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l. INTRODUCTION 

One of the main problems facing the field of automated 

cartography is the sheer volume of coordinates which have to be stored 

to allow an accurate representation of linear features on the final 

map. This problem becomes even more acute when the stored data are 

used to produce maps at reduced scale. Usually much fewer points are 

necessary to represent the curve to within the required accuracy, but 

reduction of the number of points inevitably leads to questions which 

raise doubts about mathematically rigid methods being able to reproduce, 

upon reduction, true cartographic shape and form. 

In an attempt to reduce or pack the amount of input coordinate 

data of a curve without losing ultimate plotting accuracy, we are pre­

senting a mathematical packing method which, given a specified tolerance 

(£), i.e. the final plotting accuracy, would transform the input 

digitised coordinates into some other parameters of the curve. This 

would be done in such a way that the linear segments so produced would 

always be within a tube of width £ surrounding the original curve. The 

method results in a considerable reduction of the amount of input data 

without loss of accuracy in final plotting. In addition it is able to 

perform an automatic form of cartographic generalisation in which a 

given curve with many convolutions can, if the appropriate error parameter 

£ is introduced, be reduced to a simpler curve. 

l 
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1.1 General Description of the Method 

At present the mathematical calculations are performed by 

one Fortran IV programme, PACK, with two major subroutines, REDOUT 

and UPLOT. Also included are various plotting subroutines (see 

section 3) to enable the user to plot both the original and packed 

curves on either a 611 oscilloscope or a Calcomp drum plotter. 

The input to the calculations is a set of x and y co-

ordinates of the line to be packed, the input and output scales, the 

digitiser increment, o, and the required final plotting accuracy E. 
c1x + c2 

The coefficients of pseudo-hyperbolae y = ± x + c 
3 

are determined. By taking the average direction of the first three 

points in the stream of coordinates, further successive points are 

selected until they fail to lie within a tube ±8 E wide. Using the 

beginning and end points for proper direction a rigorous check is 

made of points selected so they lie in a tube ± E wide. The number 

of points selected is altered until this condition is met, at which 

time a segment length is computed. 

The programme goes on to determine more segment lengths 

beyond the first by defining a pseudo-hyperbola with the vertex 

coinciding with the end of the last segment, and with axis oriented 

in the direction of the last line segment (figure 2.6 ). The next 

points in the coordinate stream are examined until one falls outside 

the defined pseudo-hyperbola, and then another line segment is 

identified whose end point is at the intersection of the stream of 

coordinates with the pseudo-hyperbola. 
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We choose the hyperbolic form since this is the approximate 

locus of the longest formable segments that would represent the 

curve with ±s accuracy. The longer the segment lengths, the fewer 

the segments, and hence the greater the reduction in the amount of 

data stored. The details of this choice are given in section 2.4. 

A rigorous check is again made to ensure that all points lie within a 

tube ±s wide around the segment. The segment's length is determined 

and signed positive if the line segment points above the axis, and 

negative below. This end point together with the preceding one 

determine the axis of a new hyperbola of the same family, and the pro­

cess is repeated. 

Thus the complete data packing consists in the production 

of coordinates (2 numbers per point) and interlying segment lengths 

(1 signed number only per segment). The points represented by two 

coordinates are referred to as corner points and the lengths as 

segments. This packed data is then stored. In order to obtain reduced 

coordinates from the packed data (which are not in "plottable" form) 

it is necessary to reverse the above procedure using the subroutine 

UPLOT. 

This subroutine decodes into coordinate twotuples the packed 

data. The inputs to this routine are the two corner points, signed 

segment lengths and the tolerance s. If only one segment is needed 

then two corner points alone are given and a line can be plotted. If 

more than one segment is needed it becomes necessary to take the signed 

segment lengths and compute coordinates. The coefficients of the pseudo 



hyperbola 
c x + c2 

y = + ~1---= 
- x + c3 

4 

are again calculated using the value E. 

The initial segment is laid out in an east-west direction and directions 

of subse~uent segments are related to it. The routine determines 

coordinates of intersections of line segments with the hyperbola. This 

is done in a local set of coordinates where the hyperbola vertex is 

related to the terminal point of the previous segment and its axis is 

rotated to the direction of the previous segment. 

Using the final corner point these local coordinates are 

rotated and stretched so that the line segments are in the re~uired 

direction and at the re~uired scale. The output coordinates from UPLOT 

are then suitable for plotting. 

The system documented here contains plotting routines for the 

University of New Brunswick's IBM 370 computer plotting system. After 

data packing and decoding, the original and packed curves are plotted 

out and hardcopy is obtained from the 611 oscilloscope. A "packing 

factor" is then calculated, being the ratio of the input number of 

points to the packed number of points. This is then printed along with 

details of input and output scales, and error values. 
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2. THE MATHEMATICAL BASIS OF THE METHOD 

2.1 Digitized Curve 

Let us consider an open, continuous, smooth curve C extend-

ing between initial and final points 

denoting the radius vectors. We shall call the digitized image of C, 

C* ' -as a series of points r~ = (x! , y~ ), i = 1, 2, ... , N, represent-

ing C in the form of a set of isolated points. These points coincide 

with appropriate intersection points of a o-s~uare-grid, whose dimension 

o is given by the last retained binary (decimal) place - see figure 2.1. 

/1---+-~ 

7 

2.2 Representation of a Curve 

We shall say that a curve C' represents C with a precision 
.....,. 

E (strictly 1/E) if and only if every point r'EC' lies within the e 

environment of at least one point ~C and C' is continuous. 

Note that if we regard the digitized curve C* as piece-wise 

linear curve with the points of discontinuous first derivative coin-
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~ 

ciding with r*'s, we can say that C* represents C with precision 8. 

In the forthcoming development we shall always assume E>o and shall 

refer to the representation of C as actually the representation of C*. 

2.3 Purpose of Coding -The number of digitized points r*, as usually supplied by a 

digitizer, is generally unnecessarily large to represent C with the 

required precision E. If we intend to store the digitized image C* 

on any kind of medium, we are evidently interested in keeping the amount 

of retained information to a minimum. The problem becomes more pressing 

whenever we store an excessive number of such curves as is the case with 

cartography, pictorial images or many other practical digitized images. 

Thus the ultimate aim of an optimum coding will be to replace 

C* by such a curve C' which:- (i) is continuous; (ii) has minimum -number of representative points r' expressed by minimum necessary 

number of parameters; (iii) represents C* with required precision E. 

Another requirement, particular to cartographic applications, 

is that C' representing a smooth curve should "look smooth" to the eye. 

Since this requirement does not lend itself to an easy mathematical 

formulation, it will be assumed that E can be selected in such a way 

that C' "looks smooth" enough when plotted. In other words, we assume 

that if E corresponds to the graphical precision of plotting (usually 

about .l mm) it will take care of this aspect automatically. 

Our approach will be based on the piece-wise linear representa-

tion assuming thus availability of a linear plotter only. If a more 
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flexible plotter)that will plot circular or parabolic arcs as wellJis 

available further reduction in the necessary number of parameters may 

be achieved either by simply increasing the value of £ or through 

adding some qualifying criteria to the technique. This, however, will 

not be the aim of this report but a subject for future development. 

2.4 Maximum Allowable Length of Linear Segments 

It is obvious that the maximum length of a linear segment, that 

is to replace the original curved segment with precision £, is inversely 

proportional to the curvature of the original segment. The larger the 

curvature, the shorter the linear segment and vice versa. The following 

formula can be deduced from figure 2.2 for the relationship of the 

linear segment ~.s and the linear deviation dR of the linear and 

curved segment ~S 

~s = 1(8RdR-4dR2 ) • (1) 

liere R is the local radius of curvature. According to 2~2, we can 

allow dR to become as large 

as £ for the maximum segment 

~s max We can hence write: 

liS = /(8R£-4£ 2) . (2) max 
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To illustrate the quantities we are dealing with we can draw 

a table showing the relationship of R and ~s for s = .lmm: max 

R[rnm] 0.2 0.3 0.4 0.5 l 5 10 100 

~s [mm] 0.40 0.49 0.57 0.63 0.90 2.00 2.83 8.95 max 

Table 2.1 

Considering a digitized curve C*, 100 mm long, consisting of -4000 points r* .025 mm apart,we get the minimum number of linear 

segments necessary to represent C* with precision £ =.lmm, 111, 50, 

35, ll corresponding to mean radii of curvature of 1, 5, 10, 100 mm 

respectively. Hence, defining the packing factor as 

we get for the packing factor between C* and C': 

respectively. 

2.5 Reduction in the Necessary Number of Parameters 

no. of input points 
no. of output points 

36, 80, 114, 364 

Having established the maximum spacing of the representative 

-points r'sC' (as related to the local radius of curvature) we can show 

that it is not necessary to identify each of those points by a pair 

of coordinates. For this purpose, let us transform the original 

coordinates x., y. of a point 
l l 

a. (see figure 2.3). 
l 

-I 
r i+l into the local coordinates 
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-r· 1 

is made a function of a. 
l 

(X,• 
l 

a. = f-l (.~s. ) 
l . l 

(3) 

we do not have to retain both 118. and a. since the knowledge of one of 
l l 

these is sufficient to fUrnish us with the other coordinate. Thus, 

providing the relationship 118 = f(a) is established, a curve can be 

represented by a stream of single parameters, rather than a stream of 

pairs of coordinates, which may lead to a considerable saving of storage 

medium. 

The question remains as how to select the fUnction f to 

satisfy the other requirements. We are going to show that the selection 

can be done in such a way that f is the approximate locus L of all 

the tiS 
max 

Providing the curve C has approximately the same curvature 

in the vicinity of 
~ 

r! , we can, according to figure 2.4 write: 
l 
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R cos C! 
2+ d.R,;, R. (4) 

Substituting again E: for dR and ( i;S2 + 4E: 2) /(8E:) for max 

R (from eq. 2) we get: 

C! . 8E:2 
cos = 1 -2 

~s2 + 4E:2 
(5) 

max 

and after same deve1opmentJusing trig. identity 2 a. 1-cos(a./2) tan 1. = -::-:-~+'"'r:::-
'+ l+cos(a./2) J 

we obtain 

• 2E 
a. = 4 arctg 

~s max 

(6) 
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The derivation of eQ. (6) is based on the assumption of almost uniform 
~ 

curvature in the vicinity of r!. 
l 

which may or may not be fully 

satisfied. In any case, it can be regarded as an approximate formula 

and no considerable damage will be done if we replace it by another yet 

approximate relationship more convenient for numerical treatment. The 

only result of such approximation will be that the ~S's will not be 

the absolute allowable maximum and therefore the reduction will not be 

the absolute maximum. This should not be unduly worrying since we 

shall, in practice, be dealing with C* instead of C and have there-

fore to expect some irregularities due to the limited precision in 

digitizing that will "spoil" the smoothness of C. 

To make the development of an approximate eQuation of the locus 

easier, let us introduce a local right-handed coordinate system ~' n -

see figure 2.5. 

·--·--·--· -·--·-·--·~ 

Figure 2.5 
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Transforming a, ~S to ~,n we get the equation of the locus (6) 
max 

as follows: 

a = arctg n/~ • 4 arctg (7) 

Eq. (7) can be rewritten as 

arccotg ~/n • 4 arccotg 

Considering the trig. identity 

arccotg x = arccos 
X 

we obtain 

arccos • 4 arccos I ( 8) 

and (9) 

Here , 4 is the Tchebyshev's polynomial of 4-th order (see, for 

instance, Ralston, 1965). After rewriting < 4 in the form of power 

series (polynomial of 4th order in 
~2+n2 

1-.....::...-~- ) we obtain the final 
~2+n2+4E2 

expression as a mixed algebraic polynomial of 20th order in I; and n. 

Such a polynomial would not obviously be convenient for numerical 

computation either and has therefore to be approximated by simpler 

formula. 
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It can be shown, using numerical evaluation of eq. (6) 

that each branch of 1 may be approximated by a hyperbola: 

1' (~) - n = (10) 

The coefficients c1 , c2 , c3 can be determined, for instance, by using 

the least-squares technique for the whole curve or more simply (and 

less precisely) on the basis of three common points. 

In our case, the three points were selected in such a way as 

to provide an easy computation. Using formula (6) one gets 

t;S 2 /t a · max = E g 4 · 

On the other hand: t;S max 
- 1T • 

n=L';S = 2E/tg -8 = 4.828E. max 

2E/(/2 tg ~6 } ~ 7.ll0E. 

= ~ 2+n 2 • Hence for a = ~ we get ~ =0 and 
2 

For a = ~ we have ~ =n = t;S /12 = 
Lf max 

The third point was selected for ~=lOOOE. 

Developing formula (7) into power series in 2E/1(~ 2+n 2 )= q one gets 

n/~=4q + terms of 4th and higher order in q. Thus, for large ~: 

1 n2 = 8E ( l - 2 fZ" + , , • ) 

which tends to 8E for growing ~. Hence, we shall not make any serious 

mistake taking n=8E for ~=lOOOE. 

Using the selected three points one obtains: 
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These values provide us with L' good enough for all practical 

purposes. The shape of L' can be seen on figure 2.6. 

s"3 == 1oooc: 

2.6 Determination of the "next" Representative Point 

Once we have decided to adopt a certain 1', the determination 

of the "next" point becomes easy. Having two consecutive representative 

points described by their pairs of coordinates (x. 1 , y. 1 ), 
l- l-

(x., y.), we can transform all the subsequent points belonging to C* 
l l - -into the local ~.n system of the point r!. If r*=(x,y) is a running 

l 

point from C* we have for its local coordinates: 

(12) 
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where Tl= (x.-x. 1)/l[(x.-x. 1)2+ (y.-y. 1)2] 
l l- l l- l l-

(13) 

T2= -(y.-y. l)jl[ (x.-x. 1)2+ (y.-y. 1)2]. 
l l- l l- l l-

- ........ 
Thus, we can take the sequence of all r*'s following r !. ' compute their 

l 

t; and n coordinates and decide whether each of them lies either 

within or outside the area bound by~ L'(t;). If the inequality 

lnl ~ IL'(t;)j (14) 

for a point (t;,n) is satisfied, the point lies in the area and vice versa. 

--Hence, we eventually find a pair of running points, r~ and -rk+l say, of which the first lies within and the second outside the 

area. If the whole "rest of C*" lies within the area, then the end point -is taken instead of ri+l' its coordinaU£are ~ined and the segment is not -computed because it is not needed. The point r! is declared a "corner 
l 

point 11 (see later) and retained by coordinates. Otherwise the "next" 

-representative point rf+l is the point, where L'(t;) intersects the - -straight line connecting r~ with r~+l (see figure 2.7). 

-+ 
: r.* 
: k 
I 
I 

.-JJ-· -· -·-· 

Figure 2.7 

' I 
I 
I 
I 

-* 
rk+1 

-+1·-· 
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-To establish ri+l with the required precision, any numerical method 

may be used. In our approach we have opted for the "chord method" 

which is likely to converge fast since L' is ever-increasing and 
~ 

relatively flat. Because~ L' is concave, the approximation of ri+l' 
;:::::: -..... ~, ~ 

ri+l say, will always lie between r~, ri+l and ri+l can be thus taken -instead of r* for the next iteration. The chord method, therefore, will 
k -- -furnish a succession of points on r~, ri+l converging to ri+l the faster -the further away we are from r!. 

l -Providing the point ri+l' selected on the basis of the last 

iteration, is made to lie on~ L'(~) in a relatively narrow environment 

·--of ri+l- which can be achieved by taking ni+l = L'(~i+l) for ~i+l -- -belonging to the last iteration ri+l - it can be as much away from r~, -r~+l as + o/2. C* represents C with precision o/2 so that it would 

not make sense to insist on the representative points to perform any 

better fit to C* than ~ o/2. 

Once ~i+l' ni+l are obtained, we can compute the quasi-
.-

maximum segment ~Si, determining the position of ri+l uniquely with 

-respect to r! 1 , 
l-

-r!' 
l 

from following formula: 

--"" 

The coordinates xi+l' yi+l of ri+l' necessary for locating the next -
(15) 

representative point rf+2 , are obtained by applying the transformation 

inverse to (12): 



(16) 

Note that from the point of view of error propagation, the 

segments ~S' can be considered as errorless, i.e. if we do not commit 

any error in the decoding process we would end up with the curve C' 

representing C* in the manner described above. More will be said 

about this subject later. 

2.7 Initiation of the Process 

The process described in the previous paragraph is able to 

determine only the position of a "next" point with the assumption that 

the two immediately preceding points from C' are already known. Thus, 

it cannot obviously be applied at the beginning and we have to establish 

the first segment by using an altogether different approach, i.e. we 

have to initiate the process somehow. 

The initiation should provide us with as long a segment as 

can be achieved for the actual C* and E. The first reason is that we 

try to represent C* by as few points as possible. The second, more 

important reasoniis that the technique using the locus L' is based on 

the idea that both segments ~S! 1 and ~S! are about the same, since C 
l- l 

is assumed to have in the vicinity of rf an approximately uniform 

curvature. If we chose the first segment too short, the second shall 

be too long and vice versa. The following segments would be influenced 

accordingly. 
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An iterative approach was hence devised that selects for -- - -r2 (rl remaining equal to r!) such a point r~ which -( i) is furthest away from ri; -(ii) yet still all the points r~, j<k, lie no further than 
J 

+ E: f -+* -+* away rom r irk 

The equation of the line pk can be written as 

pk - Aok + Alk x + A2ky = 0 (17) 

where Aok = Y/(yk-yl) - x/(xk-x1 ) 

Alk = 1/(xk -x1 ) (18) 

A2k = -l/(yk -yl) . 

-The distance d of a running point r* = (x,y) from pk is given by (see, 

for instance Bush and Obreanu, 1965): 

d = 
lAo+ Alx + A2yl 

/(A2+A2 ) . 1 2 

~ 

This distance must, for all rj, j<k, be smaller than e:. 

(19) 

Thus, after same development we may write following inequality to be 
~ 

satisfied for all the r~: 
J 

where 

(20) 

(21) 
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We can notice that evaluation of (20) does require adding, subtracting 

and multiplication only and is, therefore, quite fast for computation. 

The index k can be iterated for so long until (20) becomes satisfied 

- -for k=n and fails for k=n+l. Then r* = r! • If (20) is satisfied 
n l 

even for the end point of the curve then only the first and the end 

points are retained. 

2.8 E Test 

There is one more pointJwithin the process based on locus 1 -that must not escape our attention. It is evident that finding ri+l 

as the intersection of L' and C* does not automatically ensure that all - - ~ the points r*EC* between ri and ri+l lie within the distance of E from 
·-+ ----> 

C' (represented here by the straight line joining ri and ri+1 ). It is 

conceivable that if the curvature of C in the area changes rapidly 

the assumption for the method does not hold any more and the locus L' 

looses its fundamental meaning. -In such a case, we have to declare r! 
l 

the "corner" point and start again with initiating the process in 

exactly the same manner as described in section 2.7. 

To check whether the +E belt around C' contains all the points 

-- --> r*E(ri , rf+l) the inequality (20) can be used. When substituting 

(0,0) for (x1 , y1 ), (~,n) for (xk, yk) and (~j' nj) for (xj, yj) the 

inequality simplifies considerably and we get: 

(22) 
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2.9 Decoding of the Curve C' 

The described method supplies us with a coded version of C'. 

The C' is presented as a stream of pairs of coordinates (x, y), 

belonging to the corner points, with varying number of sections ~S' 

sandwiched in between any two adjacent coordinate pairs. The decoding 

will be necessary to apply always on the succession of segment between 

two adjacent corner points. Its goal will be to attach a pair of 

coordinates (in the x,y system) to the end of each segment, i.e. to each 

of the representative points. 

Let us consider such a "smooth" piece Ci of C', coded as 

It is not difficult to see that each ~S! can be split into the two 
]_ 

coordinate increments ~i+l' ni+l related, as in section 2.5, to the ·- -local right-handed coordinate system originating in r! with~- 1 = -l~s!l. 
]_ l- ]_ 

To split it, we can use the formula (10) in conjunction with the 

Pythagoras law: 

(24) 

In (24) express ~Si 2-~f+l as ( l~sil-~i+l)(l~sil + si+l) and substitute 

for ni+l from eq. (10). It then follows that 

(25) 
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with Q being a function of and f;i+l only. 

This eQuation can be regarded as a recurrence formula for 

f;i+l' and f;i+l can be determined by an iterative process using (25). 

The convergence of such a process is ensured and is the faster the 

larger is I ~S! I . 
l 

Once f;i+l is established with sufficient precision, ni+l can be 

computed from eQ. (24) taking into account the sign of ~S!. We have 
l 

sign(~S!) l(~s~ f;2 ) 
l l - i+l . (26) 

The coordinate increments f;i+l' ni+l can then be transformed into the 

reference coordinate system x', y' for which we can take the local 

--system of ri, i.e. we define 

(27) 

Thus, we get 

I = x! + T' f;i+l T' ni+l xi+l l l 2 

(28) 

Y:i_+l = Y:i_ + T2 f;i+l + Ti ni+l 

where T' = (x! xj__1 )/1 ~Sj__1 1 l J. 

T' = (y! Yj__l )/1 ~Sj__ll 2 l 

(29) 

Continuing in the described way, we eventually end up 

with the coordinates of the last point, x', y'. The final coordinates 
n n 

(x., y.), i=l, 2, •.. , n, can be obtained by another transformation yet: 
l l 



where 

22 

D = I (x' + y' ) 
n n 

Three things should be noted here: 

(i) For the transformation (30, 31) to work, C' must be an open 

curve - as required in section 2.1. 

(ii) Should the need arise to transform the coded C' into a new 

(30) 

(31) 

coordinate system by a conformal transformation, only the corner points 

have to be transformed. The linear segments may be regarded as "shape 

parameters" which are not liable to change under any conformal 

transformation. 

(iii) The value of s, used for determining the coefficients c1 , c2 , 

c3 when coding the curve, must be used for computing the coefficients 

c1 , c2 , c3 in eqns. (25, 26) necessary for decoding the C'. 

2.10 Propagation of errors and required precision 

We require the maximum error in the position of any point of C' 

to be smaller than s. Due to the conformal transformation represented 

by eq. (30), the error in the end point as well as the error in the 
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first point will vanish and we can expect the maximum error to -occur for r~12 . We shall therefore investigate what precision is 

re~uired in iterating the Vs from e~. (25) to obtain the position -error of r ~/2 smaller than E:. 

Denoting the errors in coordinates , xi, yi by ox.' oy. we 
l. l. 

define the position error 0. as 
l. 

I o . I = .; c ox~ + oy~ ) 
l. l. l. 

(32) 

and the re~uirement is that 

Assuming the transformation coefficients T~, T~ in e~. (30) to 

be smaller or e~ual to 1, i.e. assuming that the segments are expressed 

in e~ual or larger scale than the coordinates x, y, we get the most 

pessimistic estimate of ox, oy from following formulae: 

I ox I < 121 o 1 I I oyf < 121 o I I 

where o 1 is the error in either x 1 or y 1 • Hence, we may write: 

On the other hand, xk' yk can be expressed as 

k 
x 1 = L: k i=l 

f'..x!' 
l. 

k 
yl = L: 

k i=l 

where f'..x!, f'..y! are given bye~. (28). 
l. l. 

f'..y! 
l. 

(34) 

(35) 

(36) 



Thus, denoting by O!J.. the error in either llx! or lly! we get 
l l l 

Ia' I 
. k (37) = 

k .; I all~ 
i=l l 

providing the individual all? are distributed more or less at random. 
l 

Taking all the all. equal to all we end up with the expression 
l . 

(38) 

and 

(39) 

The transformation coefficients in eq. (28) are again smaller or equal 

to 1. Hence the combined influence of the errors 8~, on, in ~ and n, 

is at most 2-times larger than that of the individual error 8~: 

(40) 

and substitution of (40) into (39) yeilds: 

(41) 

The criterion for 6~ can thus be set up using eq. (33): 

lo~ I _ __:E:.____ = E 

21(2n/2) 2/n 
(42) 
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In order to achieve the reQuired precision in position, each~' 

iterated from eQ. (25), must be determined with a precision better 

than s/(2/n). 

How do we recognize that the reQuired precision has been 

reached during the process of iteration? For this purpose, let us 

introduce a magnitude os given by: 

(43) 

where n(~) is prescribed by eQ. (10). Obviously losl>lo~l and o~ in 

eQ. (42) can be replaced by os. From the computing point of view it 

is convenient thoughto~uate os from an approximate eQuation: 

(44) 

and the final criterion which must be satisfied for the last iteration 

of ~ reads: 

(45) 
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3. PROGRAMMES AND PARAMETERS 

The programmes and subroutines presently form an integrated 

packing and plotting package, and are dimensioned to accept 5000 points 

per curve. They are written in Fortran IV language and have been 

tested on the University of New Brunswick's IBM 370/155 computer, 

and the Univac 1108 and PDP-10 computer of the Department of Energy, 

Mines and Resources, Ottawa. All times and storage refer to the 370 

system using the level G compiler. To pack one line with 375 points in 

it (the example shown in Appendix A) required 0.2 seconds. The plotting 

routines on the 611 oscilloscope required a further 5 seconds. The 

storage necessary depends on the number of points per curve, and is 

presently -129,264 bytes. These requirements include 

the university's system generated plotting routines. The results and 

restrictions of the package in its present form are listed in section 4. 

This section deals only with the programming requirements of each 

routine. 

3.1 Main Programme PACK 

Storage: 126p32 bytes in single precis ion 

Subroutines called: REDOUT, UPLOT, AREA, GRID, SETPLT, NOWPLT, 

ENDPLT, PRNTCH 

Input Parameters: Input parameters are given as though the data were 

on punched cards. 
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Card 1: Format 2F4.0. The allowable plotting error at reduced 

scale in micrometres, ERR. This is followed by the least 

count of.the digitiser in micrometres, DELTA. 

Card 2: Format I4. The number of points in the line whose 

coordinates follow, N. This can, with a minor change, be 

left open for on-line work. 

Card 3: Format 2Il0. The denominator of the scale of the input 

data, ISD. This is followed by the denominator of the 

scale of the output data, IOSD. 

It should be pointed out at this point that it is 

perfectly possible to stop the technique after the packing 

process. The programme subroutine UPLOT, which reduces 

the packed data to the scale required for output can be 

called at a later date. In this way only packed parameters 

are stored, thus cutting down on storage space. At the 

same time the option exists, just before final plotting, to 

change the scale of the output. The present version is set 

up for simultaneous packing and plotting. 

Rest of cards: Format 5 (FT.O, lX, FT.O, lX). The x andy 

coordinates of the points on the line, 5 points per card, 

as shown in figure 3.1. It follows that these should be 

N/5 data cards with coordinates. 
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Output: The coordinates of the corner points, the segment lengths 

and the packed coordinates are printed out. Then follow 

the packing factor, the allowable plotting error, and the 

input and output scale denominators. The present version, 

with simultaneous packing and plotting, plots a copy of 

the original and packed curves on the 611 oscilloscope. 

The packed coordinates are stored in arrays XXD and YYD. 

After packing, the programme at present loops 

back and repeats the packing procedure with double the 

tolerance request. 

3.2 Subroutine REDOUT 

Storage: 1220 bytes in single precision. 

Subroutines called: None 

Calling parameters: J - the number of segment lengths. An 

arbitrary maximum of 20 has been set. 

Xl, Yl - the coordinates of the initial point 

in this set. 
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SEG - the array of segment lengths in this 

set, J in number 

XP, YP - the coordinates of the final point 

in this set. 

EPS - the specified tolerance. 

Output: REDOUT is the routine which prints out the coordinates of 

the corner points and the segment lengths. 

3.3 Subroutine UPLOT 

Storage: 2012 bytes in single precision 

Subroutines called: None 

Calling parameters: M- the number of segment lengths 

XI, YI- the coordinate of the initial corner 

points. 

S - the array of segment lengths 

XN, YN- the coordinates of the next coordinate 

point. 

E - the specified tolerance. 
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Output: This routine outputs the packed coordinates, and also stores 

these in arrays XXD and YYD. 

3.4 Subroutines AREA, GRID, SETPLT, NOWPLT, ENDPLT, PRNTCH 

These subroutines are university generated routines for 

plotting. They are detailed in Gujar (1972). 

4. TESTS AND COMMENTS 

4.1 Tests and results 

The present version of the programme has been tested in the 

Department of Surveying Engineering using digitised contour data 

obtained from the Analytical Plotter AP-2/C. This data is an exact 

replica of that which would be obtained from an automatically digitis-

ing line follower. That is, the action of an automatic digitiser has 

been simulated in all respects. A sample of the packing factor obtained 

with the corresponding error tolerances is shown in table 4.1. 

Error Tolerance (Micrometres) 

1 
50 

100 
200 
4oo 
800 

1600 
3200 
6400 

Table 4.1 

Packing Factor 

1 
4.21 
7.35 

11.36 
19.74 
37.50 
75.00 
93.75 

125.00 
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For example, for this particular line, if we wanted to plot 

it at the original scale, but allowed a plotting error of 50 micro­

metres, we would reduce the necessary storage to about one quarter. 

What this means in terms of reduction of scale is that if we wanted 

to reproduce the original line at l/50 scale, we would only require 

one quarter of the storage to plot it accurate to one micrometre. 

There is, of course, no direct relationship between packing 

factor and error tolerance. Obviously the greater the allowable error, 

the greater will be the packing factor obtained from the process. The 

original and packed curves corresponding to table 4.1 are shown in 

Appendix A. The ultimate reduction and generalisation is shown by 

figure A-9 in which the curve becomes a straight line. It should be 

noted that nowhere is a packed curve further away from the original 

than the error tolerance, while the stages of cartographic generalisa­

tion from exact to approximate are represented by figures A-1 to A-9. 

With respect to generalisation it should also be noted that the 

generalisations still retain the basic characteristics of the original 

curve. Graph A-9, for example, shows what the curve would look like 

if reduced by l/6400 and plotted to micrometre accuracy. (It has, 

of course, been enlarged in the Appendix) 



33 

4.2 Restrictions and Comments 

The following points about the present procedure should 

be noted: 

a) the procedure will not work for closed loops due to the 

characteristics of the scaling process mentioned in section 2.9. 

The loop must be split into two arc segments. 

b) The programme will pack coordinates for curves which are to be 

reproduced at the same scale. It may be that there are more than 

enough digitised points on a curve to reproduce it with a given 

accuracy without reduction. The programme will reduce the number 

of points to the minimum number required for any given accuracy. 

c) The packing factors in table 4.1 are seen to refer to different 

error tolerances. These can also be thought of as reductions to 

different scales with the same plotting error. The packing factor 

is also a function of the smoothness of the curve. The smoother 

a curve, the greater will be the packing factor, since fewer 

hyperbolae and segments are needed, that is, the necessary number 

of parameters are fewer. 

d) At present the programme input unit is the 2501 card reader. This 

is not, of course, mandatory. Generally, digitised data will be 

on magnetic tape, disk, or paper tape, and appropriate corrections 

can be made. Ideally the input will be directly on-line, through 

some device such as the 1827 Data Control Unit. 
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e) The doubling of the error tolerance in the programmes' present 

form is purely for testing purposes. Normally the input and 

output scales, and the error tolerance will be known, and only 

one packing will be reQuired. 

f) The joining together of the packed points should be done by 

straight lines. The use of curvilinear plotting methods may 

generate points outside the error tube. 

g) Other tests with this programme package were carried out by the 

Surveys and Mapping Branch, Department of Energy, Mines and 

Resources in Ottawa using the Branch's automated cartography 

PDP-10 system, and also the Departments' Univac 1108, and the 

packing obtained was satisfactory. Modification of the techniQue 

to fit such systems is left up to the prospective user. 



APPENDIX A 

611 OSCILLOSCOPE PLOTS OF A SAMPLE CURVE 
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FIGURE A-1 

ORIGINAL CURVE 
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FIGURE A-3 

PACKED CURVE, PACKING FACTOR= 4.21 
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Fl GURE A-3 

PACKED CURVE, PACKING FACTOR= 7.35 
ERROR = 50 MICROMETRES 

GRID = 1000 M!CROMETRES 
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FIGURE A-4 

PACKED CURVE, PACKING FACTOR= 11.36 

~ 

ERROR ~ 200 MICROMETRES 

GRI.D ~· feOO HI CROMETRES 

../ r\ 

39 

" ~ 
I 
z~ 
~ 

I"· ~1 

' ~ 

~. 
A 

t 

I' \_ 

' \ 
n_; 

. ' ~ 

f/ 

\ 

j -, 
J 

\ 



FIGURE A-5 

PACKED CURVE, PACKING FACTOR= 19.74 

ERROR = 400 MICROMETRES 

GRID = 1000 MICROMETRES 

40 

3.?· 
k lfL.: .. ~: 

1\ 

I i 



" \ 

FIGURE A-6 

PACKED CURVE, PACKING FACTOR = 37.5 

ERROR = 800 MICROMETRES 

GRID= 1000 MICROMETRES 
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FIGURE A-7 

PACKED CURVE, PACKING FACTOR= 75.00 

ERROR= 1600 MICROMETRES 

GRID= 1000 micrometres 
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FIGURE A-8 

PACKED CURVE, PACKING FACTOR = 93.75 

ERROR= 3200 MICROMETRES 

GRID = 1000 MICROMETRES 
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FIGURE A-9 

PACKED CURVE, PACKING FACTOR = 125.00 

ERROR = 6400 MICROMETRES 

GRID = 1000 MICROMETRES 



APPENDIX B 

COMPUTER PROGRAMME LISTINGS 



.!="" 
0\ 

(" 

c 
\. 
c 
( 

c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

ff.7 
c 
c 
c 
c 
( 

c 
c 
c 
c 

:174 

c 
c 

~$$~~4.$11$1~$$11$$~~$. 
:(( -. -"' 
* PACK * 
* * T>$~1.$~4$1$~!1$1.1$$$$~ 

f '·' ft. FULL ')fSCRIPT.IOI\,SEE ACCCMPI\1\Vli\G P.I!PcR 

P ·\ n~ P E n U C ( S A 1\ D 0 \..; T P lJ T S D .A T A 
,~·r·:_,PJII\11-1 F. IS ot~AEI\SIOI\F.:O-TC TAKF !"iO<'J0-0-ATrPUTNTS 
N 'S NUM8~P rF ~Otf\TS 

• , Y C C 0 J; n c n F N PC t N T S 

:)• Pr=N~!ON XUiOOO} ,'!'(5000) ,DX(500C i ,CY{5000) oSEG(?.O l.TAfl(2) 
~-,'''·':~~ION XX("'00Q),YY(5000) . 

• J1 ~,~ ~~ n N / l ~W U T / [ T 'I' P , I TAP , t T Jl fl 0 
.-!l'l.IJGN/!'= 10 !\T/ICOE,ISUeCD,J, ISCC, tSEG 

' '··1 tJI\ /[)A \iF /XXnT5 C c·o 1 '9YVOT5000), I .J! 
: ! ·-: \') 

1 i i /1.(; = t 
>!H~xn=o. 

'Y • •·. x n = o. 
X '' I N :-, := 1 0 0 f) 0 n 0 • 
-, ": 'Jfl=l oooooo • 

u' ,., '; 7 J J-= t • 2 0 
•; . : ; ( ,) J ) = 0 

D'i.TA TS nTGITISER tNCREMEI\T Tf\ MTCnCI'\S loco LEAST COU"'T 

F' .. , r 5 THF ALLOW .1\RLE PLOTT T 1'\G ERPfln AT P.t:rUCED SCALE 

T? ·~ J S THF' DFNOM I I\: A TOR OF TH f? SCALE (F n~r- f NPUT OAT A 

I ' ' -_: D I S T H F D E 1\ C M I 1\ AT C R 0 F T t-1 E S C .II L E C F T 1- r. 0 U T P U T D A T A 

P 0(~,104)~RR 1 DELTA 
f' C ( ::-: , 1 0 0 ) N 
r n(~.~74}1SD,IOSD 
I· . '-"~A 1 ( 2 T 1 (l ) 
D ''I"'=Io~D/TSn 

n~\T IS THF RATTO rF II\PUT /OUTPUT SCALES 

IN MI OWNS 



.!=' 
~ 

c 
(" 

c 
c 

1 c 0 

c· 
c 
c 

c 
c . \ .. c 

f 'P:cFRP*DPIIT 

F~~nR I~ NOW THE EOUIVIILE~T ERROR AT INPUT SCALE 

~'')""N 
r-,io<MIIl( T4} 
r~·-J~J~=f'-/S 
_l:l::l 

D'i 101 JJ=l,NNNN ... 

'! i.:. t..r) I !\ G X AND Y C 0 C R D IN ATE S , 5 SETS 1\ T A .T I ME 

n~~0(5,102)(X(JD)oY(JC),X(JD+l)tY{JD+l),*(JC+2),V(J0+2lo 
* '< ( .J D t 3 ) , Y ( .J D + 3 ) , X ( J f) + 4 ) , Y { J D + 4 ) } ·'· 

y 'f ( .J I) ) =X ( J 0 ) I t 0 0.0 • 

SCALlNG X AND Y COCRDTNATESoPURELY FOR UNE PLOT\ING PURPOSE~ - w ---··-· ·-----···-··· ·-·----- ··-·-·- -···-··-·-·---···---·· .. ··--····. ····-- .. ···-·-. ... ..... - . -·· .... ·-
I-~, X~(Jn)=Y(J0)/1000. 

YY(JD+l)=X{JD+l)/1000. 
YY(J0+2)=X{J0+2)/1000. 
YVIJ0~3)=X(J0+3)/1000. 
V~(J0+4)=X(JD+4)/1000. 
Y " ( J D + l) =Y ( JO + 1 ) / 1 0 0 0 • 
>:"'( .lfH?}=Y( J0+2)/lOOO. 
X!IJ0+3J=Y(JD~3l/IOOO~ 
:'< '< r .J 0 + .t'\ ) -=Y ( JD +4) I t 0 0 0 • 
J ,.) ;o .JO + 5 

... 

1 c 1 
c 
c 
c 

Ci'''T I 1\UE 

S~\PC~JNG FOR MAXI~UM AND MTNT~UM COCROIN~TES,PURELY FOR UNB PLOTTING 
PURPOSES 

D '~ 1 3 ~ J J= 1 , N 
- iF ( x t JJ J-~-c;·t ~ ;a..rAXoT:><MA xr:;=xl-:rJr-· 
JF~X(JJ).LToXMTNO)XMIND=XCJJ) 
Ire\ Y( JJ) oGToYMAXD)'I'MAXD=Y(JJ) 
rrc( Y{ JJ} oLT.YiviiND)YMII'\D=Y{JJ) 

1.::::; cc:; TII\UE 
X~\XD~X~AX0/1000o 

Y~~:'<O=YM.XD/1000. 
X" l ~ID=Xr--1 t 1\D/1 000. 

··· Y"'~' 1\'f)=Y!Vll\oli·ooo·;-----
x"~I'!G=XMTND-2. 



+="" 
CP 

r;c;q 
u: ~'3 
l cIt 
1 C? 

lf7 
c 
c 
c 
c 
c 
( 

~~~ 

c 
c 

v ~~ r r'J G.,., Y M T 1'\ 0- 2 • 
':-•IIXG=XMAXO+?o 
Y ''·XG-::YMAXD+-2. 
f :··;PMAl(' I ,2F20.5) 
c ·>•n! 1\UE 
r:' )[:; f~ A T ( (l F /1 • 0 ) 
;·,~ .:MA"T('.'i(F7oOt1X,F7oO.lX)) 
,._. 7 t T E ( 6, 1 6 7) 
•. ' )'."lr'~ A 1 ( I 1 I ) 

rc '" PUiTT I NG--SEOUF.I\Cf. US-ED-· r.N- UN!'l tiWPUTE~ !=LCTT ING SYSTEM". 

:: L-\G-=1 GIVES PLOT CF CRIGTI'AL CCCt.IJtNJITES 
u·L../\1. = 2 GIVES PL!1T CF PACKED COCH<Dti'\ATE::S 

r.: ,~ L L t E V l C E ( 6 l 1 ) 
(.\ L L /HH:: fl( 2 • , ?. • ) 

•, 

r~LL CRIO(YMING.X~TNG,YMAXG,XMAXG.1 •• t.) 
1 ;-: { IF[ A"G-.E (l-;; 1TC~ [1:-- p P.l'\'TCR{T:f I ) ... 

I~(IFLAGoNFel)CALL PRI\TCH('*') 
f r ( IF LAG ol'-: E • 1 l N·= I J t 
r\LL ~FTPLl(YMlND,,MIND,Y~AXD,XMA~Dl 
l r ( T r LAG • N E • 1 ) CALL N 0 W PL T ( 0 • • X X ( I ) , V Y ( 1 ) ) 
If( IFt.AGoNE.t)CALL NCW~LT(looXXD(t},YVD(l)) 
T ' { l rt. /\Go r 0 • 1 ) CALL N 0 \'1 PL T { 0., X X ( 1 } , Y Y ( l )) 
D.--, 1.1"' IJ=?,N 
rr·( TFLAG.NF.tlCALL I\O~PLTC1.,XXDCTJloYYOCIJ)) 
1"( IFLAGoEOol )CALL NO\'IPLT( l• tXX{ tJ) ,YV( fJ )) 
C~~TI~UE • 
1' ( TFU\GoNE.t)CAL.L NCWPLT( l.,XX(NC),VY(ND)) 
C'i.L ENOPLT 
Ii-CTFLAG.NEol)GQ TC 7968 

C ....... -. r) •· \1 I (f- A"SSTGNMEN"TS-AI-UN!1--;.;;c;;; - . 6--- IS .. THE L T NF PRTNTFR 
C ~ fS THE CARD REAOER 
c 
7<;6<; t PF 6 

r n: 
T PO 6 

c 
C Ci~'JFS Foq INO 1 VI OlJAL tJAP ELE ~E NTS • THE PRESENT SYSTEM ASSUME$ ALL COC1ROS 
C !•I '' L HF OF- THE SAMF "ELEMENr-··-···-- .. -· ···--·· -----·-- -------·----· -------- ·---
C 



+=' 
\0 

T ;;t; = 1 
r ::neD::: 1 
! ( f1 :-:: l 
r · ··. t = 1 
1 '1 ;:· (;::: 1 
I :;CilF=tSC0-1 

c 
c 
c 

lSCOF FCRMER NU~AER OF OUTPUT POINTS 

\ 

rn ,, '~:rm 
c 
C [P~ IS NU~BER OF DIGITIZER STEPS 
c 

EPS!=l."i*EPS 
f n :::>-: -= e • 0 *E P ~ 
C 2·· l 1 • 615¥EPS*EPS 
Ct::::n.0008CJ4*EPS 
cJ-=-..f32*EPS 

(--------·---------· ----~--------·-------. --·------------
( 

c 

\ 

2 
c 
c 
c 

rnEFFIClENTS OF HYPERBOLA 

w{J~':G=O 
tP-;::;1 

1-XP-= X ( \ ) 
. YP"=Y ( 1) 
' Xl=XfJ ··--· · -- v·r-= Y !-' 

J=l 
TF{ Tr> .EQ.I\} IFLAG=2 
IF(l'i.E~O.N}GO TO 183 
no? T=lt2 
rJXX-:::X C Ir.+I )-X{ Ifl+I-1} 
DYY==Y ( IR+ I )-Y ( T8+ I-1) 
DS=I.C/SORT{DXXtDXX+DYY*DYY) - -"O>,A t r l-= r:> s·".c r:fx ,c ---------·----------------- ·-··-- ··----- · 

T,~J\ IS COS 

TA=O.~*(TAA(l)+TAA(~)} 
c 
c 
c 

T~ AVERAGE OF 2 COSINES 

--- .. ... - -- .. ·r r~:::s q :~ r n:: T-A¥T AT. 
c 

;!; 



Vl 
0 

c 
c 

c 
c 
c 
.3 

4 

r::: 

c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
t 

19 

1 € 

Tn COR~ESPONDING AVERGE SINE 

~~c 3 1\N::,rs.·l\-· ·-- ------------ · ------·· 
1F(:\i3~CTA*(Y(NN)-YP)-TE*(X(NI\)-XPl)eGT.EPSE) GO TO 4 

~RF PCINTS IN TUEE EPSE WIDE 

CON 11 NUf2 
t,JN ::N 
I :~ 1 

- c: r .::: o ~ 2 
tnX::X (NN)'-XP 
f'•YY-=Y{NN)-YP 
n~I.O/SQRT(DXX*CX,+OYY*DYY) 

0 TS l~SFGMEI\T LENGTH 

T\=8*DYY 
-··-··----·-----~-------------·------~-·-· -- -----·-··-----

TX lS S!N THETA 

·rv:=O>.~CXX 

TY IS C':OS THET/1 

n rl (, I = I B • 1\ N 
D N 1\ '=I - t EH· r ----- - - ------ - ----

I r·( ·'\DSCTX*( X( I )-XP)-TY*(Y( I l-YP)} oGT.EPS) GC TO 16 

(HECK RIGOROUSLY I~ POINTS IN TUBE EPS WIDE 

cn~'T I 1\UE 
Jr(NNoGE.~) GO TO ~0 
Ir(L.EO.l) GO TO 18 

r !'' ( 1\ 11-STS iii<DNN)-;Ll:-; leO}-GT-T a--3-0 -- --
ST>-0.5*ST 
l -=·-I 

lF{ABSCST*DNN)eLEell GO TC 17 
N~l=- ~-iN+ l FIX ( S T>.'<DNN) 
IF(NNaLEoN)GO TO 14 

'·~1--I=N 
GO HJ 5 

1 7 "- \! = r-.N+ L---
14 if(I\NeGE.IB) GO TO 5 



Vl 
f-J 

.\. 
I 

•-:' .,. { r:J 
c; ··1 T t1 C1 

lf. T:'CL.EO.l) GO TO 1<;. 
(; r: T 0 19 

3 C ~;: _ ~; ( J ) = 1 • 0 /D 
F UJN oL T • N) GO TO 7 

c 
C ~~ 11 Tf n 1\ A L P n T N T t U T C F C R t G I 1\ .A L C 0 d n D I N .A T F. S 
c 

.9('3 
9(:2 
c 

L''-. '162 I·=l,N 
r-; '<riA T (; --, -.-so)C;2Fl2;;~n--
r ···:r•-r r 1\UE 

CALL QEDOUT(J.XltYltSEG,X(N),Y(N),EPSi 
c ~ 

C U!.,lJJT CALLED TO ~EDUCE PACKED DATA 
c 

c 
c 
(' ' 

c 
c 
c 
c 
c 

7 

R 
c 
c 
c 

"C 
c 

r t\ i_ L CPL 0 T ( J , X 1 , Y 1 , S E G , X ( 1\ ) t Y ( 1\ ) , E P S ) w I' ( I ri • to~-i\i')Tf'T.: td;=:-2·---------------------------- .. ·-- -·------------.. - ------·-- --- -- .. -------- -------- ---- ------------ .. --------------
1 .... lF( tn.EO.N)GO TO 1B.3 
~ ISCOF=ISCO~ISCCF 

TSCOF NOW NUMBER OF OUTPUT FCINTS IN THTS ALOCK 

J.TYP-:::c 

Ptlf_-SCNT SYSTEM- tS SET UP··-n:r COUPLE ERRCP- EPST1~0!'1l--AND Rt:_;;TIFRATF ________________ _ 
rr ONLY ONE PACKED SET CF DATA IS WANT€D(t.E. TO THE ORIGINAL ERROR SPECS 
R[An IN),REPL~CE THE ~WO FOLLCWING CARDS WITH ONE CARD ---STOP 

ITLJ\G=2 
C.C T() 183 
! :J c: '! N + 1 
xrc.· ---=XF 
ypr·· -" YP 
X~J~X(I\N) 
y;, ,- Y ( NN) 
TJ-·U*(XP-XPP) 

COS OF LINE SEGMENT 

___ T? .n *J Y_f:l=-~P~J- ___ . _ 
~TN OF LINE SFG~ENT 



c 
(. 

c 
c 

c 
c 
c 
c 
( 

c 

c 
c 
c 
c 
c 
c 
lC 

1 1 

Vl c [\) c 
c 

c 
c 
c 

c 
c 
c 

12 
c 
c 
c 

c 

'"•"1 '.J 10 t:::IAtl\ 

CHECK POINTS 8EYOND SEG~E~T 

nX(!)=Tl*(X(I)-XP)+T2*{Y(I)-YP) 

OX DtSPLACE~ENT II\ LI~E DIRECTtnN 

!'IY( I) =Tl*( Y( I l-YP}-T2*{ X( I )-XPl 
- - .. ·-·-----

DY DISPLACEMENT IN DIRECTION NnR~-L TC LINE 

! ': ( D X ( I ) • L F • 0 • 0 ) G C T C q 

IF LINE TURNS EACK PAST FIRST POiNT THEN CORNER POINT 

f"( An~CDY(!) )*{0X(I)+C3)-(Cl*OX{! )+C2).GT.Oe0l GO TO 11 
----------

CHFCK [F DY STILL WITHIN HYPER~CLA 

Cf"NTTI'\UE 
G'; TO 9 
c l. ~~ = s r G N < c 1 • n v < I 1 l 
I ''I:::STGN(C2.DY(f) l 

CtP,C?R SIGNS SAME AS DY 

r-:•1:-<==DX( T )-DX( J-1) 

DDX DIFFERENCE EETWEEN LAST 2DX'S 

Y!{/IUS(ODX)oGT.2.0E-8) GC TO 12 

I s·-llYPERHOCA- C{Jr E-v-1\Tt.ARI.:Y --NOR TV AC--L INC -To J1 XIS - ----·- - ·---

D-~;=llX(IJ 

G (' T 0 13 
!·' -=( DY( I )-DY ( T-l) )/ODX 

AL IS SLOPE OF LAST TWC PGII\TS 

· o ,.. ' ' v n >:.:. tiL *-o·x err-·---- -------------··· ·------------ --------- --------- ---------



Vl 
w 

c 
c 

3 1 

1 :.::' 

1 E 

9 
( 

c 
c 
c 

c 
c 
c 

0 IS Y INTERCEPT OF STRAIGHT LINE eETWEFN LAST ~ PCTNTS 

'"C=C tr.>~C3-C28 
"''?'cl= r: x < r > 
'~'( I=!JX( I-1) 
· ' 1 I = ( C 1 f1 ':' D X Fl R+ C ::' B ) / ( 0 X fJ A+ C 3 ) 

.. ·~ 1 = C X 'J P + C 3 
')'-f'\2=C3*0Ft\l 
"'<TR=CXt 
•, l . :"=CCC/ ( n X I 8 * 0 EN 1 +DE 1\2 ) 
; \o=Qn1-JILP*CXRP. .. ·- - ·---

;; ~ r = < c - o e l 1 c A L e- A L l , 
f''(AO~(DXI-DXTR)oGToOo!':*DELTI\) GC TO 31' 

Yf=(C1R*DXI+C28)/(DXI+C3) 
r>~:::scqT(OXT*DY.T+CYf*OYI) 

1 ': :-: D Y T I S f M 
V::iJXI/Sf:'"-" 

li=T-1 ::r; 15 L'=IR;tr ________________ _ 
-=(AR~(TX*DX(L)-TY*DY(L))oGT.Ef:.'S) GC TC 'I 

-- ·: '·lT I 1\ UE 
'= T 

..l + 1 
: G ( J ) = S I G 1\ ( SE M, D Y T ) 

,, ., ,_,-=X j:: 

''i'=YP 
l.OISPM -------

' '\I=CXI-DX(I) 
YT=fJYI-OY(I) 
.:::X( T)+Tl*f1DXT-T2*0DYI 

'l.c::Y( r )+Tl*DDYI+T2*DDXI 
(J' TO f1 

CALL REDOUT(J,Xl,Yl,SEG,XP,YP,FP~) 

•; 'LOT CIILLED TO RfCUCF PACKED Dt>T A 

-\ l_l_ \..' P L !l T ( J t X 1 , Y 1 , S E G • X P , Y P , F P S ) 
( TFI.F.:OoN)IFLAG-=2 

''( I9 .F.O.N)GO TO 1f33 

OLT~UT 9LOCK CF REOUCFD DATA 
-----------~-----· 

TO 1 



Vl 
+ 

?<;EE TFLAG=l 
c 
C . Ci\LCULATlON ·oF PJICKtf\G- FACTOR~ /lf\0 PRTNTOUT-OF.ERr~ORS-1\ND SCALFS 
c 

FACTP=FLQAT(N0)/(FLOAT(IJI)+2.0) 
wRITE(6,5432)FACTP 

54~2 FORMAl(' 1 a20X, 1 PACKING FACTOR = •,F20.2) 
XERR=ERR/ORAT 
WRITE(6,5434)XERR 

~ll3il ·FORMAl( 1 1 a20X, 1 ERROR AT REDUCED SCALE IN MICRONS = 1 ,F20.10} 
543~ .FOR,V1AT{-,---,~20X~--,---ERROR-AT- ORIGINAL SCALE·:··--•,F2o·;-tor-- ----- ----

wR I TF. [ 6, 51133 )EPR 
WRITE(6,5435}ISC,tbSO 

~43E FORMA1( 1 '•'INPUT OEf\CWINATOP = 1 ,.110, 1 OUTPUT DENOMINATOR= •, 
*I 10) 

c 
C THIS SECTION DOUBLES THE ERRCR lUrE AND REPEATS THE PACKING PROCEOU;;r 
c 
···----------ERR:=-ERR-¥Z~----·--·-------·--·----- -···-· -· -···--·-- ·-·-- ---·-··--

! J I=O 
IB=N-1 
N=ND 
IF(ERReGT.lOOOOe)STOP 

C MAXIMUM ERnOR ALLOWED = 10000 NICRCMETRES 
c 

4C 
GO TO 79(:9 

F 0 r; I-1A T ( ' --' ;2 X, c C <5 X, ll~) , 5X, F il • 2 } 
END 



c 
c 
c 
c 
c 
c 
c 
c 

c 

c 
c 
c 
c 
c 
c 
c 
c 

Vl 
Vl ( 

c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 
1 

c 

:·: ''PCllJTINF. RFDOUT(J,Xl 9 YltSF.:GtXP,YP,EPS) 

)~DOLT• OUTPUTS RESULTS ·oF -O.i\Tt~FD CI\TC TT.APO .AFTF.:f::r PFDUCTION 
J NUMnFP OF SEGMENTS IN THIS RFCOPD 

Xl,Yl I~ITIAL PCI~T lN THIS ~ECORD 
?~~ ARRAY OF SFG~ENT LENGTHS••• J OF THEM 
~p,yp .FINAL POINT tN THIS RECORD 
rPS TOLERANCE SPECIFIED FOR THIS REDUCTION 

fl!'i'::N!::.ION St=:G(J) ,ISSEG{20) 
-,, tV ALENC E fl(JT PUTS i 0 -I NTt:= GEP S. 

c: ''-'~10~/t~!OLT/ITP,ITAP,ITAPl: 
C ; ' 0~ 0 N /FE A T I I CD E • T S U 8 CD ,. I S C I , t S C 0 t l S E G 
T : I\P0=6 

• 
I~ INTERMEOIATE STORAGE OF DATA REQUIRED,CHftNGE UNIT NUMBER 

T CD F9I SURClT-ARc-CODl=- ANIT--SUECCDE CF-FFATURE 
.I NL;MRER OF SEG~ENTS IN THJS RECOf~D 
IS\.C OUTPUT RECCRO !\UMBER 

~:--( ISCO oGT. ~1 )GO TO 1 
r :"YG·-=0 

!SEG NUMBER OF SEG~EI\T LENGTHS OUTPUT PER FEATURE 

rxl=Xl+o6 
TYl=Yl+o5 

r '' rT TAL PO I NT MADE AN t NTEGER 

''':-' T T f ( IT A PC • 4 0 } I X 1 • I Y 1 , I C 0 E ~ I SUP. Cr. 
Tf PS=Ef'S+.5 

·---·-- -- ---··· -- -- .. ----- . --------------
~FT ERROR AS INTEGER 

·~! '' f T E { I TAP C1 , l~ 1 ) I E P S 

TF FIRST RECORD CF FEATURE WRITE FIRST POTNT X1tYl AND EPS 

1'-<D=XP+o5 
! Y~'=YF+ .• 5 



Vl 
0\ 

(. 

c 

c 
c 
c 

lOci 
c 
c 
c 

c 
c 
c 
4C 
l~ 1 
42 

''.>\KI?: TNT~GEHS CF FINAL PCINTS 

• ' i I T F ( IT A P 0 ,· 4 0 ) ·r X P • l V P • t S C ·c ; J . . 

r>~ITF FINAL POINT XP 9 YP RECORD fSCO J.\ND 1\:0 SEG LEN(;THS J 

1 •: C ll = I S C 0 ~ 1 
T r: { J • F 0 • 1 ) RET U ~ 1\ 
r···' toe t=l.J 
T .. :; E G ( I l = S E G ( t ) +. 5 
C. 'HI 1\UE . . ..... 

n~fii\'GE sr-GMENT LENGTHS TO INTEGFI<.S 

T ;r~,;= I SFG+ j 
,,; '" r T F { IT A PC • 112 ) ( I SSE G ( I) • I: 1 , J ) 

•-,r< r 1E J S>:GIAENT LENGTHS 

r: ;-: r ~.: r ~ f\. 
r i~ · · ': :\ 1 ( • 
F'J::':.!\T( I 

f n c· '1 ,II, 1 ( 1 

F:' !\ !) 

'~2t6,2I4) 
•,[6) ,, 
1 o20Xo•SEGMEI\T LENGTHS ARE'.20X//2016) 



V1 
---l 

~UPROUTINE UPLOT(~,xJ,YitStXN,V~tE) 
c 
C '·' 1 !'f1LTlf'll: TO UNPJ\CK r:ACKED OATf:. 
( . 

c 
c: 
( 

c 
c 
c 
( 

c 
c 

(' 

c 
c 

1S9 

c 
c 
c 
2CC 

c 
·c 

c 

f"i'TNSION S(2Q),GX(?.2),GV{22) 
cnvNON/INOUT/ITVP,lTAP,ITAPO 

c···;·~GN/01\VE/XXO( 5000) oYYD ( 5000) ol Jt 
D/- fl\ ~Tilt ,QOOO/ 

Tf \ CQI\:Vt:f1StON ___ _o~ UNI~?- lS rH=:CVH<FD,CHANGE STI 

~ 0 ('1 .LE. 0) RETUR!\ 

., !_r- C1 FOR DUMMY CALL 

r:·p~.GE.2) GC Tt;•?OO 

F 1 ~'-' STNGLC SEGMENT NEED 01'\LY PLCT Ff\0 POINTS 

';-'Y;·XN*STI 
i:~Y.::YN*STI 
VI'H TE (6,199)EX,FY 
T.:i=TJI+l 
y v r-- c r J I l =E v 11 o o o. 
YV!'( IJTl=EX/1000. 

:;·--',:_I r-,r; FOR- UNE! PLCTTTNG PURPOSF.S Or-LY 

T ,-1_1\G-=? 
f"'' ;vA'T(' ',IIX,'VPLCT CCCRI")INATES AnF 
r( :_: -~ u PI\ 

C•\i_r-ULI\T!C'N OF UNFIICKII\G 

r; -,. ( 1 r= 0; 0 
(,'-fl)--=0.0 
\,'<(?)=5(1) 
G \ ( ;' ) = () • 0 

------ ·- ---· --~ -··----------

c : • "n • o o o A 9tp~'!7 
c-n.·.-=t3.615*E*F 
c:: <-.:;?..P2*F 

1 .,2F20el0) 

r~ 0 r=:r F S - 0 F tWP EP E CL"A _____ --------------------------- ---- ---- ----



\.J1 
CP 

1\0-=CO?*Cn<? 
Al=2*ClJ1*r:02 
1\~=COt,~COl 
V=~ISORT(FLOAT(~)) 

~·1 ;?.o t=2,r-.-
',:;=sc r > *S( t > 

ST=/IQS(~(I)) 
>1 0 =CO 3 *C 03 *S Y 
Ol~2*CO~*SI+(03*C03 
P2=2*COl+St 

·-.:c:!\OS(S( T l) 
~ 1 ''?::: ( ( ~ 2 ~'X) +A 1 ) >!<X-+ A 0 

U3:::((X+P?)*X+81)*X+80 
X=Sr-P:>/P3 
V=(C0l*X+C02}/(X+C03) 

I 

• 
c. 
2C 
( 

c 
( 

24 

c 
c 
c 

c 
c 
c 

c 

IF(A8S(X*X+Y*Y-SS) oGT. ft8S{S(IJ*V)) GO TO 21 
Y=SGRT( SS-X*X) 

\'o:-S!Gf\( y,S{ I l) 
r 1 ,.,< G-i{et l-t,-xcT.:-cn;Ae~-csrr;.. rn·-- · ·- --------- ····-··-··-
' ::.-:::(GY( I )-GY( t-1) )/ARS(S{I-1)) 

Tl,T2 COSt SIN CF L!NE SEG~Ef\T /INGLC PEL TO AXIS 
·H T+l):::GX(J )+Tl*X-T2*Y 

r: Y ( I + 1 ) -::: G Y ( I ) + T 2 * l< + T 1 'l' Y 

GX,GY RFL COORD~ OF END PT CF LTNF SEG 
MM= r.t+ f ... - --------- ... 

0=lo0/(GX(MMJ*GX("M)+GY(MM)*GY(~M)) 
r l={GY(MM)*(YN-Yil+~X(~M)*(XN-XI})*D 
r2={-GY(MM)*(XN-XT)+GX{MM}*(YN-YJ))*D 

EVERYTHING EXPRESSED I~ DIGITIZE~ STEPS 

:~']Ill I=2,MM 
':: x=< x·r+·ci·,~e;xrn·.:.c·2;rc;-vnn->~'sTt 
~Y=(YI+C2*GX(I)+Cl*GY(I})*STI 

COMFUTE E~D rOINTS FOR EACH LINE SFGMENT 

<ilTF(6,l99)EX,EY 
JT=IJT+l 
X()( I jf )=EY/1000. 
v o c fJ 1 r=r: xxro o·a. 
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UJ 
VI 
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a. 
a:: 
:::> 
a. 
C) 
z. 
..... 
to-
t- 1/l 
u 1-
..J z 
!l. w 

:£ 
cr e> 
z w 
::> u; 

a:. w 
:J Z LJ 
tL ..., :::> 

..JZ 
\: .(\; 
L.. II ~t-L 

<..::~z~ 
_; <C~.C:J 
< . •---' 'C" \..! ,.~. ::~: 

V ..., t.·z 
\...... c.: tL 

UV V<r 
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