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Abstract

Harmonic downward continuation (HDC) is in the focus of this thesis. The
main question we try to answer is whether the Helmert gravity anomaly reduction
from the Earth’s topography to the Helmert co-geoid through the Poisson surface
integral is a well-posed problem or not. From the mathematical point of view, the
Poisson surface integral is nothing else but a linear Fredholm integral equation of
the first kind. Using the Helmert 2"¢ condensation technique, a transformation of
the Stokes (geodetic) boundary value problem (GBVP) into the Helmert space is
performed. Following that, the 3-D solution of the Helmert disturbing potential
on and above the Helmert co-geoid is obtained by solving the (exterior) Dirichlet
boundary value problem (DBVP) for the Laplace equation.

It is shown that the HDC, for the 5 x 5 grid-size, is a well-posed problem in
Hadamard’s sense. Small variations of the Helmert gravity anomaly in the Earth’s
topography produce reasonably small variations of the Helmert gravity anomaly on
the Helmert co-geoid when the first kind Fredholm integral equation is used.

In order to measure the “magnification” by the HDC, we provide an effective tool
for analyzing the exact nature of this problem in the form of the Picard criterion.
The Picard criterion is a technique that indicates whether the sequence of the ratio

becomes convergent or divergent. In the core of this thesis, a technical question will

be asked:

“How do the properties of compact or discrete Picard criterion relate to
the DBVP for the HDC problem? ”

The answer to this question is important from both fundamental and practical points
of view, because the criterion shows how the existence and stability estimate of the
HDC problem can be used. The principles of the criterion are illustrated and the
results of two applications are presented. For real-life application, we restrict ourselves

to demonstrating a discrete case. Hence, we will be dealing with the discrete Picard
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technique (DPT). We concentrate on the finite-dimensional non-symmetric matrix of

the HDC arising from the discretization of the integral equation, which are related to

an eigenvalue system, referred to as the quasi-eigenvalue decomposition (QEVD).
Numerical results are presented throughout the thesis to illustrate the applications

of a DPT studied, with emphasis on stability and existence of the HDC problem.
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Chapter 1

Definition of The Problem

1.1 Definition of The Problem To Be Solved

The classical formulation of the geodetic boundary value problem (GBVP) (Stokes,
1849; Heiskanen and Moritz, 1967; Sanso, 1977, 1997) for solving the disturbing
potential! T'(r,2) in harmonic space has been recently reformulated by Martinec
et al. (1993, 1994a, 1994b, 1998) and Vanicek et al. (1994, 1996, 1999), and is
known as the Stokes-Helmert scheme (Stokes, 1849; Helmert, 1884) for solving the
GBVP. The beauty of the Stokes-Helmert formulation is the transformation of the
GBVP into Helmert space IH, where the potential to be determined can be fulfilled by
harmonicity of the Laplace equation using the Helmert 2"! condensation technique.

This scheme is of special interest for the determination of the geoid imbedded in a

!The disturbing potential is generally expressed as (e.g., Vanicek and Krakiwsky, 1986):
T(T’ Q) = W(Ta Q) - U(Ta Q)a

where W is the Earth gravity potential, which is composed of gravitational (attraction) W9 and cen-
trifugal acceleration W€ potentials, and U is the reference normal gravity potential of the Somigliana-
Pizzetti type, which is composed of the gravitational part of the normal potential UY and the cen-
trifugal acceleration potential U¢. Whereas most people think of the centrifugal potential as being
a harmonic function, they are wrong even though the potentials W¢ and U¢ will cancel each other
out when one puts into Laplace’s equation. The centrifugal potential is not a harmonic function
(Moritz, 1992).



harmonic space, where the harmonic space is given as a Helmert space (Vanicek et
al., 1999).

A classical geodetic boundary value? (GBV), for example:

ar 10y
—+ =T =-A 1.1.1
oh "5 oh g (113)

revisited earlier by Zagrebin (1956) was recently modified by Vanicek et al. (1999).
The main modification is the transformation of the GBV into an equivalent form
involving the Helmert gravity anomaly Ag” and two ellipsoidal corrections €, and
€s5g- In the Helmert space setting, the GBV is a problem, particularly for a first
order non-homogeneous partial differential equation®, which has values assigned on
the physical boundary of the Earth’s topography in which the problem is specified:

or
or

2
+ =T"

. = —Ag"(r, Q) + € (11, Q) + €5,(r1, Q), (1.1.2)
(Tt’Q)

(Tt 79)

where T"(r;,€)) denotes an unknown Helmert disturbing potential, (r;, Q) denotes a
point on the Earth’s topography, r; is the radial distance of the Earth’s surface from
the center of the Earth, Q = (p, \) is the geocentric solid angle which is a function
of geocentric co-latitude and longitude. As put forward by Vanicek et al. (1999), the
Helmert gravity anomaly on the Earth’s topography is given as (the symbol := means

that the left side is defined by the right one):
Ag"(re, Q) = g"(rs, Q) = A[(re = (2"(r1, ), ], (1.1.3)

where ¢"(r;, Q) denotes the Helmert gravity, and v[(r; — (Z"(r;,Q)), Q] denotes the
normal gravity located on the Helmert telluroid?, and [(r;— (Z"(r4,Q)), Q] denotes the

2This is also referred to as the Robin boundary value (Dancer, 1998). The Robin boundary value
is a third boundary value, which is a linear combination of the Dirichlet and Neumann boundary
values (Gustafson and Abe, 1998a, 1998b).

3Physically speaking, the Helmert gravity anomaly with the two ellipsoidal corrections is com-
posed of a part from the induced potential (or from the vertical gradient of Helmert gravity anomaly)
and a part from the undeformed Helmert disturbing potential in multiplication with the inverse radial
distance.

4The Helmert telluorid is defined as equipotential surface of the normal gravity field.



corresponding point (point in the same direction §2) on the telluroid in the Helmert
space, and Z"(r;, Q) denotes the vertical displacement of the corresponding equipo-
tential surfaces belonging to the two gravities. Throughout the thesis, we will adopt
a geocentric coordinate reference system for describing the Helmert disturbing poten-
tials (e.g., McCarthy, 1996).

As mentioned in the above paragraph, to have a proper procedure for construct-
ing the GBV, two ellipsoidal corrections must be taken into account. First is the
ellipsoidal correction for the gravity disturbance, €s,4(r;,€2), which comes from the
difference between the derivative of the potential 7" with respect to the plumb line

of the normal gravity field and the geocentric radial derivative of T, i.e.:

107"
€5g(11,2) = —fsin2¢p ——— , (1.1.4)
r Op (re.9)
where f is the geometrical flattening of the reference ellipsoid, and ¢ is a geocentric
co-latitude. Second is the ellipsoidal correction for the normal gravity field, €,(r, ),

which is derived from the second type of Bruns’s formula (or the vertical gradient of

the gravity) (e.g., Vanicek and Krakiwsky, 1986), i.e.:

, (1.1.5)
(T‘t,ﬂ)

€n(ry, ) = — 2 [fﬁ—F f <COS 20 — %) TTh}

where m is the geodetic parameter. Equations (1.1.4) and (1.1.5) have been exten-
sively studied by Bruns (1878), Molodenskij (1949), Zakatov (1953), Zagrebin (1956),
Jekeli (1981a), Cruz (1986), Heck (1991b), Vani¢ek and Martinec (1994), Martinec
(1999), and Vanicek et al. (1999).

The left-hand side of Eq. (1.1.2) shows that a Helmert disturbing potential T" is
a harmonic function of a 3-D position. Equating Eq. (1.1.1) with Eq. (1.1.2) on the
right-hand side gives:

Ag(ry, Q) = Agh(rt, Q) — en(re, Q) — €54(1, 82). (1.1.6)

It is known that a product of the radial distance with Helmert’s gravity anomalies



from the Earth’s topography down to the Helmert co-geoid® is a harmonic function
(mathematically speaking, r,Ag"(r;,Q) satisfies V2 (rtAgh(rt,Q)) = 0 ). Instead
of taking the GBVP into account for determining the Helmert disturbing potential,
we focus on the other boundary value problem introduced in geodetic literature for
solving an unknown harmonic function that is used to take on prescribed values at
points on the boundary, known as the exterior Dirichlet (boundary value) problem
(DBVP) (e.g., Kellogg, 1926; 1967). Here, the problem is to find the Helmert gravity
anomaly on the Helmert co-geoid Agﬁg(ﬂl) (or Agf:g(rg,ﬂl)) continued downward
from the first term in Eq. (1.1.7) when the linear Fredholm integral of the first kind

has the form:

TC: ! ’ !
R (i, ) = 2 / Agh (VK (rp 1rg; .2 )Y (1.1.7)
Q

where K (74, 7¢.4;9,Q) denotes the Poisson kernel and 7., is the radial distance of
the Helmert co-geoid from the center of the Earth. In other words, in order to
compute Agh g(Q'), surface gravity observations Agl(Q) (or Ag"(ry, Q)) multiplied by
the corresponding radial distances (or r;), which are to be harmonic functions of 3-D
position, must be downward continued through the Earth’s topography to the Helmert
co-geoid. This procedure is referred to as the harmonic downward continuation (HDC)
problem. A question to be addressed is the uncertainty of whether or not a product
of the radial distance with two ellipsoidal corrections is a harmonic function. The
integral representation has the form:
e [€n (e, ) + €54(11, Q)] - 7;16—:7: /Q/ [en(rmg,ﬂl) + €59 (Tergy Q)| K (71,7003 Q,Q)dS .

(1.1.8)

5The geoid (Listing, 1873) is defined as an equipotential surface of the Earth’s actual gravity
field, inside topographical masses on land, more or less coinciding with the mean sea level at sea
(Vanicek and Christou, 1994). In the actual space, there exists masses located above the geoid.
Using the Helmert 2" condensation technique, all the masses can be condensed in a layer. Hence,
this transformation of the Earth’s gravitational volume and surface potentials causes a shift of all
equipotential surfaces. In the Helmert space setting, the shifted geoid is called a Helmert co-geoid.



We will not discuss here, but will extend in future to report the sum of two ellipsoidal
corrections on the Farth’s topography, which is a harmonic function of 3-D position.

The HDC problem has been studied in various formulations. We can find it de-
scribed, for example, in Martinec (1996) or Vanicek et al. (1996) or more recently
in Sun and Vanicek (1997, 1998). Through an extensive generalization of what Fred-
holm (1900) called a linear (now called Fredholm) integral equation of the first kind,
the HDC offers a tool for determining the Helmert gravity anomaly on the Helmert
co-geoid, which turns out to be a well-posed problem according to Hadamard (1902).

For a problem to be well-posed in the Hadamard sense, it must meet the following

criteria:
1. For each given set of data, there exists a solution.
2. The solution is unique.
3. The solution depends continuously on the given data.

If a problem does not meet one (or more) of the above criteria the problem is con-
sidered to be ill-posed. The posedness of the HDC problems has been broadly in-
vestigated by many geodesists, e.g., Moritz (1966a, 1966b), Krarup (1969), Schwartz
(1971, 1978), Grafarend (1972), Sjoberg (1975), Rummel and Gerstl (1979, 1981),
Engl (1982), Neyman (1985), Ilk (1987, 1993), and Engles et al. (1993). A practical
approach to the HDC problem where a discrete set of Helmert’s gravity anomalies
on the Earth’s topography is continued downward on the Helmert co-geoid was put
forward by Vanicek et al. (1996, 1999) and Martinec (1996). In the year of 1996,
Martinec and Vani¢ek et al. independently confirmed that the HDC, for the 5 x 5
point/mean Helmert gravity anomalies, is a well-posed problem.

When dealing with the HDC problem, one runs into a stability estimate, meaning
that the Helmert gravity anomaly on the Helmert co-geoid (the output) depends con-

tinuously on the input. In other words, the output is stable under small modifications



of the Helmert gravity anomaly on the Earth’s topography (the input). In order to
measure the magnification by the HDC, one transfers the problem to be solved into
a spectral form (or power series form or summation series form), known as the Pi-
card criterion (1910). The Picard criterion is a technique that indicates whether the
sequence of the ratio turns out to be convergent or divergent. These sequences can
be extracted from a finite series expansion and a finite dimensional non-symmetric
matrix. We restrict ourselves to demonstrating a discrete case. This restriction is
imposed to facilitate the graphical description for analyzing the magnified difference
between the input and the output. We will be referring to the Picard criterion as the
discrete Picard techniqgue (DPT). The DPT, modified by Hansen (1988, 1990), can
also be used for demonstrating the existence of a solution to the HDC problem and
associated with the numerical analysis.

For numerical demonstrations, as a spherical approximation, the radius of the
Helmert co-geoid r,., can be approximated by a sphere with the mean radius R = 6371
km of the Earth, i.e., 7.4(Q2) = R. The radius of the Earth’s topography r, is sum of
R and an orthometric height H(Q), i.e., r,(Q) = R+ HP(Q). This approximation
is acceptable because the discrepancy generated from this approximation is at most
3 x 1073 (Heiskanen and Moritz, 1967). Because of the above assumptions, a new

expression of Eq. (1.1.7) can be written as:
h R h ! ! !
rAg (1, Q) = 4_/ Agh (VK (ry, B; 9, 9)dSY. (1.1.9)
™ Jo

The goal of this thesis is to show how the discrete Picard technique can be used for
analyzing the stability and existence of the HDC problem. First, the discrete Picard
technique can be associated with the so-called eigenvalue system. Two eigenvalue
systems are considered in order to determine two sets of eigenvalues, and eigenfunc-
tions/eigenvectors. One is the eigenvalue expansion (EVE) (Schmidt, 1907; Smithies,
1937) of a modified Molodenskij-Poisson truncation kernel (MMPTK) K (H®, 1), 1)
in a spectral form (Molodenskij et al., 1962; Vanicek et al., 1991, 1996), where v is



a spherical (or an angular) distance between two geocentric angles on the surface of
the unit sphere and 1)y is a radius of spherical cap. Thanks to the addition theorem,
the MMPK® viz the EVE can written in terms of either the Legendre polynomials P;

or spherical harmonic functions Y}, as:

Imi @j(HO: ¢0)

_m(HO:wﬂy/)U) = 9

Pj(cos 1)

j=2
Imax HO
’ ¢0)

—Z

where @j(HO,wo) is the modified Molodensij-Poisson coefficients (Vanicek et al.,

Z Yim ()Y, (), (1.1.10)

/

1996; Sun and Vanicek, 1998), Iy denotes as the cut-off degree of MMPK, Y} (€2)
denotes the complex conjugate of ¥;,,(€'). An eigenvalue system for K :

/

(YVjm(92), Yo (2); Q;(H?, 10) /2) 2<j<o0 (1.1.11)

—3<m<j

is a sequence of spherical harmonic functions, Yj,,(?), Y]’;n(Q ), called eigen-functions,
and finite values of the coefficients @J(H O 4bg)/2, called eigenvalues, satisfying five
properties (see Appendix A). The other is the quasi-eigenvalue decomposition (QEVD)
of any arbitrary square matrix B (e.g., Bjerhammar, 1973; Golub and Van Loan, 1983;
Ren, 1996), where B is a coefficient matrix which has a simple relation with the dou-
bly averaged (integrated) modified Poisson kernel Km multiplying with a scale factor
(Vanicek et al., 1996), i.e

R
B=—Km™ 1.1.12
4mry ( )

The non-symmetric matrix B viz the QEVD can be written in a spectral vector-form

as:

B =) \uv/. (1.1.13)
=1

6The zero- and first-degree terms are omitted because both the bodies of the Earth and the
reference ellipsoid are assumed to have the same mass and angular rotation velocities, and the
origin of the geocentric coordinate system coincides with the common centre of mass for both bodies
(Heiskanen and Moritz, 1967, sect. 2-18)



The other eigenvalue system for B:

(i, V5 A)i<n, (1.1.14)

T

is a sequence of vectors, u;, v;, called left- and right-eigenvectors, and real/non-
negative numbers J\;, called eigenvalues, satisfying five properties (see Appendix A),
where n denotes the dimensionality of the matrix. As usual, the transpose of an eigen-
vector is designated by the superscript 7. For example, v] represents the transpose
of v;. For more definitions in depth, see Chapter 2.

Second, two eigenvalue systems can be associated with the so-called Molodenskij’s
modification scheme. It was Molodenskij in 1962 who first introduced the concept of
truncating Stokes’s integration domain and of modifying Stokes’s integration kernel.
For computational convenience, one only works in a selected area of interest integrated
over a limited spherical cap instead of on the whole Earth. The deterministic modi-
fication of the Stokes’s solution of the GBVP has been broadly investigated by many
geodesists, e.g., de Witte (1967), Wong and Gore (1969), Meissl (1971a, 1971b), Paul
(1973), Rapp and Rummel (1975), Jekeli (1981b), Wenzel (1982), Wichiencharoen
(1984), Sjoberg (1984, 1986, 1991), Vanicek and Kleusberg (1987), Petrovskaya and
Pischukhina. (1990), Vanicek et al. (1990), Vani¢ek and Sjoberg (1991), Smeets
(1994), Vanicek and Featherstone (1998) and Featherstone et al. (1998). In this the-
sis, we focus on the DBVP for the HDC formulation using Molodenskij’s modification
scheme. Put forward and modified by Vanicek et al. (1996), the first kind Fredholm

integral equation can be divided into two zones: the near zone and the far zone:

1. In the near zone contribution (NZC), the integral (Sun and Vanicek, Eq. (24)
and (25), 1998) has the form:

h L R h ! L—?’n O !
(Ag"(r )" = < <Agc:g(Q )) K™ (HO, 4, 0)dSY (1.1.15)
Tt Co
where Cj denotes a spherical cap over the Earth:
_ L 2j+1
K™ (HC 4, 4p0) = K(H,¢) =Y 5 t;(HO, 4o) Pj(cos ) (1.1.16)

J=0



is the modified Poisson kernel with unknown coefficients ¢;, which can be taken
from (Sun and Vanicek, 1998), where K(H, 1)) is the Poisson kernel (Vanicek
et al., Eq. (20), 1996), and the superscript index L is used to represent the high
frequency part of the Helmert gravity anomaly that is related to the cut-off
degree of the K. Equation (1.1.15) is discretized giving a system of linear

algebraic equations, i.e.:
L L
(Agt)” =B (Agh,)", (1.1.17)

which is studied with emphasis on the conditioning of the non-symmetrical ma-
trix B € IR™™" arising from the discretized problem, where (Ag:‘)L € R™!
denotes an input (or known) vector of mean Helmert gravity anomalies on IH;
with the length n and (Aggg)L € R"*! denotes an output (or unknown) vec-
tor of mean Helmert gravity anomalies on Hc, with the length n. Using the
DOWNOT’ package (written by Huang and Vanicek, 1997), our present belief is
that the error as the difference between the exact solution and the approximate
solution of the integral equation for constructing the matrix B is of sufficiently
small. This coefficient matrix B only depends on the orthometric heights. A
method for getting the eigenvectors of B viz the QEVD is important in connec-
tion with a discrete set of Helmert gravity anomalies in the Earth’s topography
within a spherical cap (the input data). A product of the eigenvectors and the
input data (which can be considered as the Fourier coefficients) is defined as

the Helmert gravity anomaly coefficients u! (Ag:‘)L € R.

. In the far zone contribution, the integral has the form:

Dpgh(Q) = — Dagr, ()K" (H, 1), 40)dS2 . (1.1.18)

47T'rt Qlfco
Equation (1.1.18) can be expressed in its analytical form when two physical

quanlities, D,,» and Da,. , are expanded as the infinite series of harmonic
’ gt gc:g’



functions, given as the truncation error (TE) of the truncated Poisson inte-
gration in spectral form (Vanicek et al., 1996) on the Earth’s topography and
on the Helmert co-geoid, respectively. In the spectral domain, the TE on the
Helmert co-geoid can be represented by the cut-off series of harmonic functions
when we use the existing geopotential models” as d priori information on the
input. We propose that the derivation of the TE is similar to the one given by
(ibid.) except it is slightly modified by the author, in the context of formulating

the TE as an inverse problem instead of a direct problem. That is:

h ! GM <= . (R+§10)j+1 ! h !
€Geg() = T - (J — 1)m Z‘[Tt JimYim(2) (1.1.19)
Jj=21 9  m=—]
(See Wong and Vanicek (2000) for a detailed derivation of Eq. (1.1.19)). The
above expression is different from Vanicek et al. (in Appendix, Eq. (48), 1996)

and Sun and Vanicek (Eq. (23), 1998), i.e.:

Imax J
Dy, () = ];—Z > G- 1DQ;(H 1) D TjmYjm(Q) (1.1.20)
j=21 m=—j

in that the coefficients @j(HO, thg) are in the denominator instead of the numer-
ator. Using the existing geopotential models leads us to evaluating the Fourier
coefficients of the TE, given as the disturbing potential coefficients®. From Equa-
tion (1.1.10), we can derive a discrete set of eigenvalues viz the EVE, referred

to as a discrete set of the modified Molodenskij-Poisson coefficients.

"The global geopotential coefficients are given as a set of fully normalized gravitational coefficients
Vi>2 —j<m<+j: [W9jm = (Cjm,Sjm)} of the Earth’s surface, which are given in a
two-dimensional Euclidean manifold of any well-suited sphere B2 that is valid only in the harmonic
space (e.g., the Goddard Earth model (GEM)-Tn-series and the Joint Gravity Model (JGM)-n series
(Marsh et al., 1988; Lerch et al., 1994; Nerem et al., 1994; Tapley et al., 1996), the GSFC/NIMA
EGM96 model (Lemoine et al., 1997), the GRIM-series models (Schwintzer et al., 1997), the OSU
models (Rapp et al., 1991), the University of Texas Earth gravitational model (TEG)-series models
(Tapley, et al., 1996) and the ultra high degree geopotential models (GPM)-series model (Wenzel,
1998)).

8The Helmert disturbing coefficients [T"] jm are not readily available. Proposed by Vanicek et al.,
these coefficients can be estimated by one of the existing geopotential models as d priori information
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We need to show that if the DPT is satisfied, interpreted as the sequence of the
ratio, the Helmert gravity anomaly coefficients and the disturbing potential coeffi-
cients must decay to zero faster than two sets of eigenvalues with respect to the
orthonormal system in the mean-square sense. Transformed the above sentence into

the mathematical expression, we have two formulze:

Near Zone Using the DPT in the solution of (Agﬁg)L, the discrete Picard-Helmert
coefficients in the absolute sense:
L
u/ (Agt)

1.1.23
S (1.1.23)

vi<i<n: |vi(agh)"| =
die off.

Far Zone Using the DPT in the solution of DAQQ:Q(QI), the truncation error coeffi-

cients in the absolute sense:

V21 <j<Ipaxand —j<m<j: |YiD =— |—
S7] > a J > 7 jm g,’}:g (Q') RQ ‘ gj
(1.1.24)
on the input. The disturbing potential coefficients are:
J J J
V2 <j<lnax: Y [Tm= D [Tiljm = |V 00— [U0 + D [Whm|. (11.21)
m=—j m=—j m=—j

m#0

The global geopotential coefficients are given as a set of fully normalized gravitational coefficients
Vi>2 —j<m<+j: [W9jm = (Cjm,Sjm)} of the Earth’s surface, which are given in a
two-dimensional Euclidean manifold of any well-suited sphere B? that is valid only in the harmonic
space. Given as a spectral representation of the normal gravitational potential U9, a set of fully
normalized normal gravitational potential coefficients {Vj > 2, m =0: [U9];0 = 6;0} of the chosen

conventional reference ellipsoid has the form (Heiskanen and Moritz, 1967):

j 3e’
3+1

Vi>2, m=0: [U%j = (-1) GEDG+3)

<1 —0.55 + 2.5ji—;> , (1.1.22)
where e is the first eccentricity, J is the second degree coefficient, representing the flattening of the
reference (normal) ellipsoid. The coefficients {V j > 2, m =0: [U9];0 = 6;0} exist only for zonal
degree coefficients due to the symmetric property with respect to the equatorial plane, and setting
m = 0 due to the symmetric property with respect to the rotation z-axis. It is important to mention
that the coefficients [U9];o decrease to zero for j > 8 (Vanicek and Kleusberg, 1987).
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fade away, where GM = 3.986 x 10'm3s~2 is the geocentric gravitational con-

stant and gj denotes the eigenvalues Of Dg(r‘:z:g (QI), 1.e.:
] Q (’l "‘/}0)
: 2

I ()

V21§j§1max: gj

In this thesis, the focus is only on the case of the near zone contribution. In this
regard, from Equation (1.1.23), we show that the stability and existence of a solution
for the HDC in the NZC can be analyzed in spectral form using the discrete Picard
technique. Moreover, the results obtained in this form are of interest by themselves,
since they can be regarded as proof of the stable behaviour and the existence of
the solution, leading to the well-posedness of the HDC in the NZC. Concerning the
stability and existence of a solution for Equation (1.1.24), in the future the case of
the far zone contribution and how the discrete Picard technique can be used will be

addressed.

1.2 Outline of the Thesis

The thesis is organized as follows.

The theory of the existence, uniqueness, and stability of a solution for the linear
Fredholm integral equation of the first kind for determining the Helmert gravity
anomaly on the Helmert co-geoid is discussed in Chapter 2. The existence of a
solution to the HDC problem in the NZC to be tested in Hadamard’s sense leads to
the construction of a framework of the QEVD. In Section 2.1, the original singular
value decomposition (SVD) is slightly modified, to give the QEVD. Since on the main
diagonal of a non-symmetric matrix B there is a finite set of the non-zero/non-negative
eigenvalues, the QEVD is used instead of the SVD. This technique is then applied to
the analysis of the finite spectral representation of the matrix-vector-valued function.
The behaviour of the eigenvalues of B is studied. In the NZC, a discrete set of mean

Helmert gravity anomalies is discussed and used.
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In Chapter 3, we use the QEVD to formulate Picard’s criterion in a compact
and a discrete manner. To the best of the author’s knowledge this is first time
that the discrete Picard technique is used for analyzing the numerical behaviour of
geopotential coefficients and Helmert gravity anomalies for the HDC viz QEVD. The
well-posedness of the HDC problem can be justified by the numerical results of the
DPT.

In Chapter 4, the final conclusions of this work and some suggestions for future

work are given.
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Chapter 2

Well-posed Problems of Harmonic

Downward Continuation

According to Jacques Hadamard (who summarized a result from the work of
Cauchy, Kowaleski, Darboux, Goursat and Holmgren), he suggested in 1902 that a
problem is called “well-posed” if a solution (or an output) exists that is arbitrary
(within a certain range), does not have more than one solution, and depends con-
tinuously on the input data. If one of the above-mentioned requirements fails, the
problem is said to be “ill-posed”.

Precisely corresponding point-by-point, to the definition of well-posedness of the

HDC problem, we note the following remarks:

(a) “A unique solution” is equivalent to “all eigenvalues in the degenerate kernel
(e.g., MMPTK) and the finite dimensional non-symmetric matrix are non-zero
when the indices j and i are monotonically increasing” (e.g., Groetsch, 1993;

Hansen, 1998).

(b) The solution of existence can be expounded by the Picard criterion (e.g., Wahba,
1973; Varah, 1973; Strand, 1974; Hansen, 1990).

(c) “The inverse is not continuous” is equivalent to “the inverse is unbounded” (e.g.,

14



Tikhonov, 1963, 1964). In other words, the inverse mapping from Ag" € H; to
Agh € H, through the linear Fredholm integral equation of the first kind is

continuous.

The most common cause of an ill-posed problem in the HDC in the NZC may
be due to the eigenvalues of the degenerate kernel and of the finite dimensional non-
symmetric matrix. The faster the eigenvalues tend to zero, the more severe becomes
the ill-posedness. In what follows, we study under what circumstances the eigenvalues

of the finite dimensional non-symmetric matrix decay to zero.

2.1 Integrated Modified Poisson Kernel and Quasi-
Eigenvalue Decomposition

The HDC problem can be solved using a system of linear algebraic equations with
a discrete set of Helmert gravity anomaly values when the right-hand side of the
integral (1.1.9) is discretized by means of the doubly averaged integration technique.
Discretization of Eq. (1.1.9) is also performed using the Gaussian quadrature rules and
Romberg integration, modification of Poisson kernel/spherical cap, and Lagrangian
interpolation (Vanicek et al., 1996).

As studied by Vanitek et al. (1996) and Sun and Vanicek (1997, 1998), in the
3° x 5° block, discretization of Eq. (1.1.9) can be written in the matrix-vector form

as:
(Agh)" =B(Agh,)". (2.1.1)

where B is the coefficient matrix (c.f., Eq. (1.1.12)). The calculation of the inversion
matrix (i.e., B™!) can be determined using either the direct method or the iterative
method. Direct methods compute the exact inversion matrix (i.e., B™!) after a finite

number of steps. Iterative methods, on the other hand, not only produce the exact
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inversion matrix after a finite number of steps but also gradually decrease the error
by some fractions in each iteration until the desired accuracy level is reached. Neither
methods, however, gives any information on how the solution of (Aggg)L is affected
by B~!. This explains why we need to use techniques for analyzing the behaviour of

B.

The other eigenvalue system for B:

(w;, v/ Ai)i<n: (2.1.2)

T
i

is a sequence of vectors, u;,v;, called left- and right-eigenvectors, and real/non-
negative numbers J\;, called eigenvalues, satisfying five properties (see Appendix A),
where n denotes the dimensionality of the matrix. Similar to the definition of the
Eigenvalue Decomposition (EVD) (e.g., Bjerhammar, 1973b; Golub and Van Loan,
1983; Ren, 1996), the non-symmetric matrix B can be written in a spectral vector-

form! as:
B =) \uv] (2.1.3)
i=1

which is called the Quasi-Eigenvalue Decomposition (QEVD) of B. The term “Quasi”
has one meaning which comes from the product of u; and v! which is not equivalent
to the identity vector I (i.e., Y i u;v! #I).

The analogy between the singular value decomposition (SVD?) of a matrix B
and the QEVD has the same LINPACK? (Dongarra et al., 1979) library of Fortran
routines for solving the linear systems of equations, eigenvalues and eigenvectors.
For the numerical computations and graphical representations, the LINPACK-based

numerics library incorportated with the computer software package MATLAB is used.

1B = E?:l )\iuinT = Z?:l lll')\iv;-T.

2The example of the SVD on use of geodetic applications is widely used by Rummel, Schwarz
and Gerstl (1979), and Ilk (1987, 1993). The numerical example of the ill-conditioned systems from
observation data is studied by Branham (1979, 1980).

3The name LINPACK is an acronym for Linear Algebra PACKage.
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In constrast with the SVD, the diagonal elements of B only contains a set of non-

zero/non-negative eigenvalues. The QEVD of any square real matrix B is said to be

simultaneously diagonalizable if

B = UAVT, (2.1.4)

where U and VT are orthogonal matrices (i.e., UUT = I, and VIV = I, and

UVT £ 1), and A is a diagonal matrix with the eigenvalues. More succinctly, one

gets:

A = Diag(A, -+, A\,) € R™"
U = [u1 L) DI un] ERan

V = [vivy - v, € R

In general, two consequences of the non-symmetric matrix B associated with the

band-structure of diagonal elements are:

1.

If the matrix B acts as a smoothing operator, the eigenvalues A, of the dis-
crete/square matrix will automatically decay rapidly to zero. The direct so-
lution of Helmert gravity anomaly vectors (Aglc‘:g)L dampens the oscillating
variation of (Ag?)[‘ and result in a loss of information because of the smooth-

ing effects.

In contrast with the direct problem, if one tries to recover (Agi‘:g)L, the matrix
must be inverted and transformed to the right-hand side. Due to this math-
ematical operation, the inverse problem amplifies the final product (Aggg)L
enhancing the high-frequency behaviour. The expected amplification comes
from the eigenvalues of B (which depends on the orthometric heights). If some
orthometric height data points are too close together or too far away from the
Earth’s surface, the matrix B automatically causes the resultant solutions of
(Aggg)L on H¢, to be unstable since the inverse of B acts as an amplifying

operator and may become numerically singular.
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2.2 Mean Helmert Gravity Anomaly on the Earth’s
Topography

In the Helmert space setting, an observed Helmert gravity is g" (ry, Q) = |gradW"|,, ),
W' = W, € T, where W" is a Helmert gravity potential and I', stands for the
Earth’s topography. The direction of g"(r, Q) is perpendicular to the equipotential
surfaces W = W,. As well a reference normal gravity is vy([r; — Z"(r;, Q)],Q) =
\gradU |y, — 20y )10 U = Wo € T, where I', stands for the region of the refer-
ence ellipsoid of revolution, Z"(r;, Q) denotes the vertical displacement of the cor-
responding equipotential surfaces belonging to the two gravities. The direction of
Y([re = Z"(ry, Q)], ) is perpendicular to the equipotential surfaces U = W;. Hence,
a Helmert gravity anomaly Ag”"(ry, Q) € H; is defined as the difference between the
magnitudes ¢"(r;, Q) and y([r; — Z"(r;, )], Q). For a more definition in depth, see
Vanicek et al. (1999) and see Appendix B.

Collected terrestrial gravity data have an irregular pattern. The scatter over the
land is much more dense than over sea. In order to transform the irregular pattern of
terrestrial gravity data into a format of constituents blocks, one needs to generate an
evenly spaced model over the surface of the global coverage for the advantage of doing
fast and easy numerical computation. Moreover, one has to decompose the surface
of the Earth into a number of discrete cells, which are classified by different pairs of
co-latitudes and longitudes along different angular geographical grids from south to
north in the meridian direction and from east to west in the prime vertical direction.
Embraced by the curved trapezoid shape of the geographical grid, terrestrial gravity
data points can be treated as either point or mean values. In this thesis, a discrete
set of mean Helmert gravity anomalies is used.

Treated as input data, the high frequency component of the gravity field may be
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described by the mean Helmert gravity anomalies:

V€3 x5 (Agh(R+ HO(,), )"

= mean[Ag“P () + 2m0GHC () + zIriro(Qz')AQSB(Qz‘)
5 x5 R (2.2.5)
+ 6T (R + HO (), Q) + 6Z%(R + HO (), Q)

+8AY R+ HO (), Q) + SAT (R + HO(Q), )],

where (2; denotes the different geocentric angles within the 3° x 5° block. It is impor-
tant to note that meany o [] stands for the mean Helmert gravity anomaly? taken
from the mean value in regard to each grid-cell. Some fundamental concepts of mean
Helmert gravity anomalies are provided in Appendix B or Vani¢ek et al. (1999). Nu-

merical results for each component inside the square bracket can be found in (ibid.).

4The finite set of functional values {(Ag"(R + HO(;), Qz))L} is not necessarily located at the
centroid of the corresponding grid-cell, but it can be located anywhere within the grid-cell.
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Chapter 3

Picard’s Criterion

From the earlier discussion in Chapter 1.1 we have some indication of how to
determine the existence of the solutions of Ag" € H,, by Picard’s criterion under
L?-norm estimations (see Appendix C) that we might propose. In Section 3.1 we state
but do not proof the two theorems of the Picard criterion and discuss its application
to the existence of the solution for the HDC. Section 3.2 will give details on different

examples of numerical demonstrations in a real-life application.

3.1 Definition And Necessary Condition

This section contains important theorems in the development of the solution to
the DBVP for the HDC, known as the Picard criterion. The Picard criterion can
be divided into two cases: compact and discrete. They are the seeds for further
discussions of practical computation. They are used and analyzed extensively for the

linear Fredholm integral equation of the first kind (e.g., Hansen, 1990, 1998).
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3.1.1 A Short Note of the Picard Criterion

Even though the French mathematician Picard (1910) was slightly influenced by
the German mathematician Schmidt (1907) and the Hungarian mathematician Riesz
when looking for the existence of a solution to the linear Fredholm integral equation of
the first kind, he deserves credit as being the father of Picard’s criterion. It was Picard
himself who demonstrated the necessary condition for the first time, thus producing a
context in which the Fourier coefficients must decay to zero faster than the eigenvalues
with respect to the orthonormal system in the mean-square sense. Similar to Picard’s
formulation with a symmetric kernel, in 1937, the British mathematician Smithies
reformulated the Picard criterion by means of the eigenfunction-eigenvalue analysis,
but strongly emphasized the reference to singular values of the integral equation in
our modern sense of the nomenclature rather than the eigenvalues. The singular
values are referred to as a set of real, non-negative, non-zero and zero numbers, while
the eigenvalues are referred to as a set of real and non-zero numbers only.

In Picard’s paper, one recognizes that the eigenvalues of the kernel (as singular
values) are in the numerator instead of the denominator. In other similar usage of
Picard’s criterion, the British mathematician Bateman (1908) refers to real numbers
that are the reciprocals of the eigenvalues of the kernel as singular values. Here, we
will adopt Picard’s formulation when using the eigenvalue analysis. Moreover, an
advantage of this expression is that it is closely related to matrix algebra. For more
historical information, the well-written papers by Stewart (1993) and Kalman (1996)

are strongly recommended.

3.1.2 Compact and Discrete Picard criterion

The original form of the Picard criterion is given below.

Theorem 1 Compact Picard criterion (CPC) (Picard, 1909; Smithies, 1965). Let
(tn, Vs vn) be a singular system of the L? kernel K (s,t), and let g(s) be a given L*
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function. Then the equation

g(s) :/K(s,t)f(t)dt (3.1.1)
has an L? solution f(t) if and only if

(95un)
Un

2
< 400,

(a) 2

(b) (g,u) =0 for every L* function u such that K*u =0 (Homegenity).
Under these conditions a solution f of Eq. K f = g can be written as

lim fy, (3.1.2)

where

fn = ENZ (g’u”)vn. (3.1.3)

For practical purposes, we will consider the following form of the compact Picard

criterion instead.

Theorem 2 Discrete Picard criterion (DPC) (Varah, 1973; Strand, 197}; Hansen,
1990). Let g denote the unperturbed right-hand side in Eq. (3.1.1). Then g satisfies
the DPT if for all non-zero eigenvalues v, > eps the corresponding Fourier coefficients
|(g,un)|, on the average, decay to zero faster than the v,, where eps stands for the
floating-point relative accuracy. For computer machine precision' with IEEE floating-

point arithmetic, eps = 27°2, which is roughly eps = 2.22e — 16.

In spite of all the efforts devoted to seeking out the existence of a solvable solution
to the HDC problem, the compact and discrete Picard criterion has still its difficulties.
Limitations arising from the definition of the CPC and DPC result in a necessary

condition, but not a sufficient condition (Bitsadze, 1995).

LAlso called machine unit roundoff or machine epilson
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As mentioned earlier, the compact or discrete Picard criterion is a technique that
indicates whether the sequence of the ratio converges or diverges. Regardless of
which of the two definitions might be considered easier to use in a real-life situation,
the basic problem right now is to demonstrate two different definitions for the same
concept associated with the discrete Picard technique of the HDC. We therefore gather
together the facts given about the QEVD in Chapter 2.

3.1.3 QEVD

Using the 5" x5 mean Helmert gravity anomaly in the 3° x 5° block, the dimension
of matrix B is 2160x2160. The matrix B not only depends on the orthometric heights,
but it also lies at the heart of the different geocentric angles €2; within the spherical
cap 1. If (Ag{‘)L also satisfies the Picard criterion, then a spectral representation (or
an outer product expansion?) of the linear system of algebraic equations to the doubly

averaged modified Poisson kernel is given by:

"l (Agh)*

(Agh,)" = UAVT(Agh)" = 2; NV (3.1.4)
where
AT = Diag(\; LA 00, (3.1.5)
and
(Agt)" = (Agh(R + HO(), )", (Agh(R + HO (%), %)),
o (AgH(R + HO(Q,), Qn))E), (3.1.6)

and u? (Ag}?)L denotes the Helmert gravity anomaly coefficients?.
In the following section, we have two main goals. First, our aim is to demonstrate

that absolute values of Helmert anomaly coefficients

u! (Ag:‘)L‘ decay faster than

2This formula is similar to the Fourier series in the 1-D sense.
3The Helmert gravity anomaly coefficients are similar to the Fourier coefficients.
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A;. Under this condition, we conclude that the existence of a solution for the HDC
problem in the NZC valids. Using the DPT in the solution of (Agi‘:g)L, the discrete

Picard-Helmert coefficients in the absolute sense are defined as:

T n\L
- . T aon B _ | (Ag?)
Vi<i<n: |vI(Agh)) ‘ ol v (3.1.7)
. . . . T h\L u/ (Ag:‘)L
Second, numerical results validating the finite sets of |ul (Agg) ‘ € Rand | ———

IR can be measured their differences due to the variations of eigenvalues. These com-
parison are very useful in determining the stability of a solution for the HDC problem

in the NZC.

3.2 Applications and Recommentations

As outlined by Sjéberg (1979) and discussed by Martinec (1996), and also accord-
ing to the necessary condition of the compact Picard criterion, if Equation (1.1.9)
has a solvable solution, then the expression of Equation (3.1.7), must converge in the
L£?-norm where there exists a set of infinitely many eigenvalues. However, the ideal
of the infinite or compact case is only of theoretical interest (e.g., Engl (1981)).

The burning question now is: Why do we need to study the technique of Picard’s
criterion? It is because Picard’s criterion intervened with the following two observed
functionals, namely, of which the first seems to reveal how the behaviour of a Helmert
gravity anomaly navigating through the harmonic space outside the geoid is collected
from the surface of the Earth, but then the second sheds light on an orthometric
height by means of spirit levelling. Two physical quantities of this estimate would be
expected to depend on the finite set of data. Hence, the discrete Picard technique
can be made by simply taking the finite dimension of the matrix 7. To see how the

discrete Picard technique works, it will be useful to plot the graph in a spectral sense.
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3.2.1 Analysis of the QEVD

For numerical illustrations, the following three 3°x5° areas of coverage of the mean
Helmert gravity data are used; I: (49°05'00” < ¢ < 52°05'00” N, 239°05'00” < X <
243°55'00" E), II: (47°05'00" < ¢ < 50°05'00” N, 241°05'00" < X\ < 245°55'00" E),
and I11: (46°05'00" < ¢ < 49°05'00" N, 242°05'00" < A < 246°55'00" E).

Regional Area Matrix Amax Amin | Condition Number Apax/Amin
Boa160x2160

49°05'00" < ¢ < 52°05'00" | By 1.2874 | 0.2286 5.6307
239°05'00" < X\ < 243°55'00”

47°05'00" < ¢ < 50°05'00" | By 0.9748 | 0.1796 5.4264
241°05'00" < X\ < 245°55'00”

46°05'00" < ¢ < 49°05'00" | By 0.9936 | 0.1768 5.6190
242°05'00" < X\ < 246°55'00"

Table 3.1: Condition Numbers.

Since each Byz 17 777y matrix is square and of full rank, the QEVD technique guar-
antees that a unique solution exists. It is therefore feasible to examine the behaviour
of Byrrr,rrry- Ill-conditioning has been regarded as a plague on numerical matrix

methods. This problem may arise, for example, if

(a) the determinant of the coefficients of the matrix By 7 777y is almost zero*, or

(b) the coefficients themselves are in error that the matrix By; ;7 7y contains a few

blunder value, or

(c) the size of the matrix By ;7 171y is large.

“We find, from the applied numerical linear algebra (e.g., Demmel(1997)), that if
det |Byy,r7,rrry| = O then there are either an infinite number or no solutions of Bfl(Ag{‘)L =

L
(Agg) ™
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For a case with a large matrix By r7 71y, the condition number of Bys i1
provides a measure of the degree of ill-conditioning; it is defined as the ratio of the
largest eigenvalue to the smallest (e.g., Wing, 1985, 1992). The larger the condition
number the greater the ill-conditioning. The eigenvalues of each matrix By rr1rn
in the selected areas of interest in Canada produced by the QEVD are plotted in
Figs. 3.1(b), 3.5(b) and 3.9(b). Not surprisingly the results, which are listed in
Table 3.1, are well-conditioned in concert with the numerical values of condition
numbers. However, the disadvantage of the QEVD is the need for unrealistic time
consumption when the dimensionality of the matrix is concerned.

Figures 3.1, 3.5 and 3.9 are called the discrete Picard plot. Each plot is composed
of three graphs. They are:

1. Figures 3.1(a), 3.5(a) and 3.9(a) describe how the spectra of

ul (Agh) L ‘ vary

against the dimension of the diagonal matrices Byz 1 111y,

2. The eigenvalues \; of each matrix By 77,777y against the dimension of the diag-

onal matrices are shown in Figs. 3.1(b), 3.5(b) and 3.9(b), and
u” (Agh)"

3. Similarly, the spectra of 5

are shown in Figs. 3.1(c), 3.5(c) and 3.9(c)

for demonstrating the sequences of ratios of

u’ (Ag}?)L‘ and \;.

Comparison among Figures 3.1(a), 3.5(a) and 3.9(a) and 3.1(c), 3.5(c) and 3.9(c)
indicate that the spectra of these coefficients are slightly magnified because of the
inverse of the eigenvalues. Moreover, the discrete Picard technique demonstrates

that each discrete Picard plot with respect to each Byy ;7 111y is not necessarily stable

i i : T(Aoh\L uf (Agh)"
since the magnitude of these two coefficients, |u; (Agt) and |—5—"|, may vary

significant. For example, Figure 3.1(c) has a wiggly characteristic pattern for its
coefficient spectrum when the dimensionality of By increases. Inspection of Fig. 3.1(c)
demonstrates that the trend of the coefficient spectrum goes up mildly when the

eigenvalues of By rapidly decay after « = 1500. After operating the DPT, we see that
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the small amplification of these coefficients mainly arising from the so-call boundary
effect gives rise to an unstable situation. Our present belief is that the existence and
stability of a solution for the HDC in the NZC could be analyzed in a spectral form,
using DPT.

10* : ‘ ‘ ‘ 10°
10
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e
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10
107 ‘ ‘ ‘ ‘ 107} ‘ ‘ ‘ ‘
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Dimension of Matrix i Dimension of Matrix i
(a) Helmert gravity anomaly coeffi- (b) The numerical eigenvalues A; of the 2160
cients ‘uzT(Ag{‘)L‘ x 2160 matrix By

0 500 1000 1500 2000 2500
Dimension of Matrix i

(c) Discrete Picard-Helmert  coeffi-
cients ‘u? (Ag:‘)L‘ /A

Figure 3.1: Discrete Picard plot of B; in the 3° x 5° block.
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Figure 3.2: Discrete Picard plot of B; in the 2° x 4° block.
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Figure 3.9: Discrete Picard plot of By in the 3° x 5° block.
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3.2.2 Analysis of the Boundary Effect

Large oscillations along the boardline of the region of interest are due to the

boundary effect. The boundary effect can be caused by

1. the improper numerical computations over the selected area of the spherical

cap, and

2. the input data which contains a few blunder data.

L
Regional Area Matrix | min/ max{@} min/max{u; (Ag:‘)L}
mGal mGal

49°05'00" < ¢ < 52°05'00" | By -604.7157, 241.4822 -590.6895, 232.5003
239°05'00” < X < 244°05'00”

47°05'00" < ¢ < 50°05'00" | By -577.7184, 272.8428 -564.5604, 257.4469
241°05'00" < X\ < 245°55'00"

46°05'00" < ¢ < 49°05'00" | Byyg -507.7914, 485.4175 -495.0040, 485.3321
242°05'00" < X < 246°55'00”

u? (Agh)®
Table 3.2: Boundary effect discrepancies between l(iigt) and u’ (Ag,}:‘)L in the
3° x 5° area.

(1) Certain irregular amplitudes located near the edge of the head and tail regions
may be seen in Figs. 3.3, 3.7 and 3.11, and due to the incomplete numerical computa-
tions over the selected area of the 1° cap. In order to iron out the high amplitude of
the boundary wiggles along the boarderline, one can reduce the size of the area. For
instance, each block can be reduced from 3° x 5° to 2° x 4°, as shown in Figs. 3.4, 3.8
and 3.12. Table 3.2 shows the results of the maximum and minimum values of the
boundary effect discrepancies between @ and u’ (Ag,}:‘)L in the 3° x 5° area.
Table 3.3 shows the results of the maximum and minimum values of the boundary

: : T(agh)" :
effect discrepancies between w and ul (Ag:‘)L in the 2° x 4° area.
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Regional A Mari : uf (agh)® : T a L
egional Area atrix | min/max{——5-—} | min/max{u; (Agh)™}
mGal mGal

49°35'00” < ¢ < 51°35'00" | By -134.5125, 180.7189 -99.4636, 94.6567
239°35'00” < X < 243°35'00”

47°35'00" < ¢ <49°35'00" | By -120.0459, 144.1056 -82.1971, 77.0431
241°35'00"” < X\ < 245°35'00"

46°35'00" < ¢ < 48°35'00" | Byyr -134.4662, 154.9726 -99.7463,110.6872
242°35'00" < X < 246°35'00”

uf (Agh)®
Table 3.3: Boundary effect discrepancies between l(ﬁ%gt) and u? (Ag}?)L in the
2° x 4° area.

After reducing the region of interest, the outcomes of the coefficient spectra of
Figs. 3.2(a), 3.10(a) and 3.6(a) and 3.2(c), 3.6(c) and 3.10(c) are alike. Using the
semi-log graphical representation, as compared with the numerical behaviour of the
eigenvalues shown in Figs. 3.1(b), 3.5(b) and 3.9(b) having a nonlinear and expo-
nential shape, Figures. 3.2(b), 3.6(b) and 3.10(b) have a linear profile. This is an
indication that, for the spectral profile, the boundary effect could have greatly im-
pacted on the numerical computation of the selected block.

A graphical approach is the most easiest way to make a difference between the
finite spectra of the discrete Picard-Helmert and Helmert gravity anomaly coefficients.
Throughout these graphical representations, we see how the DPT is used and reflected
on these coefficients and the variations from the 2-D to 3-D plots. Figures 3.3, 3.7
and 3.11, and 3.4, 3.8 and 3.12 consist of ten plots. The left- and right-hand sizes
of these plots demonstrate the spectra of w and u! (Ag,}:‘)L with respect to
different locations of geographical grid-cells within a specific block, respectively. The
first and second rows of these plots illustrate the profile of latitude and longitude
against these coefficients. The third rows of these plots are called mesh plots which

are drawn as surface graphics objects with the viewpoint of these coefficients along
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the z-axis. The fourth rows of these plots are called contour plots which display
the isolines of these coefficients, where these coefficients are interpreted as heights
with respect to the latitude-longitude plane. The fifth rows of these plots are called
filled two-dimensional contour plots (or resolution maps) which display the isolines
calculated from these coefficients and fill the areas between the isolines using constant
colours.

Figure 3.3 is for the area of 49°05'00" < ¢ < 52°05'00” N and 239°05'00" <
A < 243°55'00" E with a discrete Picard-Helmert coefficient range of -604.7157 to
241.4822 milligals (mGal). A high coefficient rise is predominate along the boundary
coast. Figure 3.4 is for the area of 49°35'00” < ¢ < 51°35'00” N and 239°35'00” < \ <
243°35'00" E with a discrete Picard-Helmert coefficient range of -134.5125 to 180.7189
milligals (mGal). Pictorially speaking, after shrinking these edges, the finite spectra
of the discrete Picard-Helmert and Helmert gravity anomaly coefficients represented
by 2-D contour and resolution maps provide us with more stable information.

Figure 3.7 is for the area of 47°05'00” < ¢ < 50°05'00”" N and 241°05'00" <
A < 245°55'00" E with a discrete Picard-Helmert coefficient range of -577.7184 to
272.8428 milligals (mGal). In the mesh plot, a high coefficient drop in the left-hand
corner stands out. Figure 3.8 is for the area of 47°35'00" < ¢ < 49°35'00” N and
241°35'00" < A < 245°35'00" E with a discrete Picard-Helmert coefficient range of
-120.0459 to 144.1056 milligals (mGal). Figure 3.11 is for the area of 46°05'00" <
© <49°05'00” N and 242°05'00"” < X < 246°55'00” E with a discrete Picard-Helmert
coefficient range of -507.7914 to 485.4175 milligals (mGal). In the 2-D (flat shading)
contour plot, a mild coefficient drop in the top of the coast line stands out. Figure 3.12
is for the area of 46°35'00” < ¢ < 48°35'00” N and 242°35'00" < A\ < 246°35'00" E
with a discrete Picard-Helmert coefficient range of -134.4662 to 154.9726 milligals
(mGal). As mentioned earlier, the ususal measure employed in evaluating the varia-
tions of these coefficients spectra (namely, the difference between the before and after

operation of calculation), proved to be of useful tool in a stability estimate. From
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Figs. 3.12 and 3.8, we believe that the DPT introduced by this thesis is to provide
a complete analysis of the variations of these coefficient spectra, which may put in a

new light the analysis of boundary effect.

Blunder Value min max

(mGal) | (mGal)

-3000 mGal -602.8 510.1

-2000 mGal -994.2 353.2

-1000 mGal -585.5 285.1

Normal Value | -577.7 272.8

1000 mGal -073.1 802.7

2000 mGal -929.3 | 1575.7

3000 mGal -1475.6 | 2349.4

Table 3.4: A comparison of blunder values of B;;.

(2) Todemonstrate how the blunder data show high sensitivity to the HDC problem,
we add a experimental value into the input data ranging from -3000 mGal to +3000
mGal. For numerical illustration, the following area of coverage of the orthometric
height data and Helmert gravity anomalies is used; 47°05'00" < ¢ < 50°05'00” N,
241°05'00" < A < 245°55'00” E. The results used with these blunder data are given in
Fig 3.13. The maximum and minimum values of discrete Picard-Helmert coefficients
for each blunder value are summarized in Table 3.4.

In Fig 3.13, each plot has a remarkably erratic variation and apparent boundary
effect along the coastline. It is clearly shown in Figs 3.13 (a) and (f) that a high
amplitude, like a ripple, propagates throughout the neighbourhood of the blunder
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value. From the results of Table 3.4, we conclude that outcomes of discrete Picard-
Helmert coefficients are significantly magnified by a single blunder value. The blunder
value may be occurred by the random errors in measurement. For instance, these
pitfalls may be caused by the mis-reading of human’s eye-ball. When doing the
numerical calculations, one has to detect the blunder data first. If the blunder data
is contained in the input values, one simply throws it out.

In this study, one can easily distinguish between the impact of boundary effect
and blunder value. It is very often argued that if the physics were properly modelled,
the corresponding equations would be well-posed and their solution would not raise
difficulties. Under these simplifications, approximations and numerical simulations,
the HDC in the NZC leads to the notion of a well-posed problem. However, different

sources of errors should not be ignored.

3.2.3 Sources of Errors

The uncertainties of the instability are also caused by different sources of er-
rors. The modelling errors are difficult to quantify and an effective error propagation
analysis cannot always be constructed. In these cases the errors in the model are of-
ten ignored (Smeets, 1994). Numerical errors are inevitable when doing a numerical
computation (Franklin, 1970; Shaw, 1972; Ekstrom and Rhoads, 1974; Hansen, 1998).
When using the QEVD, the error ry™ as the difference between the given solu-

By1,11,1m1}

tion of B and computed solution of BVATU?, which consists of the roundoff errors®

and the truncation errors®, can be analyzed by the following formula (Kalman, 1996)

ey = (Agh)" - BVATUT (Agh)", (3.2.8)

Byro,y

SRoundoff error arises from the fact that computer arithmetic is not exact (i.e., Pizer and Wallace,
1983).

STruncation error arises from the use of approximate formula that are not exact “even in exact
arithmetic” (i.e., Pizer and Wallace, 1983).
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Nu

and the computed magnitude of the numerical errors e""™ is given by

1/2
eN“m:(rN“m pRum ) . (3.2.9)

B,y By

Based on the TEEE floating-point arithmetic in a double precision, where eps =
2.22¢ — 16, MATLAB responds with e¥"™ ~ 10~!'* which is close to the order of
magnitude of the eps. From the numerical results, we see that the numerical errors can
be ignored. Contaminated errors on the data seem to be significantly larger than the
modelling and numerical errors and vary from one observation to another. The best
choice for analyzing the error propagation of the HDC problem is stochastic modelling.
Its development is still in infancy, which leads to the other unanswered question on
how the HDC is affected by the random errors. And the another unanswered question
will provide an answer whether the random errors of the HDC is a well-posed problem

or not (Vani¢ek and Wong, 2000).
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Chapter 4

Conclusion and Further Research

4.1 Conclusion

The QEVD provided well-posed results in Chapter 4 in the sense of Hadamard
by mean of the DPT. The well-posed nature of the HDC problem in the NZC seems
to manifest itself in the finite discretization 5 x 5 step of the mean Helmert gravity
anomaly within the radius of spherical cap 1, = 1° leading to the generation of a
well-conditioned square matrix by means of the magnitude of the condition number.

From a numerical viewpoint, several computations have shown that the smallest
digit of the final solutions may not be necessary to reach the maximum threshold
of the floating point relative accuracy. With our present technology, it is hard to
characterize the actual behaviour of the final outcomes in a microscopic investigation
because of the limit of time consumptions and sufficient accuracies. As long as the size
of computational storage does not go beyond the relative accuracy for each computers

capacity, the HDC in the NZC is a well-posed problem.

46



4.2

Further Research

Feasible areas for further work that are related to this thesis are:

. One can show the sum of the two ellipsoidal corrections is a harmonic function

of 3-D position.

. The truncation error on the Helmert co-geoid can be formulated as an inverse

probelm.

Using the discrete Picard technique, one can examine the existence and stability
of a solution of the truncation error, referred to as the spectral analysis of the

HDC problem in the FZC.

Because the above conclusions are based on a discrete model, one can use them
as a starting point for determining some margins of error propagation from
the measurements and the numerical integration schemes in a worst scenario

situation.

One difficulty in determining the Helmert gravity anomalies on the Helmert
co-geoid in general is that they tend to need a great deal of computational time
for a large area of interest: typically they involve solving the inverse matrix
of non-symmetric cases, which can be done using either a direct method or an
iterative method. Recently, the invention of the so-called Conjugate Gradient
method, which is an iterative method that increases the rate of convergence and
the speed of computation by means of the non-stationary (or non-symmetric)
iterative methods, has resulted in the development of the following items: in-
cluding BiCongugate Gradients, BiConjugate Gradients Stabilized, Generalized
Minimum Residual, Quasi-Minimal Residual and other methods. For a detailed

information, see Barrett et al. (1994) and Demmel (1997).
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Appendix A

Eigenvalue System

The goal of the Appendix A is to summarize two eigenvalue systems, Eigenvalue
Exanpasion (EVE) and Quasi-Eigenvalue Decomposition (QEVD), and their general

properties.

A.1 Eigenvalue Expansion (EVE)

In this part we shall focus on the following expression:
T(Q) = /Q K (o, RYT()ds,
instead of Eq. (1.1.7), and the integral operator K is defind by:
KT(Q) = /Q K(r,1p, R)T(Q)dSY (A.1.1)
in a £2-space setting. Define the inner product:
(Ty,Ty) = /QTl(Q)TQ(Q)dQ.
The adjont operator IC* is easily found to be:

KT(Q) = [ K(r,e, R)T(Q)d.

QI

(A.1.2)
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A Possion kernel K is a square integrable function if its norm exists and has an EVE

which is a mean convergent expansion in the form:

Ko =3 () 3 Vu@15(0) (13

=2 m=—j

in which is a sequence of spherical harmonic functions Yj,(€2), Y; ('), called eigen-

functions, and radial attenuation factors (R/r)’*! called eigenvalues, satisfying:

Jima

/ 1 if 51 = jo and my; = ma,

0 lfjl 7£ j2 and my 7£ mso.

’ ’ ’ ]- lfjl :j2 and my = My,
// Y;:ml (Q )Y}2m2 (Q )dQ = 5j1j25m1m2 -
Q 0 if j; # j» and my # ms.

(A.1.5)

3. The non-increasing order of the eigenvalues is:

(s (52 ()>(0)"s e o
)

Smaller and Smaller

Large
4,
, R J+1
K@) = (2) V@,
Or
1 . (R\'"!
= [ Ees Ry = (1) v )
AT Jo r
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K*Yjm(Q) = (?)jﬂ Yjm(Q), (A.1.9)
Or
% K, B)Yjm(Q)d0 = (?)JHYJ- (). (A.1.10)

The product of K and K*, say KIX* = K*K can be converted into:

2
||K||2:<%> /Q/Q/K(r,zl;,R)K*(r,zl),R)dQ'dQ

(L) [ L () S @)

Jj1=2 mi=—j1
00 _R j2+1 j2 , ,
ar (1) 2 Vi @ @il
J2=2 ma2=—7j2

_ f; (?)w (A.1.11)

which is nothing else than the £?-norm || K ||? in term of the square eigenvalues
g g

(5"

A.2 Quasi-Eigenvalue Decomposition (QEVD)

The QEVD of a real n x n matrix B is the factorization as a product of three

matrices:

B =UAVT (A.2.12)

A O e 0 Vi

0 X - Vo
=[w uy - UWluxn (A.2.13)

0
o --- 0 A, Vi
L A nxn kL 4 nXn

The matrices in this factorization have the following properties:
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1. U and V are orthogonal matrices. The columns u; of U = [u; uy --- u,]
are the left-eigenvectors, and the columns v; of V = [v; v, --- v,] are the

right-eigenvectors. (i.e., UUT =1, VIV =1, but UVT #£1)

2. Ais an n x n diagonal matrix containing the eigenvalues of B, which are defined

as the real and non-negative scalars of the eigenvalues of B, where

M 22X > >N > N > > A\, (A.2.14)
~—
Large Smaller and Smaller
3.
1 ifi=j,
1111111]' = 5z’j = (A215)
0 ifij.
4.
1 ifi=j,
V?Vj == 6ij = (A216)
0 ifij.
d.

The matrix norm that corresponds to the norm || B || is the Frobenius norm (or

largest absolute value) || B ||z defined by:

IB = (Z AZ-) (A.2.19)

which is equal to the square root of the sum of eigenvalues.

o=

I6)



Appendix B

Helmert Gravity Anomaly

B.1 Introduction

In the following a list of important conclusions is based on the latest work of
Vanicek et al. (1999). Including, some original conceptions and formula are slightly
modified by the author. The reader should consult the original copy and references

therein.

B.1.1 The Helmertization Scheme

The first result in which we use this thesis concerns the masses located outside
the geoid, as described by the actual (or real) space. Transformed the “actual space”
into the “Helmert space” through one of the existing mass reduction techniques, this
procedure can be done by the Helmert 2°¢ condensation scheme. The masses between
two bounded regions are removed and then formed infinite numbers of thin condensed
layers which are directly proportional to infinite numbers of orthometric heights pro-
jecting onto the surface of the geoid, as described by the Newton gravitational surface
potential V¢. In order to bring a clear picture of the gravitational effect of the topo-

graphical masses located between the Earth’s topography and the geoid and of the
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gravitational effect of the atmospherical masses between a bounding sphere and the
geoid, there are two similar approaches to construct the so-called residual potential,

topographical and atmospherical.

e The residual topographical potential 5V is defined by the Newton gravitational
potential V! caused by the topographical masses subtracting the Newton grav-
itation surface potential V°. For more in-depth information on topographical
effect, see Wichiencharoen (1982), Kleusberg and Vanicek (1991), Heck (1991a),
Martinec et al. (1993), Martinec and Vani¢ek (1994a, 1994b), Vanic¢ek and Mar-
tinec (1994), Novak (1999).

e The residual atmospherical potential §V'* is defined by the Newton gravitational
potential V' caused by the atmospherical masses subtracting the Newton grav-
itation (surface) potential V¢ caused by the surface density. For more detailed
information on atmospherical effect, see Ecker (1968), Ecker and Mittermayer
(1969), Madden (1972), Moritz (1974), Anderson et al. (1975), Rummel and
Rapp (1976), Divis et al. (1981), Balmino (1983), Vanicek et al. (1997), Sjoberg,
(1998), Novak (1999).

Adding the gradients of these residual potentials to the magnitude of a Helmert
gravity vector, ¢"(r;, Q) = |grad W"|,, o) = |grad(W + 6V + 6V)|;,0) € Ty is
fulfilled the physical counterpart of harmonicity (Vanicek et al., 1999). Then, taking
the difference between the magnitudes of g"(r;, ) and normal gravity vector v([r; —
ZMry,, )], Q) = |grad Uliy,—zr(r,0) € Te, where T'. denotes a bounded domain of
reference ellipsoid of revolution, is defined by a Helmert gravity anomaly Ag"(r;, )

(ibid.).

B.1.2 The Linearization Procedure

The second finding concerns the GBVP, referred to as a non-linear free tpye.

7



1. GBVP is a non-linear physical phenomenon which aries from the non-linearization

procedure of ¢"(r;, Q) and y([r; — Z"(r, Q)], Q).

Helmert Gravity In the first place, the Helmert gravity belongs to a non-
linearly annular region between on the Earth’s topography as well as the
geoid. When expressing ¢"(r;,§2), or the gradient of a combinational po-
tential, which consists of a gravity potential W, the residual topographical
potential V! and the residual atmospherical potential 4V in a Maclaurin

series expansion:

gh(rt, Q) = |grad(W + 6V" + 5V%)|

/2
gradW - grad(6V! + 6V?)  |grad(6V! + V) [2]"
= dW| 11+ 2
jgradiv] [ * |grad V|2 |grad V|2
gradW - grad(6V'?! + 6V¢) lgrad(6V* + V)| \?
= dW| |1 @
gradiv [ * |grad WV |2 T |gradW | ’

with respect to the geocentric radius, omitting second and higher order
derivatives of |[grad(W + §V' + 6V?)| reading that the term:

grad(6V' + oV%)
gradW

is sufficiently smaller than 1. And taking a chosen point on the Earth’s

topography as follows:

) G- grad(6V' + 6V
G, Q) = g(ry, ) + T 8rad ) (B.1.1)
9 (re.Q2)
Finally, the Helmert gravity is defined by:
, aoV'? AoV
gh(Tta Q) = g(rt’ Q) + P P )
(ICRY) ")

or shortly

= g(ry, ) + A (ry, Q) + 6.A% (14, ), (B.1.2)

where the two linearized terms are called the direct topographical effect and

the direct atmospherical effect.
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Normal Gravity The marriage between the Molodenskij-Hirvonen theory of
the normal height H" in connection with the quasi-geoid (Molodenskij et
al., 1960) and telluroid (Hirvonen, 1960), and the Stokes theory of the or-
thometric height HC with reference to the geoid in an actual space seemed
to be forgotten for a while in a geodetic literature. It was Vanicek et
al. in 1999 who used them as a vechicle for introducing the correction
for the orthometric height under a spherical approximation, and defined
a so-called Helmert normal height (H™)"(Q) in concert with a Helmert
telluroid in the Helmert space setting because (1) such a so-called simple
Bouguer anomaly Ag®B(Q) is to be employed, (2) the trade-off between
HY and HO is linked into two indirect' residual potential corrections.

In what follows, the normal gravity locates at a non-linearly annular
region between on the Helmert telluroid at the Helmert normal height
(HN)"(Q) as well as on the equipotential surface at the orthometric height
HO (), above the reference ellipsoid, respectively. When expanding ~([r;—
Z"(r,2)], ), which is equivalent to y([ryx + (HY)"(Q)], Q) (Vanicek et al.,
Eq. (29), 1999), 7,(2) = R+ H®(Q2), g is a radius of ellipsoid, in a Taylor
series expansion with regard to a position of ([rg + H?(Q)], ) such that

Y(lre = 2", )], Q)
=([re + (HY)"(Q)], Q)

=([re + H(Q)],Q) + 5~

1 0%y
2! On?

(re+HO(Q)],Q)
A linear model but a weak linearity comes into play when terms of

second and high order may be no longer taken into consideration but rather

'In geodetic literature, the terminology of the direct and indirect effects in the actual space seems
to be confused its content to the reader from time to time. According to Pick, Picha and Vysko¢il’s
definition (1973), the former refers to the topographical corrections the layer bewteen the Earth’s
topography and the geoid, while the latter the layer between the the quasi-geoid and the geoid.
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the first term are still remained in the series:

v([re = 2"(r, )], Q)
dy

=l + HOOL ) + 51

[(HY)"(Q) — H(Q)],

where the subscript 0 denotes that the vertical gradient of normal gravity
is approximately evaluated on the reference ellipsoid, under a spherical
approximation and using (ibid., Eq. (36)):
= o([re + HO(Q)],9) — SHOQ)AG(Q) — S0V (ri, ) = =6V*(r,, )
=([re + H(Q)],Q) — %HO(Q)AgSB(Q) — 0T (ry, Q) — 0T (14, Q).

(B.1.3)

After a proper linearization has taken place, perturbation theory can
be applied to evaluate different sources of corrections up to certain level
of reasonable accuracy in a view of 1 cm starting from first-order term
estimations in the original expansion. In an ascending order from the
last expression, there are called the correction for the difference between
the quasi-geoid and the geoid in an actual space plus the correction for
the second indirect topographical (and atmospherical) effects on gravity at
the Earth’s topography. Physically speaking, the two indirect effects on
gravity indicate that the curvature of equipotential surface 2/ R is directly

proportional to the boundary displacement of two residual potential values.

2. GBVP is a free boundary value problem since the unknown surface of the
Helmert gravity anomalies located on the Helmert co-geoid to be determined
bases on the distribution of the discrete observed gravity values on the Earth’s

topography in the sense of Bjerhammer (1976).

The non-linear free boundary value problem is boiled down to the linear free

boundary value problem. Of particular interest is the non-stability of the linear free
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boundary value problem by asking the question of whether or not the convergence
of the unknown physical surfaces, as described by the approximants by expressing
the linearization aftermath and then taking higher and higher order derivatives of
g"(r, Q) and y([r; — Z"(ry, )], Q) at a chosen point (ry, Q) and ([rz + HO(2)],Q),
but still remains to be examined in term of analytical continuation (Heck, 1991b;

Martinec, 1998).

B.1.3 The Usage of Complete Bouguer Anomaly

The partnership on the use of complete Bouguer anomaly Ag®?(€)) between the
geophysical and geodetic literatures (Hipkin, 1988) brings us astray by the misconcep-
tion of mass reduction procedure to provide other puzzling question. As illustrated by
LeFehr (1991a, 1991b) and (ibid.), the values Ag©P(2) are station anomalies, which
do not have as a purpose the mass reduction of the data to the Helmert co-geoid.

The complete Bouguer anomaly is defined as:
AgPP(Q) = Ag°P(Q) + 6g"(ry, Q),

where 0¢'(r, Q) is the gravimetric terrain correction for departures of the Earth’s
topography from a corresponding spherical approximation surface, and Ag°P(9Q) is

consisted of four components (Swick, 1942):
1. The observed gravity g(ry, §2),

2. The normal gravity v([rgz + H°(Q)],€2). Using the Taylor series expansion of
Y([re + HP(Q)],Q) with regard to a position of v(rg, (), the linearized term

becomes:
) 0
Wre+ HO@Q)LQ) =4 Q) + 51| HOQ),
")
where 52 (r5.) HP(Q) = —0.3086 H(€2) mGal is the Free-air reduction. The

dilemma between the Free-air reduction and two direct topographical /amtospherical
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effects on gravity is a significantly physical difference. The former does not shave
off all mass down to the geoid, but rather interprets in light of gravity variation
with altitude (LaFehr et al., 1986); the latter, however, does play a key-rdle
of gravity correction under the influence of these topographical /amtospherical

masses above the geoid,

3. The simple Bouguer slab (plate) formula 27 0,G H? (), where g is a rock den-
sity of 2.68 g/cm? above the geoid. Does the simple Bouguer correction is given
by an infinite slab formula or a spherical form? This question was answered in
1971 by Karl, and is recently given further thought in 1999 by Vanicek et al..

However, it is still an open question under consideration to be solved,

4. A curvature effect 87 9oG[H?(2)]?/ R, but not considered in practice because of
having a small effect (Bullard, 1936; Vanic¢ek and Krakiwsky, 1986).

To sum up, we have:
AgB(Q) = g(r, Q) — y([re + H?(Q)],Q) — 2m00GH?(Q) + 6¢"(r1,Q).  (B.1.4)

Making the difference between Eqgs. (B.1.2) and (B.1.3) and applying Eq. (B.1.4), the

pre-Helmert gravity anomaly is given as:

Agh(rta Q) = AgCB(Q) + 27TQOGHO(Q) - 5gtc(rta Q)
+ %HO(Q)AgSB(Q) 6T (e, Q) + 6T (r1, )
+ 0A (14, Q) + 6A(rs, Q).

Grouping the difference between the direct topographical effect and the gravimetric

terrain correction, known as the condensed terrain effect § A (ry, Q):

A (re, Q) — 09" (re, Q) = 6A7 (11, Q), (B.1.5)
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is defined by (Vanicek et al., 1999). Finally, the Helmert gravity anomaly on the
Earth’s topography is given as :

Ag"(r, Q) := AgPB(Q) + 2w GHC () + %HO(Q)AQSB(Q)

4 0T (ry, Q) 4 6T(ry, Q) + 6.A%(r,, Q) + A7 (r,, Q). (B.1.6)
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Appendix C
L£?-Norm

It has been known for some time that in 3-D harmonic upward and downward
continuation a linear Fredholm integral equation of the first kind is employed (Wing,

1992; Bitsadze, 1995). The prototypic form of its mathematical expression is:

1
Physical Output|+ := —/ Physical Input|, x Geometical Configuration d2
o AT Jq &

(C.0.1)

where Q is a closed /perodic interval on the surface of the sphere, ETB and é represent
the external and internal geometry, respectively. The product of Physical Input and
Geometical Configuration with the normalization factor 1/47 integrating over the the
bounding sphere with respect to the origin is equal to the mean area on the skin of
the sphere in a global sense.

Beginning with a rudimentary assumption, it is important to choose appropriate
function spaces for given functions and functions to be determined according to a
given kernel (namely a geometrical configuration function) as well as to introduce
an appropriate norm for measuring the continuous dependence. Throughout the
thesis, let us assume that the spaces L2(W,R?) , £L2(Q,5?) consist of all functions
{Physical Output} € W, and {Physical Input} € Q whose £*-norm || - ||z2(.y (2-nd

power, or energy norm) is square integrable (s.i.) (or square root of sum of squares)
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in the domain W, and on the surface Q defined in IR3, and on 52, respectively if the

corresponding norms

1/2
|| Physical Input || z2(0,52)= </ |Physical |nput|2dQ> < +o0,
Q
and
1/2
|| Physical Output || 22 rs)= </ |Physical Output|2dQI> < +00
Q/

are finite and exist, where Physical Input and Physical Output are functions of posi-

tions, (r,Q) and (R, ), respectively such that
(r,Q):={re[R,R+H°Q)and Q = (0, )| 0< ¢ <21, 0< A< 7} C R?,
and
(R, Q) :={Ris fixedand Q = (¢, \)|0< ¢ <2m,0< X <7} C B2

Similarity, a Geometical Configuration function € £2(W,R?) x £*(0Q,B?) is s.i. if

its norm exists, i.e.:

|| Geometical Configuration || 20y r3)x2(0,82)

= // | Geometrical Configuration|” dQ dQ < +oc
QJa

This £? setting for the HDC is associated closely with the context in which linear
Fredholm integral equations of the first kind are not only often closely related to the
definition of Picard criterion for analyzing the existence of a solution of the right-
hand side of Eq. (C.0.1) but is also much closer to the reality of the measured size of
the physical quantities. Without any mathematical trickery the behaviour of physical

disturbance for the input and output is as close as possible together.
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