A PROGRAM PACKAGE
FOR PACKING AND

GENERALISING DIGITAL

CARTOGRAPHIC DATA

PETR VANICEK
DAVID F. WOOLNOUGH

1972



PREFACE

In order to make our extensive series of technical reports more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.



A PROGRAMME PACKAGE
FOR PACKING AND GENERALISING

DIGITAL CARTOGRAPHIC DATA

by

Petr Vanidek
and

David F. Woolnough



LIST OF CONTENTS

1. INTRODUCTION .« + v « v v v v o o o o o o 4 s & o o o o o

1.1 General description of the method . . . . . . . . .
2. THE MATHEMATICAL BASIS OF THE METHOD . . . . . . . .

2.1 Digitized curve . . . .+ ¢ + v v v s e e e 0 o W

2.2 Representation of a curve. . . . . + . . . .0 . . ..

2.3 Purpose of coding. « « ¢« « o + v 4 ¢ v 4 e e 4 e e e

2.4 Maximum allowable length of linear segments.

2.5 Reduction in the necessary number of parameters.

2.6 Determination of the "next'" representative point.

2.7 Initiation of the process . . . . . . . . « « . .

2.8 € test . v v it e e e e e e e e e e e e e e

2.9 Decoding of the curve C'. . . +« « + ¢ ¢ v v v ¢ v . .

2.10 Propagation of errors and required precision.
3. PROGRAMMES AND PARAMETERS . « v & & « « ¢ & o o o«

3.1 Main programme PACK . . ¢ + ¢ ¢« ¢ ¢ « ¢ « o« o« .

3.2 Subroutine REDOUT . . o ¢ cv v v v ¢ v o o o o o o oo

3.3 Subroutine UPLOT

3.4 Subroutines AREA, GRID, SETPLT, NOWPLT, ENDPLT, PRNTCH
L. TESTS AND COMMENTS « « « & v « o o« o & v o o« o o .

b,1 Tests and results « « « « ¢« ¢ ¢ o « o 4 v 4 W . .

L.2 Restrictions and comments . . . . . . . . . . .
APPENDIX A 611 sample PLOtS + ¢ « & v v 4 v o v o o o« o o s
APPENDIX B Computer programme listings . . . . . « « . . . ..

1k
17
19
20
22
26
26
29
30
31
31
31
33
35
L5
60



Acknowledgement

We would like to acknowledge the help and assistance
of all those who contributed in any way to the compilation of
this report. In particular, Mr. T. A. Porter, Department of
Energy, Mines and Resources, Surveys and Mapping Branch, Ottawa;
Dr. S. E, Masry, Department of Surveying Engineering, U.N.B.;

Mr. L. Barton, Computing Centre, U.N.B. In addition, the senior
author wishes to acknowledge the fact that he was introduced to
the problem as well as encouraged to work on its mathematical
formulation by Brig. L. Harris from Surveys and Mapping Branch,

while employed by this institution.



1. INTRODUCTION

One of the main problems facing the field of automated
cartography is the sheer volume of coordinates which have to be stored
to allow an accurate representation of linear features on the final
map. This problem becomes even more acute when the stored data are
used to produce maps at reduced scale. Usually much fewer points are
necessary to represent the curve to within the required accuracy, but
reduction of the number of points inevitably leads to questions which
raise doubts about mathematically rigid methods being able to reproduce,
upon reduction, true cartographic shape and form.

In an attempt to reduce or pack the amount of input coordinate
data of a curve without losing ultimate plotting accuracy, we are pre-—
senting a mathematical packing method which, given a specified tolerance
(e), i.e. the final plotting accuracy, would transform the input
digitised coordinates into some other parameters of the curve. This
would be done in such a way that the linear segments so produced would
always be within a tube of width e surrounding the original curve. The
method results in a considerable reduction of the amount of input data
without loss of accuracy in final plotting. In addition it is able to
perform an automatic form of cartographic generalisation in which a
given curve with many convolutions can, if the appropriate error parameter

e 1s introduced, be reduced to a simpler curve.



1.1 General Description of the Method

At present the mathematical calculations are performed by
one Fortran IV programme, PACK, with two major subroutines, REDOUT
and UPLOT. Also included are various plotting subroutines (see
section 3) to enable the user to plot both the original and packed
curves on either a 611 oscilloscope or a Calcomp drum plotter.

The input to the calculations is a set of x and y co-
ordinates of the line to be packed, the input and output scales, the

digitiser increment, 6§, and the required final plotting accuracy e.

+
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are determined. By taking the average direction of the first three

The coefficients of pseudo-hyperbolae y = =

points in the stream of coordinates, further successive points are
selected until they fail to lie within a tube #8 ¢ wide. Using the
beginning and end points for proper direction a rigorous check is
made of points selected so they lie in a tube * € wide. The number
of points selected is altered until this condition is met, at which
time a segment length is computed.

The programme goes on to determine more segment lengths
beyond the first by defining a pseudo-hyperbola with the vertex
coinciding with the end of the last segment, and with axis oriented
in the direction of the last line segment (figure 2.6 ). The next
points in the coordinate stream are examined until one falls outside
the defined pseudo-hyperbola, and then another line segment is
identified whose end point is at the intersection of the stream of

coordinates with the pseudo-hyperbola.
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We choose the hyperbolic form since this is the approximate
locus of the longest formable segments that would represent the
curve with *e accuracy. The longer the segment lengths, the fewer
the segments, and hence the greater the reduction in the amount of
data stored. The details of this choice are given in section 2.h4.

A rigorous check is again made to ensure that all points lie within a
tube *¢ wide around the segment. The segment's length is determined
and signed positive if the line segment points above the axis, and
negative below. This end point together with the preceding one
determine the axis of a new hyperbola of the same family, and the pro-
cess is repeated.

Thus the complete data packing consists 1in the production
of coordinates (2 numbers per point) and interlying segment lengths
(1 signed number only per segment). The points represented by two
coordinates are referred to as corner points and the lengths as
segments. This packed data is then stored. In order to obtain reduced
coordinates from the packed data (which are not in "plottable" form)
it is necessary to reverse the above procedure using the subroutine
UPLOT.

This subroutine decodes into coordinate twotuples the packed
data. The inputs to this routine are the two corner points, signed
segment lengths and the tolerance €. If only one segment is needed
then two corner points alone are given and a line can be plotted. If
more than one segment is needed it becomes necessary to take the signed

segment lengths and compute coordinates. The coefficients of the pseudo
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The initial segment is laid out in an east-west direction and directions

hyperbola y = % are again calculated using the value e.

of subsequent segments are related to it. The routine determines
coordinates of intersections of line segments with the hyperbola. This
is done in a local set of coordinates where the hyperbola vertex is
related to the terminal point of the previous segment and its axis is
rotated to the direction of the previous segment.

Using the final corner point these local coordinates are
rotated and stretched so that the line segments are in the required
direction and at the required scale. The output coordinates from UPLOT
are then suitable for plotting.

The system documented here contains plotting routines for the
University of New Brunswick's IBM 370 computer plotting system. After
data packing and decoding, the original and packed curves are plotted
out and hardcopy is obtained from the 611 oscilloscope. A "packing
factor" is then calculated, being the ratio of the input number of
points to the packed number of points. This is then printed along with

details of input and output scales, and error values.



2. THE MATHEMATICAL BASIS OF THE METHOD

2.1 Digitized Curve

Let us consider an open, continuous, smooth curve C extend-

. . . - 3 3 s — ing —
ing between initial and final points r, = (xl,yl), r.= (XN,yN

denoting the radius vectors. We shall call the digitized image of C,

) with ?:

—

C¥, as a series of points r¥ = (xi > ¥¥ ), i=1,2, ..., N, represent-
ing C in the form of a set of isolated points. These points coincide
with appropriate intersection points of a S-square-grid, whose dimension

§ is given by the last retained binary (decimal) place - see figure 2.1.

| .
§ _ﬁk,éfl/’ Y
] B N
§ 5[ e .

! W-—ngure 2 \

2.2 Representation of a Curve

We shall say that a curve C' represents C with a precision
e (strictly 1/e) if and only if every point ;TSC' lies within the g
environment of at least one point TeC and C' is continuous.

Note that if we regard the digitized curve C¥ as piece-wise

linear curve with the points of discontinuous first derivative coin-



—>
ciding with r¥*'s, we can say that C¥ represents C with precision §.
In the forthcoming development we shall always assume €>8 and shall

refer to the representation of C as actually the representation of C¥.

2.3 Purpose of Coding
—

The number of digitized points r¥*, as usually supplied by a
digitizer, is generally unnecessarily large to represent C with the
required precision €. If we intend to store the digitized image C¥
on any kind of medium, we are evidently interested in keeping the amount
of retained information to a minimum. The problem becomes more pressing
whenever we store an excessive number of such curves as is the case with
cartography, pictorial images or many other practical digitized images.

Thus the ultimate aim of an optimum coding will be to replace
C¥ by such a curve C' which:- (i) 4is continuous; (ii) has minimum
number of representative points ;ﬁ expressed by minimum necessary
number of parameters; (iii) represents C¥ with required precision e.

Another requirement, particular to cartographic applications,
is that C' representing a smooth curve should "look smooth" to the eye.
Since this requirement does not lend itself to an easy mathematical
formulation, it will be assumed that € can be selected in such a way
that C' "looks smooth'" enough when plotted. In other words, we assume
that if € corresponds to the graphical precision of plotting (usually
about .1 mm) it will take care of this aspect automatically.

Our approach will be based on the piece-wise linear representa-

tion assuming thus availability of a linear plotter only. If a more



flexible plotter,that will plot circular or parabolic arcs as well,is
available further reduction in the necessary number of parameters may
be achieved either by simply increasing the value of € or through
adding some qualifying criteria to the technique. This, however, will

not be the aim of this report but a subject for future development.

2.4 Maximum Allowable Length of Linear Segments

It is obvious that the maximum length of a linear segment, that
is to replace the original curved segment with precision e, is inversely
proportional to the curvature of the original segment. The larger the
curvature, the shorter the linear segment and vice versa. The following
formula can be deduced from figure 2.2 for the relationship of the
linear segment Zé and the linear deviation dR of the linear and

curved segment AS

—

AS = V(8RAR-4dR2) . (1)

Eere R 1s the local radius of curvature. According to 2.2, we can
allow dR to become as large

as € for the maximum segment

——

AS . We can hence write:
max

A—Smax = /(8Re-Lke?) . (2)

ﬁ%gure 2.2



To illustrate the quantities we are dealing with we can draw

a table showing the relationship of R and Kgmax for € = .1lmm:

R[mm] 0.2 0.3 0.4 0.5 1 5 10 100

ASmax[mm] 0.h0 0.49 0.57 0.63 0.90 2.00 2.83 8.95

Table 2.1

Considering a digitized curve C¥, 100 mm long, consisting of

—
LO00 points r¥ .025 mm apart,we get the minimum number of linear

segments necessary to represent C¥ with precision e =.lmm, 111, 50,

35, 11 corresponding to mean radii of curvature of 1, 5, 10, 100 mm

no. of input points
no. of output points

we get for the packing factor between C¥ and C': 36, 80, 11L, 364

respectively. Hence, defining the packing factor as
respectively.

2.5 Reduction in the Necessary Number of Parameters

Having established the maximum spacing of the representative
points ;%SC' (as related to the local radius of curvature) we can show
that it is not necessary to identify each of those points by a pair

of coordinates. For this purpose, let us transform the original

u—

coordinates Xos Vs of a point r'. into the local coordinates ASi,

i+l

oy (see figure 2.3).
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T?gure 2.3

if Zgi is made a function of oy

88, = rla;), o, = £ (55,) (3)

we do not have to retain both Zgi and oy since the knowledge of one of
these is sufficient to furnish us with the other coordinate. Thus,
providing the relationship AS = f(a) 1is established, a curve can be
represented by a stream of single parameters, rather than a stream of
pairs of coordinates, which may lead to a considerable saving of storage
medium.

The question remains as how to select the function f to
satisfy the other requirements. We are going to show that the selection
can be done in such a way that f 1is the approximate locus L of all
the Kgmax'

Providing the curve C has approximately the same curvature

-—>
in the vicinity of r! , we can, according to figure 2.4 write:
i
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R cos g—+dR'l'R. (L)

Substituting again € for dR and (’A—Sr%la.x"- he?)/(8e) for

R (from eq. 2) we get:

R 2
s 8t (5)

AS2 o+ L2
max

cos

e

. . . . 2 O _ 1-cos(a/2)
and after some development,using trig. identity tan by —_—l+cos(oc/2))

we obtain

o = 4 arctg _2_8 . (6)

AS
max

T\"? ure 2.4
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The derivation of eq. (6) is based on the assumption of almost uniform
curvature in the vicinity of -;z which may or may not be fully
satisfied. In any case, it can be regarded as an approximate formula
and no considerable damage will be done if we replace it by another yet
approximate relationship more convenient for numerical treatment. The
only result of such approximation will be that the AS's will not be
the absolute allowable maximum and therefore the reduction will not be
the absolute maximum. This should not be unduly worrying since we
shall, in practice, be dealing with C¥ instead of C and have there-
fore to expect some irregularities due to the limited precision in
digitizing that will "spoil" the smoothness of C.

To make the development of an approximate equation of the locus
easier, let us introduce a local right-handed coordinate system &, n -

see figure 2.5.

7+~ 1Cg)

Figure 2.5
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Transforming o, Zgﬁax to £,n we get the equation of the locus (6)

as follows:

o = arctg n/f = 4 arctg 2 (7
/(g24n?)
Eq. (7) can be rewritten as
) J(£24m2
arccotg &/n = L4 arccotg —Léggl—l .
Considering the trig. identity
arccotg x = arccos ——
Y (14x?)
we obtain
. 2402
arccos —& 1y arccos v —e—l . (8)
/(g24n?) £24n2+he?
2402 2412
and £/V(£24n2)= cos(karccos v *—é——ﬂ———-)= T), v ——E——IL——-) (9)
£2+n24Le? £24n2+Le?

Here Ty, is the Tchebyshev's polynomial of L-th order (see, for

instance, Ralston, 1965). After rewriting Th in the form of power
J/ g2+n?

g2+n2+h62
expression as a mixed algebraic polynomial of 20th order in £ and n.

series (polynomial of Uth order in ) we obtain the final
Such a polynomial would not obviously be convenient for numerical
computation either and has therefore to be approximated by simpler

formula.
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It can be shown, using numerical evaluation of eq. (6)

that each branch of L may be approximated by a hyperbola:

Gt %

T, - (10)

L' (g) En =

The coefficients C1s Coo 03 can be determined, for instance, by using
the least-squares technique for the whole curve or more simply (and
less precisely) on the basis of three common points.

In our case, the three points were selected in such a way as

to provide an easy computation. Using formula (6) one gets

— 0
Asmax = 2e/tg T -
On the other hand: Eémax = £2+n2. Hence for o = %- we get & =0 and
v T oo il - _
n=AS = 2¢e /tg 5 = 4.828e. For o = T Ve have £ =n = Aamax//z =

26/(/2 tg %g ) = T.110e. The third point was selected for &£=1000¢.

2)=

Developing formula (7) into power series in 2¢/V(£2+n q one gets

n/g=Lkq + terms of U4th and higher order in gq. Thus, for large &:

2

8 8
£ £ = 8e(l - %‘%Z + o.l)

J(£24n2)  /(14n2/£2)

n =g

which tends to 8e for growing &. Hence, we shall not make any serious
mistake taking n=8e for £=1000¢.

Using the selected three points one obtains:

c, = 8.00895¢, c = 13.615¢2, cy= 2.82¢ . (11)



1k

These values provide us with L' good enough for all practical

purposes. The shape of L' can be seen on figure 2.6.

'?qgure 2.6.

2.6 Determination of the "next" Representative Point

Once we have decided to adopt a certain L', the determination
of the "next" point becomes easy. Having two consecutive representative
points 7! T! described by their pairs of coordinates (x V. o)

i-1° Fi i-1° Yi-1’»
(xi, yi), we can transform all the subsequent points belonging to C¥

— -

into the local £,n system of the point ri. If r*=(x,y) is a running
point from C¥ we have for its local coordinates:

g = Tl(x-xi) - Tg(y—yi) (12)

3
|

= Tg(x—xi) + Tl(y-yi)
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where 7= (- )V =%, )% (yy=v;_1)?]
(13)
T2= -(yi_yi_l)//[ (xi-xi_l)2+ (Yi‘yi_l)zj .

Thus, we can take the sequence of all r¥*¥'s following ri ,» compute their

£ and n coordinates and decide whether each of them lies either

within or outside the area bound by + L'(£). If the inequality

[n] < [L'(g)] (1L)

for a point (£,n) is satisfied, the point lies in the area and vice versa.
—

Hence, we eventually find a pair of running points, ri and

—>

r§+l say, of which the first lies within and the second outside the

area. If the whole "rest of C¥" lies within the area, then the end point
-

is taken instead of r{+l, its coordinatssare retained and the segment is not

—

computed because it 1s not needed. The point ri is declared a '"corner

point" (see later) and retained by coordinates. Otherwise the "next"

—
representative point ri+l is the point, where L'(%) intersects the

— —
straight line connecting rﬁ with r§+l (see figure 2.7).

—)
¥
k+4 )
i L'(e)
f r\<+1
|
: 13
___‘r_—l.—-ﬁ_ é

Figure 2.7
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-
To establish ri with the required precision, any numerical method

+1

may be used. In our approach we have opted for the "chord method"

which is likely to converge fast since L' is ever-increasing and

-
relatively flat. Because + L' is concave, the approximation of r{

+1°
= - - =
. . % '
Ty S8 will always lie between s Tiv and r.4q can be thus taken
-
instead of r§ for the next iteration. The chord method, therefore, will
— — —p
. . . % ' . '
furnish a succession of points on ris ri+l converging to rie the faster

—_—
the further away we are from ri.

—p
Providing the point r£+l, selected on the basis of the last

iteration, is made to lie on 1_L'(£) in a relatively narrow environment

N
Y s . . .
of r! , - vhich can be achieved by taking n, , =L (£i+l) for £..4

belonging to the last iterationk;t - it can be as much away from r¥,

i+l

—
r§+l as + §/2. C¥ represents C with precision §/2 so that it would
not make sense to insist on the representative points to perform any

better fit to C* than + &§/2.

Once gi+l’ N4 are obtained, we can compute the quasi-
— —
maximum segment AS{, determining the position of r£+l uniquely with
— —_—
respect to ri_l, r{, from following formula:
_‘I = * 2 + 2
18} = sign (ng  )(gF, +nZ ). (15)

—

The coordinates x, f r{+1, necessary for locating the next

i+1° Yi+1 ©
—
representative point ri+2, are obtained by applying the transformation

inverse to (12):
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1l

+ +
Xivp =% P T8 TN,

(16)

= - +
Yo = V41~ Tobisrt T1Mian -

Note that from the point of view of error propagation, the
segments AS' can be considered as errorless, i.e. if we do not commit
any error in the decoding process we would end up with the curve C'
representing C¥* in the manner described above. More will be said

about this subject later.

2.7 Initiation of the Process

The process described in the previous paragraph is able to
determine only the position of a '"nmext" point with the assumption that
the two immediately preceding points from C' are already known. Thus,
it cannot obviously be applied at the beginning and we have to establish
the first segment by using an altogether different approach, i.e. we
have to initiate the process somehow.

The initiation should provide us with as long a segment as
can be achieved for the actual C¥ and e. The first reason is that we
try to represent C¥* by as few points as possible. The second, more
important reason,is that the technique using the locus L' is based on
the idea that both segments Zéi—l and Kgi are about the same, since C
is assumed to have in the vicinity of r{ an approximately uniform
curvature. If we chose the first segment too short, the second shall
be too long and vice versa. The following segments would be influenced

accordingly.
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An iterative approach was hence devised that selects for

— > — —>
ré (ri remaining equal to ri) such a point ri which
——

(i) is furthest away from ri;
—_—
(ii) yet still all the points r?, j<k, lie no further than

>, > _
+ ¢ away from r?rf = Py
- k

The equation of the line P, can be written as

P, = A, tA,LX+AY=0 (17)
where A= yl/(yk—yl) - xl/(xk-xl)
Ay = 1/ (x-x,) (18)

Agk = -l/(yk_yl) .

—
The distance d of a running point r¥ = (x,y) from Py is given by (see,

for instance Bush and Obreanu, 1965):

IA + A x + A yl
=21 2 = |, + Bx + Byl (19)
24702
/(Al+A2 )
—_
This distance must, for all rg, J<k, be smaller than €.

Thus, after some development we may write following inequality to be

—
satisfied for all the r?:

(g, (v ) + Ay (xyx,))? & (85¢)? (20)

2k 173

M2 = (v —x )2 v )2
where AS (xk Xl) + (yk yl) . (21)
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We can notice that evaluation of (20) does require adding, subtracting
and multiplication only and is, therefore, quite fast for computation.

The index k can be iterated for so long until (20) becomes satisfied

for k=n and fails for k=n+l. Then r; = r{ . If (20) is satisfied
even for the end point of the curve then only the first and the end

points are retained.

2.8 € Test
There is one more point within the process based on locus,

—
that must not escape our attention. It is evident that finding r£+l

as the intersection of L' and C¥ does not automatically ensure that all

— — —

the points r*eC¥ between ri and ri+l lie within the distance of e from

—

C' (represented here by the straight line joining ri and r!

1+l)' It is

conceivable that if the curvature of C 1in the area changes rapidly
the assumption for the method does not hold any more and the locus L'
looses its fundamental meaning. In such a case, we have to declare ;Z
the "corner" point and start again with initiating the process in
exactly the same manner as described in section 2.7.

To check whether the +e belt around C' contains all the points

— —_— —_
r*e(ri . r£+l) the inequality (20) can be used. When substituting
(0,0) for (x;, y;), (€,n) for (x., y, ) and (Ej, nj) for (xj, yj) the

inequality simplifies considerably and we get:

IHEJ—Enj| < |£§;Ie . (22)
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2.9 Decoding of the Curve C'

The described method supplies us with a coded version of C'.
The C' is presented as a stream of pairs of coordinates (x, y),
belonging to the corner points, with varying number of sections Zg'
sandwiched in between any two adjacent coordinate pairs. The decoding
will be necessary to apply always on the succession of segment between
two adjacent corner points. Its goal will be to attach a pair of
coordinates (in the x,y system) to the end of each segment, i.e. to each
of the representative points.

Let us consider such a "smooth" piece Ci of C', coded as

€1 = {xy,yqs 851,880, 88! J,x .y b eC', (23)

It is not difficult to see that each AS{ can be split into the two

o} i inc nts §&. .
coordinate increment €1+l, ey

related, as in section 2.5, to the

— —
local right-handed coordinate system originating in r{ with gi—l = —]Asil.
To split it, we can use the formula (10) in conjunction with the

Pythagoras law:

g2 .+ n2 AS!? (2L)

_~|2_ 2 AG ! - AQt :
In (24) express ASi £ as ([ASi| €i+l)(|ASi[ ) and substitute

i1 t i

for Ni4q from eq. (10). It then follows that

2

_ IZE,I (clgi+l+02) -

1 - it = — 2-
(Ei+l+[ASi|)(€i+l+c3)

£, -Q (25)

i+
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with Q Dbeing a function of |AS£[ and gi+l only.
This equation can be regarded as a recurrence formula for
€. ., and £. . can be determined by an iterative process using (25).
i+l i+l
The convergence of such a process is ensured and is the faster the
larger is |AS{|.

Once £i+ is established with sufficient precision, Ny can be

1

computed from eq. (24) taking into account the sign of Zgi. We have

1

n = sign(&gi) /(Zéi -£2 ). (26)

i+l i+l

The coordinate increments ii can then be transformed into the

+1° Nia1
reference coordinate system x', y' for which we can take the local
—

system of ri, i.e. we define

LI v — v — A | -
x} =0, y] =0, x} lAsll, yh =0 . (27)
Thus, we get
1 = t ] - \
Kipp T X T T Biag ~ T N4
(28)
1 = v v '
Vier TV ¥ T 850t T Ny
1 = [ =T
where ] (xi Xi—l)/IAsi—ll
(29)

Ty = - vi18s] ]

Continuing in the described way, we eventually end up
with the coordinates of the last point, xﬁ, yﬂ. The final coordinates

(Xi’ yi), i=l, 2, ..., n, can be obtained by another transformation yet:
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- 4+ U ot ot
X =X v I - 15y

(30)
e AT B B F
where
T = (v (v vy) + x)(x =x.))/D
Ty = (x) (v -vy) - v (x =x,))/D (31)

D=1/(xr'l+yr'1),

Three things should be noted here:

(i) For the transformation (30, 31) to work, C' must be an open
curve - as required in section 2.1.
(ii) Should the need arise to transform the coded C' into a new
coordinate system by a conformal transformation, only the corner points
have to be transformed. The linear segments may be regarded as ''shape
parameters' which are not liable to change under any conformal
transformation.
(iii) 'The value of e, used for determining the coefficients Cys Cps
c3 when coding the curve, must be used for computing the coefficients

C1s Cps Cg in egns. (25, 26) necessary for decoding the C'.

2.10 Propagation of errors and required precision
We require the maximum error in the position of any point of C'
to be smaller than €. Due to the conformal transformation represented

by eq. (30), the error in the end point as well as the error in the
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first point will vanish and we can expect the maximum error to

-—>

occur for r'/ We shall therefore investigate what precision is

n/2°

required in iterating the &'s from eq. (25) to obtain the position

—>
error of ré/ smaller than €.

2
Denoting the errors in coordinates, X;5 ¥y by éxi, Gyi we

define the position error Gi as

=/ 2 2
|6i| (Gxi + 8y§ ) (32)
and the requirement is that

’én/2l<€ . (33)

Assuming the transformation coefficients Tg, Tg in eq. (30) to
be smaller or equal to 1, i.e. assuming that the segments are expressed

in equal or larger scale than the coordinates x, y, we get the most

pessimistic estimate of 6x, S8y from following formulae:
lsx| < vV2ls'| |sy| < V2|s'] (3L)

where §' is the error in either x' or y'. Hence, we may write:

12 12) = '
l6;1 < V(2812+ 2612) = 2]a!]. (35)
On the other hand, xﬁ, yé can be expressed as
k k
x! =L Ax!, y!' = Ay!
k j=1 1 k j=1 3 (36)

where Ax!, Ay! are given by eq. (28).
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Thus, denoting by GAi the error in either Axi or Ayi we get

k (37)

V I 8A?
i=1 *

]6}'(| -

providing the individual GAE are distributed more or less at random.

Taking all the 6Ai equal to §A we end up with the expression

l6p] =/ & |6a] (38)

and
|ak| < 2/k|8a] . (39)

The transformation coefficients in eq. (28) are again smaller or equal

to 1. Hence the combined influence of the errors §&, dn, in & and n,

is at most 2-times larger than that of the individual error &&:

<

) 2/ (2n/2) B 2yn

lsa| < ve|sg| (ko)
and substitution of (L0) into (39) yeilds:
|6, | < 2/(2x)|se]. (L1)
The criterion for 8% can thus be set up using eq. (33):
| - - (k2)

|sg



25

In order to achieve the required precision in position, each &,
iterated from eq. (25), must be determined with a precision better
than e/(2vn).

How do we recognize that the required precision has been
reached during the process of iteration? For this purpose, let us

introduce a magnitude &s given by:

§s = |as'] - V(£2+n2(¢)) (43)

where n(£) is prescribed by eg. (10). Obviously |6s|>|6Z| and £ in
eq. (42) can be replaced by 6s. From the computing point of view it

is convenient thoughtoevaluate 6s from an approximate equation:

cl£+02)2

T - 85'2)/(228") (k1)

8s = (&2+(

and the final criterion which must be satisfied for the last iteration

of £ reads:

(L)

.

c E+e, 2 __ —
IEZ +( _l_gzz_) —AS'Z' <J_A_S'_L8_
3

n
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3. PROGRAMMES AND PARAMETERS

The programmes and subroutines presently form an integrated
packing and plotting package, and are dimensioned to accept 5000 points
per curve. They are written in Fortran IV language and have been
tested on the University of New Brunswick's IBM 370/155 computer,
and the Univac 1108 and PDP-10 computer of the Department of Energy,
Mines and Resources, Ottawa. All times and storage refer to the 370
system using the level G compiler. To pack one line with 375 points in
it (the example shown in Appendix A) required 0.2 seconds. The plotting
routines on the 611 oscilloscope required a further 5 seconds. The
storage necessary depends on the number of points per curve, and is
presently 1129,26M bytes. These requirements include
the university's system generated plotting routines. The results and
restrictions of the package in its present form are listed in section L.
This section deals only with the programming requirements of each

routine.

3.1 Main Programme PACK
Storage:126p32bytes in single precision
Subroutines called: REDOUT, UPLOT, AREA, GRID, SETPLT, NOWPLT,
ENDPLT, PRNTCH
Input Parameters: Input parameters are given as though the data were

on punched cards.
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Card 1: Format 2F4.0. The allowable plotting error at reduced
scale in micrometres, ERR. This is followed by the least
count of the digitiser in micrometres, DELTA.

Card 2: Format IL. The number of points in the line whose
coordinates follow, N. This can, with a minor change, be
left open for on-line work.

Card 3: Format 2I10. The denominator of the scale of the input
data, ISD. This is followed by the denominator of the
scale of the output data, IOSD.

It should be pointed out at this point that it is
perfectly possible to stop the technique after the packing
process. The programme subroutine UPLOT, which reduces
the packed data to the scale required for output can be
called at a later date. In this way only packed parameters
are stored, thus cutting down on storage space. At the
same time the option exists, just before final plotting, to
change the scale of the output. The present version is set
up for simultaneous packing and plotting.

Rest of cards: Format 5 (F7.0, 1X, F7.0, 1X). The x and y
coordinates of the points on the line, 5 points per card,
as shown in figure 3.1. It follows that these should be

N/5 data cards with coordinates.
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Output: The coordinates of the corner points, the segment lengths
and the packed coordinates are printed out. Then follow
the packing factor, the allowable plotting error, and the
input and output scale denominators. The present version,
with simultaneous packing and plotting, plots a copy of
the original and packed curves on the 611 oscilloscope.
The packed coordinates are stored in arrays XXD and YYD.

After packing, the programme at present loops
back and repeats the packing procedure with double the

tolerance request.

3.2 Subroutine REDOUT

Storage: 1220 bytes in single precision.
Subroutines called: None
Calling parameters: J - the number of segment lengths. An
arbitrary maximum of 20 has been set.
X1, Y1 - the coordinates of the initial point

in this set.
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SEG - the array of segment lengths in this
set, J in number
XP, YP - the coordinates of the final point
in this set.
EPS - the specified tolerance.
Output: REDOUT is the routine which prints out the coordinates of

the corner points and the segment lengths.

3.3 Subroutine UPLOT

Storage: 2012 bytes in single precision
Subroutines called: None
Calling parameters: M - the number of segment lengths
XTI, YI - the coordinate of the initial corner
points.
S - the array of segment lengths
XN, YN - the coordinates of the next coordinate
point.

E - the specified tolerance.
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Output: This routine outputs the packed coordinates, and also stores

these in arrays XXD and YYD.

3.4 Subroutines AREA, GRID, SETPLT, NOWPLT, ENDPLT, PRNTCH

These subroutines are university generated routines for

plotting. They are detailed in Gujar (1972).

4, TESTS AND COMMENTS

L,1 Tests and results

The present version of the programme has been tested in the
Department of Surveying Engineering using digitised contour data
obtained from the Analytical Plotter AP-2/C. This data is an exact
replica of that which would be obtained from an automatically digitis-
ing line follower. That is, the action of an automatic digitiser has
been simulated in all respects. A sample of the packing factor obtained

with the corresponding error tolerances is shown in table 4.1.

Error Tolerance (Micrometres) Packing Factor

1 1

50 L.21

100 T.35

200 11.36

400 19.7h

800 37.50

1600 75.00

3200 93.75

6400 125.00

Table L.1
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For example, for this particular line, if we wanted to plot
it at the original scale, but allowed a plotting error of 50 micro-
metres, we would reduce the necessary storage to about one quarter.
What this means in terms of reduction of scale is that if we wanted
to reproduce the original line at 1/50 scale, we would only require
one quarter of the storage to plot it accurate to one micrometre.

There is, of course, no direct relationship between packing
factor and error tolerance. Obviously the greater the allowable error,
the greater will be the packing factor obtained from the process. The
original and packed curves corresponding to table L.l are shown in
Appendix A. The ultimate reduction and generalisation is shown by
figure A-9 in which the curve becomes a straight line. It should be
noted that nowhere is a packed curve further away from the original
than the error tolerance, while the stages of cartographic generalisa-
tion from exact to approximate are represented by figures A-1 to A-O.
With respect to generalisation it should also be noted that the
generalisations still retain the basic characteristics of the original
curve. Graph A-9, for example, shows what the curve would look like
if reduced by 1/6400 and plotted to micrometre accuracy. (It has,

of course, been enlarged in the Appendix)
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L.2 Restrictions and Comments

The following points about the present procedure should

be noted:

a)

the procedure will not work for closed loops due to the
characteristics of the scaling process mentioned in section 2.9.
The loop must be split into two arc segments.

The programme will pack coordinates for curves which are to be
reproduced at the same scale. It may be that there are more than
enough digitised points on a curve to reproduce it with a given
accuracy without reduction. The programme will reduce the number
of points to the minimum number required for any given accuracy.
The packing factors in table 4.1 are seen to refer to different
error tolerances. These can also be thought of as reductions to
different scales with the same plotting error. The packing factor
is also a function of the smoothness of the curve. The smoother

a curve, the greater will be the packing factor, since fewer
hyperbolae and segments are needed, that is, the necessary number
of parameters are fewer.

At present the programme input unit is the 2501 card reader. This
is not, of course, mandatory. Generally, digitised data will be
on magnetic tape, disk, or paper tape, and appropriate corrections
can be made. Ideally the input will be directly on-line, through

some device such as the 1827 Data Control Unit.



e)

f)

g)

3k

The doubling of the error tolerance in the programmes' present
form is purely for testing purposes. Normally the input and
output scales, and the error tolerance will be known, and only
one packing will be required.

The Jjoining together of the packed points should be done by
straight lines. The use of curvilinear plotting methods may
generate points outside the error tube.

Other tests with this programme package were carried out by the
Surveys and Mapping Branch, Department of Energy, Mines and
Resources in Ottawa using the Branch's automated cartography
PDP-10 system, and also the Departments' Univac 1108, and the
packing obtained was satisfactory. Modification of the technique

to fit such systems is left up to the prospective user.
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611 OSCILLOSCOPE PLOTS OF A SAMPLE CURVE
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FIGURE A-1

ORIGINAL CURVE
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FIGURE A-3
PACKED CURVE, PACKING FACTOR = L. 21
EARAR: = 50; JICROMETRES
GRLE. = 1000 MICROMETRES
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FIGURE A-3

PACKED CURVE, PACKING FACTOR = 7.35
ERROR = 50 MICROMETRES
GRID = 1000 MICROMETRES
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FIGURE A-4
PACKED CURVE, PACKING FACTOR = 11.36
ERROR = 200 MICROMETRES

GRID = f800 MICROMETRES
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FIGURE A-5
PACKED CURVE, PACKING FACTOR = 19.74

ERROR = 400 MICROMETRES
GRID = 1000 MICROMETRES
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FIGURE A-6
PACKED CURVE, PACKING FACTOR = 37.5

ERROR = 800 MICROMETRES

GRID = 1000 MICROMETRES
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FIGURE A-7
PACKED CURVE, PACKING FACTOR = 75.00
ERROR = 1600 MICROMETRES

GRID = 1000 micrometres
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FIGURE A-8
PACKED CURVE, PACKING FACTOR = 93.75

ERROR = 3200 MICROMETRES
GRID = 1000 MICROMETRES
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FIGURE A-9
PACKED CURVE, PACKING FACTOR = 125.00
ERROR = 6400 MICROMETRES

GRID = 1000 MICROMETRES
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PYY=Y{NN)~YP
N2 1a0/5QRTIDXXACXX4DYY%DYY )
D 1S 1/75EGMENT LENGTH
VREDRBYY
TX 1S SIN THETA
TY=DREXX
TY IS CQOS THETA
DO oA [=T1B KN
DNN=I-TR+1" -
17

GO TO 4

ABES{TXR(X(I)=XP)=TY*(Y{I)=YP))+sGT.EPS) GU TN 16

CHECK RIGOROUSLY If POINTS IN TUBE EPS

COMTINUE

1

10

(NN« GF o N
(L.EO.I)

TCABS{STXDONNY.LEL1.0) GCTO 307

:-*O. 5%S8T

TEF (ARSI STHDNN) oLEW 1)

) GO TC 20
GO TC 18

FNNHTFIXISTEDNN)

G

A= ANL
TF{NNGE

«IB)

.LE N)GD TG 14

GC TC

17

WIDE

GO TQ

)
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AONDNOA NAOND

~

AA ANNAD

LTasnElYR=YPP)

N

SaER G o
TH{LsEQs1) GO TD 19
GroTo 1e
i

5(03)=140/D
{MNNWLT«N) GO TO 7

CUTTONAL PRINTCUT CF CRIGINAL COCRDINATES

Poon62 1=1,
RMAT(Y Y

; QJOX,2F1? 5y
~f~rrnu5

CALL REDOUT(JsX19Y1,SEGsX{N)sY{N),EFS)
UM.OT CALLED TD REDUCE PACKED DATA
oAt LDLOT(J9)(1‘Y1;CEGvX(f\),Y(f\),EpS)

s (IQ.FO.N)IFLAP A

LI IR W.EQL.NIGO TO 183

[SCOF=1SCC~ISCCF

TSCOF NOW NUMBER QF QUTRUT FCINTS IN THTS BLOCK

I TvD=¢

PROSENT SYSTEM IS SET UP T DOUBLE ERRCP EPQTLON AND RE=-ITERATE
¥ ONLY ONE PACKED SET CF DATA IS WANTED(T.F.
RIAD IN)REPILACE THE TWO FOLLCWING CARDS WITH UNE CARD

YR Y (NN
T1-0%(XP=XPP)

CCS OF LINE SEGMENT

TO THE DRIGINAL ERRDR SPECS
-=-STOP

SIN OF LINE SEGMENT
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—

ADA A0N A0N

A0 AN ONNN AN NN A

- 0

A ANnAm

-

R N O
CHECK POINTS BEYOND SEGMENT
OX(II=T1I#(XCI)=XP)4+T2%(Y(I)~YP)
DX DISPLACEMENT IN LINE DIRECTICN
SOOI ETIROYUD =YP) ~T2A(X(T)=XP)
DY DISPLACEMENT IN DIRECTICN NARMAL TC LINE
1Z(DX(I)elLE+Ds0) GC TC 9 '
IF LLINE TURNS EACK PAST FIRST ?OiNT THEN CCOCRNER POINT
S CANSRY (1)) £(DXUI)4C3)=(C1#DX(1)4C2) eGTL040) GO TO 11
CHFECK [F DY STILL WITHIN HYFERECL A
CONTINUE "
G5 oT0 9
CIN=SIGN(C1,DY(1))
COo=SIGN(C2,DY( 1))
C17,C28 SIGNS SAME AS DY
NOX=DX(T)~DX(I-1) .
DDX DIFFERENCE EETWEEN LAST 2DX'S
TE{AS(DDX)eGTe2«0E~-8) GC TO 12
ISTHYPERBOQUA CUT EBY NEARLY NCRMAL ULINE TO AXIS 777777 77w
DYr=pX(1)
¢GnTo 13
A= (DY (I)-DY{(T=-1))/DDX

AL IS SLOPE OF LAST TWC PCINTS

oY T)=ALKDX(TY B - T



€S

C 0 IS Y INTERCERT DOF STRAIGHT LINE EETWEEN LAST 2 PCINTS
C
TC=C1RXC2-C2R
<”=PX(I)
‘V[=DX(I—1) :
P =(C1BXDXBR+CZR)/(DXBB+C3)

SN =CXIR+C3
SN2=CIRDENT
21 PXTR=BXT
A= CCC/UNXIBXDEN14DENR)
«onv— LAXCXRR
- (C-0R) ZLALE-AL
n<(nx1~oxrn).
CIR%*DXI+C28)
SCERT(LXT*DXT+
1
1
1

)
GT+0eS4#DELTA) GC TO 31°
J(DXI+C3)

SYT%DYI)

/CLM

L)Y=TYXDY(L)) «GTEFS) GC TC 9

Hﬁwlx<m~

=SIGN(SEM,DYT)

(1) .
(1)

NOXT-T2%DDYI
DDYI+T2%DDXI

* <X

e TR |)’“+-‘—4>v~'-"uu|l it > 1t

ENOUT(JsX13Y143SEGeXPaYP,EES)

L 0T CALLED TO RFCUCE PACKED DATA

NAAYOND

CALL UPLOT(J9X13Y1 4sSEGsXP s YPLFEFES)
T (IB«EQWN)IFLAG=2
I"{IN.FQaN)GO TO 1£3

OLTPUT BLOCK CF REDUCED DATA

NN

T ]



s

76¢¢

€434 -
5433

IFLAG=1

CALCULATICN OF PACKING FACTOR, AND PRINTDUT OF FERRORS AND SCALFS

FACTP=FLOAT(ND) /(FLOAT(IJUI)+2,0)
WRITE(6+5432)FACTP

FORMAT(' '420X+'PACKING FACTCR = '",F20.2)
XERR=ERR/DRAT

WRITE(6,5434)XERR

FORMAT(' *,20X,'ERROR AT REDUCED SCALE IN MICRONS = ',F20.10)
FORMAT{ " " 320Xy * ERROR AT CRIGINAL SCALE = "1 ,F20,10) = o=
WRITE(6,5433)ERR

WRITE(6,5435)1S0, I'0SD

FORMAT(? ¢ ,YINPUT DENCNINATCRE = *,110,° OUTPUT DENOMINATOR = ',
*¥110)

THIS SECTICN DOUBLES THE ERRCR TURE AND REPEATS THE PACKING PROCEDUVY

REERR* 2

o
-

N

XAZlM«

D
ENR«GT+10000.) €TOP
ITMUM ERROR ALLOWED = 10000 MICRCMETRES

O T Zrmm
O »>Til 3

TO 7969
FORMAT( Y 1,2X, (55X, 14),5X,F842)

M
z
9



O A0 ONN

ANNOADON

qe

NN

[aEaXe!

=ADN 00N

O

SUIPDOUTING RFDOUT (JeX1,4,Y1 4,SEGeXP,YP, EPRPS)

CTDOLT QUTPUTS RESULTS OF OATRED CNTC ITAPO AFTER REDUCTION ™ &
J NUMARER NF SEGMENTS IN THIS RECOPD
X1s¥Y1l INITIAL PCINT IN THIS RECORD
SEGOARRAY OF SEGNENT LENGTHS«se J OF THEM
NPy YPOFINAL POINT IN THIS RECORD
TPS TOLERANCE SPECIFIED FOR THIS REQDUCTION

MIMENSION SEG(J) L ISSEG(20)

TOIVALENCE QUTPUTS TC INTEGERS
CTOMMONZINOUT/ITPL.ITAPL,ITAPRC .
COMMON/FEATZ/ICOE s TSUBCDSISCISZISCOLISEG !
TTABO=6

, .
T INTERMEDIATE STCRAGE OF DATA RECUIRED, CHANGE UNIT NUMBER
TCOE, TSURTUD TARE "CODE AND "SUBCCNE CF FFATURE 7 T
B NUMBER NF SEGMENTS IN THIS RECORD
ISCC DUTPUT RECCRD NUMBER

TT{ISCO «GTe ~1)GO TC 1
cEG=0

13
PSEG NUMBER OF SEGMERT LENGTHS OUTRUTY PER FCATURE

.

INITTAL POINT MADE AN INTEGER

WP TTE(ITAPC,40)TIX14IY1,ICDE,ISUBCD

I1PS=ENS+.8

TFT O ERROR AS INTEGER
HOTTELITAPO 4 1) IERS
TF FIRST RECQORD CF FEATURE WRITE FIRST FOINT X1sY1 AND EPS

14D=XP+.s5
TYD=YRE+YS T




96

BRD AON

N~

N0 AN

DO -

YARE INTEGERS CF FINAL PCINTS
S TELITAPO 40) IXP,IYRPLISCC,y I
‘ITE FINAL POINT XP,YP RECORD [SCO AND NO SEG LENGTHS J

TCN=18SCAa+

LJ «EQo ) RETURN
10C 1

1
e =14J
TUAEG(I)=SEG(I )45

g,

¢ NTINUE . e . SR e

THANGE SFGMENT LENGTHS TO INTEGERS

TATG=ISEGH Y
NI ITE{ITARPC +42)Y(ISSEG(I)1I=1,4)

SRITE J SEGMENT LENGTHS

ATy 1,2165214)

FOomATCY 1,16) .

FOTMAT(Y 1,20X,'SEGMENT LENGTHS ARF®,20X//2016)
N
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NOO

ADN

AN ANN

[eXaNa!

[

cqg

h'iaNaFa!

NN

SUPRDUTINE UPLOT (M XTI sYI 23S 9sXNsYNYE)
WOLTINE TO UNPACK FACKED DATAS
PITONSION S5(20)+GX(22)4,GY(22)
COMNAONZINDUT/ITYPLITAPL,ITARO
CTOUON/ZDAVEZXXD(S000) ,YYD(S000) 1 U1
DATA STIZ1.0000/
19 A CONVERSION OF UNITS IS RECUIRED(CHANGE STI
TL{M JLE. 0} RETURN
_F 0 FOR DUMMY CALL
TI{M,CE.2) GC TQ¢ 200
FwOSTNGLE SEGMENT NEED ONLY PLCT END POINTS
N XNESTI
TYYN®STI
WRTTE{B41GO)EXLEY
1.1=1TJ1+1
XY LTJT)I=EY/Z1000.
YVOE(ILJT)I=EX/10000
STALLING FOR UNE PLCTTING FURPQOSES ONLY 777 7777
TELAG=D2 .
FilIVAT(! *,4X,'UPLCT CCCRDINATES APF ', 2F20,10)
LOTURN

CALCULATICON OF UNFACKING

@ © T e e i i

" e 11 It il =
M me 0oDwmol
MNOOs ~eo O

@l
.

57 0F HYPERECLA ’ T
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N
—

leXeXa!

laXaka]

EVERYTHING

CCMEU

“RITE(619G)E
TAT=14T+1

¥EADITJIN=EY/L
VYOI JIV=EX/T

AQ=CO24C02
Al=2%CQ1%C02 B
A2=CD1%xCO1
V= JSORT(FLAOATIN))
AP0 T=24 N
S5=SC1)%ST)
ST=A3S818(1))
RO=CORKCO3%ST
N1=2%CR2%ST4+COIXRCOT
B2=2KC03+S5]
“=ABS(S(T))
A= ({A2%XYI+AL)RX4A0
D3={{X+EE2) XX+B1) ¥X+E0
X=SI-p2/P3
M= {C01HX+C02)/( X+C03)
IF{ABRS{IX#EX+YEY-SS) +GTe ARS{S{(I)*V)) GO TC 21
Y=SORT(SS—X%X)
YESIGN(YLSTT)Y))
T1={GX(TY=GXUI=1Y) /Age{s{T=-tyy 7 T
i (GY(1)Y-GY{(I-1))/7ARS({(S(1I-1))
T1,72 CO0Ss SIN CF LINE SEGNENT ANGLE REL T0O AXIS
XUT+1)=GXLT I+ T % X=T2 %
GY{(I+1)=GY (L )+T2&X+T1*Y
GX,GY RFL CUORDS OF END PT CF LINF SEG
M= VT S . . e R
~~1.0/(Gx(NM)*Gx(NN>+GY(M~)*GY(NV))
CE{GY(MMYKLYN=YI)+GX (MM) 2 ( XN=XTI))*D
2 {=GY(MM)X{XN=-XT)+GX{MMI*(YN=YT))%D

EXPRESSED IN DIGITIZER STEPS

N RSTY

TY)=-C2*GY (1)
(1 }IXSTI

Y4 C1%GY (1T
POINTS FOR EACH LINE SECGMENT
X,EY
000,

000



ATINDO

S350dynd

SINIWOFS

ONTLLDTd ©NN

ANIT

HO 4

LRl
Cc=OV 1ai

ON 1L
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