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ABSTRACT

Precise (centimetre level accuracy) kinematic differential positioning using GPS (Global
Positioning System) requires the use of carrier phase observations with correctly resolved
integer ambiguities. On-the-fly ambiguity resolution, i.e., ambiguity resolution while the
receiver is in motion, is desirable, since it increases the flexibility and reliability of
kinematic positioning. On-the-fly ambiguity resolution, however, is not an easy task. A lot
of factors will affect the speed and reliability of the ambiguity resolution. In general, these
factors can be categorized into three broader groups, namely the ambiguity resolution
technique, the effects of the observation errors and biases, and the observation geometry,

i.e., the geometry between the satellites, the monitor station(s), and the user.

In this research, the possibility of performing reliable and fast on-the-fly ambiguity
resolution of GPS carrier phase signals is studied. An integrated on-the-fly ambiguity
resolution technique was developed for this research. This technique was designed to work
with either single-frequency, codeless, or dual-frequency GPS data from a minimum of
five observed satellites, and it accommodates the use of more than one monitor station.
The validity of the technique has been verified using static, simulated kinematic, and
kinematic GPS data. The technique has been shown to be capable of resolving initial
integer ambiguities on-the-fly reliably and quickly, even instantaneously under certain

conditions.



Geometrical and computational aspects of on-the-fly ambiguity resolution have also been
studied in this research, particularly related to their effects on the performance of on-the-fly
ambiguity resolution. The geometrical aspects studied involve the following geometrical
parameters: the wavelength of the signal, selection of primary satellites, number of
satellites, observation differencing strategy, location of satellites available, data rate,
number of secondary monitor stations, and location of secondary monitor stations. The
computational aspects studied involve the ambiguity searching space construction and the

process of identifying the correct ambiguities.
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Chapter 1

INTRODUCTION

1.1. Global Positioning System (GPS)

The NAVSTAR (Navigation System using Time and Ranging) GPS (Global Positioning
System) is a passive, all-weather satellite-based radio navigation and positioning system,
which is designed to provide precise three dimensional position and velocity, as well as
time information on a continuous worldwide basis. The system development began in 1973
by the U.S. Air Force [Easton, 1980], and currently the system is being developed by the
U.S. Department of Defense. GPS comprises three major segments: the space segment,

i.e., GPS satellites, the control system, and the receiver, as depicted in Figure 1.1.

GPS satellites, when fully deployed, will consist of 21 operating Block-II satellites plus 3
active spares. They will be arranged with four satellites in each of six nearly circular orbital
planes (denoted as A, B, C, D, E, and F planes), with inclination of 55 degrees. The
spacing of the satellites in their orbital planes has been selected to maximize the probability
that at least four satellites with good Position Dilution of Precis’ion (PDOP) will always be
visible to users at every location on Earth [Bagley and Lamons, 1992; Green, 1989]. The
GPS satellites will have an average orbit altitude of about 20 200 km above the Earth's

surface, with the orbital period of 11 hours and 58 minutes.



SATELLITES

2143 satellites

12 hour period

20 000 km above earth

RECEIVER
Track code and phase
Extract message
Compute position

CONTROL SYSTEM
Time synchronization
Orbit prediction

Data injection

Satellite health monitoring

Figure 1.1. The Global Positioning System [Wells et al., 1986].

The first GPS satellite was launched on February 22, 1978, and by October 1992, there
were 19 satellites operational of which 4 are prototype Block-I satellites and 15 are Block-II
satellites as shown in Table 1.1. The Block-I satellites are at the orbital planes with 63
degree inclination. Since they do not fit within the final GPS constellation, they are used at
the present time to augment the coverage provided by the growing complement of Block-II
satellites until all 24 satellites of Block-II are on orbit. GPS is expected to be fully

operational by late 1993 [Bagley and Lamons, 1992].

The operation of GPS satellites is controlled by the GPS control segment. It consists of
monitoring stations distributed around the world that continuously track all the satellites in
view. More specifically, the control segment consists of Ground Antennas (GAs), Monitor
Stations (MSs), the Prelaunch Compatibility Station (PCS), and the Master Control Station
(MCS) [Bagley and Lamons, 1992]. The GAs are located at Ascension, Diego Garcia, and

Kwajalein. The five MSs are the GAs plus Colorado Springs and Hawaii. The PCS is at



Cape Canaveral, and the MCS is at the Consolidated Space Operation Centre at Colorado
Springs. The purpose of the control segment is to monitor the health of the satellites,
determine their orbits and the behavior of their atomic clocks, and to transmit data to the
satellites for re-broadcast to the users which contains the satellite ephemerides, satellite

clock synchronization parameters, and satellite health status [Wells et al., 1986].

Table 1.1. Operational GPS satellites (October 1992).

previous current
13 I1-2 2 , B3
14 II-1 14 El
15 I1-9 15 D2
16 II-3 16 E3
17 II-5 17 D3
18 II-6 18 F3
19 I1-4 19 A4
20 I1-7 20 B2
21 II-8 21 E2
23 1I-10 23 E4
24 II-11 24 D1
25 11-12 25 A2
26 1I-14 26 F2
27 II-15 27 A3
28 II-13 28 - C2

SVN = Satellite Vehicle Number, PRN = Pseudorandom noise code number,
The position of each orbital plane is given in Table V1.2 (Appendix VI).

Each GPS satellite transmits continuously two spread spectrum L-band radio frequencies:
L1 and L2. L1 is centered on 1575.42 MHz (154 x 10.23 MHz) and L2 is centered on
1227.60 MHz (120 x 10.23 MHz). The corresponding wavelengths of these L1 and L2
signals are about 19 cm and 24 cm, respectively. These signals are bi-phase modulated by
one or two pseudo-random noise codes. The L1 carrier signal is modulated by both C/A-
code (Coarse/Acquisition-code) code and P-code (Precise-code), and the L2 carrier signal

is modulated only by the P-code. In addition, the navigation message is modulated on both



signals at a 50 bps (bits per second) rate, and it contains the broadcast ephemeris and the
health information of the satellites. The C/A-code is transmitted at the chipping rate of
1.023 MHz with one millisecond repetition, while the P-code is transmitted at the chipping
rate of 10.23 MHz with 267 day repetition. Each GPS satellite has a different C/A-code and

a different segment of the P-code.

By observing the GPS signals using the GPS receiver(s), the user(s) can obtain
information about the times, the range and range rate to the satellites, and the coordinates
and velocities of the satellites which, in turn, can be used to derive the position and velocity
of the user when enough satellites are observed. GPS, however, is designed to provide its
highest accuracy results only to U.S. military and authorized (military allies & civilian)
users. When the GPS system is fully operational, most of the civilian users will only have
access to the C/A-code, and the P-code will be switched to Y-code which can only be
decrypted by the U.S. military and authorized users. This switching to Y-code is referred
as Anti-Spoofing (A-S). As well, the civilian range measurements accuracy is also
degraded by the so-called Selective Availability (SA). The Selective Availability is
implemented by a combination of degraded satellite orbital information (e-type SA) and
satellite clock dithering (8-type SA). The military and authorized receivers are equipped
with the capability to fix the degradation. The current policy dictates that SA and A-S will
be activated on all operational Block II satellites after the system has been declared fully

operational.

The navigation and positioning service provided by dual-frequency P-code, with the effects
of SA and A-S counteracted, is referred to as the Precise Positioning Service (PPS). The
navigation and positioning service provided by single-frequency C/A code, affected by SA,
is referred to as Standard Positioning Service (SPS). PPS is intended for U.S. military and

authorized users, while SPS is intended primarily for civil GPS users.



1.2. Fundamental GPS observations

There are two fundamental observations which can be obtained when tracking GPS

satellites, namely the pseudoranges (codes) and the carrier phases of the L1 and L2 signals.

The pseudorange observation is the difference between the time of transmission (in the
satellite time scale) and the time of arrival (in the receiver time scale) of a particular signal
transmitted by the satellite [Wells et al., 1986]. This time difference is determined by
comparing a receiver-replicated code with the real code received from a particular satellite,
and it is the time shift needed to align the two codes. When it is scaled by the speed of
light, the pseudorange represents mainly the geometric range between the receiver and the
satellite plus the range bias caused by the time difference between the satellite and receiver
clocks. The pseudorange observations will also be contaminated by the measurement noise,
the multipath (if it exists), and the biases caused by the ionospheric and tropospheric

refractions.

The carrier phase observation is the phase difference (beat phase) between the phase of the
incoming carrier signal from the satellite and an internal receiver-generated carrier signal.
When scaled with the wavelength of the signal, the carrier phase observation represents the
biased range between the receiver and the satellite, with a portion of range related to certain
full cycles of the signal wavelength is unknown. These unknown full cycles of wavelength
are usually known as cycle ambiguity of the phase observation. As in the case of the
pseudorange observation, the phase observation will also be contaminated by the
measurement noise, the multipath (if it exists), and the biases caused by the ionospheric

and tropospheric refractions.

If the pseudorange and carrier phase observations at a certain frequency are denoted as At

and ¢, and the cycle ambiguities of the carrier phase is denoted as N, then the following



equations, which relate these observations to the receiver-satellite geometric range and the

errors and biases contaminating the observations, can be written as follows :

c.At = p +dp+ dtrop +dion + (dt-dT) + MP + 9P , (1.1)

A(e+N)

p +dp +dtrop - dion + (dt - dT) + MC +98C , (1.2)

where p is the geometric distance between the receiver and the satellite (m), c is the speed
of light in a vacuum (m/s), A is wavelength of the signal (m), dp is the range error caused
by ephemeris errors (m), dtrop is the tropospheric delay (m), dion is the ionospheric bias
(m), dt and dT are the receiver and satellite clock errors (m), MP and MC are the multipath
effects in pseudoranges and carrier phases (m), and 9P and 9C are noise in pseudoranges

and carrier phases (m).

Based on the above equations, it is evident that the accuracy and precision of the
pseudorange and carrier phase observations in representing the geometric ranges between
the receiver and the satellites depends on the magnitudes of the observation errors and
biases and also on the level of observation noise. The level of the observation noise
depends on several factors such as the tracking bandwidth, signal-to-noise ratio, and code
tracking mechanization parameters [Martin, 1980]. For C/A-code pseudoranges, the noise
level is approximately 1 - 5 m, depending on the dynamics of the receiver, signal-to-noise
ratio, and sophistication of the signal processing inside the receiver. Due to its higher
chipping rate, the noise level of P-code pseudoranges is lower, and it is approximately 10 -
50 cm. The phase observation is much more precise than the pseudorange. Its noise level is
about 1 - 2% of the signal wavelength, i.e., about 2 - 4 mm for L1 signal and 2.5 - 5 mm
for L2 signal.




Due to its high precision, the carrier phases are the observations which have to be used for
accurate and precise positioning using GPS satellites. It should be noted in this case,
however, that their cycle ambiguities have to be resolved correctly beforehand in order to
convert the carrier phase into the accurate and precise geometric range between the receiver

and satellite.
1.3. GPS positioning accuracy

The accuracy of positioning using GPS satellites is affected by several factors such as the
accuracy of the observations being used for positioning, the positioning method adopted,
the satellite geometry during the survey, and the processing strategy used, as depicted in
Figure 1.2. Examples of the many modes of GPS pbsitioning and their accuracies are
shown in Figure 1.3. In this research, we are concerned about the precise (centimetre level
accuracy) kinematic positioning using GPS. This level of accuracy can be achieved by

using the carrier phase observations with the correct cycle ambiguities (see Figure 1.3).
1.4. Precise kinematic applications of GPS

The precise (centimetre level accuracy) kinematic differential positioning using GPS
requires the use of the carrier phase observations with correctly resolved integer
ambiguities. This implies the need for ambiguity resolution at the beginning of the session
(initial ambiguities), times of cycle slip occurrences, and rising of a new satellite which will
be included in the positioning process. On-the-fly ambiguity resolution, i.e., ambiguity
resolution while the receiver is in motion, is desirable for flexibility and reliability of kine-
matic positioning, and it is useful for quite a lot of applications. In the following, some of

the existing applications and theoretically conceivable applications are outlined.



« types of observations :
. pseudoranges, carrier phases.
. single-frequency, codeless, dual-frequency.
« quality of the receiver.
« the level of errors and biases.

Accuracy and precision
of the observations |

» number of satellites.
« location and distribution of satellites.

« static, rapid static, pseudo-kinematic, stop & go, kinematic. |
« point positioning, differential positioning.
= one monitor station, multi monitor stations.

Positioning methods

« method of accounting for the observation errors
and biases.

« real-time processing, post processing.

« ambiguity fixed solution, ambiguity float solution
(carrier phases).

« baseline processing, network adjustment.

| Processing strategy I

Figure 1.2. The factors affecting GPS positioning accuracy.

> carrier-smoothed code

1 mm 1 cm 10 cm 1m 10 m 100 m

Figure 1.3. Many modes of GPS positioning accuracy [Wells, 1992].



1.4.1. Attitude and heading determination

The precise and accurate attitude and heading of a moving platform can be determined by
differential measurements of GPS carrier phases between two or more independent pairs of
antennas on the platform. In this case, however, the integer cycle ambiguities between the
pair of antennas have to be resolved beforehand [Nesbo, 1988; Nesbo and Canter, 1990;
Brown and Evans, 1990; Knight and Hatch, 1990; Cohen and Parkinson, 1991; Brown,
1992; Jurgen and Rodgers, 1992; van Graas and Braasch, 1991,1992; Wilson and
Tonnemacher, 1992, Hwang, 1990b]. On-the-fly precise and accurate heading and attitude
information is useful for quite a lot of applications, such as [Braasch and van Graas, 1991;

van Graas and Braasch, 1991,1992; Anderman, 1991, Nesbo and Canter, 1990] :

« real-time determination of the attitude and heading of an aircraft or other moving
vehicle,

+ rapid in-flight alignment and re-initialization of inertial navigation systems,

+ precision guidance and/or pointing applications,

+ attitude control of space platforms,

¢ on-line model identification and control of flexible structures, and

 precise positioning of in-sea seismic equipment.

1.4.2. High accuracy sea surface positioning

Precise differential GPS kinematic positioning will play important roles in high accuracy
sea surface positioning, which is required for several applications, such as: precise
positioning of the sea floor points (sea floor geodesy), satellite altimeter verification, the
study of sea level, ocean waves and currents, offshore tide measurement, and dredging

operations.



In the case of precise positioning of the sea flcor points, the differential kinematic
GPS positioning is used to determine the position of the buoy on the sea surface with
respect to the monument on land, along with its orientation. The buoy should be equipped
with three or more GPS antennas. The acoustic positioning system, which its transducer is
attached to the buoy, is then used to connect the GPS derived buoy coordinates to the
coordinates of the points on the sea floor where the acoustic transponders are located
[Young et al., 1987; Mcintyre, 1989; Purcell Jr. et al., 1991]. The precise coordinates of
the points on the sea floor are very important information in studying the structure and
dynamics of the earth crust beneath the sea, and can also be expected to have an impact on

human activities under the sea [Committee on Geodesy, 1983; Spies, 1985, 1990].

The principles of satellite altimeter verification using precise differential GPS
positioning is explained in Rocken et al. [1990]; Hein et al. [1991]; and Rocken and Kelecy
[1992]. The verification requires the measurement of an independently determined satellite
altimetry above sea level to be compared with the satellite altimeter measurement as it
passes over the verification region. In this case, the reference GPS receivers are collocated
at the (satellite altimetry) laser tracking sites, and the other receivers are mounted on the
floaters in the ocean, covering the footprint of the altimeter. By precisely positioning these
GPS floaters and simultaneously tracking the satellite position from the laser sites, the
height of the satellite altimetry above the local mean sea surface can be determined, and in
turn it can be used to verify the altimeter measurement. This technique has been used to
verify the altimeter measurements of the first European Remote Sensing Satellite, ERS-1

[Hein et al., 1991; Rocken and Kelecy, 1992].

The high accuracy sea surface GPS positioning will also be useful for studying the sea
level, ocean waves, and currents [Hein et al., 1990; Rocken et al., 1990, Geiger and

Cocard, 1992], and for efficient and accurate offshore tide measurement. It will also be
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beneficial in supporting dredging operations. It will improve the earthwork computation for
contract payments, and in the vertical sense, this high positioning accuracy will allow the

vessel to serve as its own tide gauge [Geier et al., 1990].

1.4.3. Airborne photogrammetric applications

Precise differential GPS kinematic positioning will also be useful for airborne
photogrammetric applications. One of the applications is to determine the precise
coordinates of the camera at exposures times. In this case, the need for the conventional
ground control points can be reduced, if not eliminated, leading to the so-called
aerotriangulation with minimum ground control or even without ground control [Schwartz
et al., 1984; Lucas, 1987; Hintz and Zhao, 1989; Ackermann, 1990; Cannon, 1991]. In
order to be viable, the camera in space should be located with a relative accuracy of 3 - 10

cm and it should be repeatable to the same degree [Merrell et al., 1989].

The precise differential GPS positioning can also provide accurate and reliable attitude
information which can benefit the photogrammetric block adjustment [Schwartz et al.,
1984; Cannon, 1991]. The a priori knowledge of the exposure station obtained from
kinematic GPS positioning can also be used for analytical calibration of the airborne

photogrammetric system [Lapine, 1991].

1.4.4. Precise navigation of agricultural vehicles

Precise kinematic differential GPS positioning will also be useful in navigating the
agricultural vehicles to accomplish certain tasks [Auernhammer and Muhr, 1991; Petersen,
1991]. Based on the accuracy requirements shown in Table 1.2, precise kinematic

positioning can play significant roles in the cases of the navigation of the tractor during
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distribution work, the navigation of the harvest machines, and the tractor implement

guidance.

Table 1.2. Requirements for navigation in agriculture [Auernhammer and Muhr, 1991].

rough navigation ¢ soil sample acquisition
of the vehicle ¢ detection of tram lines +1lm
* mineral fertilizer spreading
navigation ¢ liquid manure spreading
of tractor and ¢ solid manure spreading +10cm
harvest-machines ¢ application of pesticides
e soil cultivation
tractor e drilling
implement guidance ¢ hoeing tlcm
e plowing

1.5. Motivation

The precise kinematic positioning using GPS satellites, as described in the previous
section, has a lot of practical applications. In order to achieve the highest accuracy of
positioning, the carrier phase observations should be used instead of the pseudoranges.
The inherent cycle ambiguity of carrier phase observations, however, must be correctly

resolved beforehand whenever real-time positions are required.

Cycle ambiguity resolution is not a task that can be easily accomplished, even in the case of
static differential GPS positioning. A lot of factors will affect the speed and reliability of the
ambiguity resolution. In general, these factors can be categorized into three broader groups,
namely the ambiguity resolution technique, the effects of the observation errors and biases,
and the observation geometry, i.e., the geometry between the satellites, the monitor
station(s), and the user. In order to achieve the successful ambiguity resolution, all of the
factors have to be judiciously taken into consideration in designing and formulating the

ambiguity resolution technique and in performing the ambiguity resolution process. In this
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case, besides using a smart and powerful technique, the elimination of the major
observation errors and biases and the significant changes in satellite geometry are necessary

for reliable ambiguity resolution.

In this research, therefore, the possibility of performing reliable and fast on-the-fly
ambiguity resolution will be studied and investigated. Its aspects, particularly its
computational and geometrical aspects, will also be elaborated in order to get a better
insight into the problem of on-the-fly ambiguity resolution. In the course of the research
investigation, some simulated kinematic, static, and real kinematic GPS data will be
processed in order to assess the achievable results, the prospects, and the limitations of fast

and reliable on-the-fly ambiguity resolution.
1.6. Previous studies

There have been numerous studies performed in the area of cycle ambiguity resolution of
GPS carrier phase observations. In the following, however, only the studies related to the

on-the-fly ambiguity resolution technique will be reviewed.

Wubbena [1989] has proposed the extrawidelaning technique of ambigl;ity resolution,
which can be used both for static and moving receivers. The technique requires P-code
dual-frequency data, and utilizes the linear combinations of L1 and L2 signals (i.e., wide-
lane, narrow-lane, and ionospheric signals) for the ambiguity resolution process
[Wubbena, 1989, 1991]. Although the technique is not affected by the frequency-
independent errors and biases such as the clock errors, tropospheric delays, and ephemeris
errors, it is sensitive to the frequency-dependent errors and biases such as the ionospheric
delay, multipath, and observation noise. The effects of these later errors and biases on the
performance of on-the-fly extrawidelaning technique are studied in Seeber & Wubbena,

[1989]; Abidin & Wells [1990]; and Abidin [1990]. The practical use of the
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extrawidelaning technique for on-the-fly ambiguity resolution in the cases of the 3-D ship
attitude control investigations and differential kinematic positioning of a photogrammetric

plane are also reported in Seeber & Wubbena [1989].

Mader [1990, 1992] studies the on-the-fly ambiguity resolution using the ambiguity
mapping function technique. The technique was first described by Counselman &
Gourevitch [1981], and since then has been applied for the static cases [Remondi, 1984;
Mader, 1992; Ziegler et.al., 1992], pseudo-kinematic cases [Remondi, 1990; Balde et.al.,
1991], and kinematic cases of positioning [Mader , 1990; 1992]. The problem of on-the-fly
ambiguity resolution using the ambiguity mapping function are described in Mader [1990;
1992], especially with respect to some of its computational aspects and the effects of
ionospheric refractions on the ambiguity resolution process. The effects of the observation
geometry, howevef, are only referred to in general in the studies. The studies also present
the on-the-fly ambiguity resolution results in conjunction with the kinematic differential

positioning to aid airborne gravimetric surveying.

Hatch [1989, 1990] has proposed another on-the-fly ambiguity resolution technique which
is called the least-squares ambiguity searching technique. The geometrical interpretation of
the technique is described in Hatch [1989], and its mathematical formulations are given in
Hatch [1990]. Some experimental results of on-the-fly ambiguity resolution related to the
single-frequency aircraft positioning are given in Hatch [1991], and those related to dual-

frequency static data is given in Hatch et al. [1992].

Remondi [1991, 1992a, 1992b] has also proposed another approach for on-the-fly
ambiguity resolution technique, which is called the kinematic GPS without static
initialization technique. In principle, this technique is similar to the ambiguity mapping

function technique. The mathematical formulations of the technique are given in Remondi

14



[1991] and on-the-fly ambiguity resolution results are presented in the aforementioned

references.

The studies of on-the-fly ambiguity resolution are also carried out by the group of
researchers from the Institute of Astronomical and Physical Geodesy, University FAF
Munich and terraSat Inc. in Germany. The mathematical formulations of their on-the-fly
ambiguity resolution technique is given in Landau and Euler [1992], and the achievable
experimental and practical results can be seen in Landau [1990]; Landau and Euler [1991a,
1991b}; Euler et.al. [1991]; Hein et. al. [1991]; and Landau and Euler [1992].

Hwang [1990a, 1990b] has also studied on-the-fly ambiguity resolution of GPS carrier
phases. As in the case of [Loomis, 1989], he uses the Kalman filter formulation to resolve
the ambiguities. In his studies, he also proposes the augmented version of the antenna
exchange technique [Hofmann-Wellenhof and Remondi, 1988] to be used for on-the-fly

ambiguity resolution in certain kinematic applications.

Cohen and Parkinson [1992] and Brown [1992] have also proposed the on-the-fly
ambiguity resolution technique to be used specifically for the attitude determination of a

moving platform using GPS carrier phase observations.

The previous reported studies usually describe in general their on-the-fly ambiguity
resolution concepts, outline their mathematical formulations, and present some
experimental and/or practical results of their techniques. In general, there are no detailed
investigations of the computational characteristics of the technique, or on the speed and
reliability of on-the-fly ambiguity resolution. Comprehensive investigations of the effects

of the observation geometry on the performance of on-the-fly ambiguity resolution are also
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usually not given. Moreover, the existing studies do not consider the advantages of using

more than one monitor station for speeding up the on-the-fly ambiguity resolution process.

1.7. Methodology and scope of the investigation.

The performance of fast and reliable on-the-fly ambiguity resolution will depend on the
technique being used, the observation geometry involved, and the level of the observation

errors and biases, as depicted in Figure 1.4.

 Observation Y
- errors and
biases

Fast and reliable
on-the-fly
ambiguity
resolution

: Ambiguity
resolution
technique

Observation
geometry

Figure 1.4. The factors affecting the on-the-fly ambiguity resolution.

In order to study and investigate the possibility for the reliable and fast on-the-fly ambiguity
resolution, the so-called integrated on-the-fly ambiguity resolution technique is at first
developed. The technique is developed by considering the positive features of the three
existing on-the-fly ambiguity resolution techniques, i.e., the extrawidelaning technique, the
ambiguity mapping function technique, and the least-squares ambiguity searching

technique, along with the new features of the integrated technique itself. The integrated
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technique is designed and formulated to work with either single-frequency, codeless, or
dual-frequency data from at least five satellites, and the double-difference observations are
used as the basic observations for the ambiguity resolution. The technique also

accommodates the use of more than one (secondary) monitor stations.

The validity of the technique is then tested and verified using the static and kinematic GPS
data. The static data used in this case is the zero baseline data collected using the Trimble
Geodesist P-receivers (which observes L1-C/A code, L2-P code, and full wavelength L1
and L2 carrier phases), and the codeless data of a 535 m baseline collected using Ashtech
LD-XII receivers (which observes L1-C/A code, full wavelength L1 phases, and half
wavelength L2 phases). The kinematic data used in this case is the P-code dual frequency
GPS data observed using the Rogue receivers, involving two monitor stations and three

GPS antennas on a moving buoy.

The computational characteristics of the technique with respects to their effects on the speed
and reliability of on-the-fly ambiguity resolution are then studied and investigated. The
investigations in this case are concentrated on the two main aspects of the ambiguity
resolution technique, namely the ambiguity searching space and the identification process
of the correct ambiguities. The static and kinematic GPS data are used in the investigations.
This stage of research studies the computational characteristics of the integrated technique

in achieving fast and reliable on-the-fly ambiguity resolution.

Observation geometry will also affect the speed and reliability of on-the-fly ambiguity
resolution. In this research, the effects of the observation geometry are studied and
investigated by considering several geometrical parameters related to GPS satellites,
observations, and secondary monitor stations. The static and real kinematic GPS data are

used, along with the single-frequency simulated kinematic data from four secondary
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monitor stations. This last stage of research studies the requirements for fast and reliable

on-the-fly ambiguity resolution with respect to the parameters of the observation geometry.

The observations errors and biases also affect the performance of on-the-fly ambiguity
resolution. In this research, however, it is assumed that the user will receive the
information to correct the clock errors, satellite ephemeris errors, and ionospheric and
tropospheric biases from the wide area differential GPS system [Kee et.al., 1991] which is
expected to be operational in the near future. Moreover, the double-differencing between
the observations which are used in this research, will also significantly eliminate the effects
of some major errors and biases. Therefore, there is no special investigation of the effects
of the observation errors and biases on the performance of on-the-fly ambiguity resolution.
In summary, the methodology of investigation adopted in this research is depicted by the

flowchart in Figure 1.5.

Figure 1.5. The methodology of the research investigation.
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1.8. QOutline of the dissertation.

The dissertation consists of seven chapters and six appendices. The contents of these

chapters and appendices are outlined in the following.

Chapter 2 introduces the problem of cycle ambiguity resolution of GPS phase observation.
The concept of the lines and surfaces of ambiguities are presented along with the notion of
the mathematical and physical ambiguity searching spaces. Finally, some of the existing

on-the-fly ambiguity resolution techniques are reviewed.

Chapter 3 describes in detail the concepts and mathematical methodologies of the integrated

on-the-fly ambiguity resolution technique developed in this research.

Chapter 4 presents the on-the-fly ambiguity resolution results obtained by using the
integrated on-the-fly ambiguity resolution technique. This chapter proves the validity and
efficiency of the integrated technique. The verifications are performed in this case by using

both static and kinematic GPS data.

Chapter 5 discusses the computational characteristics of integrated on-the-fly ambiguity
resolution technique and their effects on the speed and reliability of the ambiguity
resolution. The discussion is concentrated on the construction of ambiguity searching space
and the implementation of validation and rejection criteria. The results based on the static

and kinematic GPS data are presented.

Chapter 6 discusses the effects of the observation geometry on the speed and reliability of
on-the-fly ambiguity resolution, with respects to certain geometrical parameters. The

geometrical parameters considered in this case are: signal wavelength, primary satellites,
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number and location of the satellites, observation differencing strategy, data rate, and
number and location of the secondary monitor stations. The results based on static,

kinematic, and simulated kinematic GPS data are presented in this case.

Chapter 7 summarizes findings, makes conclusions, and recommends topics for future
investigations. Some points related to the prospects and limitations of on-the-fly ambiguity

resolution are also presented.

Appendix I contains explanations and mathematical formulations of the linear combinations

of GPS observations used in this research.

Appendix II contains the mathematical formulation of the code smoothing technique,

which smoothes the pseudoranges by using the carrier phase observations.

Appendix III gives explanations and mathematical formulations for constructing the

covariance matrix of the muld station double-difference observations used in this research.

Appendix IV presents the histogram and time series of the distance differences between the
computed distances and the corresponding known distances of the three GPS antennas on a
moving buoy. The results are related to real kinematic GPS data observed using Rogue

receivers.

Appendix V contains mathematical explanations for the effects of the observation geometry

on the mathematical ambiguity searching space.

Appendix VI gives the characteristics of the simulated kinematic GPS data used in this

research, and the method used to simulate the data.
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1.9. Contributions of the research.

The contributions of this research can be summarized as follows :

(1).

).

3.

to develop an integrated on-the-fly ambiguity resolution technique, with a strategy
and concept quite different from existing on-the-fly ambiguity resolution techniques,
to introduce and formulate the use of more than one secondary monitor station for on-
the-fly ambiguity resolution,

to introduce some new validation and rejection criteria for on-the-fly ambiguity

resolution process,

(4). to investigate the computational characteristics of integrated on-the-fly ambiguity

5).

(6).

).

(8).

resolution technique, and their effects on the speed and reliability of on-the-fly
ambiguity resolution,

to investigation of the effects of observation geometry on the speed and reliability of
on-the-fly ambiguity resolution, with respect to most of the important geometrical
parameters,

to apply the concept of lines and surfaces of (double-difference) ambiguities in
explaining the effects of some geometrical parameters of the ambiguity resolution
process,

to provide a more meaningful geometrical interpretation of the problem of cycle
double-difference ambiguity resolution, and

to provide an assessment of the achievable results, prospects, and limitations of

reliable and fast on-the-fly ambiguity resolution.

21



Chapter 2

ON-THE-FLY AMBIGUITY RESOLUTION

In this chapter some aspects of on-the-fly ambiguity resolution are introduced and
explained. After introducing the cycle ambiguity problems of GPS phase observations, this
chapter describes the concepts of lines and surfaces of ambiguity and explains the concepts
of mathematical and physical ambiguity searching space. Finally, some of the existing on-
the-fly ambiguity resolution techniques are reviewed. Their strengths and weaknesses are

identified, and the possibility of synergizing their good features is highlighted.

2.1 Cycle ambiguity resolution

Carrier phase and code observations are two types of observations which can be extracted
from the GPS signal [Wells et al., 1986]. For positioning purposes, carrier phase
observations should be used to achieve the highest accuracy of the estimated differential
position because of its higher precision than code observations. However, the inherent
cycle ambiguity of carrier phase observations, i.e., the numbers of unobserved full cycles
of the phase observations, must be correctly resolved beforehand in order to convert the
phases into the precise ranges to the satellites (see Figure 2.1). In the case of real-time dif-
ferential GPS kinematic positioning using carrier phase observations, the ambiguity

resolution is necessary in three occasions: the beginning of the session (initial ambiguity),
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cycle slip occurrences, and the rising of a new satellite which will be included in

positioning process.

The cycle ambiguity is an integer number. For one-way phase observations between the
receiver and the satellite, however, this cycle ambiguity cannot be separated from the clock
related errors in the receiver and satellites (see equation 1.2). This is also true of single-
difference (between-station or between-satellite) phase observations. In the case of station-
satellite double-difference observation, clock-related errors in the satellites and receivers are
canceled by a differencing process. For resolving the ambiguity, therefore, one should

work with the double-difference phase observations.

Ep er

Figure 2.1. Cycle ambiguity of carrier phase observation (the figure is not to scale).

In the case of static differential GPS positioning, isolating the integer ambiguity from the
geometric range and the errors and biases in the observations, as depicted in Figure 2.1,
requires effort both in observation time and strategy and also in processing schemes.
Significant change in satellite geometry and elimination of the major errors and biases in the

observations are required for reliable ambiguity resolution. Figure 2.2 gives an example of
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how errors and biases in the observation can complicate searching for the correct integer of
cycle ambiguity. In this example, the ambiguities are computed using the 'known'
coordinates of stations, satellite positions computed using the broadcast ephemeris, and
carrier phase observations. If systematic errors and biases in the phase observation can be
eliminated, ambiguity can be resolved easily as shown in the case of zero baseline data
which is contaminated only by receiver noise. Otherwise, one would have difficulty
deciding the correct integer ambiguity as shown in the case of 200 km and 3000 km
baselines data, which can be expected to be caused by the effects of the ephemeris errors

and ionospheric delays in the phase observations.

Finally, it should also be noted, that besides favorable observation geometry and
insignificant observation errors and biases, the smart and reliable algorithm is also very
important for fast and reliable on-the-fly ambiguity resolution. Before the existing on-the-
fly ambiguity resolution techniques are reviewed, the concepts of the lines and surfaces of
ambiguity are introduced in the following sub section in order to give more insight to the

ambiguity resolution problem.

2.2. Surfaces and lines of ambiguity

There are two types of the surfaces and lines of ambiguity which will be introduced here,
namely the physical and mathematical. In this research, the physical surface of ambiguity
(SOA) is defined as the surface of position (SOP) corresponding to a certain value of
ambiguity. Any line on this surface is called the physical line of ambiguity (LOA). The
simplified nature of the physical LOA in 2-D perspectives is depicted by Figure 2.3. For
the sake of clarity, the carrier phase observations in this case are assumed to be not
contaminated by noise, errors and biases. The ranges to satellite represented by i then can

be defined as follows:
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Integer ambiguity variations ( L1-cycles, A = 19 cm )

Figure 2.2. Variations of integer ambiguities of double-difference L1-phase observations

ol = A (ol +N) | @2.1)

where p, A, ¢, and N denote the range, the wavelength, the observed phase, and the
unknown cycle ambiguity, respectively. Note from the above équation that the potential
position related to single one-way range is located on the surface of a sphere centered at
satellite i. By changing the values of the ambiguity by one cycle, we basically change the
range and create another spherical SOP one cycle apart from the previous one. Therefore,

the identification of the correct one-way ambiguity in this case is actually the identification
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of the correct spherical SOP. The surface of the ambiguity therefore is also the sphere, and,

in a two-dimensional case, it becomes the circle as shown in Figure 2.3.
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Figure 2.3. The physical surfaces of ambiguity in 2-D perspective.
Due to the great distances to the satellites compared to signal wavelength,
the parts of the circle and the parabola in the above figure will appear as the straight lines.

If we have another satellite, let's say j, and we perform the differencing between the

satellites, then the following equation is obtained:
Vpli = pi-pl = A ( Vel +VNij) . (2.2)

The potential position related to single between-satellite single-difference range expressed

by equation (2.2) will be located on the hyperboloid focused on satellites i and j. In this

26



case therefore, the SOA will be also the hyperboloid, or the hyperbola in two-dimensional

case, as shown in Figure 2.3.

With station-satellites double-difference phase observations, performing the station
differencing between the user and the known monitor station observations, is the same as
applying the range correction from the monitor station to the between-satellite single-
difference observation of the user site. If observations are assumed not to be contaminated
by noise, errors, and biases, this correction is the 'known' ambiguity related to a monitor
station. Therefore, the SOA and LOA will still be the hyperboloid and the hyperbola,

respectively.

The collection of several surfaces of ambiguities constitutes the ambiguity space. In this
research, the physicﬁl ambiguity space is defined as a three-dimensional space constituted
by the physical surfaces of ambiguities. It is in the position (cartesian or ellipsoidal)
domain, and the ambiguity sets are represented by positions related to the intersections of
their corresponding surfaces of ambiguity. The orientation and the pattern of the SOA
depends on the observation geometry, such as the location of satellites and the user, the
between-satellite differencing approach of observations, and the wavelength of the signal,
as indicated in Figure 2.3. Therefore, the ambiguity-set related positions inside the physical
ambiguity space will also depend on the aforementioned variables and obviously not be

evenly space distributed.

For computational purposes, the physical ambiguity space can be transformed to the mathe-
matical ambiguity space: It is defined in the ambiguity domain, and in the case of ns
number of satellites and double-difference ambiguities, the mathematical ambiguity space
is a (ns-1) dimensional space. In this space, the positions are represented by (ns-1) tuples

of integer ambiguities. They are evenly spaced and distributed inside the mathematical

27



ambiguity space regardless of the observation geometry. The mathematical SOA and LOA

related to this mathematical ambiguity space will always be the planes and the straight lines.

2.3. On-the-fly ambiguity resolution techniques

There are several techniques that have been proposed for resolving the ambiguity of GPS
phase observations. Some of them, however, are intended to be used only for static and
rapid static GPS surveying. Among the techniques that can be used for on-the-fly
ambiguity resolution, only the extrawidelaning technique [Wubbena, 1989], the ambiguity
mapping function technique [Remondi, 1984; Mader, 1990, 1992], and the least-squares
ambiguity searching approach [Hatch, 1989, 1990] are reviewed in the following. This is
because our new strategy for on-the-fly ambiguity resolution, which will be described in
the next chapter, will take into consideration some of their positive features. There is also
another on-the-fly ambiguity resolution technique worth mentioning, which is called
kinematic GPS without static initialization technique, proposed by Dr. B.W. Remondi.
Since in principle this technique is more or less similar to the ambiguity mapping function
technique, it will not be reviewed in this chapter. Interested readers can consult Remondi

[1991, 1992a, 1992b] for the formulation and the performance of this technique.

2.3.1. General strategy of on-the-fly ambiguity resolution

Except for the extrawidelaning technique, the aforementioned on-the-fly ambiguity
resolution techniques have a more or less similar strategy for resolving ambiguity, which
can be depicted in Figure 2.4. Basically, the ambiguity resolution is performed by testing
many combinations of ambiguity sets or positions representing the ambiguity sets inside a
certain predetermined searching space. The searching space is usually centered at a certain

initial estimate of the ambiguity set or the position, and it could be either the mathematical
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space, i.e., defined in the ambiguity domain, or physical space, i.e., defined in the position

domain.

Initial
ambiguities
or position

Ambiguity
searching space

Searching
(Identification)
process

Validation
and Rejection
Criteria

Assurance
Criteria

yes v AMBIGUITY
FIXING
Figure 2.4. General strategy of on-the-fly ambiguity resolution.

The process of searching integer ambiguities is performed by applying certain validation
and rejection criteria to the ambiguities or positions being tested. The searching process is
stopped and the ambiguities are fixed whenever certain assurance criteria are fulfilled. The
on-the-fly ambiguity resolution techniques usually differ from each other in the validation
and rejection criteria used in the searching process and in the assurance criteria used to stop
searching. Differences could be in the types and numbers of criteria, and/or in their
formulations and application sequences. The techniques might also differ in the underlying
philosophy of the ambiguity resolution process, and in approaches used to construct the
searching space-and to estimate the initial ambiguities or position. These differences
usually lead to the differences in the computation and observation times of ambiguity

resolution, and sometimes to differences in the reliability of resolution.
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2.3.2. Extrawidelaning technique

The extrawidelaning technique of ambiguity resolution is proposed by Wubbena [1989] for
dual-frequency GPS data. It can be used both for static and moving receivers. The
technique is not affected by frequency-independent errors and biases, such as clock errors,
tropospheric effect, and ephemeris error. However, it is sensitive to frequency-dependent
errors and biases, such as ionospheric effects, multipath and observation noise. The
technique does not directly use actual GPS observations in resolving the ambiguities.
Instead, linear combinations of the actual observations, the so-called wide-lane, narrow-

lane, and ionospheric signal observations, are used (see Appendix I).

In the extrawidelaning technique, the resolution of the cycle ambiguities of wide-lane and
narrow-lane carrier phases is accomplished through five steps. In the first step,
pseudoranges are smoothed using carrier phase observations [Hatch, 1982] in order to
reduce the noise and multipath effect on pseudoranges (the smoothing formulation is given
in Appendix II). The second step is to obtain the a priori wide-lane ambiguity. The cycle
ambiguity of the wide-lane signal is first estimated because of its relatively long wavelength

(86.25 cm), which can be resolved more easily. Here, the a priori wide-lane ambiguity is

estimated using the combination of wide-lane carrier range (L) and smoothed 'narrow-
lane' pseudorange observations (1,52). To eliminate most of the effects of the errors and
therefore simplify the working model, the receiver-satellite double-difference ambiguities
are estimated. By using equations (1.23) and (1.24) from Appendix I, the following relation

for estimating the a priori wide-lane ambiguity is obtained :

_ (VAPg —VAL,) + (VAMC, - VAMP;g) + (VAUC, — VAUP;)

VAN
A A

2.3)

30




The last two terms in the above equations are related to the multipath and the observation
noise (see Appendix I for a more detailed explanation). Since the epoch-by-epoch
magnitude of these two terms is usually difficult to know, these terms are usually neglected
in computing the a priori wide-lane ambiguity. When there is no multipath and the
pseudoranges are smoothed using carrier phases, the neglect can be tolerated. When strong
multipath occurs, however, it can be expected that it will bias the a priori wide-lane
ambiguity estimates. To further reduce the effects of the remaining noise and multipath,

sequential time averaging can be performed on the a priori ambiguity estimates.

After estimating the a priori wide-lane ambiguity, the third step is to estimate the narrow-

lane ambiguity using the help of ionospheric signal observations (L;,). Based on equations

(I.24) to (1.27) from Appendix I, the double-difference ionospheric signal observations can

be formulated as follows :

VAL,

18

VALy - VAL,

- 2.VAdion, s - VANRy + VANR, + VAMCs - MC,) + VA(SCy - 9C,)

- 2.VAdion,s - A5.VANg + 1, VAN, + VAMC; + VAOC;; ,  (2.4)

where dion denotes the effect of ionospheric refraction (see also Appendix I). By
rearranging the above equation, the formula for estimating the double-difference narrow-

lane ambiguity can be established as follows :

A5.VAN, - (VAL  + 2.VAdion, s - VAMC;, - VA9C;,)
A
)

VANg

(2.5)
(VALIS + 2.VAdi0nA/Z - VAMCIS - VA’ISCIS)

Ay

8.059.VAN, -
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If the a priori wide-lane ambiguity can be estimated with the accuracy level of £ 2 cycles
(0.059.VAN, = 0.12 cycles), and the ionospheric effects, carrier multipath, and phase
noise are negligible or can be reduced to a negligible level, then the ionospheric signal will
have the integer ambiguity with a wavelength equal to the narrow-lane wavelength. The
first requirement in estimating the a priori wide-lane ambiguity is not difficult to satisfy by
using smoothed pseudorange or time averaging. The differential ionospheric effect,
however, can be considered negligible only for baseline lengths up to a few kilometres. For
longer baselines, it should be somehow reduced so the ionospheric signal ambiguity can be
fixed. The effects of the noise and multipath on the ionospheric signal can be reduced by
time averaging, the reliability of which will depend on the magnitudes and signatures of the

noise and multipath.

It should be emphasized here that this third step is the most important step of the
extrawidelaning technique. The resolving times and the reliability of the ambiguity
resolution depends on how long and how reliably the ionospheric signal ambiguity can be
'fixed'. In this case, the accuracy of the ionospheric signal is used as a criteria for the

fixing [Wubbena, 1989; Seeber & Wubbena, 1989].

In the fourth step of extrawidelaning technique, by using the double-difference narrow-
lane ambiguities estimates on equation (2.5), the double-difference wide-lane ambiguities
are fixed using the even-odd relation between the wide-lane and narrow-lane ambiguities.
In this case, when the narrow-lane ambiguity is an even integer number then the a priori
wide-lane ambiguity is fixed to the nearest even integer number, and, when the narrow-lane
ambiguity is an odd integer number, then the a priori wide-lane ambiguity is fixed to the
nearest odd integer number. Note that this even-odd relation increases the effective
wavelength of wide-lane signal by a factor of two to 172.5 cm; a process which is termed

extrawidelaning. Finally, as the fifth stage, after the wide-lane ambiguity is fixed based
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on this extrawidelaning, it is used in equation (2.5) to fix the narrow-lane ambiguity.
This process of ambiguity resolution using the extrawidelaning technique is depicted in

Figure 2.5.

Fix the ambiguities
of ionospheric signals

[ Smooth the pseudoranges
using the carrier phases >

Estimate the narrow-lane ambiguities

Estimate apriori wide-lane ambiguities

Fix the wide-lane ambiguities

Fix the narrow-lane ambiguities I

acceptable

Time averages of
ionospheric signals

Accuracy
of ionospheric
signals ?

unacceptable

> (

N

Figure 2.5. On-the-fly ambiguity resolution based on extrawidelaning technique.

As mentioned before, the extrawidelaning technique of ambiguity resolution uses the
accuracy of the ionospheric signal as criterion for fixing the ambiguities. Therefore, the
times (needed) and success to resolve the ambiguities is dependent on the magnitude of the
residual frequency-dependent errors and biases in the observations, such as ionospheric
delay, multipath error, and observation noise. The technique usually requires a few minutes
to resolve the ambiguity if the ionospheric refraction is negligible and the data is not
contaminated by multipath effects [Seeber & Wubbena, 1989; Abidin & Wells, 1990,
Abidin, 1990].
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2.3.3. Ambiguity mapping function technique

The ambiguity mapping function technique was first described by Counselman &
Gourevitch [1981]. The technique has been applied for the static case [Remondi, 1984;
Mader, 1992; Ziegler et.al., 1992], the pseudo-kinematic case [Remondi, 1990; Balde
et.al., 1991], and the kinematic case [Mader, 1990, 1992]. The ambiguity function is
defined as follows:

ikl ikl

ne ns nf
AME(T) = ;1 kgl 1; exp{i[0%, - 0L (DI} | . 2.6)

where T is the position vector (cartesian or ellipsoidal coordinates), ¢y is the observed
single-difference or double-difference phase (in radians), ¢,y is the calculated single-
difference or double-difference phase at position r (in radians), ne is the number of epochs,
ns is the number of satellites, and nf is the number of frequencies. Finally, it should be

noted in this equation that:

exp(ip) = cos(p) + isin(p) . .7

In equation (2.6), the integer cycle ambiguity of the observed phase does not have an effect

on the ambiguity mapping function value since

exp(i9) = exp [i(¢ +2n.N)] , (2.8)

with N as the cycle ambiguity integer. Changes in the ambiguity integer will also have no

effect. This insensitivity of the ambiguity mapping function is a positive point in the case of
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cycle slips. In the case of choosing the correct ambiguity from several possible values,
however, it is a negative point since more than one ambiguity may yield almost the same

values of the ambiguity mapping functions.

As can be seen from equation (2.6), the ambiguity mapping function measures the
agreement between the measurements and their calculated values. The unaccounted errors
and biases in the observed phases therefore will affect the value of the mapping function. If
the value is normalized with the number of measurements used to compute the ambiguity
mapping function, then considering there are no observation errors and biases, the
ambiguity mapping function will have the values between zero and one. The value of one
represents the perfect agreement among the measurements, i.e., the most constructive
interference among the observed signals, and the value of zero represents the most

destructive interferences.

The ambiguity mapping function technique can be used to resolve the cycle ambiguity by
trying to find a position corresponding to the maximum value (= 1) of the normalized
ambiguity mapping function. This position, along with the satellite position, is then used to
compute the cycle ambiguity. In the case of on-the-fly ambiguity resolution, the correct
ambiguities are resolved by searching through positions inside the three-dimensional
position searching space as shown in Figure 2.6. With enough measurements at different
frequencies from different satellites and different epochs, it can be expected that, without
significant measurement errors and biases, the observed phases will interfere constructively

at the correct position and interfere destructively at other positions.
In searching for the correct integer ambiguities, the ambiguity mapping function technique
employs two rejection criteria, namely the magnitude of the real term of the individual

ambiguity mapping function which is formulated as:
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AMFIXLG) = cos (03K - ¢251(7) ) > minimum threshold . 2.9)

and the magnitude of the normalized ambiguity mapping function which is formulated as:

AMF (7)

NAMF (r) = > minimum threshold. (2.10)
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Figure 2.6. On-the-fly ambiguity resolution based on ambiguity mapping function
technique (N in this figure is the number of potentially correct ambiguities).
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For ambiguity searching, the increments in each coordinate should be chosen in proportion
to the signal wavelength. In general, they should be less than half a wavelength. The
increments should not, however, be too small since it will lead to too many positions to be
tested and therefore will burden the computational efforts. It should also not be too large, in
order not to miss the correct position and in turn the correct ambiguities. From this
tradeofT, it is obvious that it is preferable to work with a signal with longer wavelength. In
the case of dual frequency data, it is preferable to use the wide-lane signal rather than L1
and L2 signals, and, in the case of codeless data, it is better to use the semi or double wide-

lane signals (see Appendix I for the definition of these signals).

In the case of the moving receiver, it should be noted that when more than one epoch is
needed to resolve the ambiguity, the change in the antenna position should be taken
properly into account in order to 'move’ the searching space from epoch to epoch. In this
case, considering there are no cycle slips between the epochs, the change in the observed

phases can be utilized.

As can be realized from equation (2.6), both frequency-dependent and frequency-
independent errors and biases in the phase observations will affect the ambiguity mapping
function value. Obviously, they will have an impact on the ambiguity resolution process,
and, for reliable ambiguity resolution, should be somehow eliminated or properly taken

into account.

In order to account for the ionospheric refraction effects, Mader [1992] has modified the
searching strategy of the ambiguity mapping function technique. Instead of searching in the
position domain (physical searching space), the new strategy is searching in the ambiguity
spaces of L1 and L2 signals (mathematical searching space). The ability to vary by a small

amount each of the integers generated is also incorporated to account for more severe
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effects of the ionospheric refractions. The problem with this approach, however, is the
tremendous number of the ambiguity sets to be tested and it is therefore not efficient for on-

the-fly ambiguity resolution.

Based on his investigations, Mader [1992] suggested that the ambiguity resolution
technique needs about 14 observations to resolve ambiguities. In the context of on-the-fly
ambiguity resolution, it could mean instantaneous ambiguity resolution with seven L1 and
L2 phase observations, or second-epoch resolution with seven L1 phases, or any
resolution epochs corresponding to other combinations of single or dual frequency data

and number of satellites which yield at least 14 observed phases.

2.3.4. Least squares ambiguity searching technique

The least squares ambiguity searching technique is described in Hatch [1989, 1990]. The
technique is based on the least square adjustment technique [Vanicek and Krakiwsky,
1986], and uses the least squares residuals of the observation to measure the disagreement
between the phase measurements corresponding to different ambiguity sets being tested.
The measure of disagreement, which is the estimated variance factor, is used to isolate the
correct ambiguities from the wrong ambiguities. In searching for the correct ambiguities,
the technique exploits the facts that the ambiguities corresponding to four chosen satellites,
i.e., primary ambiguities, mathematically determine the other ambiguities corresponding to
remaining satellites, i.e., secondary ambiguities. Therefore, it is only necessary to search
for the primary ambiguities regardless of the available number of satellites. With using
double-difference observations, this means only three-dimensional searching space should
be considered. In this case, the estimates of initial ambiguities is required along with a
description of the volume over which the search is to be conducted. The initial code-derived

position is usually used to estimate these initial ambiguities.
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In the least-squares searching technique, the primary ambiguities are used to generate
potential (trial) positions. Secondary ambiguities are then used to identify potentially correct
trial positions and hence the correct ambiguities, and, at the same time to reject the incorrect
ones. The mathematical formulations of the technique can be seen in Hatch [1990] and
ambiguity resolution concept of the technique can be depicted as shown in Figure 2.7. In

this flowchart, the estimated variance factor is computed using the following relation:

g2 - V.ClObs)v
2 _ 2 POYD

ns - 4 ’ (2.11)

where v is the residual vector of the phase observations, ns is the number of satellites, and
C'I(Obs) is the covariance matrix of the phase observations. Hatch [1990] did not mention
precisely how it is decided whether the estimated variance factor is to be kept or rejected.
However, one way to decide is by applying the chi-squares statistical testing on estimated

variance factor [Vanicek and Krakiwsky, 1986].

As mentioned before, the least squares ambiguity searching technique depends on the
residual of observations for isolating the correct ambiguities and rejecting the wrong ones.
Therefore, the incorrect mathematical model, the unaccounted errors and biases in the
observations, and the incorrect a priori covariance matrix of the observations can make the

searching technique fail to find the correct ambiguities.

From a computational point of view, however, this technique is more efficient than the
ambiguity mapping function technique. The increase in the number of satellites will not
increase the processing time as in the case of the ambiguity mapping function technique.

Instead, it will decrease the processing time.
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Figure 2.7. Least squares ambiguity searching technique.
(N in this figure is the number of potentially correct ambiguities).

Based on static data processed in kinematic mode and simulated kinematic data, Hatch
[1990] concluded that the least-squares ambiguity searching technique can resolve the
ambiguity instantaneously if dual-frequency data is used, seven satellites or more are
available, and the ionospheric effects are insignificant. If six satellites are available, the
ambiguity can usually be resolved under two minutes of observation times and, in the case
of five satellites, it will rarely exceed five minutes. With single frequency data, five to six
observed satellites, and significant tropospheric and ionospheric refractions, the resolution
of the ambiguities, however, becomes more difficult and several tens-of-minutes of

observation times are required to resolve the ambiguity [Hatch, 1991].
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2.4. Comparison of the techniques

The aforementioned on-the-fly ambiguity resolution techniques, have their own
characteristics, advantages and disadvantages. The general features of these three

techniques are summarized in Table 2.1.

Table 2.1. Comparisons between on-the-fly ambiguity resolution techniques

Features
Data required . .
(frequency) dual single or dual single or dual
Number of satellites any at least 4 more than 4
Ambiguity searching none yes yes
(position domain) | (ambiguity domain)
Ambiguity
searching shape none cube cube
Assurance criteria accuracy of ambiguity mapping estimated

ionospheric signal

function value

variance factor

Frequency-dependent

biases & errors affect affect affect
Freql)méngerrgoir;dent no effects affect affect
Con;pelitgggghnme fastest slowest moderate
Correlation between
computational time and positive positive negative
number of satellites
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This research seeks to bring together the positive features of these techniques in developing
a new strategy for on-the-fly ambiguity resolution. The proposed technique is called
integrated on-the-fly ambiguity resolution technique and some of its aspects have been
described in Abidin [1991, 1992]; and Abidin et al. [1991, 1992]. A more detailed and
complete explanation of the technique will be given in Chapter 3, and the detailed analysis

of its performance will be given in Chapters 4, 5, and 6.

42



Chapter 3

INTEGRATED ON-THE-FLY
AMBIGUITY RESOLUTION TECHNIQUE

In this chapter, the concepts and mathematical methodologies related to the integrated on-
the-fly ambiguity resolution technique proposed in this investigation are explained. The
technique is formulated by considering the use of more than one monitor station with a
single moving receiver. The elimination of errors and biases, however, is not integrated
with the ambiguity resolution technique algorithm since it is assumed that the elimination is
done partly by observation differencing and partly by using correction parameters obtained
from somewhere else such as a master monitor station [Brown, 1989]. The explanations in
this chapter, therefore, are done by assuming that the remaining errors and biases in the

observations are insignificant.

This chapter will explain the concept of ambiguity resolution adopted in this research. The
reason and advantages of using more than one monitor station is then explained and the rest
of the chapter is allocated for outlining the algorithm of the integrated on-the-fly ambiguity
resolution technique. In this chapter, the term initial ambiguities is used to represent the
initial estimates of the ambiguities which are used to locate the centre of ambiguity
searching space. The term potential positions (ambiguities) used in the context of the

ambiguity searching process, may also be called the trial positions (ambiguities).
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3.1. The concept of ambiguity resolution

Resolving the cycle ambiguity of GPS carrier phase signal is not an easy task to
accomplish, particularly when resolution is on-the-fly and as quickly as possible. Besides
requiring a good station-satellite relative geometry and low level of observation errors and

biases, fast on-the-fly ambiguity resolution also requires fast and reliable algorithm.

With integrated on-the-fly ambiguity resolution technique, the ambiguity resolution process
is mathematically accomplished by using the mutual combination of estimation and
identification processes, as conceptually depicted in Figure 3.1. The estimation process is
used to estimate the initial ambiguities and to construct the initial ambiguity searching space
for the identification process. It also provides the parameters for validating and rejecting the
ambiguities in the identification process. The estimation process is based primarily on the

least-squares adjustment technique [Vanicek & Krakiwsky, 1986].

The identification process is designed to identify the correct ambiguities from many
combinations of ambiguities given inside the searching space. This process consists of
several criteria for validating the potentially correct ambiguities and, at the same time also
for rejecting the supposedly incorrect ones. The more detailed formulation and
methodologies involved in this estimation and identification processes will be explained

later.

The success and failure of resolving the ambiguities will be affected by our ability to
understand, formulate, and model the real world problem of ambiguity resolution, as
indicated in Figure 3.1. The errors and biases in the observations and the station-satellite
relative geometry deserve special consideration due to their significant impact on the

ambiguity resolution process.



MATHEMATICAL WORLD

ambiguity searching space
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Figure 3.1. Conceptual depiction of cycle ambiguity resolution system

3.2. The use of more than one monitor station

With a fast, smart, and reliable ambiguity resolution algorithm along with favourable
geometry of the satellites and insignificant residual errors and biases in the observations,

on-the-fly ambiguity resolution can usually be done quickly enough even when depending
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on only one monitor station. This is usually the case when the monitor station and the
moving receiver are close together and the dual-frequency receiver is used. The ambiguity
resolution, however, becomes more difficult with unfavourable geometry and significant
residual errors and biases (as in the case of longer distances between the monitor station
and the moving receiver), and with the use of single-frequency receivers. In these

situations, the use of more than one monitor station becomes necessary.

There are two main advantages of using more than one monitor station for on-the-fly
ambiguity resolution. The first one is that, with the observations from multi monitor
stations, one can estimate more reliably the biases affecting the observations such as the
ephemeris errors and the ionospheric refractions. By removing these biases, ambiguity
resolution becomes more reliable and much easier. The second advantage is that,
considering that the observations have been corrected for the biases and are mainly
contaminated by the noise, the use of multi monitor stations also speeds up ambiguity
resolution. Increased resolution speed is mainly due to the reduction in the size of initial
ambiguity searching space and an increase in contrast level between the potentially correct

and incorrect ambiguities.

In this thesis, two groups of monitor stations are considered. The first group is user-
independent monitor stations, which are well-established, operated on a permanent basis,
and cover a wide area. This group of primary monitor stations, which can be called "active
control system networks" [Delikaraoglou et.al., 1990], or an "extended differential GPS
system" [Brown, 1989], or a "wide-area differential GPS system" [Kee et.al., 1991], is
assumed to provide users with information about the observation biases, such as satellite
ephemeris error components and ionospheric and tropospheric model parameters. The

primary group of monitor stations is assumed to utilize dual-frequency receivers.

46



The second group of monitor stations, which will be called "the secondary monitor
stations" 1is established by users to better suit their own interests for faster on-the-fly
ambiguity resolution. With secondary monitor stations, the users more or less control the
type of receiver used, the kind of data sent, the data interval adopted, the locations of the
monitor stations with respect to the survey area, the antenna placement, etc. Since
observation biases are assumed to be taken care of by the primary monitor stations, the
secondary monitor stations can safely observe using either single, codeless, or dual
frequency receivers. The roles of these two groups of monitor stations for on-the-fly

ambiguity resolution is conceptually depicted in Figure 3.2.
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Figure 3.2. Conceptual depiction of multi monitor station on-the-fly ambiguity resolution.

In the following subchapters, the integrated on-the-fly ambiguity resolution technique
utilizing more than one secondary monitor station is explained. It is assumed that only the
noises remain in the observations after the users apply the corrections sent by the master

monitor station of the primary group of monitor stations.
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3.3. General strategy of the integrated ambiguity resolution technique

The integrated on-the-fly ambiguity resolution technique used in this research is based on
the synergism of the three ambiguity resolution techniques explained in Chapter 2. The
process of searching the ambiguities follows the framework of the least squares ambiguity
searching technique. Besides the other new criteria, the ambiguity mapping function is used
as one of the validation and rejection criterion. The extrawidelaning technique is used when
dual frequency data is available to determine the initial ambiguities and the ambiguities at
each epoch to be considered along with other tested ambiguities. In order to reduce or
eliminate some of the systematic errors and also to reduce the ambiguity searching space,
the technique uses station-satellite double-difference observations. The signal used for
ambiguity resolution are wide-lane and narrow-lane in the case of dual frequency data;
semi, half or double wide-lane (wavelength of about 34 cm, 43 cm, and 163 cm,
respectively) in the case of codeless data, and L1-signal in the case of single frequency
data. In general, the technique tries to identify the correct ambiguity set through the

following steps :

» Estimate the initial ambiguities,

«  Construct the three-dimensional ambiguity space centered on the initial ambiguities,

» Search the correct ambiguities inside the ambiguity space by employing certain
validation and rejection criteria, and

» Fix the ambiguities when certain assurance criteria are fulfilled.
More detailed steps are given by the flow-chart in Figure 3.3. Searching the correct

ambiguities in the integrated technique is done by utilizing eight validation and rejection

(VR) criteria, namely :
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@ Initial ambiguity determination, AVN ?2 - - | Compute quadratic form of residual

3-D Ambiguity searching space, AVN,, P

_| Choose the primary ambiguities related o
| to the first monitor stationtobe tested | =

Compute potential position -
based on the primary ambiguities §

‘ 1

Compute the remaining ambiguities §
related to all monitor stations

Compute L1-norm of misclosure -

Figure 3.3. Integrated on-the-fly ambiguity resolution technique.
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VR #1 :
VR #2:
VR #3:
VR #4 :
VR #5:
VR #6:
VR #7:
VR #8:

Compatibility test between the potential and code-derived positions.
Test on L1-norm of the misclosure vector.

Compatibility test between the updated and code-derived positions.
Test on L1-norm of the residual vector.

Test on the quadratic form of the residuals.

Individual ambiguity mapping function test .

Normalized ambiguity mapping function test .

Contrast test on quadratic form of the residuals.

and two assurance criteria, namely :

A#1:

Number of potential ambiguity set =1, and
A#2: Its corresponding value of normalized ambiguity mapping function is

greater than a certain predetermined threshold.

3.4. Initial ambiguity estimation

The initial estimates of ambiguities will be used to centre the initial ambiguity searching
space. In this case, the necessary initial ambiguities to be determined are three double
difference ambiguities from four observed satellites related to the first monitor station.
These satellites. will be called the primary. satellites, since the ambiguities related to the
remaining satellites and monitor stations are mathematically dependent on their ambiguities.
Correspondingly, the ambiguities related to these primary satellites are denoted as the

primary ambiguities. If n monitor stations are involved and they are numbered as 1,3,4,
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..., 1, and the moving receiver is numbered as 2, then the initial primary ambiguities which

should be determined are (VAN{%(i), i=1,3).

For faster and reliable ambiguity resolution, the integers of the initial primary ambiguities
should be as close as possible to their correct integers. The initial primary ambiguities
VANY/, can be determined in several ways. In this technique, for dual-frequency data,
these initial ambiguity estimates are computed either using the extrawidelaning
technique of ambiguity resolution or using satellite positions and the position of a moving
receiver. The moving receiver position is derived using smoothed narrow-lane
pseudoranges from all satellites and all monitor stations (if more than one). In the case of
codeless and single-frequency data, since the extrawidelaning technique cannot be
employed, only the second technique is used by utilizing smoothed L1-C/A code
pseudoranges. The pseudoranges are smoothed using carrier phase observations based on
the techniques described in Hatch [1982] with slight modification in assigning weights to

the involved observations (see Appendix II).

The use of extrawidelaning technique for ambiguity resolution is explained in Chapter 2
and Appendix I. When using a code-derived position, the initial estimates for the double-

difference ambiguities VAN, are computed as follows :

VAP (i) - VAL (i)
A

VANS(@G) = ININT L (i=13) 3.1)

where VApl"z(i) are the double-difference theoretical ranges computed using satellite

position and the code-derived position of a moving receiver. VALu(i) are the double-

difference phase observations in length units. A is the wavelength of the working signal,
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which could be wide-lane, L1 signal, semi wide-lane, half wide-lane or double wide-lane

signal. ININT denotes the rounding of the values to the nearest integer number.

The initial ambiguities should be determined accurately as possible in order to construct the
ambiguity searching space which would include the correct ambiguity set. Initial
ambiguities are computed using the code-derived position. Considering that all code
observations have more or less the same precision, the use of observations from more than
one secondary monitor station will increase the accuracy of initial ambiguities, compared to

the case of using only one monitor station.
3.5. Constructing the ambiguity searching space

The integrated on-the—ﬂy ambiguity resolution technique uses mathematical searching space
instead of physical one. The mathematical ambiguity searching space contains the primary
ambiguity sets to be tested. Ideally, it should contain the correct ambiguity set and at the
same time, should be as small as possible in order to be computationally efficient. The
ambiguity searching space should not be too large, since it will include too many
ambiguities to be tested. Too large of searching space burdens the computations and
prolongs the time of ambiguity resolution. On the other hand, the space should not be too
small since then it might not include the correct ambiguity set. Too small of space will
usually lead to failure in ambiguity resolution or at best, will slowdown the resolution of
ambiguity. The trade-off between these two parameters should always be exercised in

constructing the optimal ambiguity searching space.
With integrated technique, searching for the correct ambiguities is performed in three-
dimensional primary searching space, constructed by the ambiguities of the primary

satellites related to the first monitor station, (VAle(i), i=1,3). The shape and the size of
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the three-dimensional ambiguity searching space could be determined by several ways. The
common and indeed the simplest way of constructing it is by using the cube centered at
certain initial ambiguity estimates. The size of the cube can be arbitrarily determined based

on experience or by statistical measures.

Even though it is simple to construct, the cube is not an optimal ambiguity searching space.
When its size is arbitrarily set at certain constant parameters, it ignores the spatial and
temporal impact of station-satellite relative geometry and correlations between the
ambiguities, which theoretically affect the ambiguity searching space. When some
statistical measures (usually standard deviations) are used to size the cube, the correlations
between the ambiguities are still left out. In the integrated technique, the spatial and
temporal impacts of the geometry and mathematical correlations are taken into consideration
in constructing the ambiguity searching space, so that it will lead to an ellipsoidal searching

space instead of a cube (see Figure 3.4).

¢ VAN,, (3)

mathematical
(not actual)
lanes of ambiguities

>
VAN, (2)

AVAVAA' A VAN

VAN, (1) 4

Figure 3.4. Cube and ellipsoidal ambiguity searching space.
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3.5.1. The ellipsoidal mathematical ambiguity searching space.

In the integrated technique, the ellipsoidal mathematical ambiguity searching space of the
primary ambiguities (VAN;,(i), i=1,3) is centered at the initial ambiguities (VAN (i),

i=1,3), and it is expressed by the following equation:

(VAN,, - VANS)T. CH(VANE) . (VAN , - VANS) < %5, (3.2)

where C (VAN 1"2) is the covariance matrix of the initial primary ambiguities and x23 l—a 18

the chi-squares percentile for degrees of freedom 3 and confidence level (1-a). The values

of x23,1 _o, for some confidence levels are shown in Table 3.1.

Table 3.1. Some values of Chi-squares percentilcs,)(z3 o

1 90.0% | 95.0% [ 97.0 % | 98.0% | 99.0% | 99.5% | 99.9 %

6.25 7.82 8.95 9.84 11.34 12.84 16.27

When dual-frequency data is available and the extrawidelaning technique is used to estimate
the initial (wide-lane) ambiguity, the covariance matrix of the initial ambiguities is

computed as:

C(VANS) = % . { C(VAPpyp) + C(VALp1) } (3.3)

where VAPp;, and VALp,, are the smoothed double-difference narrow-lane pseudoranges

and the double-difference wide-lane carrier ranges related to the primary satellites and A is
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the wavelength of the wide-lane signal. When a code-derived position is used to determine

the initial (wide-lane) ambiguity, this covariance matrix is computed as:

1

C(VAN?) = Y Ay CXohn - Ayt + C(VALDp) } (3.4)

where Ap is the design matrix related to the coordinates parameter involving the primary
satellites related to the first monitor station, and C(X_),, is covariance matrix of the position
computed based on all double-difference smoothed narrow-lane pseudoranges related to all

n monitor stations. The covariance matrix is computed as follows:

CXJp = (D.CYVAP),D:}! (3.5)

where D and C(VAP),, are the design matrix and the covariance matrix of the observations

related to all satellites and n monitor stations. The design matrix D¢, with dimension

n(ns-1) by 3 is formulated as:

D, = , (3.6)

and the covariance matrix C(VAP),, with dimension n(ns-1) by n(ns-1) is formulated as:

C(VAP,,) COR COR COR

C(VAP32) COR COR
C(VAP), = . 3.7

................

symmetric C(VAPnz)
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In equation (3.7) above, COR is the mathematical correlation matrix because of the

differencing between the observations (see Appendix III for more detailed formulation).

With codeless or single-frequency data , the construction of ambiguity searching space is
determined using code-derived position. Its determination is similar to dual-frequency data
as expressed by equations (3.4) and (3.5) except for the types of observation used. With
codeless data, smoothed C/A-code pseudorange and semi, half, or double wide-lane phase
observations (see Appendix I) are used; and, with single-frequency data, smoothed C/A-
code pseudorange and L1 phase observations are used. It should be noted here that, in the
case of single frequency data, the smoothing of pseudorange using carrier phase
observations (see Appendix II) will be biased by the residual ionospheric refraction in the

observations.

In order to be computationally more efficient, the selection of the primary ambiguities

(VAN ,(i), i=1,3) which satisfy equation (3.4), is done in a few consecutive steps which

can be depicted in the two-dimensional perspective in Figure 3.5.

ellipsoidal

ambiguity
searching space

steps of
ambiguity
rejection

Figure 3.5. Two dimensional perspective of constructions steps
of the ellipsoidal ambiguity searching space.
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The first step of selection is done by constructing the cube around the initial ambiguity

estimates using the following formula :

Iststep: 1 VAN (i) - VANS,(@) | SdVAN, @), for (i =1,3)

(3.8)
dVAN () = R(0,1),_, - (VAN @) ,

where R(0,1)1_q/7 is the standardized gaussian (normal) percentiles with confidence level
(1-a) and o(.) denotes the standard deviation of (.) . The confidence level in this case

should be chosen so that the whole ellipsoidal searching space is completely inside the

cube. Table 3.2 shows the values of R(0,1);_q/7 for some confidence levels (1-a).

Table 3.2. Some values of Normal percentiles, R(0,1)1_q/2.

90.0% | 95.0% | 97.0% | 98.0% | 99.0% | 99.5 % | 99.9 %

1.65 1.96 2.17 2.33 2.58 2.81 3.03

In order to formulate the next steps of the ambiguity selection, the quadratic form of the
ambiguities in the left hand side of the inequality expressed by equation (3.2) should be
reformulated to have a more explicit ellipsoid equation. This is done by decomposing

C(VAN?) based on the spectral decomposition theorem [Strang, 1980] as:
C(VANS) =E.A.ET 3.9
and rotating the vector (VAN,, - VAN?) into vector Y (y,.y,.y,) as:

_ T
Y = ET. (VAN - VAN?) . (3.10)
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In these equations, E is a 3 by 3 orthogonal matrix in which its columns are the normalized
eigenvectors (e;,e,,e3) of C(VAN) and A is a 3 by 3 diagonal matrix with the

eigenvalues of C(VAN}) , i.e., (x{,X3,K3), as the diagonal elements. Mathematically, it
can be written as :
E=1] € e, €, ],

(3.11)
A = diag. [KI,KZ,K.}]

If the above equations are substituted into equation (3.4), then equation (3.4) can be

expressed as:

2 2 2
24t + 22 + 3 < x23 e (3.12)
K1 K, X3 ’

This equation represents the ellipsoid depicted in Figure 3.6. Using equation (3.12), the
next steps of the ambiguity selection are performed by testing the ambiguities inside the

cube defined by equation (3.8) with the following relations:

2nd step : T« (VAN,-VAND) < V51 q- %) (3.13)
3rdstep - el « (VAN,,-VANS) < VO3, q-5) - (3.14)
dih step : el « (VAN,,-VAND) < V51 q- %) - (3.15)

Finally, the next step is to apply equation (3.12). In the above equations the operator ()

denotes the dot product between two vectors.
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semi-axis of the e]iibsoid
a= ‘\j (xg.l-a P
| b =\j (x123,1-a - K9)
¢ = \/ (x.?i.l-a - %3)

Figure 3.6. Ellipsoidal mathematical ambiguity searching space

It should be mentioned here that equation (3.2) is used to define the mathematical searching
space at the initial epoch and at the re-initialization epochs, i.e., the epochs where their
previous epochs reject all the potential ambiguity sets or the epoch after cycle slip
occurrences. Other than these two epochs, the ambiguity searching space is constructed by
the potential ambiguities which pass the identification process at the previous epoch and, at
the same time, satisfy equation (3.2) for that epoch. In this latter case, the searching space
will not have a particular geometric shape. In 2-D perspective, this approach of

constructing the searching space can be depicted in Figure 3.7.
With dual-frequency data, besides these ambiguity sets, the ambiguity set determined using

the extrawidelaning technique at the corresponding epoch, is always included and

considered in the identification process of the correct ambiguity set.
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previous epoch ellipsoid
i bk

initial or reinitialization epochs other epochs

Figure 3.7. Two-dimensional perspective of constructing
the mathematical searching spaces at various epochs.

3.5.2. The number of initial ambiguity sets

The number of the initial primary ambiguity sets inside the mathematical ellipsoidal
ambiguity searching space will affect both the computation and observation times of on-the-
fly ambiguity resolution. As stated before, for fast and reliable ambiguity resolution, the
number of ambiguity sets should not be too few or too many. The optimal number of the
ambiguity sets corresponds to the fastest and most reliable ambiguity resolution. This
optimal number of sets, however, is difficult to know beforehand, since it depends on
several factors such as the data characteristics, satellite geometry, and the processing

options used for ambiguity resolution.
In the case of mathematical searching space, since the surfaces of ambiguities are regularly

spaced, the number of ambiguity sets will be determined by the size, shape, and orientation

of the ellipsoidal searching space. These parameters of the ellipsoid itself depend on several
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factors, such as signal wavelength, satellite geometry, the number of secondary monitor
stations, and the confidence level used in sizing the ellipsoid. In the case of physical
searching space, however, besides the size, shape, and orientation of the ellipsoid, the
pattern and spacing of the surfaces of ambiguities also play important roles, as indicated in
Figure 3.8. It is important to note here that the number of primary ambiguity sets in the
mathematical searching space is equal to the number of potential positions related to these
primary ambiguity sets in the physical searching space. The sizes, shapes, and orientations

of the two ellipsoids, however, will be different in general.

inafhémétiéal line of ambiguities | physical line of ambiguities

Figure 3.8. The number of initial primary ambiguity sets
in the mathematical and physical searching spaces.

The number of ambiguity sets inside the initial searching space can be predicted beforehand
using the indicators, which are called the Number of Ambiguity Indicator (NAI). The
volume of the ellipsoid is used to establish the first indicator related to /the size of the
ellipsoid at certain confidence level (1-a). In the mathematical searching space, the volume

of ellipsoid can be expressed as:
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4 -
Volume = 3 .m.(%,_ )" N KKKy (3.16)
where k,,X,, and K, are the eigenvalues of the covariance matrix C(VANI"Z), arranged

from the largest to smallest. Since the multiplication product of the eigenvalues is equal to

the determinant of the matrix, equation (3.16) can be rewritten as follows:

4
Volume = 3 .7.0% "% \ det.{ C(VANS)) . (3.17)

Based on the above equation, the first number of ambiguity indicator (NAI1) is defined as:

NAIl = 4/ det.{ C(VANZ)) , (3.18)

with the unit variances of observations used to construct the covariance matrix. In this
case, the larger the value of NAII, the more ambiguity sets can be expected inside the

searching space. NAI1 is the primary indicator that will be used in this investigation.

Depending on their shapes, the same volume of ellipsoids may lead to a different number of
ambiguity sets. Therefore the second number of ambiguity indicator (NAI2) is introduced
to confront this situation. NAI2 indicates the elongation of the ellipsoid and it is defined as

follows:

NARZ = V Kmax/'(min = \/ Kl/K3 : (3.19)
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In this case, the larger the value of NAI2 the more elongated the ellipsoid will be.
Depending on the orientation, size of ellipsoid, and length of the medium axis, larger NAI2
could either mean the smaller or larger number of ambiguity sets. In general, however, it
can be expected that the largest value of NAI2 will correspond to a relatively small number
of ambiguity sets. The orientation of the ellipsoid will also affect the number of ambiguity
sets. For prediction purposes, however, the NAI1 and NAI2 values are sufficient to
indicate the relative number of initial ambiguity sets inside the searching space as a function
of its affecting factors. Therefore, the indicator related to the orientation of the ellipsoid is

not used in this case.

It should be noted also that in the case of physical searching space, two main indicators can
also be used to indicate the number of potential positions, i.e., the number of primary
ambiguities inside the searching space. The first one characterizes the volume of the
ellipsoid as defined by equation (3.18) with the different in the covariance matrix used. The
second one is the position dilution of precision, PDOP [Wells et al., 1986]. The PDOP
value indicates the spread of the potential positions. The larger the value of PDOP, the
larger the separations of potential positions and the smaller the number of ambiguity sets

there will be inside the searching space.

3.6. Identification of the correct ambiguities

After constructing the ambiguity searching space, the next step is to try to identify the
correct ambiguities from the given primary integer ambiguity sets inside the searching
space. Some validation and rejection criteria are employed, which are based on the
synergism of the identification and estimation processes indicated in Figure 3.1. The
estimation process is based on the unweighted and weighted parametric least squares

adjustment [Vanicek &Krakiwsky, 1986] (see Figure 3.9).
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Figure 3.9. The flow of the estimation process at a certain epoch.
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The identification process assumes that the phase observations with the correct integer
ambiguities should satisfy certain mathematical and statistical criteria when they are used in
the position estimation process. Phase observations should yield the 'acceptable’ properties
of position estimates, corresponding misclosures, and residuals. These expected theoretical
properties can then be used for validating or otherwise rejecting the ambiguity sets being

tested, i.e., used to formulate the rejection and validation criteria.

In this identification process, searching for the correct integer ambiguities is done on three
double-difference ambiguities of primary satellites related to a certain pair of monitor
stations and a moving receiver. The other (secondary) ambiguities related to the other
(secondary) satellites and monitor stations are mathematically dependent on these three
primary ambiguities. Every three-ambiguity set is tested individually. At each epoch, only
the ambiguity sets who pass all the validation and rejection criteria are saved and considered
for the next epoch testing. Moreover, one ambiguity set will be considered as the correct
ambiguity if it also fulfills some assurance criteria. As has been stated before, when the
ambiguity searching and fixing needs more than one epoch, the number of ambiguity sets
tested at the second and subsequent epochs is equal to the number of potentially correct
ambiguity sets which passed all rejection criteria at previous epochs, and are present inside
the ellipsoidal searching space of that particular epoch. The ambiguity searching space has
to be reinitialized, however, whenever cycle slips occur or whenever the previous epoch
rejects all potential ambiguity sets. With dual-frequency data, the ambiguity set determined
using extrawidelaning tebhnique is always included and considered for testing at each

epoch .

There are eight validation and rejection criteria used by the integrated technique. These
criteria are sequenced according to the flow of the estimation process (see Figure 3.9) in

order to reject the potentially incorrect integer of ambiguities as soon as possible, which
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then will minimize the computation times and usually lead to faster ambiguity resolution. In
the following, all of the validation and rejection criteria used in the identification process is
explained in more detail. General terms of code and phasé observations are used and
should be read as smoothed narrow-lane pseudoranges and wide-lane carrier phases in the
case of dual-frequency data; smoothed L1-C/A code pseudoranges and semi, half, or
double wide-lane carrier phases in the case of codeless data; and smoothed L1-C/A code
pseudoranges and L1 - carrier phases in the case of single-frequency data.

3.6.1. Compatibility test between the potential coordinates and
the code derived coordinates

The potential (trial) position is computed using the primary phase observations, taking into
account the primary ambiguities being tested. If the primary ambiguities used are correct,
then the corresponding estimated position should differ with the code-derived position in a
statistically predictable manner. The coordinates differences in this case will be caused by
the differences in precision between the code and phase observations, coupled with the

effect of the satellite geometry.

Mathematically speaking, these expected differences in coordinates, which are used as the

first validation and rejection criteria, is formulated as follows :

Sxpe = Xpl) - Xc()

18xpe@) | < RO.1);_p- Otxpeqy » i=13 . (3.20)

where X, is the potential position computed using the primary phase observations with the

primary ambiguities being tested (VAle(i), i =1,3) and X, is the position computed
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using all double-difference smoothed pseudoranges related to all monitor stations. In
computing the potential position Xp, the coordinates X are considered as quasi-

observables. Gy (i) is the standard deviation of xpe(i). .‘R(O,l)l_ o/ 18 the standardized

gaussian (normal) percentiles with confidence level (1-av).

Geometrically speaking, the acceptance volume of the criteria as expressed by equation
(3.20) is the cube centered at the code-derived position. Its two-dimensional depiction in
physical searching space is shown in Figure 3.10. To be computationally more efficient,
the ellipsoidal acceptance volume which is mathematically more rigorous but
computationally more time consuming, is not used in this case, since at the very beginning
of the identification process the number of the ambiguity sets to be tested is usually the

largest.

AXp(D

QO accepted X
@ rejected Xp

Xp(2)

Figure 3.10. Two-dimensional geometrical interpretation of the first criteria.

Using this rejection and validation criteria, the size of the cube shown in Figure 3.10 is
determined not only by the assigned confidence level, but also by the satellite geometry and

the values assigned to represent the precision of the observations. In this step of
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identification, the primary ambiguities related to the potential position which do not satisfy
the above criteria will not be passed to the next step of identification. Therefore all integer

ambiguity sets with this primary ambiguity set will automatically also be rejected.

In equation (3.20), the potential position vector X, is computed as:

Xp = X(p’ + A.GP. (VAN12-VAN1°2). (3.21)

In the above equation, Xg is the initial potential position computed using the initial primary

ambiguities VAN 1"2, based on the following weighted least squares adjustment formulae:

X9 = X +GP.w, . (3.22)

By substituting equation (3.22) to equation (3.21), the vector of coordinate differences,

dxpc, in equation (3.20) can be formulated as:

Sxpc = GP.{w, + A.(VAN};-VAN?) } . (3.23)

In equations (3.21) - (3.23) above, the gain matrix GP and the misclosure vector ®,, related

to the primary satellites are formulated as:
GP = (Ap".CU(VALpp.A,+C (X, ). AT.CU(VALDY) | (3.24)

@ = Ap.X. - VALpp . (3.25)

68




In the above equations, VALp,, is the phase observation vector (in ranges units) related to

first monitor station and the primary satellites.

The standard deviations of coordinate differences, Ogxpc(j) in equation (3.20) are computed

based on covariance matrix of position difference C(8xpc)n. The covariance matrix can be

computed using the following relation :

C(xpc)y = GP.C(wp.GPT (3.26)
where C(,,) is the covariance matrix of misclosure vector and be formulated as:

Clop) = ApC(Xo)-Ap' + C(VALppp) . (3.27)

If the following matrix lemma for arbitrary matrix A and positive definite matrices B and C

[Vanicek & Krakiwsky, 1986]:
C1+ATB1A)TATBT = cAT@B+AcCATy! , (3.28)

is applied to equation (3.24) and the new formulation of GP,, is substituted into equation

(3.26), the covariance matrix C(dxpc), can also be formulated as follows:

CGxpc), = GP.A,.C(XX)y - (3.29)

The above equation is computationally more efficient to than equation (3.26) and it is
therefore used in executing this rejection and validation criteria. Notably, the gain matrix

GP at a certain epoch is the same for all primary ambiguity sets being tested, and therefore
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should be computed only once outside the computational searching loop in order to save the

computation time.

3.6.2. Test on L1-norm of the misclosure vector

The next validation and rejection criteria to further identify the correct integer ambiguities is
the test on L1-norm of the misclosure vector of all double-difference carrier phase
observations related to all monitor stations and satellites. Since the correct primary
ambiguities should correspond to the correct secondary ambiguities, assuming that there are
no significant residual errors and biases in the observations, then the L1-norm of the
misclosure vector related to all phase observations should be relatively small, and its
magnitude will be primarily governed by the noise and remaining errors and biases in the

observations. In this case, the test on L1-norm of the misclosure vector is:

lwepll; < constant . A.[n(ns-1)-3] , (3.30)

where llo¢ o/l is the L1-norm of the misclosure vector o ,, constant is a fraction of

wavelength, and n and ns represent the number of monitor stations and satellites,

respectively. The L1-norm of this misclosure vector is formulated as:

ns—1 ns-1 ns—1
Il @enll = '24 |o,0 | + 21 |03 ()| + s + .21 lo,@| . 33D
i= 1= i=

where O, Wgs, sy and o, are the misclosure vectors related to each monitor station,

respectively. These misclosure vectors are computed using the following vector relations :
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O, = VALk2 + A .VANk2 - VApk2 , {(k=1,3,4,..n}. (3.32)

In the above equation, VAL, denotes the phase observation vectors (in ranges units)
related to all satellites and monitor station k (k = 1,3,...,n). The double difference
geometric range vectors VApy, are computed using the potential position X, and the
ambiguity vectors VAN, are computed using an equation similar to equation (3.1). The
geometrical interpretation of this second rejection and validation criteria in two-dimensional

physical searching space is shown in Figure 3.11.

one monitor station, six satellites two monitor stations, six satellites

Il(omlll=a+b lo .,y =a+b+c+d+e+(@++(b+g)

Figure 3.11. Two-dimensional geometrical interpretation of the second criteria.

From Figure 3.11 and equation (3.31), it can be realized that, with the increase in the
number of monitor stations, the L1-norm of the misclosure vectors related to incorrect
ambiguities can be expected to be larger and, theoretically speaking, should be easier to
detect and reject. Finally, it should be noted that the value of constant variable in equation
(3.30) should be set by considering the expected level of the noise and the remaining errors
and biases in observations, signal wavelength, and the number of satellites and monitor

stations.
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3.6.3. Compatibility test between the updated coordinates
and potential coordinates.

The potential position which passes the previous two validation and rejection criteria is then
considered as the quasi-observables in the position estimation process, and, along with all
'unambiguous' phase observations from all satellites and all monitor stations, is used to
estimate the so-called updated position. If the potential position corresponds to the correct
primary ambiguities, then corresponding secondary ambiguities can also be expected to be
correct. In this case, then the updated position should be theoretically more accurate than
the potential position, and their coordinate differences should be mathematically
predictable. The validation and rejection criteria therefore can be established based on this

rationale.

Similar to the first criteria, the criteria to test the compatibility between the updated and the

potential coordinates is formulated as follows:

dxup() = X, @) - Xp0) ,

18xup@) | < R(O.1); oy - Oxupy - i=1.3 (3.33)

In the above equation, the updated position, X;, is computed by updating the potential
solution, X, using the 'unambiguous’ secondary carrier phase observations from all
monitor stations. As with the first criteria, the acceptance volume of this criteria as
expressed by the above equation is a cube centered at each potential pos.ition. Its

geometrical interpretation is depicted in two-dimensional fashion in Figure 3.12.
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Figure 3.12. Two-dimensional geometrical interpretation of the third criteria.

In equation (3.33), the updated position is computed using the following formulae :

Xy = Xp + GG, . 0 p . (3.34)

In the above equation, GC, is the gain matrix related to all monitor stations and all
satellites, and @, ;, is the corresponding misclosure vector computed by basing on equation

(3.32). The matrix GG, and vector «, j, are formulated as follows:

GCy = {D¢".C(VAL), D¢ +C(Xp) }!.D.CH(VAL),, (3.35)
T T T 1T
mc,n = [(”12 ’ 0)32 y eree s mnz ] (336)

In equation (3.35), D is the design matrix of the observations expressed by equation (3.6)

, C(VAL),, is covariance matrix of the phase observations, and C(Xp) is covariance matrix
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of the potential position. The covariance matrix of the phase observations, C(VAL),, will

have the same structure as equatibn (3.7) with the only difference that equation (3.7)

represents code observations. The covariance matrix of the potential position C(X,) is

computed using the following formulae:
CXp) = {Ap".CU(VALp1).Ap+C X ), (3.37)
and the covariance matrix C(X),, is expressed by equation (3.5).

The standard deviations (Gﬁxup(i)’ i=1,3) are computed from the covariance matrix of

position difference C(dxup),,. This covariance matrix is computed as follows:

C@xup)y; = GCp. D..CXpp - (3.38)

The gain matrix GC,, at a certain epoch is the same for all primary ambiguity sets being
tested, and therefore, to be computationally efficient, should be computed only once

outside the computational searching loop.

3.6.4. Test on L1-norm of the residual vector.

The next step in identifying the correct integer ambiguities is to examine the L1-norm of the
residual vector obtained from the updated position estimation process. In this case only the
residual related to the real observations, i.e., the phase observations, is considered. The
quasi-residual related to the quasi-observations (i.e. the potential position) has been partly
considered in the previous rejection and validation criteria, and also will be considered in

the next criteria. In case the correct integer ambiguities are used in the estimation, then
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assuming there are no significant errors and biases in the observations, the resulting
residual should be relatively small. Therefore similar to the misclosure vector, the
validation and rejection criteria can be established by assuming that the L1-norm of the
residual vector related to the potentially correct integer ambiguities should vary only in a

certain expected interval. It is formulated as:

o, Il < constant . A . n(ns-1) , (3.39)

where Il v, Il; is the L1-norm of the residual vector v,, constant is a fraction of

wavelength, and n and ns is the number of monitor stations and satellites, respectively. In

the case of n monitor stations, the residual vector vy, is computed as follows:
vy = D¢.dxup - @cp - (3.40)

If equations (3.6) iind (3.36) are substituted to the above equation, then the residual vector

with dimension n(ns-1) can be expressed :

V12 [ VAP12 + Ac.8xup - VAL12 - X.VANIZ )
V32 VAp32 + Ac.5xup - VAL32 - )..VAN32
v, = = . (341
i VUp2 ] L VAan + AC.qup - VALnZ - k.VANnZ J

where Vg5 V3gs - and v, are the residual vectors related to each monitor station,

respectively. The L1-norm of the residual can then be formulated as follows:

ns-1 ns—1 ns—1

Hogllp = Y [op@ | + Y [va@®] + e + Y, [on2@ ] - (3.42)

i=1 1=1 i=1
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The geometrical interpretation of this criteria is depicted in Figure 3.13 in two-dimensional
physical searching space. It is quite similar with geometrical interpretation of the test on L1-
norm of the misclosure vectors shown in Figure 3.11. The main difference is in the use of
updated position X, instead of the potential position X, in evaluating the parameters.
Figure 3.13 indicates that the L1-norm of the residual vectors related to incorrect
ambiguities can be expected to be larger with an increase in the number of monitor stations
and, theoretically speaking, should be easier to be detected and rejected. The value of the
constant parameter in equation (3.39) should be set by always considering the expected
remaining observation errors and biases, the signal wavelength, and the satellite geometry.

one monitor station, six satellites two monitor stations, six satellites

N0 |

o, ;= a+b+c+d+e o, Iy =a+b+c+d+e+(@-H+d+g)+
c+h)y+d+)++})

Figure 3.13. Two-dimensional geometrical interpretation of the fourth criteria.

3.6.5. Test on the quadratic form of the residuals.

The next properties of the residual vector that can be used to validate or reject the integer
ambiguities are its quadratic form since, in the context of the least-squares adjustment, it is

the quantity which is to be minimized by the adjustment process. This quadratic form is
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formulated in this case of weighted parametric least-squares adjustment by taking into
account both the actual residual related to the phase observations and the quasi-residuals

related to the quasi-observations, i.e., the potential position. It is expressed as follows :

QF() = v,".C'H(VAL), v, + Sxupl.CH (X)) 8xup (3.43)

where QF(v) denotes the quadratic form of the residuals. In this case, the value of the
quadratic form can be expected to increase with increases in the number of satellites and/or
the monitor stations. The values assigned to describe the observation precision will also af-
fect the value of the quadratic form. This criteria is applied only to the residual vector

which pass the previous L1-norm test defined by equation (3.39).

The higher cost of computation time is the main reason that the quadratic form of the
residuals is used after the L1-norm as the criteria. If the correct integer ambiguities are
involved and assuming that only the random errors are present in the observations, then the
values of the quadratic form of the residuals should be statistically predictable and smaller
than a certain parameter. These expected values are used as one of the criteria for validating
or rejecting the integer ambiguities. One-sided statistical testing is applied in this case, and

it is formulated as follows :

QP < Xmetyioa (3.44)

where x2 is the chi-squares percentile for degrees of freedom n(ns-1) and confi-

n(ns-1),1-a

dence level (1-a). The values of xz will increase with the increases in the

n(ns-1),1-a

number of satellites and/or the monitor stations, and so does the acceptance volume of the
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criteria. Note from equation (3.43) and (3.44) that, geometrically speaking, the acceptance

volume of this criteria is a hyper ellipsoid with dimension n(ns-1)+3.

3.6.6. Individual ambiguity mapping function test.

After the previous two criteria, the finer examination of the residual of the phase
observations can still be beneficial in trying to identify the correct integer ambiguities. One
avenue to do this is by using the concept of ambiguity mapping function, as explained in
Chapter 2. The first property of the ambiguity mapping function that will be used in this
sixth step of ambiguity validation and rejection is the value of the real term of the individual
ambiguity mapping function (see equation 2.6). This criteria is applied to test agreement
between the individual double-difference phase observation with its corresponding
computed theoretical value based on the updated position. In the case of n monitor stations,

it is formulated as follows:

dVA . =VA obs,. _VA calc .
{ dr2() Pi2 (i) b1 ,{G=Lns-1),k=13,..,n} . (345

cos{dVAdy, (i)} > minimum threshold #1

In equation (3.45), superscript obs denotes the individual observed double-difference
phase observation related to monitor station k, and superscript calc denotes the individual
calculated double-difference phase observation based on the updated position and the
satellite coordinates. In this case, the ambiguity set being tested must satisfy all conditions
expressed by equation (3.45) in order to pass the next validation and rejection criteria.
Compared to the single monitor station case, it is indeed more difficult for the incorrect

ambiguity set to pass this validation and rejection criteria.
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The value of cosine of the phase residual dVA¢k2(i) in equation (3.45) lies between -1.0

and 1.0. The values of the minimum threshold, however, should be set somewhere
between 0.7 and 1.0 depending on the expected magnitude of noise and the residual errors
and biases in the observations and wavelength of the signal. Figure 3.11 shows the values
of the cos term correspond to the phase residuals values of 0.0, 0.05, 0.075, 0.10, 0.125
and 0.15 cycles, respectively. The figure shows the advantage of working with longer
wavelength signal in which an increase in the phase residual does not decrease the value of

the cos term too rapidly as in the case of the signal with shorter wavelength.

cos {phase residual)

0 ' 5 10 15 20 25
phase residual (cm)

Figure 3.14. The real term of individual ambiguity mapping function.
3.6.7. Normalized ambiguity mapping function test.

The validation and rejection criteria called the normalized ambiguity mapping function value
test is applied to test the group agreement between the phase observations which pass the
previous test criteria, and their corresponding computed theoretical values based on the
updated position (X};). The normalized ambiguity mapping function test consists primarily
of three criteria which are used to check spatial and temporal agreement between the

observed and the calculated phases, i.e., the phase residuals. Compared to previous tests
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on the phase residuals, this normalized ambiguity function test has a finer resolution, i.e.,

higher identification power.

At certain epoch t, the normalized ambiguity mapping function test is formulated as:

NAMF;y (X,) > minimum threshold#2, (k=1,3,..,n), (3.46)
NAMF,, (X,) > minimum threshold #3, and (3.47)
NAMF,;, (X,) > minimum threshold #4 . (3.48)

In equation (3.46), NAMF, y is the normalized ambiguity mapping function based on the
observations related to monitor station k at epoch t, and it is formulated as :
_ 1 2, 2
NAMF[,k = —ns—_'T Xk + yk N (349)
where :

ns—1 ns—1

X, = 2 cos{dVAd,, (1)} ; y, = D sin{dVAd,, (1)} . (3.50)

i=1 i=1

In equation (3.47), NAMF, , is the normalized ambiguity mapping function based on the

observations related to all monitor stations at epoch t, and it is computed as follows:
- 1 [ 4+ 2
NAMF[,H - n.(ns_l) xau + yall ’ (3.51)
where :

n n

xau=x1+k23xk; yall=y1+k243yk‘ (3.52)
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Finally, NAMF) ;; in equation (3.48) is the normalized ambiguity mapping function
based on the observations related to all monitor stations from the first epoch up to epoch t.

It can be computed sequentially as follows:

1
NAMF,,, = NAMF; ;, + 1 (NAMF, , - NAMF; 1 1,4) - (3.53)

It should be noted here that, with more observations, the value of the normalized mapping
function related to the correct ambiguity set can be expected to be much closer to 1.0.
Therefore, the values of the minimum thresholds used in equation (3.45) to (3.47) can be

set as follows:

mt#l < mt#2 < mt#3 < mt#4 , (mt = minimum threshold). (3.54)

Besides the number of observations involved, the expected residual errors and biases in the
observations and the wavelength of the signal should also be considered in choosing the
values of the minimum threshold. Typically, values between 0.7 and 0.8 can be assigned to

minimum threshold#1 and between 0.9 and 0.99 to minimum thresholds #2, #3, and #4.

With the changes in satellite geometry, the normalized ambiguity mapping function value,

NAMEF ; p, related to incorrect ambiguities, can be expected to decrease, while the
mapping function value related to correct ambiguities can be expected to be more or less
steady, approaching the value of 1.0. Therefore, identifying the correct integer ambiguities
should become easier as the observation time progresses and the observation geometry

changes.
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At this stage, the integer ambiguity set which passes all previous seven validation and
rejection criteria is saved as the potentially correct ambiguity set. The corresponding values
of the quadratic form of the residuals (equation 3.43) and the normalized ambiguity
mapping function values NAMF| | ;, are also saved at this time. The next ambiguity set is
then considered and tested using the procedures described above until all ambiguity sets at

that epoch are tested.

3.6.8. Contrast test on quadratic form of the residuals

After all integer ambiguity sets inside the searching space are tested at a particular epoch,
there are usually some ambiguity sets which still remain as candidates for the correct
ambiguity set. Before continuing to the next epoch testing, another criterion is used to
validate or reject these remaining ambiguity sets. A test is done on the corresponding values

of the quadratic form of the residuals.

This test stems from the principles of the least squares adjustment used in the estimation
process. The least squares adjustment yields the estimates of the parameters by minimizing
the quadratic form of the residuals. In this case of the correct ambiguity identification, it can
be expected that the quadratic form of the residuals related to the correct integer ambiguities
should be relatively small or smaller than other values. The contrast among the quadratic
form values can then be used to validate or reject certain ambiguity sets related to that

quadratic forms. This contrast test is formulated as follows:

QF(v),

< , ;o= 1, -1 ) 355
QF(U)min n(ns-1),n(ns-1),1-a @ np-1) ( )
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In the above equation QF(\))min and QF(t))i are the minimum and ith quadratic form values

of the residuals. F is the Fisher percentile for degrees of freedom n(ns-1)

n(ns-1),n(ns-1),1-a
and n(ns-1) and confidence level (1-a). np is the number of the quadratic forms. The
values of the Fisher percentiles will increase with increases in the number of the satellites

and/or the monitor stations as does the acceptance volume of the criteria.

If after this criteria some of the integer ambiguity sets still remain, then the validation
process will be continued to the next epoch and the same validation and rejection
procedures described above will be repeated until certain assurance criteria are fulfilled.

3.6.9. Assurance criteria

The identification process of the correct integer ambiguity set is stopped if the following

two assurance criteria are satisfied :

a) the number of potentially correct ambiguity sets after all validation and

rejection criteria is only one, and

b) its corresponding value of normalized ambiguity mapping function, NAMF ; ,,

is larger than a certain predetermined threshold.

The ambiguity set which fulfills the above conditions will be fixed as the correct ambiguity.
It should be emphasized in this case, however, that these fixed integer ambiguities could
be either really the correct integers or the incorrect one. Fixing the ambiguities to the
incorrect integers, which will be termed in this thesis as the failure in ambiguity resolution,

could be caused by several factors. One of them is the use of the validation and rejection
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criteria parameters which do not represent the state of satellite geometry, the level of the
noise, and the remaining errors and biases in the observations. This fact will be highlighted
later when the computational and geometrical aspects of ambiguity resolution are discussed

in Chapters S and 6.
3.7. The integer ambiguity estimation of the L1 and L2 signals

In the position estimation process using carrier phases, for better position accuracy, it is
preferable to use the signal with the shortest possible wavelength if the observations are
mainly contaminated by noise. It is due to the fact that the shorter the wavelength, the
higher the precision of the phase observation will be, and vice versa. When the ionospheric
effect is quite significant, then it is preferable to use the ionospheric free linear
combination. In both cases, when one deals with dual-frequency and codeless GPS data,
after fixing the wide-lane, and semi, half, or double wide-lane ambiguity, the ambiguities

of L1 and L2 signals should also be fixed.
3.7.1. Dual-frequency data

In the case of dual-frequency data, when the double-difference wide-lane ambiguities

(VAN,) can be fixed, the double-difference ambiguities of L1 and L2 signals (VAN; and

VAN,) have to also be fixed. Theoretically speaking, the next longer wavelength signal,

i.e., L2 signal, should be fixed. In this investigation, however, due to its lower noise level

and ionospheric effect, and its even-odd relation with the previously fixed wide-lane

ambiguities, the narrow-lane ambiguities (VANZ) will be fixed first. Then based on the

wide-lane and narrow-lane ambiguities, the ambiguities of L1 and L2 signals are fixed

using the following relations:
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VAN,

I

(VAN, + VANg)/2 (3.56)

VAN, ( VANZ - VAN,) /2 . 3.57)
There are two methods for computing the narrow-lane ambiguities in this case. The first
one is by simply utilizing the final updated position of the moving receiver and the second

one is by using the ionospheric free linear combination of phase observations.

In the first method, the double difference narrow-lane ambiguities are computed using an

equation similar to (3.1) as follows:

1
VAN = l—z.(VAp-VALZ) , (3.58)

where VAp is the double-difference geometric ranges computed by basing on the final
updated coordinates derived using the unambiguous wide-lane carrier phases. VALy is the
ambiguous double-difference narrow-lane phases in range units. The closeness of these
estimated real ambiguities to the integer numbers depends on the magnitudes of the
observation noise and the residual errors and biases in the observations, which all are
neglected in equation (3.58) above. If the wide-lane ambiguity is an even integer number,
then the corresponding narrow-lane ambiguities is rounded to the nearest even integer
number and, if the wide-lane integer ambiguity is the odd number, then the narrow-lane

ambiguity is fixed to the nearest odd integer number.
In the second method, the ionospheric free linear combination of the double-difference

phase observation is used in combination with the double-difference wide-lane integer

ambiguities to compute the double-difference integer ambiguities of the L1 and L2 signals.
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The double-difference ionospheric free linear combination, VAL;;, is formulated in this

case as follows:

2 2
f,2. VAL, - f2. VAL,
f£2- £

VAL = , (3.59)

where f| and f, are the frequencies of the L1 and L2 signals, respectively. This ionospheric

free linear combination is related to the ambiguities of L1 and L2 signals through the

following equation:

£,2. A;.VAN; — £ X,.VAN,

VAp = VAL, +
p if flz_ f22

, (3.60)

where 4, and ), denote the wavelength of L1 and L2 signals, respectively. By substituting
equations (3.56) and (3.57) to equation (3.60), the following formulation for double-

difference ambiguities of narrow-lane signal can be established:

VANy

2.(f, + £,) (VAp - VALif) _ ) o G6D
. —_ . A . -

f, Ay (f, - )

By inserting the frequencies of L1 and L2 signals, the above equation can be rewritten as:

VANy = 137 i (____VAP _ VALif) _

VAN, . 3.62
30 Ay 17 a (:62)
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The narrow-lane ambiguities are then fixed by employing their even-odd relation with the
corresponding wide-lane ambiguities, and the ambiguities of L1 and L2 signals are

computed afterward using equations (3.56) and (3.57).

Since the narrow-lane phase observations have lower observation noise than the
ionospheric free linear combinations, the first method should be used when the ionospheric
effect is expected to be low, as in the case of low ionospheric activity and/or short
separation between the monitor station and the moving receiver. In the case of high

ionospheric activity, however, the second method should be used.
3.7.2. Codeless data

In the case of codeless data, the observation types available are the L1-C/A code
pseudoranges, full-wavelength L1 phases, and half-wavelength L2 phases resulting from
the squaring process [Wells et al., 1986]. For ambiguity resolution, the semi, half or
double wide-lane signals (see Appendix I) can be used. The double wide-lane signal has a
longer wavelength, i.e., 162.8 cm compared to 34.1 cm and 43.1 cm of the semi and half
wide-lane signals, which is useful for ambiguity resolution. However, it is more affected
by the ionospheric refraction and also has the highest noise level compared to semi and half
wide-lane signals. Among the three, the semi wide-lane is the least affected by the
ionosphere and has also the lowest noise level. Its wavelength, however, is the shortest.
One therefore has to trade-off these factors in choosing the signal to be used in the
ambiguity resolution process. In both cases, after fixing the semi, half, or double wide-lane
ambiguities, the cycle ambiguity resolution of L1 and L2 signals are accomplished using

the help of the ionospheric free linear combination. It should be noted here that the

frequency and wavelength of the half-wavelength L2 phases (f,, and A,.) are related to the

original frequency and wavelength of L2 signal (f, and 4,) as follows:
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f,o = 2.6, and Ay = A /2=122cm . (3.63)

C

In the case of codeless data, the double-difference ionospheric free linear combination,

VAL, can be formulated as follows:

fre- VALyo — ;2. VAL, _ 4f7. VAL, - f)%. VAL,
f2— 2 47 — £,

, (3.64)

where :

VALzC = MC . VA¢2C . (365)

In the above equation, ¢, is the observed half-wavelength L2 phases in cycles units. This

ionospheric free linear combination is related to the ambiguities of L1 and L2 signals

(VAN; and VAN, ) through the following equation:

2f22. )\IZ;VANZC - f12. ll;VANl
af} - £}

VAp = VAL + (3.66)

If the ambiguities of the semi, half and double wide-lane signals are denoted as VAN,,

VAN, and VAN, then the following ambiguity relations exist (see Appendix I):

VAN,, = -VAN; + VAN, , (3.67)
VAN,, = -3VAN, + 2VAN,_ . (3.69)

In the case of semi wide-lane signal, substituting equation (3.67) into equation (3.66), the

following formula for the double-difference integer ambiguities of L1 signal is obtained:
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VANI =

2 2
. VAL 2.f
@£7 - £} (VAp VALlfj 2 VAN, . (3.70)

Q.f.f,— £2) iy S @f,- )

By inserting the frequencies of L1 and L2 signals, the above equation can be rewritten as:

8471 (VAp - VALif) 120

: .VANg, . 3.71
3311 M 43 sA 67D

In the case of half wide-lane signal, substituting equation (3.68) to equation (3.66) above,
the following formulation for the double-difference integer ambiguities of L1 signal is

obtained:

VANI =

. 2 2
2 - Vap - VAL, 2.f
@.f; - fy) ( fp if ) " 2__ VAN,, . (372

@f.6— 1) M (4.f,— f)

By inserting the frequencies of L1 and L2 signals, the above equation can be rewritten as:

VAp — .
8471 ( Ap VALlfJ . 1200‘7ANA/2 . 3.73)

12551 A 163

89




In the case of double wide-lane signal, substituting equation (3.69) to equation (3.66), the
following formula for the double-difference integer ambiguities of L1 signal can be

established :

VANI =

2 2
- Vap — VAL, f
@f; -~ ) ( 4p 'f) 2 VAN, . (374)

Gfpfy— ) M C (Bfy- f))

By inserting the frequencies of L1 and L2 signals, the above equation can be rewritten as:

VAN, 8471 (VAp—VALif) 60

: - 2L VAN, . 3.75
7931 A 103 24 G-73)

In all the cases of using semi, half or double wide-lane signals, by knowing the
ambiguities of L1 phases, then the ambiguities of the half-wavelength L2 phases can be

computed by basing on equation (3.67), (3.68), or (3.69).
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Chapter 4

VALIDATION OF ON-THE-FLY
AMBIGUITY RESOLUTION TECHNIQUE

This chapter is intended to prove the validity of the integrated on the fly ambiguity
resolution technique which has been described and outlined in the previous chapter. The
verification is performed using both static and kinematic real GPS data. The static data,
particularly the zero baseline data, is used o ensure that the algorithm is working properly.
The real GPS kinematic data is then processed to show that the validity of the on-the-fly
ambiguity resolution technique. The results are presented along with discussions and
analysis on these results. All the computation is executed using the IBM ES9000 MOD320

mainframe computer.

It should be noted that the parameter values of the identification process, the standard
deviations of the observations, and primary satellites used in the examples shown in this
chapter are chosen based on a trial and error process. In the case of the parameter values of
the identification process and the standard deviations of the observations, the set of values
which corresponds to the best performance of ambiguity resolution in all combinations of
the primary satellites, in terms of speed and resolution success, is used. In terms of
primary satellites, the one which yields the fastest ambiguity resolution is used for the

example. Since the actual standard deviations of the observations are difficult to know

91



exactly, some values are considered by taking into account their theoretical measurement
precision and also the expected level of the remaining errors and biases in the observations.
In choosing the optimal parameter values of the identification process, some trial sets of
values are tested by considering several factors such as the standard deviations of the
observation used, satellite geometry, signal used, and expected remaining errors and biases
in the observations. It should be noted that the effects of different parameter values of the
identification process, different standard deviations of the observations, and different
primary satellites on the performance of on-the-fly ambiguity resolution will be discussed

in Chapters 5 and 6.

4.1. 'TRIMBLE GEODESIST ZERO-BASELINE RESULTS.

4.1.1. Characteristics of the zero baseline data.

The zero baseline data used here was

30

collected using two Trimble Geodesist

Elevation

P-receivers which observe L1-C/A

code, L2-P code, and full wavelength

carrier phases on L1 and L2 fre-
quencies. The data was collected at a

known station in California on 21st of

November 1991 (day 324). A

maximum of six satellites were visible

180
Figure 4.1. Satellite polar plot.

during the one hour test and a five
second update rate was used. The
satellite constellation during the session is shown by polar plot in Figure 4.1. In summary,

the general characteristics of the data are given in Table 4.1. In performing on-the-fly
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ambiguity resolution computation, one receiver is considered as a monitor station, and the

other as a moving receiver.

The double-difference reference integer
ambiguities are computed by using the
known coordinates of the station and the
broadcast ephemeris of satellites. Since in
this case the double-difference phases are
only contaminated by the observation
noise, these reference ambiguities can be

easily and reliably determined, as shown

Table 4.1. Data characteristics

12,6,11,16, 18,19

by the example in Figure 2.2. If equation similar to (3.1) is used to compute the double-

difference ambiguities of L1 and L2 signals, the precise and accurate reference ambiguities

can be obtained. Table 4.2 shows the estimated double-difference real-ambiguities of L1

and L2 signals averaged over the whole observation period along with their standard

deviations. The reference integer ambiguities are established by rounding these real

ambiguities to the nearest integer, which are obvious in this case.

Table 4.2. Double-differences averaged ambiguities of L1 and L2 signals.

PRN 2 - PRN 18 0.0005 + 0.0002 5421.0002 + 0.0001
PRN 11 - PRN 18 0.0000 * 0.0002 5422.0000 + 0.0001
PRN 6 - PRN 18 0.0009 =+ 0.0002 5421.9991 + 0.0001
PRN 19 - PRN 18 0.0016 * 0.0002 5421.9994 + 0.0001
PRN 16 - PRN 18 0.0002 * 0.0002 5421.0003 * 0.0002
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4.1.2. On-the-fly ambiguity resolution parameters.

As was explained in the previous chapter, in order to execute the integrated on-the-fly
ambiguity resolution techniques, the values of the ambiguity resolution parameters have to
be chosen or assigned. These parameters will include the four satellites chosen as the
primary satellites, the observation differencing between satellites, the standard deviations of
the pseudoranges and phases observations, and the values of the rejection and validation

criteria parameters.

In this case, PRNs 2, 11, 6, and 16 are chosen as the primary satellites, and PRN 2 is
chosen as the reference satellite for differencing. The Position Dilution of Precision
(PDOP) value for the whole satellite is about 3.8 and for the primary satellites is about 4.1.
Since with zero baseline, the systematic errors in the observations are completely eliminated
by the differencing, the precision of certain type of observations (code or phase) to all
satellites is characterized by the same standard deviation. The standard deviations of the

pseudoranges and carrier phases observations listed in Table 4.3 are used in this case.

Table 4.3. The standard deviations of Trimble Geodesist zero-baseline data.

L1-C/A code L2-P code
pseudoranges 1.5m 1.0m
carrier phases 5.00 mm 7.00 mm

For the identification process of the correct ambiguities, the parameter values of the
searching space, the rejection and validation criteria, and the assurance criteria are listed in
Table 4.4. Two sets of parameter values are used, for the single and dual frequency cases.
In the dual-frequency case, all types of available observations are used. But in the case of

single frequency, only L1-C/A code and L1 signal are considered. The wide-lane signal is
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used as a signal for the ambiguity resolution in the case of dual-frequency data, and the L1

signal for single-frequency data. With dual-frequency data, after the wide-lane ambiguities

are fixed, the narrow-lane ambiguities are then resolved by utilizing the ionospheric free

linear combination of phase observations (see section 3.7.1).

Table 4.4. The parameter values of the identification process
for single and dual frequency data.

The parameters

Single

Dual

Confidence level of ellipsoidal searching space

Confidence level of the first criteria

The constant value of the second criteria

Confidence level of the third criteria

The constant value of the fourth criteria

Confidence level of the fifth criteria

Minimum individual mapping function value of
the sixth criteria

Minimum normalized mapping function values of
the seventh criteria

Confidence level of the eight criteria

Minimum normalized mapping function value of
the assurance criteria

4.1.3. On-the-fly ambiguity resolution resuits.

On-the-fly ambiguity resolution is executed in simulated kinematic mode by considering

one receiver as a monitor station and another receiver as a moving receiver. In this case, the

observation and computation times needed to resolve the ambiguities are presented in

Table 4.5.
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Table 4.5. The on-the-fly ambiguity resolution results of zero baseline data.

Single 1029 527 16
Dual # 1 97 73 2
Dual # 2 1159 127 2

The results related to dual frequency data in Table 4.5 are categorized into two cases based
on the approach used to compute the initial primary ambiguities. In the dual # 1 case, the
initial ambiguities are computed based on the code-derived position; while in the dual # 2
case, extrawidelaning is used. Notably, the use of the extrawidelaning technique leads to a
larger searching space, and consequently slower computation times than the use of code-
derived position. The epochs of ambiguity resolution, however, are the same for both

cases.

It should also be noted that in the case of single frequency data, the identification process of
the correct ambiguities is started at epoch #10, not at the first epoch as is the case with dual
frequency data. Up to this epoch, the code smoothing process is done to reduce the noise
level in the code observations in order to obtain a smaller and more reliable ambiguity

searching space.

The success of the on-the-fly ambiguity resolution can also be verified by estimating the
length of the zero baseline using fixed-ambiguity phase observations. The results obtained
by using the narrow-lane and L1 signals are shown in Figure 4.2. Note from the figure that
the time average of the baseline length is about 1 % of the wavelength of the signal, i.e.,

about 1.1 mm and 1.9 mm, respectively, for the narrow-lane and L1 signals.
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Figure 4.2. The zero-baseline length estimated from the fixed ambiguity solutions.

4.2. ASHTECH CODELESS STATIC RESULTS.

This data set is processed to verify the validity of the integrated on-the-fly ambiguity
resolution technique in processing the codeless GPS data which consist of L1-C/A code,

full wavelength L1-phases, and half-wavelength L2-phases.

4.2.1. Characteristics of the codeless data.

The codeless GPS data processed in this case was collected at 30 second data interval on 12
June 1991 (day 163), using Ashtech LD-XII receivers at two known stations (DOME and
PEPS) on Université Laval campus, Québec City, Canada. The baseline length was around
535 metres. Five satellites were observed, i.e., PRNs 2, 6, 11, 15, and 19 for about one
hour. The relative position of stations DOME and PEPS and the satellite constellation
during the session is shown by polar plot in Figure 4.3. In summary, the general

characteristics of the data is given in Table 4.6.

For the ambiguity resolution computation, PRNs 2, 6, 11, and 15 were used as the primary

satellites, and PRN 2 was used as the reference satellite for observation differencing.
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Station DOME was used as the monitor station, and station PEPS was considered the
moving receiver. The half wide-lane signal is used as a working signal for resolving the

ambiguities.

180

Figure 4.3. Relative position of the stations and satellite polar plot as seen from PEPS.

The double-difference reference integer Table 4.6. Data characteristics

ambiguities are computed by using the Quebec City

12 Junel991

known coordinates of the station and the

= 1 hour

= 6:38 - 6:40 p.m.
Ashtech LD-XII
30 seconds
2,6,11, 15,19

broadcast ephemeris of satellites in an

equation similar to (3.1). Table 4.7 shows

the estimated double-difference real-

ambiguities of half wide-lane, full

wavelength L1 and half-wavelength L2
signals averaged over the whole epochs along with their standard deviations. The reference
integer ambiguities are established by rounding these real ambiguities to the nearest integer,

which are quite obvious in this case.
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Table 4.7. Double-differences averaged ambiguities of
half wide-lane, L1 and half-wavelength L2 signals.

PRN 6 - PRN2 | -36303.987 + 0.004 | -82217.996 + 0.003 | -128132.005 * 0.005
PRN 11 - PRN 2 | 245768.975 + 0.004 | 556593.020 + 0.003 | 867417.066 *+ 0.005
PRN 15 - PRN 2 | 100947.011 + 0.004 | 228613.998 + 0.003 | 356280.986 + 0.004
PRN 19 - PRN 2 | 235269.978 + 0.005 | 532815.005 + 0.003 | 830360.032 *+ 0.006

4.2.2. On-the-fly ambiguity resolution parameters.

For on-the-fly ambiguity resolution, PRNs 2, 6, 11, and 15 are chosen as the primary

satellites, and PRN 2 is chosen as the reference satellite for between-satellite observation

differencing. The Position Dilution of Precision (PDOP) value for the whole satellite is

about 4.4 and, for the primary satellites, is about 8.7. Because of its relatively short

baseline length, the precision of a certain type of observations to all satellites is

characterized by the same standard deviation. The standard deviations of pseudoranges and

carrier phases observations listed in Table 4.8 are used.

Table 4.8. The standard deviations of Ashtech codeless static data.

L1-signal L2-signal
pseudoranges 1.0m -
carrier phases 3.00 mm 8.00 mm

For the identification process of the correct ambiguities, the parameter values of the

searching space, the rejection and validation criteria, and the assurance criteria are listed in
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Table 4.9. The half wide-lane signal with wavelength of about 43 cm is used as a
working signal for the ambiguity resolution. After fixing the ambiguities of the half wide-
lane signal, the ambiguities of L1 signal and half-wavelength L2 signal are resolved by
utilizing the ionospheric free linear combination of phase observations, based on equations

(3.71) and (3.67) given in the previous chapter.

Table 4.9. The parameter values of the identification process for codeless data.

The parameters

Confidence level of ellipsoidal searching space

Confidence level of the first criteria

The constant value of the second criteria

Confidence level of the third criteria

The constant value of the fourth criteria

Confidence level of the fifth criteria

Minimum individual mapping function value of the sixth criteria

Minimum normalized mapping function values of the seventh criteria

Confidence level of the eight criteria

Minimum normalized mapping function value of the assurance criteria

4.2.3. On-the-fly ambiguity resolution results.

On-the-fly ambiguity resolution is executed in simulated kinematic mode by considering
station DOME as a monitor station and station PEPS as a moving receiver. The observation
and computation times needed to correctly resolve the ambiguities of half wide-lane, L1,

and half-wavelength L2 signals are given in Table 4.10.
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Table 4.10. On-the-fly ambiguity resolution results of codeless data.

Codeless 2729 501 4

The success of on-the-fly ambiguity resolution can also be verified by comparing the
'known' baseline length with the epoch-by-epoch baseline lengths estimated using the
fixed-ambiguity phase observations. The results obtained by using the L1 and half-
wavelength L2 signals are shown in Figure 4.4. The time averages of the baseline length
differences in this case are about 2.7 mm and 3.8 mm for the L1 and half-wavelength L2
signals, respectively. These averages indicate the correctness of their corresponding integer
ambiguities. The figure also shows that the epoch-by-epoch baseline lengths estimated
using the half-wavelength L2 signal are noisier than those estimated using L1 signal despite
the shorter wavelength of the half-wavelength L2-signal. This is due to the squaring
process in the receiver for obtaining the half-wavelength L2 signal which increases the
noise level of the yielded signal by a factor of two times greater than the original full-

wavelength L2-signal [Wells et al., 1986].
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Figure 4.4. The differences between the 'known' baseline length and
the baseline length estimated from the fixed ambiguity solution.
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4.3.  ROGUE KINEMATIC GPS RESULTS.

4.3.1. Characteristics of the kinematic GPS data.

The kinematic GPS data used is part of the data from the marine sea-floor geodetic
experiment conducted off the shore of Vancouver Island, British Columbia, Canada, from
May 28 to June 6, 1991. This integrated GPS-accoustic system survey was performed to
measure the real-time relative motion between the Juan de Fuca and the North American
plates in the Cascadia subduction zone [Dragert, 1992]. Four institutions were involved in
this survey, namely Scripps Institution of Oceanography, Jet Propulsion Laboratory,

Geodetic Survey of Canada, and United States Geological Survey.

The GPS data in this survey is the P-code dual frequency GPS data observed using Rogue
GPS receivers. Two monitor stations and three antennas on the moving buoy are involved.
The two monitor stations are PGC at the Pacific Geoscience Centre, Sidney, B.C, and
UCLU (Ucluelet) at the west coast of central Vancouver Island. The three antennas were
rigidly mounted on a buoy which was towed about 100 m behind the ship. The antennas

floated about 1.5 m above the water (when it was calm).

To show the validity of the integrated on- Table 4.11. Data characteristics

the-fly ambiguity resolution technique

off the shore of

explained in the previous chapter, some
Vancouver Island

of the GPS data from the survey is

6 June 1991
processed. The general characteristics of 29 minutes
the data processed in this chapter are 9:38 - 10:00 a.m.
shown in Table 4.11. It was collected on Rogue
' {1 1 second
June 6, 1991 with one second data

111,12, 15,21,23

interval. From the whole-day data set
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only about 22 minutes worth of data (1365 epochs) has bee processed. This sample data set
is chosen because of the following factors: the same five satellites are continuously tracked,
the ionospheric refraction can be expected to be relatively small since the data was collected
in the morning, and also it is free of cycle slips. For this time period, the buoy is about 167
km from station PGC and about 61 km from station UCLU as depicted in Figure 4.5, and
five satellites (PRNs : 11, 12, 15, 21, and 23) were observed. The satellite constellation
during this 22 minute period is shown in Figure 4.6. by the satellite polar plot as seen from

station UCLU.

:

Buoy trajectory
for about 22 minutes

Northiﬁgs (mel‘ré‘s.)“
(3]
=

I Sketch of the survey 100 1

0 40 8 120 160
Easting (metres)

Figure 4.5. Sketch of the survey area and the buoy trajectory.

The buoy system used in this survey consists of a steel framework enclosing a doughnut
buoy. Within the framework, bracing members connect a central stem to an upper
equilateral triangular platform. The entire structure is quite rigid, due to its heavy-duty
construction. The three GPS antennas (which will be denoted as B1, B2, and B3) are
located just inside the vertex of the triangle, as shown in Figure 4.7. The centre-to-centre

distances for the antennas were as follows:
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BltoB2 = 2643.6 mm,
B1toB3 = 2642.5 mm, and
B2 to B3 = 2652.6 mm .

These distances were measured between the screws which are used to hold the antennas.
These distances will be used as one of the criteria in verifying the success of the ambiguity

resolution.

GPS antenna B3 O

elevation

270 90

180 GPS antenna B2 GPS antenna Bl

Figure 4.6. Satellite polar plot . Figure 4.7. GPS antennas and the buoy

The speed of the buoy during the 22 minute trajectory considered in this case is quite slow.
Figure 4.8 shows the total speed of antenna B1 computed based on GPS phase

observations. In average, it was about 1m/sec.
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Figure 4.8. The time series and histogram of the total speed of antenna B1.
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As expected, along the trajectory the antennas were always in motion. As shown in Figure

4.9, the relative positions of the antennas between each other were changing with time. No

single cycle slip, however, occurred during this period.
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Figure 4.9. The relative positions of antennas B2 and B3 relative to antenna B1 in local
geodetic coordinate system (northing, easting, height) along the 22 minute trajectory.

4.3.2. On-the-fly ambiguity resolution parameters.

As was explained in the previous chapter, in order to execute the integrated on-the-fly

ambiguity resolution techniques, the values of the ambiguity resolution parameters have to

be chosen or assigned. These values include the four satellites chosen as the primary

satellites, observation differencing between satellites, standard deviations of the

pseudoranges and phases observations, and values of the rejection and validation criteria

parameters.
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For ambiguity resolution, PRNs 12, 15, 21, and 23 are chosen as the primary satellites,
and PRN 12 is chosen as the reference satellite for differencing. The Position Dilution of
Precision (PDOP) value for the all satellites is about 4.2 and for the primary satellites is
about 5.4. Due to relatively long baseline lengths (60 - 170 km), it can be expected that the
effects of the looking direction dependent errors and biases, such as ionospheric refraction,

will not be the same for all satellite observations.

Considering the finding by Euler and Goad [1991], the standard deviation of the
pseudoranges and phases observations at each epoch t are considered to be elevation-

dependent, and they are computed using the following exponential relations :

op(h(t)) = op(90) . exp (29-;’—(;—1-(2) , 4.1)
oL (h(D) = 6(90) . exp (ﬁ’%oﬁ(‘—)) : (4.2)

where op and o denote the standard deviation of the pseudoranges and phases
observations and h(t) is the satellite elevation at epoch t in degrees. In this formula, op(90)
and 6p(90) are the standard deviations of the observations at the zenith direction which

should be assigned by the user.

According to Thomas [1988], based on the nominal system parameters, the system noise
errors of the Rogue GPS receiver are less than 0.1 mm in phase observation and a
centimeter or less in P-code pseudoranges for a 5S-minute integration time. Furthermore,
excluding the system-noise errors and errors outside the receiver (e.g. 'multipath and
antenna errors), the between-satellite systematic errors are about 0.2 mm or less for the

phases and about 1 cm or less for the P-code pseudoranges.

106
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