6.8 

Iteration Parameter 1 2 
Number of sub-objects 3 1 
Scale 15 29 
Shape 0.1 0.236 
Smoothness 0.1 0.335 

 

 The challenge at this point is the selection of the appropriate segmentation 

parameters to permit the merging of sub-objects with each other while preventing the 

merging of the sub-objects with other objects belonging to different regions.  This task is 

accomplished in the fuzzy tool through supervised training combined with the FISs as 

developed in Chapter 5.  This process will be discussed next. 

 

 

6.2.2  Parameter Determination 

 

 Once the initial segmentation is complete, employing the fuzzy segmentation 

parameter selection tool to perform the segmentation achieves very good results with 

relatively few iterations.  To extract a specific land cover type, the user must simply 
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select the objects that form the land cover object of interest.  This step is the training 

stage and once complete, the selection of parameters and evaluation of subsequent 

iterations is performed automatically using the FISs developed in the previous chapter.  

The methodology simulates human decision making in an automated fashion, saving the 

user time, while not requiring a great deal of previous experience using the software.   

 With the exception of the first iteration where the user must estimate the initial 

segmentation parameters, the parameters selected by the proposed tool are consolidated 

in Tables 6.1 through 6.4.  These results are shown in Figures 6.5 through 6.8.  

 

 

Figure 6.5 
Extraction of high contrast building in four iterations (proposed method) 
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Figure 6.6 
Extraction of low contrast building in four iterations (proposed method) 

 

 

Figure 6.7 
Extraction of ball diamond in two iterations (proposed method) 

 

 110



 

Figure 6.8 
Extraction of tree in two iterations (proposed method) 

 

6.3  Improvements over Trial and Error Approach 

 

 To demonstrate the improvements of the developed segmentation tool, the current 

state-of-the-art segmentation approach was used to segment the same land cover objects.  

In general, two significant improvements have been achieved: (1) segmentation 

parameter selection has been simplified through the use of the proposed tool; and (2) 

improved efficiency is achieved using the fuzzy tool by producing convincing 

segmentation results in a fast and automated manner.   
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6.3.1  State-of-the-Art Trial and Error Approach 

 

 Without applying the proposed fuzzy tool, scale, shape and smoothness parameter 

selection is carried out by the user through a trial and error process.  The initial selection 

of these parameters is based on user experience and the general guidelines outlined in 

section 4.1.1.2.  Subsequent iteration is then based upon the results of the previous trial. 

 Employing this approach, the user visually assesses subsequent segmentations to 

determine which parameters need to be changed.  This approach is very qualitative in 

nature and inefficient since it requires user intervention at each step.  Compounding these 

issues is the vagueness associated with the parameter names and through a visual 

assessment, it is difficult to determine degree of smoothness or shape and the appropriate 

scale that is required.  Although not mentioned in the user manual provided by Definiens 

Imaging, theoretically, the user could resort to an evaluation of quantitative features, but 

this would require the definition of these features and further user intervention at each 

level.  In the end, this extra work may provide little help unless these feature values can 

be evaluated in a systematic manner and linked to the segmentation parameters.  

Although the trial and error method is conceptually quite simple, iteratively improving 

the results is difficult when one cannot establish which parameters should be changed and 

by how much.  

 

6.3.2  Ease of Operation of Proposed Tool 

 

 Employing the state-of-the-art trial and error approach, user intervention is 
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required after every iteration to carry out the following tasks:  

 a. visually evaluate the segmentation; 

 b. decide whether to build upon the level or delete it; 

 c. decide which segmentation parameters should be changed and by how  

  much to achieve the desired result. 

This is a complex and time-consuming process and is especially difficult for user with 

little experience with the software and its underlying processes.  As one experiments with 

the data set deleting the segmentation, and changing one or more of the parameters is 

often the best choice.  As identified by Schiewe et al [2001], achieving the initial 

segmentation is relatively easy, but iteratively refining it using these combined 

parameters is very difficult.  As a result, the trial and error process is far from simple. 

 The proposed fuzzy tool is able to perform this task in an automated manner once 

it has been trained by the user.  The training routine is simple and straight forward 

requiring the user to simply select the objects that make up the land cover object of 

interest.  Once complete, the system relies on quantitative measures to estimate the 

appropriate parameters, tests the resulting segmentation with respect to the desired 

outcome, and continues in this fashion to achieve a high quality result.  For both the new 

and experienced user, the simplification offered by the proposed system offers a great 

advantage and lends itself well to the operationalization of the object-based approach to 

classification.   
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6.3.3  Improved Efficiency   

 

 The proposed fuzzy tool offers a significant advantage in terms of efficiency as 

well.  High quality results are achievable using both trial and error or the proposed tool.  

However, in a comparable time as it takes the proposed system to converge to a solution, 

a new user would likely have had little opportunity to try more than a couple of iterations.  

The efficiency advantage is obvious. 

 Figures 6.9 through 6.12 demonstrate some of the problems and successes 

inherent in the trial and error approach.  The success of this approach is a function of the 

object’s properties, its surroundings, user knowledge, and chance.   

 

 

Figure 6.9 
Sub-objects of building merge with outside regions (trial and error) 
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Figure 6.10 
Sub-objects of building merge with building’s shadow (trial and error) 

 

 

Figure 6.11 
Successful extraction but large degree of object merging elsewhere (trial and error) 
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Figure 6.12 
Successful extraction but parameters not applicable across image (trial and error) 

 

 

 Figure 6.9 shows how sub-objects can be merged with other outside regions.  This 

is clearly represented by the object that contains the corner of the building, part of the 

building’s shadow, and a part of the grass surrounding the building.  As a result, this 

object cannot be properly classified, and it affects the quality of the building extraction.  

In a similar length of time, the building can be well extracted using the proposed fuzzy 

tool as shown in Figure 6.5.   

 A similar problem occurs in Figure 6.10 where sub-objects comprising a low 

contrast building are merged with the building’s shadow.  This is evident at the left hand 

side of the image where part of the building has been merged with the object representing 

the building’s shadow.  Once again, a lower quality result is achieved through trial and 

error in a similar timeframe as the proposed tool converges to a high quality result.  
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 Figure 6.11 demonstrates successful extraction based upon the trial and error 

process but shows a great deal of object merging elsewhere in the image.  This is 

particularly evident toward the top part of the image where all the grass objects have been 

merged as compared to Figure 6.7.  This result is reasonable in this case, but arguably a 

better result extracts an object of interest while resulting in less object merging elsewhere 

so that successive object levels can be built upon this level.  The proposed tool aims to 

achieve object extraction while minimizing object merging elsewhere in the image for 

this reason. 

 Finally, Figure 6.12 demonstrates successful extraction of the tree as highlighted 

in red, but the segmentation parameters do not apply well to other nearby trees.  This can 

be seen in the case of the tree in the upper left quadrant of the figure where the tree is 

merged with the surrounding grass.  The proposed fuzzy tool aims to adequately balance 

the spectral and shape parameters to ensure their applicability across the image.  This is 

the case in Figure 6.8 where the fuzzy tool selected parameters that are applicable to all 

trees in the image. 

 Overall, the proposed tool demonstrates improved efficiency over the trial and 

error approach by converging to high quality results, often faster than trial and error, and 

does so in a simplified manner suitable for the first time user. 

 

 

 
 

 

 

 117



Chapter 7 
 

Assessment of Results  
 

 
 

When I tell the truth, it is not for the sake of convincing those who do not 

know it, but for the sake of defending those that do.  

    [William Blake] 

 

 This chapter will focus on the evaluation of the results achieved in Chapter 4 and 

Chapter 6.  To accomplish this, an explanation of the assessment metrics for a 

comparison between UNB Pan-Sharpened and multispectral classification results will be 

outlined followed by the assessment.  Similarly for the segmentation parameter selection 

tool, a description of assessment criteria will be covered followed by the evaluation of the 

results. 

 

 

7.1  Assessment of Pan-Sharpened and Multispectral Results 

 

 The object-oriented approach to land cover classification is an approach that 

shows promise with its ability to manage the attributes of modern VHR sensor data and, 

more specifically, the increased information content of pan-sharpened imagery.  In 

Chapter 4 we implemented both original multispectral imagery and pan-sharpened 

imagery for the classification task to explore the accuracy achievable using each data set.    

This section will focus on evaluating the results achieved in Chapter 4 both qualitatively 
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and quantitatively.   

 

 

7.1.1  Visual Assessment 

 

 Object-based classification is carried out in two distinct stages, those being 

segmentation and classification.  Since the result of the classification stage relies on the 

success of the segmentation stage, a visual assessment would not be complete without 

commenting on the results of both stages.  These assessments follow in the next two 

sections. 

 

 

7.1.1.1  Segmentation 

 

 Even though segmentation has been an area of significant research, segmentation 

evaluation techniques have received little attention [Zhang, 1996].  Definiens Imaging 

[2004b] suggests that “a strong and experienced source for the evaluation of 

segmentation techniques is the human eye,” arguing that even quantitatively assessed 

segmentations will not be convincing if they do not appear visually pleasing to the user.  

This was the qualitative evaluation method employed for the segmentation part of this 

research. 

 For both scenes, segmentation at each of the four levels was carried out using trial 

and error until a visually convincing result was attained.  For the purpose of 
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classification, the visual assessment focussed on ensuring the segmentation resulted in 

objects that: 

 a. separated the appropriate land cover classes; 

 b. well represented the shape of the different land cover objects; and 

 c. formed a hierarchy in which each class was appropriately represented in at 

  least one level. 

The separation of the different regions was critical to classifying the different objects 

since objects cannot be successfully classified if they are composed of more that one land 

cover class.  The shape of the objects was an important aspect of object-oriented 

classification that was difficult to obtain, but critical to taking full advantage of this 

methodology.  Finally, each class must be best represented in at least one level in order to 

be successfully extracted.  The remaining levels contribute to the extraction at this level 

and class refinement using the top-down approach. 

 Achieving these criteria by successive iteration and visual assessment was a very 

time-consuming process for both scenes.  This was particularly the case for the complex 

suburban scene where layer weights were adjusted in addition to scale, shape, and 

smoothness parameters.  The rural scene averaged approximately 10 iterations per level 

to achieve the final segmentation.  For the suburban scene, this increased to an average of 

about 15.  Between successive iterations for a particular level the analyst was required to 

visually evaluate the segmentation and make a judgement as to the parameters that ought 

to be changed.  In order to follow the changes, one parameter at a time needed to be 

adjusted.  The end result was four visually convincing levels of image objects; however 

this was achieved at the cost of a great deal of time and effort. 
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7.1.1.2  Classification 

 

 Visual assessment of the classification results for both rural (Figures 4.13 through 

4.16) and suburban (Figures 4.17 through 4.20) scenes are generally pleasing.  It is 

immediately obvious that different land cover types appear to have been successfully 

segmented and classified.  The outlines of the buildings, roads, and water all appear to 

have been extracted reasonably well.  In addition, it is apparent that the object-oriented 

approach dealt particularly well with the high information content of both original and 

pan-sharpened data sets as there is no sign of the salt and pepper effect generally 

associated with traditional pixel-based classification methods.  Therefore, on a small 

scale the classification appears accurate, but to get a true visual appreciation of the 

classification differences, a large scale inspection using an image subset would be useful. 

 For this purpose, the classification of image subsets (Figures 2.3 through 2.6) are 

displayed in Figures 7.1 through 7.8. 
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Figure 7.1 
Rural scene classification using segmentation A (B, G, R, NIR layers) 
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Figure 7.2 
Rural scene classification using segmentation B (Pan, B, G, R, NIR layers) 
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Figure 7.3 
Rural scene classification using segmentation C (B, G, R, NIR layers) 
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Figure 7.4 
Rural scene classification using segmentation D (Pan, B, G, R, NIR layers) 

 

 

 Comparing the original and pan-sharpened classifications from the rural scene, we 

see that there is some noticeable improvement in border regions that is detectable.  The 

pan-sharpened land cover classes are less pixilated and more representative of what we 
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would expect to see.  Visually more appealing, this difference is only apparent in the 

delineation of road and building features, whereas grass, trees, and water exhibit no 

significant improvement. 

 The effect of panchromatic channel inclusion in the segmentation routine reveals 

some interesting results.  In the case of the original multispectral imagery, it appears that 

the panchromatic layer improves the segmentation of some features permitting a better 

classification.  On the other hand, other features are oversegmented due to the increased 

texture of this channel and as a result, classification of these smaller segments is more 

easily confused.  There appears to be no clear advantage for inclusion of the 

panchromatic channel in the multispectral rural imagery. 

 The panchromatic effects on the rural pansharpened imagery are more obvious.  

Since the panchromatic information is already incorporated into the fused imagery, the 

addition of the panchromatic channel into the segmentation routine seems to confuse 

objects more readily than using the pan-sharpened multispectral bands alone.  This seems 

intuitively obvious and is demonstrated in the rural scene, particularly on buildings and 

roads where confusion in object delineation can be observed. 
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Figure 7.5 
Suburban scene classification using segmentation A (B, G, R, NIR layers) 
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Figure 7.6 
Suburban scene classification using segmentation B (Pan, B, G, R, NIR layers) 
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Figure 7.7 
Suburban scene classification using segmentation C (B, G, R, NIR layers) 
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Figure 7.8 
Suburban scene classification using segmentation D (Pan B, G, R, NIR layers) 
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 Focussing our attention to the suburban classifications, we can see the most 

obvious visual improvement.  In the case of the pan-sharpened imagery, the 

classifications display significantly improved detail over the original multispectral.  The 

pan-sharpened classifications show better outlines for most land cover types, particularly 

in the case of roads, sidewalks, driveways, buildings, and lone trees.  As a result of this 

improved detail, the shape and orientation of these features can be better established in 

the pan-sharpened classification.  The use of the panchromatic channel in the 

segmentation demonstrates similar results to the rural scene, offering little benefit to the 

final result.    

 Overall, by means of visual assessment, the pan-sharpened imagery appears to 

offer a definite advantage.  This demonstrates that eCognition is able to manage the 

higher texture of the pan-sharpened imagery and produce a visually superior result, 

particularly in the complex suburban environment.  To get a true appreciation of the 

success and better establish a basis for comparison, it is necessary to statistically evaluate 

the results. 

 

 

7.1.2  Statistical Assessment 

7.1.2.1  Sampling Theory 

 

 To perform an accuracy assessment on a classification, it is necessary the 

classification contains k classes that are mutually exclusive and that the classification is 

totally exhaustive [Congalton and Green, 1999].  Mutual exclusivity ensures that each 
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sampled element (pixel in our case) belongs to only one class.  This requires a completely 

defuzzified classification, where each pixel belongs to the class with the highest 

membership value.  A totally exhaustive classification requires that each pixel in the 

image is assigned a class, leaving no element unclassified.  These criteria are met in our 

classifications. 

 With these prerequisites established, we turn our attention to determining the 

number of samples required and the method by which we will conduct the sampling.  

Assuming the case of a multinomial distribution of a finite population divided into k 

classes, the number of samples statistically required for a representative error matrix is 

described by [Congalton and Green, 1999]: 
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where B is the value of the Chi squared distribution at a specified confidence and one 

degree of freedom,  is the proportion of class i relative to the population, and bi∏ i is the 

precision of each class in the error matrix. 

 Balancing the statistical requirement for the number of samples is an element of 

practicality.  Congalton and Green [1999] recommend that a minimum of 50 samples for 

each land cover type is reasonable and strikes a balance between statistical and practical 

requirements that has been confirmed by the above multinomial equation.  This guideline 

was used to determine the number of samples taken in this research. 

 Finally, there are a number of sampling methods that can be employed to select 

the random samples from the imagery.  These include: (1) simple random sampling; (2) 

systematic sampling; (3) stratified random sampling; (4) cluster sampling; and (5) 
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stratified systematic unaligned sampling [Congalton and Green, 1999].  For this project 

simple random sampling and stratified random sampling were used.  In simple random 

sampling, random pixel coordinates are selected and samples are taken from these points.  

Stratified random sampling is very similar except that the number of samples taken from 

each class is proportional to the size of that class in the classified image.  This ensures 

that all classes are sampled regardless of how small they are.  Selection of sampling 

method for each data set will be discussed in the next section. 

 

 

7.1.2.2  Classification Accuracy Assessment 

 

 The rural scene was largely composed of tree and grass classes.  Using either 

simple or stratified random sampling on this scene would create difficulties in sampling 

the very small urban and water classes.  To better represent all the classes in the image, a 

subset (1.3km x 1.2km) of this imagery was used for classification accuracy assessment 

(Figures 7.1 through 7.4).  The simple random sampling approach was selected since it 

managed to provide an improved sampling as compared to the stratified approach due to 

the small class size in for urban and water.  A total of 400 samples were taken for each 

rural classification.  

 In the case of the suburban scene, all classes were better proportioned and as a 

result the accuracy assessment was conducted on the original size scene (3.2km x 2.6km).  

Once again, PCI Geomatica was employed using the stratified random sampling approach 

and taking a total of 450 samples.  In both rural and suburban cases, the classified 
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samples were compared to ground truth data as interpreted from a pan-sharpened image.  

The results for both scenes are consolidated in Tables 7.1 and 7.2. 

 

Table 7.1 
Classification accuracy assessment results for rural scene 

 
Classification 

Imagery Segmentation Layers 
Overall 

Accuracy 
Kappa 

Statistic 
A Pan-sharpened Multispectral without Panchromatic  82.75% 0.741 
B Pan-sharpened Multispectral with Panchromatic  84.25% 0.765 
C Multispectral Multispectral without Panchromatic  86.00% 0.794 
D Multispectral Multispectral with Panchromatic  83.75% 0.762 

 
 

Table 7.2 
Classification accuracy assessment results for suburban scene 

 
Classification 

Imagery Segmentation Layers 
Overall 

Accuracy 
Kappa 

Statistic 
A Pan-sharpened Multispectral without Panchromatic  79.33% 0.723 
B Pan-sharpened Multispectral with Panchromatic  79.95% 0.728 
C Multispectral Multispectral without Panchromatic  81.11% 0.741 
D Multispectral Multispectral with Panchromatic  79.33% 0.718 

 
 

 Overall these results indicate an average accuracy of about 84% for the rural 

scene and 80% for the suburban scene.  More importantly than the absolute accuracies for 

this research, however, is the fact that the overall accuracies are similar within the same 

scene.  There is no apparent distinction between the employment of multispectral and 

pan-sharpened imagery for the purpose of classification when using the object-oriented 

approach.  Further, the accuracies seem to be independent of the use of the panchromatic 

image for segmentation.   

 To ensure that the overall accuracies are similar in a statistical sense, it is 

necessary to assess whether the differences between the overall accuracies are 
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statistically significant.  To address this issue Kappa analysis can be used [Congalton and 

Green, 1999].  The Z statistic is the result of Kappa analysis and is used to test whether 

two classifications are significantly different.  The Z statistic for the comparison of two 

results is given by: 
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where and are estimates of the Kappa statistic [Congalton and Green, 1999]. 1K̂ 2K̂

 Using the Z statistic, the null hypothesis (that the results between two 

classifications are not significantly different) can be tested.  In this manner, the 

relationships between all of the classification results were tested and are summarized in 

Tables 7.3 and 7.4.   

 

Table 7.3 
Z statistic results for rural classification 

 Classification 
Classification A B C 

B 0.590     
C 1.369 0.775   
D 0.530 0.069 0.856 

 

Table 7.4 
Z statistic results for suburban classification 

 Classification 
Classification A B C 

B 0.153     
C 0.514 0.361   
D 0.145 0.297 0.659 

 

 At a confidence of 95%, the null hypothesis is rejected if Z ≥ 1.96.  From a 
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thorough examination of the Z Statistic results, we can conclude that there are no 

significant differences between the accuracies established in Tables 7.1 and 7.2.   

 

7.1.3  Overall Assessment 

 

 The visual and statistical assessments of suburban and rural classifications seem 

to highlight a number of important points.  For the purpose of clarity, the key results from 

these assessments are summarized in Table 7.5.   

 

Table 7.5 
Summary of results comparing pan-sharpened and original data sets for classification 

 
Criteria Multispectral Data Pan-sharpened Data 

Inclusion of Panchromatic 
channel for segmentation 

No clear advantage Achieves slightly better 
results without the 
panchromatic layer 

Classification Accuracy Statistically comparable 
Spectral Integrity Original data Maintained through least 

squares approach 
Delineation of grass, forest and water are comparable 
Pixelated edges for roads 
and buildings 

Obvious improvement in 
road and building edges 

Object Delineation 

Pixelated edges for small 
features 

Improvement for small 
features such as lone trees 

Small building shape is 
difficult to ascertain 

Shape is significantly 
improved 

Shape 

Less chance of success to 
classify based on shape 
features 

May offer an advantage for 
classification using shape 
features 

Orientation Small building orientation 
difficult to determine 

Able to determine 
orientation of small 
buildings very well 
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7.2  Segmentation Results using the Proposed Fuzzy Tool 

7.2.1  General Segmentation Metrics 

 

 Zhang [1996] separates segmentation evaluation methods into three distinct 

categories: (1) analytical methods; (2) empirical goodness methods; and (3) empirical 

discrepancy methods.  Analytical methods focus entirely on an evaluation of the 

algorithm itself.  In our case, we are comparing the results of the same algorithm 

implemented with different parameters.  Therefore, we are not interested in a direct 

evaluation of the segmentation algorithm, but instead, the results that are achieved.  An 

empirical method is much more appropriate for our problem.   

 Empirical goodness methods are based on an assumption of the characteristics 

that form the perfect segmentation.  These methods perform their evaluations based on 

these assumptions and have no requirement for a reference image.  Although the lack of 

requirement for a reference image is an advantage of this approach, the generalizations 

made to characterize the ideal image are broad assumptions that may not be true in all 

cases.  Some examples of proposed goodness measures are those based on intra-region 

uniformity, inter-region contrast, and region shape [Zhang, 1996]. 

 Empirical discrepancy methods are those methods used to compare the resulting 

segmented image and a reference image.  These methods provide a truly meaningful 

value representing how close the segmentation is to the proposed reference.  Using this 

approach, a smaller discrepancy defines a better overall result [Zhang, 1996].  Figure 7.9 

outlines where each of these evaluation methods are applied in the context of the 

segmentation workflow. 
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Figure 7.9 
Evaluation methods in the segmentation workflow (from Zhang [1996, p. 1336]). 

 

 In addition to the above methods for evaluation, two others need be considered.  

First, the importance of a qualitative evaluation of the segmentation to ensure a visually 

convincing result should not be abandoned.  After all, this is the sole evaluation method 

recommended by Definiens Imaging [2004b] for users of its application.  Second, all of 

the previous measures have focussed on the segmentation result itself and have made no 

mention of the efficiency by which the segmentation can be executed.  Since some 

algorithms may be executed more quickly and achieve comparable results, the evaluation 

must be a function of efficiency as well accuracy. 

 

 

7.2.2  Segmentation Tool Assessment 

 

 The metrics outlined in Section 7.2.1 are all aimed at comparing different 

segmentation algorithms.  In our case, we are using the same algorithm and are 
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comparing the methods employed for parameter selection.  In theory, the same 

segmentation is achievable using trial and error as that using the fuzzy tool approach.  

Therefore, a comparative assessment of the proposed fuzzy tool and recommended trial 

and error method should be based on: (1) empirical decision criteria; (2) qualitative 

assessment of results; and (3) efficiency.  Each of these will be discussed over the next 

few sections. 

 

 

7.2.2.1  Empirical Decision Criteria 

 

   Both methods employ a different set of decision criteria to select the best 

parameters for a specific segmentation level.  The trial and error approach to parameter 

selection requires the user to observe a particular segmentation and mentally establish 

some measure of discrepancy between the desired segmentation and the actual 

segmentation.  Using this information, the user proceeds transform this vague 

discrepancy measure into a set of new parameters, each of which is imprecise at best.  To 

best learn how changes to the parameter values affect the resulting segmentation, one 

parameter is changed at a time.  This approach is continued until a visually pleasing result 

is achieved, but qualitatively image segmentation almost always shows room for 

improvement.  Thus, refinement of parameter selection is difficult to ascertain without 

some form of quantitative measurement by which to cease efforts to improve the result.   

 In contrast to this approach, the proposed fuzzy tool is built around the concept of 

empirical discrepancy evaluation.  A number of discrepancy measures are used to guide 
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the selection of the appropriate parameters.  Many of the measures employed are object 

features that are internally compared to a supervised result.  The comparison of object 

features in this manner is conceptually based on the Relative Ultimate Measurement 

Accuracy (RUMA) assessment methodology.  This process has demonstrated the best 

ability to “precisely judge the quality of segmentation results” of all discrepancy 

measures. [Zhang, 1996; Zhang, 1997].  Consequently, convergence is evaluated based 

on size and scale features.  If these discrepancy measures fall within the user defined 

convergence threshold, then parameter selection is ceased.  Using this approach, the user 

can have confidence that the segmentation result meets a quantitatively derived standard 

without the need for further evaluation.  The two approaches are compared in Table 7.6. 

 

Table 7.6 
Comparison of Decision Criteria 

 
Criteria Trial and Error Proposed Fuzzy Tool 

Qualitiative  Quantitative Evaluation of Segmentation 
Based on result being 
“visually pleasing” 

Based on feature 
comparison of result with 
the model object 

Mentally establish which 
parameters require 
adjustment 

Uses key object features to 
determine which parameters 
require adjustment 

Based on experience and 
ability to make an 
“educated guess” 

Based on measure feature 
values and estimated within 
a fuzzy inference system 

Parameter Estimation 

Vague approach requires 
changing one parameter at a 
time to establish effects 

All parameters can be 
changed simultaneously 
using key feature values 

Stopping Criteria Result “looks good” Based on discrepancy with 
the established model object
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7.2.2.2  Assessment of Quality  

 

 Definiens Imaging [2004b] suggests that human perception is a powerful 

assessment tool by which to measure the success of segmentation results.  

Implementation of the fuzzy tool presented in this paper demonstrates very pleasing 

results that are convincing to human eye.  For clarity, the results are compared once again 

in Figure 7.10. 

 

Object Trial and Error Proposed Fuzzy Tool 
Building with 
shadow 
 
 
 
 
 
 
 
 
 
 

  

Low contrast 
building with 
shadow 
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Ball diamond 
 
 
 
 
 
 
 
 
 
 
 

  

Lone trees 

  
 

Figure 7.10 
Comparison of results between trial and error and proposed tool 

 

 Overall, these results demonstrate three important attributes.  First, the sub-

objects merge to a result very close to the desired solution.  Once the user trains the 

system to extract an object of interest, the fuzzy methodology works very well to 

converge to the desired result.  Second, the segmentation parameters selected by the 

fuzzy system work very well with eCognition’s distributed treatment order across the 

entire image.  This produces well extracted objects across the image for land cover 

objects that carry similar properties to the final model object defined by the user.  For 

example, a number of similar apartment buildings in a scene will all be extracted 

reasonably well, even when selecting only one as the sample object.  Lastly, these results 
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have demonstrated that the intermediate segmentations have a very important 

contribution to the final result.  Starting with an initially oversegmented image, 

application of the final successful segmentation parameters determined by the fuzzy 

system may not result in a properly extracted object.  The intermediate segmentation 

steps determined by the fuzzy tool are critical to the final segmentation success.  These 

results are summarized in Table 7.7.  Overall, the ability to determine important 

intermediate segmentations, to produce visually convincing results, and the applicability 

across the entire image demonstrates a high degree of success for this methodology. 

 

Table 7.7 
Comparison of segmentation results 

 
Criteria Trial and Error Proposed Fuzzy Tool 

Assessment of result 
(stopping criteria) 

Qualitative Quantitative 

Applicability across image May be compromised if 
spectral and shape 
parameters are not balanced 

Designed to ensure 
appropriate parameter 
selection for applicability 
across image 

High degree of merging 
possible with inexperienced 
user 

Extracts object of interest 
while minimizing object 
merging elsewhere 

Detail Retention 

May not be suitable for 
subsequent object extraction 
at a larger scale 

Designed to retain detail 
and work as an initial 
segmentation for 
subsequent levels 

Intermediate segmentations Difficult to choose 
appropriate intermediate 
segmentations to ensure 
successful object extraction 

Works with appropriate 
intermediate segmentations 
to ensure system will 
converge to final solution 

Repeatability between users Possible depending on 
parameters selected at each 
level 

Possible depending on the 
initial segmentation and 
objects selected for training 

Speed Varies with user with 
software and data 

Quick and automated with 
only simple training 
required 
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 This methodology also has its challenges.  To a large extent, the objects have been 

extracted in accordance with the direction of the user.  Visually, however, some pixels 

may appear inappropriate for the object of interest.  This often manifests itself on 

building edges where it causes them to be less than smooth, or on trees where the 

resulting shape is not completely as one would expect.  These few pixels are a result of 

the initial segmentation state where pixels were grouped somewhat inappropriately for 

the task.  These incorrect groupings were performed prior to initiating the fuzzy 

parameter selection tool as a result of the initial selection of parameters by the user.  

Although small in number, these incorrectly grouped pixels may be removed by 

performing the initial segmentation at a smaller scale.  This will produce more objects 

and permit the user to select more appropriate sub-objects that even better represent the 

object of interest.   

 

 

7.2.2.3  Efficiency 

 

 The objects in each case are extracted in accordance with the user’s direction in 

an efficient and reliable manner.  Efficiency is a measure of effectiveness without 

wasting time or effort.  By this definition, the fuzzy tool demonstrates improved 

efficiency over the trial and error method by converging to a solution in relatively few 

iterations.  The number of iterations required varies as a function of the land cover object 

being extracted and the initial segmentation state.  However, in general the system 

converges in four iterations or less and is achieved by approaching parameter selection is 
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a calculated and procedural manner instead of relying on intuition and experience as 

required using trial and error.  In addition, the user does not have to evaluate the result 

after each selection of parameters since it converges near to the desired solution defined 

by the user in a fast and automatic manner.  Training only once at the beginning of the 

session thereby saves additional time and contributes to the overall efficiency.  

By the proposed method, there is no need for a time-consuming trial and error 

process which often forces the user to segment, assess results, delete results and segment 

again in an ongoing process until a convincing solution is achieved.  Depending on the 

user’s experience and understanding of underlying processes, the time taken to conduct 

this procedure may vary a great deal from one user to another.  The advantages offered 

by the fuzzy tool are consolidated in Table 7.8. 

 

Table 7.8 
Comparison of method efficiency 

 
Criteria Trial and Error Proposed Fuzzy Tool 

Initial segmentation Required Required 
Training Not Required Required 
Evaluation of 
subsequent levels 

Required by user after each 
iteration 

Automated 

Parameter estimation Required by user after each 
iteration 

Automated 

Number of parameters 
changed per iteration 

Only one recommended to 
see effect of selection 

All parameters changed 
simultaneously 

Number of iterations Depends on user experience 
and object characteristics  

Usually four iterations or less  

Overall speed Time-consuming Quick 
Simplicity Difficult - especially for a 

new user or data set 
Simple - suitable for the first 
time user with no experience 
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Chapter 8 
 

Conclusions and Recommendations 
 

 
 

Knowledge is a process of piling up facts; wisdom lies in their 

simplification. 

    [Martin Fischer] 

 

8.1  Conclusions  

 

 The primary objectives for this research were: (1) to evaluate the capacity of 

object-oriented classification to manage VHR imagery, including a comparison of pan-

sharpened and original multispectral images; and (2) to develop a supervised fuzzy 

approach to improve the efficiency of segmentation in the object-oriented classification 

workflow.  Both objectives were successfully achieved. 

 

 

8.1.1  Classification of UNB Pan-Sharpened Data 

 

 In the first case, the results achieved permit some important conclusions.  

Quantitatively, the classification of rural and suburban scenes using eCognition’s object-

oriented approach demonstrates that, in an absolute sense, the classification accuracies 

are very good with an average rural scene accuracy of 84% and an average suburban 

scene accuracy of 80%.  The object-oriented approach was able to deal well with the low 
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spectral and high spatial resolution characteristics of the VHR imagery and provide 

impressive results.   

 In a relative sense, the scene accuracies were independent of the imagery used.  

The significant increase in resolution did not improve or degrade the classification to any 

significant degree.  This is an important conclusion for two reasons.  First, eCognition 

was able to manage the higher texture of the pan-sharpened imagery and maintain 

quantitatively comparable results.  By virtue of this result, it is obvious that the UNB 

Pan-Sharpening technique maintained the spectral characteristics of the original imagery 

to the degree necessary to make it a desirable alternative for the classification task when 

using the object-oriented approach.  Second, the pan-sharpened classifications are 

visually more appealing than the lower resolution original classifications.  This is 

especially true for urban classes and as a result, UNB Pan-Sharpened imagery should be 

used in complex terrain wherever possible when combined with the object-oriented 

classification approach. 

 The major difficulty encountered with the object-oriented approach using 

eCongition was the difficulty in selecting the appropriate segmentation parameters, 

particularly as a new user.  This was identified as a major obstacle to the 

operationalization of this approach due to the time-consuming and inefficient nature of 

segmentation parameter selection.  The identification of this problem directed this 

research into the development of a method to aid the user in establishing the best 

segmentation parameters for classification of specific land cover objects, with the 

emphasis on complex urban scenes. 
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8.1.2  Parameter Selection Tool 

 

 “Image segmentation is one of the most critical tasks in image analysis” [Zhang, 

1996].  To date, eCognition’s multiresolution segmentation approach has demonstrated a 

high degree of success in a number of applications using VHR satellite imagery.  The 

non-intuitive nature of parameter selection in eCognition is the major drawback identified 

in this research to the otherwise successful implementation of the object-oriented 

approach.   

 In contrast to the suggested trial and error approach, the fuzzy segmentation 

parameter determination system proposed in this paper offers an important advantage 

over currently existing segmentation tools.  The results are quantitatively convincing by 

employing a feature discrepancy test for convergence, qualitatively realistic through 

convergence to near the desired model object, and highly efficient as a result of 

convergence to a solution in relatively few iterations without the need for repetitive user 

interaction.   

 A drawback to the fuzzy approach is the possibility for a wide variety of different 

membership functions and rules which can be modified to improve the system.  This 

provides a high degree of flexibility but comes at the cost of extensive testing to establish 

the optimal system.  Consequently, these results only provide a basis from which to 

continue development of the proposed fuzzy tool.  In the end, a successful parameter 

selection methodology will promote the automatization of the object-based approach to 

the classification of land cover.    This remains a worthy objective given the promise of 

the object-oriented approach and the continuing trends in satellite sensor technology. 
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8.2  Recommendations 

 

 It is reasonable to expect that UNB Pan-Sharpened imagery may yet offer a 

further classification benefit by taking full advantage of shape in the classification 

hierarchy.  In this way, the absolute accuracies of each pan-sharpened classified scene 

may be improved if a better overall segmentation could be achieved.  Balanced with this 

requirement, however, is the practical necessity for the segmentation to be completed in a 

time efficient manner. 

 In this context, further research should be conducted on other scenes and a wider 

variety of land cover objects to determine the reliability and robustness of the proposed 

system.  Working towards this goal, features, rules and membership functions could 

continue to be modified in an effort to optimize the system.  To confirm the optimization 

of the system, other empirical methods for segmentation evaluation such as those 

proposed by Zhang [1996] could be applied to determine additional quantitative measures 

of segmentation success.  These measures could be further confirmed through a 

comparison of classification accuracies resulting from employing the proposed system 

and the results achieved through trial and error.  This comparison would best be carried 

out by permitting the same amount of time for segmentation using each approach.  This 

would provide a quantitative measure of the efficiency of the proposed system compared 

to trial and error.   

 Furthermore, testing the fuzzy tool to extract successive levels should be carried 

out.  This would involve using previous level segmentations as the starting point to 

extract other larger scale objects.  Alternatively, the largest objects could be extracted 
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first followed by successive segmentations using the initial oversegmented image.  In this 

way, the best methodology for this tool could be determined to establish a complete 

object hierarchy.  With additional research and more results on a wider variety of scenes, 

we may truly see the advantage of this technique when incorporated into the object-

oriented image analysis workflow. 

 
 

. 
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