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1. EXECUTIVE SUMMARY 

In March 1986, we produced a (gravimetric) geoid for Canada under a DSS contract with the 

Geodetic Survey Division. The technique selected for the computation was the generalized Stokes 

approach treating satellite-derived potential coefficients as defining a reference field of higher 

order. The generalized Stokes integration kernel was then modified following the technique 

suggested by Molodenskij to minimize the radius of the truncated integration cap and thus minimize 

the computer time computation. This geoid was later improved and published and distributed 

under the name of the "UNB Dec. '86" geoid. 

The present contract called for a recomputation of this geoid using the most up-to-date gravity 

anomaly values available in Canada. These values came in three guises: point values, 5' x 5' mean 

values, and 1" x 1" mean values. While the first set of values came directly from the federal gravity 

data bank, the second and third sets were prepared for this project especially by the Geodetic 

Survey Division under the supervision of Dr. Andre Mainville, the Scientific Authority for this 

contract. 

The new geoid has been computed on a 1 0' x 10' grid covering the whole of Canada up to 

latitude 72.N. It uses the more recent GEM-T1 potential coefficients up to degree and order 20 

replacing the older GEM-9 coefficients. The differences between the new and the UNB Dec. '86 

solutions are at most of the order of 1 m and are predominantly of a longer wavelength character. 

Significant local differences, however, also can be seen; these are due to the gravity data 

improvement. The accuracy of the new solution is improved, compared to the old solution, mainly 

because of the better accuracy of the GEM-T1 coefficients. 
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2. INTRODUCTION 

This report describes the work done under a sole source DSS Contract No. 23244-8-4564/01-

SS let to the University of New Brunswick (UNB) on 9 March 1989. The first author of this 

report was the Principal Investigator, the second author was a graduate student at the UNB 

Department of Surveying Engineering until the end of August 1989, and the third author is still a 

graduate student at the same Department. All of the computations were done first by Changyou 

Zhang and, starting 1 September 1989, by Peng Ong under the guidance and supervision of the 

Principal Investigator. 

The requirement of the contract was "to recompute a file of geoidal heights using the 

Molodenskij truncation method described in a previous contract report, The Canadian Geoid, 27 

February 1986 by Vanicek et al." The geoidal heights had to be recomputed on a regular 

geographical grid, at a spacing of 10 arcmin covering Canada for a minimum area extending from 

latitude 42"N to 72"N and longitude 218"E to 318"E- a matrix of 181 by 601 values. 

The geoid was to be computed with a new set of point free-air gravity anomaly values updated 

to July 1988 and two new sets of mean free-air gravity anomaly values on geographical 

'rectangular' grids of 5 arcmin and 1 arcdegree. The Geodetic Survey Division was to provide the 

three sets in a computer-readable form. The reference spheroid was to be defined through the 

potential coefficients of the NASA Goddard Space Flight Center model GEM-Tl. 

The goals of the Contract have been achieved after some delays caused by problems in data 

acquisition and change in personnel. The computations were carried out by means of the original 

GIN program suite [Vamcek et al., 1987] modified to accept the new data sets. A new technique 

based on two-dimensional Fourier transform [Colombo, 1981; Wang and Rapp, 1989] was 

adopted for the computation of the topographic correction to geoidal heights. Also, a new 

approach was used for reducing the gravity anomalies to the reference spheroid. This approach is 

based on the generation of the GEM-T1 reduction values (using the Tscherning et al. [1983] 
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program POT) on a sparse regular grid and two-dimensional quadratic interpolation within the 

grid. It results in a considerable computer time saving. 

The file of geoidal heights contains the required values of: 

(a) total geoidal height referred to GRS 80; 

(b) associated standard deviation; 

(c) innermost-zone integration contribution; 

(d) inner-zone integration contribution; 

(e) outer-zone integration contribution; 

(f) tropographic effect; 

(g) indirect effect. 

The technical details are described in the following seven chapters. 
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3. DATA SETS USED 

3.1 Point Free-Air Gravity Anomalies 

Two new files of point free-air gravity anomalies containing values available in July 1988 were 

prepared by the Geophysics Division of the Geological Survey of Canada and transmitted to us by 

the Contract Scientific Authority. The first file contains 266 065 values on land, the second 

322 809 values at sea. These two files were merged creating one homogeneous file (of 588 874 

records). 

In our 1986 work, we used the file A.M1212072.EXMAIN.SORT for point gravity anomaly. 

Following the same practice this time and conforming to the input format of the GIN program, we 

created 20 sequential files. The program SORT.EXMAIN has been written to serve this purpose, 

and the following 20 sequential files were created: 

1. A.M1212072.REDUCED.TOPO.PGA1 Latitude: 40' S0'10' 
Longitude: 218' 238' 10' 

2. A.M1212072.REDUCED.TOPO.PGA2 Latitude: 40' S0'10' 
Longitude: 238' 2S8' 10' 

3. A.M1212072.REDUCED.TOPO.PGA3 Latitude: 40' S0'10' 
Longitude: 2S8' 278' 10' 

4. A.Ml212072.REDUCED.TOPO.PGA4 Latitude: 40' SO'IO' 
Longitude: 278' 298' 10' 

s. A.M1212072.REDUCED.TOPO.PGA5 Latitude: 40' 50'10' 
Longitude: 298' 320' 10' 

6. A.M1212072.REDUCED.TOPO.PGA6 Latitude: so· 60'10' 
Longitude: 218' 238' 10' 

7. A.M1212072.REDUCED.TOPO.PGA7 Latitude: so· 60'10' 
Longitude: 238' 2S8' 10' 

8. A.M1212072.REDUCED.TOPO.PGA8 Latitude: so· 60'10' 
Longitude: 2S8' 278' 10' 

9. A.M1212072.REDUCED.TOPO.PGA9 Latitude: so· 60'10' 
Longitude: 278' 298' 10' 

6 



Final Report: Computation of a file of geoidal heights using Molodenskij's truncation method 

10. A.M1212072.REDUCED.TOPO.PGA10 Latitude: so· 60'10' 
Longitude: 298' 320' 10' 

11. A.M1212072.REDUCED.TOPO.PGA11 Latitude: 60' 70'10' 
Longitude: 218' 238' 10' 

12. A.M1212072.REDUCED.TOPO.PGA12 Latitude: 60' 70'10' 
Longitude: 238' 258' 10' 

13. A.M1212072.REDUCED.TOPO.PGA13 Latitude: 60' 70'10' 
Longitude: 258' 278' 10' 

14. A.M1212072.REDUCED.TOPO.PGA14 Latitude: 60' 70'10' 
Longitude: 278' 298' 10' 

15. A.M1212072.REDUCED.TOPO.PGA15 Latitude: 60' 70'10' 
Longitude: 298' 320' 10' 

16. A.M1212072.REDUCED.TOPO.PGA16 Latitude: 70' 80'10' 
Longitude: 218' 238' 10' 

17. A.M1212072.REDUCED.TOPO.PGA17 Latitude: 70' 80'10' 
Longitude: 238' 258' 10' 

18. A.M1212072.REDUCED.TOPO.PGA18 Latitude: 70' 80'10' 
Longitude: 258' 278' 10' 

19. A.M1212072.REDUCED.TOPO.PGA19 Latitude: 70' 80'10' 
Longitude: 278' 298' 10' 

20. A.M1212072.REDUCED.TOPO.PGA20 Latitude: 70' 80'10' 
Longitude: 298' 320' 10' 

The point gravity anomalies were all corrected by us for the atmospheric attraction effect 

[Vamcek et al., 1987]. They were also transformed to refer to the GRS 80, instead of the GRS 67 

in which they were given, by means of the standard reduction 

.6.g1980 = .6.g1967- (0.8316 + 0.0782 sin2cp- 0.0007 sin4cp) mGal. 

Finally, the anomalies were reduced to the reference spheroid defined by the first 20, 20 GEM-T1 

coefficients using the procedure described in Chapter 5. 

3. 2 5' x 5' Mean Free-Air Gravity Anomalies 

This mean anomalies file was specifically created for this work by the Geodetic Survey 

Division under the supervision of the Contract Scientific Authority (Mainville and Veronneau 
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[1989], Appendix A), and delivered to us on magnetic tape. The structure, format, and technique 

used for creating the mean anomalies are described in Appendix B. These mean anomalies were 

already corrected for the atmospheric attraction effect and referred to GRS 80. 

For all 5' x 5' mean gravity anomalies, one direct access file is created. This file is divided into 

200, 8" by 8" blocks. Each block overlaps with the eastern and northern adjacent blocks by four 

degrees so that almost three times the necessary amount of data is stored to minimize the time 

needed for data manipulation. The following diagram shows the way it is done. 

:~ 1 2 I 7 8 

40"-48" 44"-52" * 64"-72" 68"-76" 
1 

214"-222" 214"-222" 214"-222" 214"-222" 214"-222" 
40"-48" 44"-52" * 64"-72" 68"-76" 

2 
218"-226" 218"-226" 218.-226" 218"-226" 218"-226" 
40"-48" 44"-52" * 64"-72" 68"-76" 

3 
222"-230" 222"-230" 222"-230" 222"-230" 222"-230" 
40"-48" 44"-52" * 64"-72" 68"-76" 

J 

* * * * * 
40"-48" 44"-52" * 64"-72" 68"-76" 

24 
306"-314" 306" -314. 306"-314" 306"-3J4" 3ilii" -314 ° 
40"-48" 44"-52" * 64"-72" 68"-76" 

25 
310"-318" 310"-318' 310' -318" 310'-318" 310' -318" 

In each block, we store data in the order of increasing latitude and increasing longitude for 

points of equal latitude. Let M be the total record length in all the blocks preceding the I,J-block 

and let Min and Max denote the boundaries of this block in both latitude and longitude. The 

arrangement of records within the I,J-block is shown in the following diagram. 
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Latitude 

Min 

Min+ 2.5' 

Min+ 7.5' 

Min+ 12.5' 

Min + 7'57.5' 
Max 

Min 

M+ 1 

M+ 3 

M+ 5 

M + 191 

Longitude 
Min+ 4' Min+ 8':::: Max 

M+2 

M+4 

M+6 

M+ 192 

Here, each record contains 48 anomalies. Since there are 192 records in the block, the total 

number of anomalies in the block is 9216. 

and 

The parameters I, J, Mare computed from the following formulae: 

I = INT (PHI 4- 44 + 1. 5) ' 

J = INT (D LA~ - 218 + 1. 5) ' 

M= 
9216 *(I- 1) * 25 + 9216 * (J- 1) 

48 

The block boundaries are evaluated as: 

Latitude: Min = 40 + (I - 1) * 4 

Max=Min+8 

Longitude: Min= 214 +(I- 1) * 4 

Max= Min+ 8. 

As in 1986, empty cells in the 5' x 5' file were filled with values taken from the 1" x 1" file 

where these values were available. Where neither 5' x 5' nor 1' x 1' values existed, the geoid was 

not computed resulting in holes in the geoid map- see section 7.2. 
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3. 3 1 o x 1 o Mean Free-Air Gravity Anomalies 

This mean anomalies file was again specifically created for this work by the Geodetic Survey 

Division under the direction of the Contract Scientific Authority. Its description is contained in 

Appendix B. 

For the outer zone Stokes's integration in our technique, 1" x 1" anomalies up to the spherical 

distance of 6" from the computation point are needed. The new file does not contain values in 

some peripheral areas in the North Atlantic needed for the proper integration. Thus the geoid in 

this region does not stretch all the way to the originally envisaged boundary. Empty 1 • x 1" cells 

are treated as having a mean gravity anomaly equal to 0 mGal and a standard deviation of SO mGal, 

the same way they were treated in 1986. 

3.4 GEM-T1 Potential Coefficients 

This set of potential coefficients up to degree and order 36 was produced by the NASA 

Goddard Space Flight Center research team from the analysis of orbits of 21 satellites [Marsh et 

al., 1988]. It was supposed to be the most accurate set of coefficients determined from pure 

satellite data at the beginning of 1989, and the decision to use this set in our work was based on 

this understanding. The accuracy of the GEM-T1 coefficients is estimated to be almost twice as 

high as that ofthe GEM-9 coefficients used in our 1986 work [Marsh et al., 1988]. 

There is one perceived problem with the GEM-Tl coefficients, however, that we had to deal 

with: the solution relies rather heavily on the use of Kaula's rule of thumb. The use of this rule 

allowed the GSFC team to estimate the coefficients all the way to (36, 36) while the physics of the 

orbital analysis suggests that perhaps (20, 20) should be the upper limit for the degree and order of 

a pure satellite-determined field. Indeed, the noise level of coefficients above this limit shows a 

rather steep increase for degrees and orders above 20. 

This reason, together with the practical reason of keeping the degree and order of the reference 

spheroid the same as in our 1986 computation, led us to the choice of truncating the (36, 36) 

10 



Final Report: Computation of a file of geoidal heights using Molodenskij's truncation method 

GEM-T1 field to (20, 20). The truncation is permissible because of the global orthogonality of 

spherical harmonics. 

The values of the GEM-T1 potential coefficients were obtained from the Department of 

Surveying Engineering computer library. They were made to refer to GRS 80 using the approach 

described by VaniCek et al. [1987]. 

The standard deviation of the GEM-T1 reference spheroid- one value for the whole of 

Canada- was obtained in the same way as the GEM-9 value was obtained in 1986 [VaniCek et 

al., 1988]. Denoting by a~ the "degree error·variances" of the GEM-T1 coefficients, obtained 

from March et al. [1988], we get the standard deviation O"N2o as: 

20 2 
O"N2o = R ..J 2, (2n + 1) an , 

n=2 

where R is the mean earth radius. Its value is 

crN2o = 85 em. 

This approach can be refined in the future by evaluating a position dependent standard deviation 

from a more general formula (cf. VaniCek et al. [1987, eqn. (2.32)]). 
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4. THE MODIFIED GIN PROGRAM SUITE 

The original GIN (Geoid INtegration) program suite was written in 1985 for the computation 

of the Canadian geoid undertaken under a DSS contract as described in Van:iCek et al. [1987]. It 

was subsequently improved in 1986 to produce the "UNB Dec. '86" geoid used now extensively 

in Canada. The approach used in the GIN is that of 'generalized Stokes integration' for higher­

order reference spheroid using Molodenskij's truncation method for modification of Stokes's 

integration kernel. The theory is described in detail by VaniCek et al. [1987] and Sjoberg and 

Vani(;ek [1990]; see also Appendix D. 

By selecting the degree and order of the reference spheroid (defined by the first (20, 20) GEM­

T1 coefficients) to be the same as those used in 1986 (defined by the GEM-9 coefficients) we have 

eliminated the necessity to recompute the modified Stokes integration kernel. Consequently, the 

integration routines of the GIN program did not require any changes. The only change required 

came from the difference in the structure of the old and new 5' x 5' mean anomaly files. While the 

old file used 5' x 5' grid for latitudes between 35"N and 50"N; 5' x 10' for latitudes between 52"N 

and 70"N; and 5' x 15' for latitudes between 70"N and 75"N; the new file is homogeneous, 5' x 

5', throughout. 

The only other modification to the GIN suite was the elimination of the routine for topographic 

correction to gravity anomalies. Using the two-dimensional Fourier transform approach- see 

Chapter 6- topographic correction to geoidal heights are now computed directly, by-passing the 

necessity to correct gravity anomalies first, and resulting in computer time saving. 

It should be reiterated here that the GIN program suite integrates over point gravity anomalies 

in the 'innermost zone' of 10' x 10', over 5' x 5' mean anomalies in the 'inner zone' of 2" x 2", 

and over 1" x 1" mean anomalies in the 'outer zone' which extends to a spherical distance of 6" 

from the computation point. When there are not enough point values in the innermost zone, 5' x 5' 

mean anomalies are used instead. When there are 5' x 5' mean anomalies missing for the inner 
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zone integration, they are replaced by 1" x 1" mean values. When even 1" x 1" mean values are 

missing, the integration is aborted. 

We also note that the GIN suite produces an estimate of the standard deviation for the Stokes 

contribution (the result of generalized Stokes's integration). The mathematical derivation can be 

found in VaniCek et al. [1987]. This standard deviation is added quadratically to the standard 

deviation of the GEM-T1 contribution discussed in section 3.4 to give the standard deviation of the 

final geoidal height. This standard deviation is a part of the output file. The program suite is listed 

in external Appendix E. 
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5. REDUCTION OF GRAVITY ANOMALIES TO REFERENCE SPHEROID 

Our technique for geoidal height computation requires that all the gravity anomalies be first 

reduced to the reference spheroid [Varucek et al., 1987]. This is achieved by subtracting from the 

given anomaly values the 'reference field' values generated from the first (20, 20) GEM-Tl 

coefficients. 

The generation of the reference field values for the approximately 600 000 irregularly spaced 

point anomalies is a time-consuming task, because each value is computed from a (truncated) series 

of spherical harmonics. To reduce the computational effort needed for the reduction of point 

gravity anomalies, we decided to use the following interpolation technique. The reference field 

values are first computed on the 5' x 5' grid (same as the one used for mean anomalies) using the 

POT program [Tscheming et al., 1983], and these values are used to correct the 5' x 5' mean 

anomalies. Then a quadratic surface is fitted to 9 adjacent grid values as shown in the diagram. 

where x, y is the local Cartesian system defined as 

x = R( <p - <ps) , y = R(/.. - /..s) cos<)>s . 

This surface can be described as follows: 

a1 x2 y2 + a2 x2 y + a3 x y2 + a4 x2 +as y2 + a6 x y + a7 x + ag y + a9 = .1g 

where a1. a2, ... , a9 are unknown parameters. 

We thus obtain nine equations as follows: 

2 2 2 2 2 2 
alxl Y1 +~xlyl +a3x1 Y1 +a4xl +a5y1 +a6xl Yt +a7x1 +agyl +~=.1gl =/1 

2 2 2 2 2 2 
al ~ Y2 + ~ x2 Y2 + a3 x2 Y2 + a4 x2 +as Y2 + a6 x2 Y2 + a7 x2 + ag Y2 + ~ = .1g2 = /2 
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Defming A, L, X as follows: 

2 2 2 2 2 2 
Y1 1 X1Y1 X1Y1 X1Y1 x1 y1 X1Y1 xl 

2 2 2 2 2 2 1 x2y2 X2Y2 X2Y2 x2 y2 X2Y2 x2 Y2 
2 2 2 2 2 2 1 X3Y3 X3Y3 X3Y3 x3 y3 X3Y3 x3 Y3 
2 2 2 2 2 2 1 X4Y4 X4Y4 X4Y4 x4 y4 X4Y4 x4 Y4 

A= 2 2 2 2 2 2 1 xsYs xsYs xsYs xs Ys xsYs xs Ys 
2 2 2 2 2 2 1 x6y6 X6Y6 X6Y6 x6 y6 X6Y6 x6 Y6 
2 2 2 2 2 2 1 X7Y7 X7Y7 X7Y7 x7 y7 X7Y7 x7 Y7 
2 2 2 2 2 2 1 XgYg XgY8 XgYg Xg Yg XgYg Xg Ys 
2 2 2 2 2 2 1 X9Y9 X9Y9 X9Y9 x9 y9 X9Y9 x9 Y9 

J] = (11 12 13 14 1s 16 17 1s 19)' 

XT = (a1 a2 a3 ~ as ~ a7 as a9), 

we get 

AX=L. 

The solution is obtained as 

X= A-1 L. 

We note that the A-1 matrix remains the same for all cell foursomes and can thus be precomputed. 

Only the L-vector changes from location to location. The interpolation is thus very fast. We also 

note that the GEM-T1 (20,20) field is sufficiently smooth so that the second-degree surface used 

here approximates it to better than 1)lGal in any 10' x 10' area. We have confirmed this through 

numerical tests. 

The 1" x 1" mean gravity values have been reduced directly, using values generated by the POT 

program. 

The program for the interpolation is listed in external Appendix F. 
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6. THE TOPOGRAPHIC CORRECTION 

In our 1986 computation, we used our own technique [VaniCek et al., 1987; VaniCek and 

Kleusberg, 1987] to compute the topographic correction to geoidal heights. This was done by 

correcting the gravity anomalies first and then integrating these corrected anomalies. This 

roundabout way can be short-circuited by using the two-dimensional Fourier transform as 

described by Colombo [1981]. 

Wang and Rapp [1989] derived the formula for the topographic correction to geoidal height 

oNTaS 

oNT = -1- F-1(F(ogT) F(d-1)) 8x/1y, 
2rr:y 

where 

ogT = ~ Gcr[F-1(F(d~) F(h2)) - h~ p-l(F(d~) F(l))] 8x/1y . 

Here, y stands for average value of gravity, a for average lithospheric density, G for the 

gravitational constant, h for heights supplied on a grid with steps equal to /1x and /1y, hp is the 

height of the computing point, F and p-1 denote the discrete Fourier transform and its inverse, and 

do is defined as 

do/ 
\ 

-?oo 

= d 

ford = 0 

ford::;:. 0 

where dis the distance of the grid point from the computation point. The derivation of the above 

equations is given in Wang and Rapp [1989] which we reproduce in Appendix C for convenience. 

The program for the topographic correction is listed in external Appendix G. 

We have acquired Wang's program to replace the original 'topographic correction' routine in 

the GIN suite and used it to generate the geoidal height corrections directly for the whole of 

Canada. To compute this correction, mean topographic heights on a 5' x 5' grid have been used. 
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These topographic data have been supplied to us on magnetic tape by the Contract Scientific 

Authority. We note that for grid points at sea, the topographic height h equals to zero. 

It was during the period of this contract that Wang and Rapp pointed out the difference that 

exists between our approach to topographic correction and the original Helmert approach, restated 

later by Heiskanen and Moritz [1967]. Wang and Rapp claim that our approach is inappropriate­

see Appendix C. Up until now, we have not been able to convince ourselves that they are right. 

Our investigations are continuing. Should Wang and Rapp be right, it will be a simple matter to 

correct the herewith presented geoid at a later date. It should be noted that this correction is really 

important only in the mountains. 
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7. THE RESULTS 

7.1 The Geoidal Height File 

We have produced the file of geoidal heights on a geographical grid of 10' x 10' covering the 

area 42" to 72"N by 218" to 318" E. These are referred to the GRS 80 reference ellipsoid [Moritz, 

1980] as were the geoidal heights computed in 1986. In addition to these geoidal heights, we have 

estimated the standard deviations of these, using the capability of the GIN program. The pertinent 

formulae are given in Varucek et al. [1987]. The new standard deviations are significantly smaller 

mainly because of the better accuracy of the GEM-T1 coefficients. This improvement has little 

effect on the accuracy of geoidal height differences which is more critical for positioning 

applications. Any improvement in the accuracy of the higher-frequency components is due to the 

more accurate and denser gravity anomaly values now available. 

To facilitate the comparison with the "UNB Dec. '86" solution, we have also produced the 

individual contributions from the innermost, inner, and outer zone integrations. The sum of these 

three values, plus the topographic correction and the correction for the indirect effect (which are 

also filed for all the grid points), yields the total Stokes contribution, or the geoidal height above 

the reference spheroid. This high frequency part of the total geoidal signal can be used separately 

for studying the density distribution within the upper strata of the earth [Christou et al., 1989]. 

7. 2 The Plots 

The solution was sought in rectangles 10" x 20", for the reasons of computation management. 

The following plots reflect this strategy, while the numerical file described above does not. The 

file was created by merging all the rectangles. 
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For final display, the whole numerical file should be plotted in the appropriate cartographic 

projection to allow an overlay with a topographical or other map, following a procedure similar to 

the one so successfully used for the UNB Dec. '86 geoid. 

7.3 Testing 

The results have been tested visually against the UNB Dec. '86 results. The differences seem 

to conform in broad features with the shape shown in Figure 16. This figure displays the expected 

difference for the UNB Dec. '86 geoid when the GEM-9 reference spheroid is replaced by the 

GEM-Tl reference spheroid. There are, however, sizeable differences of many metres between 

the two solutions. The areas of large differences coincide with the areas of large differences 

between the old and new gravity data sets shown in Figure 5 of Appendix A. 

More thorough testing, including the plots of differences between this and other solutions, and 

comparisons with GPS/levelling results, is needed. These tests, however, were beyond the scope 

of this contract. 
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Geoid height (UNB90) with respect to GRS80 reference ellipsoid. 
Block 5 

Region: Lat.= 42", 52"; Long.= 298·, 314" 
Range: - 26.0 m to 32.0 m; Contour interval: 1.0 m 
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Geoid height (UNB90) with respect to GRS80 reference ellipsoid. 
Block 7 

Region: Lat. =52", 62"; Long. = 238", 258" 
Range:- 40.0 m to -12.0 m; Contour interval: 1.0 m 
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8. CONCLUSIONS 

We have fulfilled the contract and produced a geoid which should be a marked improvement 

over the 1986 one. Even though it does not depart from the old one very significantly, every 

indication is that the new geoid is better because of the improvement in the satellite reference 

spheroid (GEM-T1 compared to GEM-9) and the improvement in terrestrial gravity coverage and 

quality. It will now require many tests against independent data, such as the combination of GPS 

and levelling and satellite altimetry, to establish its objective accuracy. These tests have been 

considered outside the scope of this contract. 

The question of appropriate terrain correction to be applied should be resolved. Should 

theoretical resolution fail, it may be possible to resolve the question experimentally. Given the 

present accuracy of the geoid, GPS, and levelling, the experimental verdict seems to be now 

reachable. 

We feel that the new geoid will be good enough, certainly in the flat and gently rolling areas of 

Canada, to be used with GPS for lower-order levelling. We expect the standard deviation of 

geoidal height differences computed from the grid values through some kind of interpolation, to be 

shown to be close to 1Q-6.S (where S is the distance between the end points), i.e., 10 em per 

100 km, over most of Canada. 
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Creating a Gravity Grid Over Canada Using Bouguer 
Anomalies and a Digital Elevation Model. * 

By Andre Mainville and Marc Veronneau 

Geodetic Survey Division, Canada Centre for Surveying, Surveys, Mapping and Remote 

Sensing Sector, Department of Energy, Mines and Resources, 615 Booth St., Ottawa, KIA OE9. 

Abstract 

The gravity data contained in the National Gravity Data Base of the Geophysics Division of the 

Geological Survey of Canada are being used to produce two new grids of gravity covering 

Canada. The main application of these grids in geodesy is the computation of precise geoidal 

heights. The geoidal height (N) is essential in the computation of the common orthometric height 

(H) when using satellite positioning techniques, because it is the ellipsoidal height (h) that is 

obtained from satellite observations (h=H+N). Because some computational techniques use a 

cartesian grid while others use a geographical grid two new grids, with 5 km and 5 arcmin 

spacing respectively. are required. The spacing of gravity observations in Canada is about 10 

km. In order to produce a more representative Digital Gravity Model (DGM) than the existing 

ones, Bouguer anomalies over land and free-air anomalies over water were used in the 

inteq>olation. The technique of least-squares collocation was utilized to interpolate. A description 

of the inteq>olation procedure is given. When Bouguer anomalies are used, the mean height of 

the cell is obtained from a Digital Elevation Model (DEM). These grids contain more information 

than the previous ones and will permit computation of a more precise geoid. Standard errors and 

other statistics are produced to examine the quality of the DEM and of the DGM in various 

regions of Canada. 

Introduction 

In Canada, about 600.000 gravity observations are currently available from the Gravity Data 

Centre of the Geophysics Division (Geological Survey of Canada, Department of Energy. Mines 

and Resources). The gravity data as of July 1988 are here used to produce two new regular 

grids of gravity covering Canada. While such grids can be used to reproduce maps of gravity or 

for geophysical studies, our main intent is to compute precise geoidal heights (N) which when 

* Presented at the Canadian Geophysical Union Annual Meeting, Montreal, Quebec, 
May, 1989. 
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combined with ellipsoidal heights (h) determined by satellite techniques provide us with 

orthometric heights (H=h-N). 

Surface gravity anomalies (in a circular area of radius of up to 1 0°) are used to estimate according 

to various methods the conttibution of the local gravity field to the geoidal height Some of these 

methods are described in Lachapelle (1978), Schwarz and Sideris (1985), Vanicek et al. (1986), 

( 1987) and Mainville ( 1987). The gravity grid mostly utilized in Canada for previous geoid 

computations was created in 1978 (Lachapelle, 1978) and last updated in August 1979 

(Lachapelle and Mainville, 1980). The object of this paper is to recompute such grid and present 

the preliminary results of the computation for an improved free-air gravity anomaly grid to be 

used for geoid computation. 

Producing a grid of gravity values is not absolutely necessary. Some numerical methods 

(Tscherning, 1985) (Landau et al., 1988) which use least-squares collocation are successfully 

applied to irregularly spaced data to obtain various geoid components. There are, however, 

advantages to produce gridded data. Numerical integration and the manipulation of data are often 

simplified with gridded data. Numerical problems encountered with irregularly spaced data are 

eliminated. Computations are often faster with gridded data. Computer storage is reduced since 

one does not·have to save the coordinates of the values. This is especially imponant with large 

data sets. 

For theoretical developments based on a sphere or an ellipsoid, the geographically gridded data is 

more practical. This was the case for Lachapelle (1978), Vanicek et al. (1986) and Mainville 

( 1987). Other developments use a planar reference surface. This was the case for Schwarz and 

Sideris (1985) who used an integration technique based on the fast Fourier method which 

requires data on a planar cartesian grid. For mapping purpose, a cartesian grid is also required. 

Two grids, a geographical and a cartesian one, are being produced to satisfy both of the above 

applications. The cartesian grid will be computed after completion of the geographical grid. 

Here preliminary results of the later grid are presented. 

The objective is to compute as small as practical a grid in view of recovering as many frequencies 

as possible from the gravity field. The average spacing of the surface gravity measurements on 

land in Canada is around 10 km (Figure 1 ). The spacing is smaller in populated areas and even 

smaller over oceans (Figure I). It was decided to produce a cartesian grid with cells of 5 km and 

a geographical grid with cells of 5 arcmin. A 5 arcmin in latitude represents 9 km. A 5 arcmin in 

longitude represents 7 km at latitude 42°, 5 km at latitude 57° and 2 km at latitude 82°. Obviously 
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we are uying to compute a denser grid than the observed one. For this reason, our objective is ro 

create cells with representative gravity values and not with mean values. It may happen that a 

mean value is the most representative value of a cell. This is the case when for example, there are 

10 or more values in a small cell of 9 by 7 km. This was mostly the case over oceans. There, 

the most representative value was in effect obtained by computing the mean of the 10 or more 

free-air anomalies in a 5' celL This, however, happened only for 3 % of the grid. For more than 

50% of the grid there was no gravity observation in the cell. And, in another 25% of the cases, 

there was only 1 observation in the cell. In both cases, the mean value is obviously not the most 

representative value one can find. For these cases, which represent more than 75% of the grid, 

an interpolation solution ~as found preferable .. After various tests which are described below, an 

interpolation procedure using the 5 nearest observations within 30 km to the cell center was 

selected. 

To find the most representative value of a cell a digital elevation model (OEM) was used in the 

following way. Simply put. if a cell contains one gravity observation but the mean elevation of 

the cell is higher than the elevation of that one observation (e.g. made in the valley), then one can 

assume with some confidence that the most representative gravity value for the cell is smaller than 

that one observed value. The DEM is also used to add more gravitational information into the 

gridded gravity set herein called digital gravity model (DGM). If a cell contains no gravity 

observation but its mean elevation is higher than the surrounding cells, then one can assume with 

some confidence that its gravity value is smaller than the surrounding cells. As one can already 

understand, the accuracy of the OEM is very important for a successful application of the above 

principles. 

The Digital Elevation Model 

The main characteristics of the OEM sought are the following ones. It must cover all of Canada. 

be as dense as possible and as accurate as possible. The densest OEM available and covering all 

of Canada has a 5 arcmin spacing. This drive our choice for a 5' spacing DGM. According to 

Schwarz and Sideris (1985), gravity observations at 3 km spacing is required in order to recover 

geoidal heights to an accuracy of 0.3 ppm. While gravity observation can cenainely nm be 

replaced by simple interpolation solutions even using a OEM like herein proposed. a 3 km OEM 

would have been more adequate than the 5 arcmin OEM available. 
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The OEM used is the worldwide gridded data set called ETOP05 of the american National 

Geophysical Data Center. It was obtained through the canadian Geophysics Division. ETOP05 

~ontains sea-floor elevations compiled by the U.S. Naval Oceanographic Office and land 

elevations supplied by the american Defense Mapping Agency (DMA). The accuracy of the 

bathymetric data was of no concern since the depth values will not be required here. The portion 

of ETOP05 over Canada contains mostly the same data that Lachapelle (1978) used in computing 

his DGM over Canada ten years ago. It was verified that the elevations in both files are exactly 

the same except for some small updated areas. It was discovered that the defmition of the grid of 

ETOP05 does not agree with the original DMA file used by Lachapelle (idem). After verification 

with the 1 km OEM (Geophysics Division, 1984) over the canadian Rockies, the ETOP05 grid 

has wrong coordinates for the portion over land and had to be shifted by 2.5 min south anc;i 7.5 

· min west to agree with the original DMA file. 

An estimated accuracy is published with the DMA ftle. The 68,927 cells (18% of the OEM) with 

an elevation estimated less accurate than 9 metres are shown on Figure 2. The other 308,296 

cells (82% of the DEM) have accuracy estimates better than 9 metres. There are also 346,817 

cells (92% of the OEM) more accurate than 20 metres. Elevation errors of 9 and 20 metres 

correspond to Bouguer plate corrections (equations (3) and (4) below) of 1 and 2 mgal 

respectively. This introduces errors in the DGM of 1 to 2 mgal. These are errors smaller than 

the interpolation error and are of the order of the accuracy of most free-air gravity values .since 

their elevations are often accurate to a few metres. Excluding the OEM over oceans and lakes 

which are not used here, and updating the elevations in B.C. and Yukon with the above 

mentioned 1 km DEM, then the principal areas of concern are the large inaccurate regions of 

Ontario and Quebec (Figure 2) and along the coasts. These areas and the overall quality of the 

OEM were verified against the mean height of the gravity observations. The map of the 

differences agrees fairly well with Figure 2. The largest differences between the mean height of 

the gravity observations and the OEM are mostly in rolling and mountainous areas and are mostly 

due to gravity being measured in valleys. A good quality OEM computed from the average of 

many point values within a cell should be more representative than the average computed from 

few observations. This forms the basis for using the OEM in the computation methed described 

below. It is however acknowledged that a more accurate OEM is required. For example, some 

discrepancies are found along the coasts. There a carefull examination would be required. The 

concerns left are the incertitude of the accuracy of the OEM, especially in the areas shown on 

Figure 2. and the general concern that a de'1sier OEM throughout Canada is required. 
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Computations 

To form the geographical DGM the gravity was interpolated at the elevation given by the 5' 

OEM. The surface gravity observation (g) - not corrected for the atmospheric effect (Moritz, 

I980a) - is first reduced by the theoretical normal gravity (y) - here based on the GRS67 (lAG, 

1967) - and the free-air correction (0.3086 H) to obtain a smaller quantity than the gravity value, 

the free-air anomaly (6gF) in mgal. 

(1) 

H is the elevation, in metres above mean sea level, of the gravity observation. It is obtained by 

barometric, inertial survey or spirit leveling methods during the gravity survey. The five ~gF 

nearest to the cell center are then chosen for the interpolation. Their corresponding Bouguer 

anomaly (6gB) is calculated only if none of the five 6gF were observed over fresh or salted 

water. 
(2) 

Because of this reduction, the range of the five 6gB ~s, most of the time, when on land, smaller 

· then the range of the five 6gF. The idea being that smaller the range, better the interpolation, the 

Bouguer anomaly is preferred in the interpolation over land. Most of the time, when over water, 

the range of the 6gF is smaller then the range of the ~g8 . In this case the free-air anomaly is 

preferred ·in the interpolation. If at least one of the five 6gF was measured over water it was 

verified that it is preferable to perform the interpolation with the 6gF" Before interpolating with 

least-squares collocation the five 6g8 or 6gF must be reduced by their mean (Moritz, 1980b). 

The mean value is then added back to the interpolated value. If a Bouguer anomaly was 

interpolated (~~). the Bouguer plate due to the OEM is added back. 

(3) 

If a free-air anomaly was interpolated (~gF) because at least one observation was over water, the 

Bouguer plate between the mean height of the five 6gF and the elevation at the point of 

interpolation given by the OEM is added back. 

-
~gF = llgF + 0.1119 (HDEM- H) ( ol ) 
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where H is the mean height, in metres, of the five ~gF and ~EM is the elevation, in metres, of 

the DEM. Details of the derivation of equations (3) and (4) are given in the appendix. Even the 

interpolated free air anomaly is corrected for the Bouguer plate - equation (4) - since it is 

assumed that the height of the OEM is more representative then the mean height of the 5 ~gF. 

Obviously that statement is very dependent on the accuracy of the OEM at various places. In any 

event, when ~EM and Hare both z~ro then -see equation (4)- no correction is applied. In all 

other cases a correction is applied. 

Before gridding the whole 572,176 gravity observations using the above procedure, the mean, 

the weighted mean and the least-squares collocation solutions were tested. With these three 
. . 

· solutions statistics were obtained showing the reason to adopt the collocation solution. The 

covari~ce function used here was the one derived by Schwarz and Lachapelle (1980). We have 

also tried to reduce the magnitude of the ~gB (or ~gF over water) with the gravity anomalies 

obtained from the geopotentiel model OSU86F (Rapp and Cruz, 1986). It did not reduced the 

magnitude of the anomalies and did not ameliorate the estimation. This shows that while 

OSU86F type models are useful to model geoidal heights, they are not yet accurate enough to 

model the high frequencies of the Eanh gravity field needed for this application of gravity 

anomalies. 

Tests 

The different techniques of interpolation, the number of observations and the many ways to 

smooth the observations represent many parameters that one can fme tune in order to find out the 

most represenw..:ve gravity value in a cell. The fmal DGM contains a mixture of these parameters 

whic!-- 0ptimal v ues were selected by the following tests. 

Over la;1d, Bouguer ..momalies are much smoother than free-air anomalies: for this reason it is 

preferable to interpolate gravity using Bouguer anomalies. This was tested at 7 typical regions 

across Canada (Figure 4) where the interpolation was performed at points of known gravity 

value. This test is summarized in Table l. Each region covers a 1° by 1° cell with the coordinates 

of the south-west corner given in column 3 and Lhe number of observations in the cell given in 

column 4. With as few as 5 observations the di .. .aance of the funhest observation from the 

interpolation point is 10 to 18 km as seen in column 5 of Table I. It was verifkd that the 

interpolation deteriorates if observations were chosen too far from the interpolation point A 
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distance of 10 to 18 km is already far enough to get a representative gravity value at a 5' (9 km) 

spacing. Finally it was decided to always use the 5 closest observations in the interpolation 

procedure but to a maximum radius of 30 km. The root mean square (RMS) difference when 

interpolating with free-air or Bouguer anomalies at known points are given in the last 2 columns 

of Table 1. Over Mount Columbia and in the Okanagan Valley, two mountainous regions of 

Brithish Columbia, where the topography varies from 354 metre to 3372 metres, gravity values 

are recovered with an RMS of 14.4 and 8.6 mgals when using Bouguer anomalies. RMS of 

58.8 and 76.4 mgal are obtained when using free-air anomal!es. It was then verified that it is­

always preferable over the land area to use Bouguer instead of free-air anomaly. It was tested in 

typical regions, in Edmonton, a rolling region at an altitude of 1000 m, in nonhero Quebec, a 

rolling region at an altitude of 600 m and in nonhero Ontario, a flat region at an average altitude 

of 200 m. The results of the last two regions of Table 1 demonstrate that free-air anomalies 

should be used over the oceans. One of the region over the ocean was 5 times denser in 

observations then the other one. This explains its 1 mgal RMS. 

The results in Table 1 are those obtained using a simple arithmetic mean. As seen from Table 2 

the results are basically the same with three other techniques that were tested. The wei~!lted 

mean based on the inverse of the distance, the weighted mean based on the distance and on the 

standard ~rror of the observations, and the least-squares collocation technique, all gave, for all 

practical purpose, identical results. Kassim (1980, p.76) had concluded that the weighted mean 

gave better results than collocation. His weighted mean used Bouguer anomalies while his 

collocation solution used free-air anomalies the correlation with the elevation removed as 

suggested by Lachapelle and Schwarz (1980). If Kassim (idem, p.34) would have used the 

correlation coefficient (0.1119) of the Bouguer plate, the weighted mean and the collocation 

technique would have given identical results. This was later proven by Mainville ( 1982, p.l28) 

where the best interpolation procedure testing various correlation coefficients always converged 

to the Bouguer coefficient. These results are summarized in Figure 4 and Table 3. The RMS 

difference is always smaller when using Bouguer anomalies instead of the anomalies reduced by 

the correlation coefficients band h0 (Table _3). 

In addition, it is here demonstrated that the use of the srraight mean gives identical results to the 

weighted mean, and collocation (Table 2). One should not forget however that it is the mean of 

the Bouguer anomaly with the correction of equation (3) or the mean of the free-air with the 

correction of equation ( 4 ), and not of the free-air or of the gravity itself that must be used. 
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As demonstrated in Kassim (idem, p.76) the least-squares collocation is however .the technique 

that performed best in estimating precision. Kassim (idem, p.27) also mentionned that the 

weighted mean has sometimes given unacceptable results when data coverage is sparse. For 

these two reasons the least-squares collocation is here preferred, first to get the estimated 

accuracy and then to get the optimum value when the observations are distant from the 

interpolation point. 

Based on these tests, the procedure chosen to compute the 5' DGM is the following one. When 

there was 10 or more observations in a 5' cell the straight mean was computed from the Bouguer 

anomalies (case 1) obtained with equation (2), or from the free-air anomalies (case 2) if at least 

one point is over water. The RMS of the standard deviations was also computed. Equation (3) 
. . . . 

is used with case 1 to calculate the free-air value ·at the OEM elevation. Equation ( 4) is ·used with 

case 2. For the cells with 1 to 9 points the collocation technique was adopted to interpolate and 

compute the estimated accuracy using the 5 closest points within a 30 km radius. In case ( 1 ), 

Bouguer anomalies and equation (3) were used. In case (2), free-air anomalies and equation (4) 

were used. 

Analysis 

Figure 3 shows the standard errors of the DGM, estimated by collocation, larger than 3 mgal. 

That map also shows the extent of the preliminary DGM. The final DGM will cover the full map 

of Figure 3 i.e. from latitude N35° to N90° and longitude Wl50° to W40°. Table 4 summarizes 

the computations. All of the 572,476 surface gravity observations contained in the National 

Gravity Data Base were used in the computations. The full base map on Figure 3 contains 

871,200 5' cells. The extent of the preliminary DGM embraces approximatively 456,000 5' 

cells. Approximatively 288,000 cells contain no observation; 84,390 cells contain 1 

observation; 71,229 cells have 2 to 10 observations; 11,921 cells contain 10 or more 

observations; 416,538 cells were interpolated using the 5 nearest observations within 30 km; 

and, 22,552 cells were interpolated/extrapolated using 1, 2, 3 or 4 nearest observations within 

30 km. Thus, approximatively 5,000 cells were left without free-air values. They are shown on 

Figure 3 as black regions in B.C., Yukon, Ungava Bay, Foxe Bassin, Ellesmere Islands and in 

the south-east comer. Over the oceans the grid could be fil!.!d by satellite radar altimeter derived 

data, and by values derived from topographical masses (Side:is et al, 1988) in B.C. and Yukon. 

These numbers s!-.P <N that 63% of the grid contains no gravity observation and R2% have none or 

only one observations. It demonstrates that a procedure to find a representative value rather than 
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to find an average value is here required. Taking the averages would smooth the computed 

gravity field. Finally the above numbers demonstrates that an interpolation technique (here the 

collocation technique described in the previous sections) was required to predict 91% of the grid. 

The map of the estimated standard error (Figure 3) agrees well with the varying distribution 

(spacing) of the gravity observations (Figure 1). Compared to the results obtained in Table l, the 

estimated standard errors might be a bit pessimistic, and over the mountains in south B.C., a bit. 

optimistic. While the covariance function used here performed reasonably well and was more 

representative of the situation over Canada than the one used to produce the old gridded data set 

in 1978, a more representative covariance function could be found from the reduced anomali~s 

used in our computations. 

The new gridded free-air data set was compared to the old 1978 data set. Their differences, 

when larger than 10 mgals, are shown in Figure 5. The two data sets are significantly different. 

It is not smprising that there are large differences over the mountains of B.C., southern Albena, 

Ellesmere Island and the Appalachians. It is due to the better use of the Bouguer anomaly and the 

interpolation technique used here. The main differences however occur f'':er all'three oceans and 

also the Great Lakes, Lake Winrupeg and most other lakes (see Figure 5). The reason being that 

a terrain correction was used in 1978 and that it was here shown that simple free-air anomalies 

should be used over oceans (see Table 1) and lakes. The Hudson Bay was computed in 1979, 

during the last update to the 1978 data set. A terrain correction was not applied at that time 

because it was already felt that it was wrong. Statistics of the differences between the two 

gridded data sets are given in Table 4. The RMS difference between the 2 data sets is 16.1 mgal 

for 172,062 cells; 31% of the cells have differences larger than 151 mgal; and, 17% have 

differences larger than 1101 mgal .. Histograms of the differences are also shown in Figure 6. The 

old data set consists of 5' by 5', 5' by 10'. 5' by 15' and 5' by 20' cells. 69% of the old data 

set, mostly in central Canada (see Figure 5), agrees v. h the new data set. That explains the 

successes and usefulness that the old data set. ·c; brough. "its many users. On the other hand it 

explains the misfortune to other projects, arour. . the Great 1kes, the Winnipeg lake and many 

other regions shown on Figure 5. 

The cells computed by collocation were at the same time computed using the simple arithmetic 

mean of the same 5 nearest observations. Figure 7 show the histograms of the differences. The 

grid was divided in 3 regions extending from latirude 35° to 55°, 55° to 7Y and 75° to 90°. The 

nonhem region does not show an~· p:.micular problem which could have been expected becJUse 

of the convergence of the meridians creating a denser grid requiring more imerpolation. It should 
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prove very useful in the future to have a denser grid in the north to help computing the geoid. 

Other statistics are given in Table 4. A RMS difference of 3.1 mgal for 451,011 cells was 

obtained between the collocation and the average technique. 93% of the cells agree within 151 

mgal and 98.2% of the cells have differences smaller than 1101 mgal. The largest differences are 

being investigated. In any event, it shows the relative agreement that exist between the different 

technique previously tested (see Table 2 and the Tests section). 

Conclusion 

In Canada, more than half a million gravity observations are currently available from the Gravity 

Data Centre of the Geophysics Division (Geological Survey of Canada, Department of Energy, 

Mines and Resources). The local distribution of gravity observations currently available is fairly 

irregular. In order to avoid numerical problems, save computer time, use fast techniques such as 

the fast Fourier technique it is important to use a gravity distribution that is fairly regular. It is 

most appropriate to use a regular grid, either a cartesian grid that follows a projection such as the 

Lambert Conformal Conical or a geographical grid that follows the geographic meridians and 

parrallels. The production of the gravity map in the Canadian Geophysical Atlas and the FFr 

technique req~ire the cartesian grid. Other methods require the geographical grid. Both are 

required and both are being developed in this project. Here the results of the preliminary 

geographical grid are presented. 

It is well known that better interpolation is achieved when the range of the magnitude of the 

anomalies used in the interpolation is small. This statement was verified by various test~ 

described here which resulted in using Bouguer anomalies to interpolate between anomalies on 

land and using free-air anomalies to interpolate between anomalies when at least one anomal: 

was observed over the ocean or a lake. The new gridded gravity data file l ·ntains man: 

ameliorations. (1) The cells are smaller, being 5' by 5' instead of the . hy IO'. 5 · · 15' and 5 

by 20' cells which were being used. This will allow to compute a mor• ::letailed g. id above 

latitude 50°. (2) The free-air anomaly computation over oceans and lakes was correctd and thi~ 

will improve the geoid solutions over and around these areas shown on Figurre 5. (3) The use ol 

the closest observations to the cell center and of the Bouguer anomaly has improved the griddec 

set especially over the mountains but also over all Canada. (4) Since a more representative 

covariance function than the one used in 1978 was used. the estimated standard deviation are 

more representative than before. The covariance function .=ould however be recomputed using 

the residual anomalies used here. (5) A 5' by 5' digital elevation model (OEM) was used tc 
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correct the interpolated gravity values to obtain more representative values. While the mean of 

many elevations within a 5' cell as obtained from a OEM is more representative than a mean of 

the elevation at a few gravity stations, there are some areas where the qualir:y of the OEM used is 

uncertained (Figure 2). The OEM used needs additional verifications and ameliorations. A 

densier and more precise OEM would be welcomed. 
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Appendix 

The intention of this appendix is to show the source of equations (3) and (4). After an 

interpolation that used 5 Bouguer anomalies one obtain a Bouguer anomaly 6g 1B with a 

corresponding gravity value g1, and an associated height H1 (perhaps the mean height of the 5 

Bouguer anomalies). The DEM gives the elevation H2 for the point of interpolation, to which 

corresponds a gravity value~- Neglecting the detailed terrain correction, but taking into account 

the Bouguer plate and the free-air correction, the relation between the 2 gravity values is 

(A) 

Since the corresponding free-air anomalies are defined as 

(B) 

and 

(C) 

and since y1 = y2 , then 

6g2F = 6g1F + 0.1119 (H2 - H1 ) (D) 

which is equation (4). Following equation (1), one has 

(E) 

which insened into equation (D) gives 

(F) 

which is equation (3). 
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Table 1. Gravity interpolation in Canada using free-air and Bouguer anomaly. 

Block Regions S-Wcomer #of points Radius RMS difference (mgal) 
number of 1° block estimated (km) free-air Bouguer 

1 Columbia Mt, B.C. ':IJ' 241° 116 10 58.9 14.4 
2 Okanagan. B.C. ~ 241° 84 12 76.2 8.6 
3 Edmonton, Alta. 520 245° 119 10 3.7 2.6 
4 Nonh Ontario 53° 7:/'Z' 41 18 5.2 5.3 
5 NonhQuebec 53° 1!XJl 45 16 3.6 2.5 
6 . Atlantic Ocean 42° 295° 548 4 2.2 14.4 
7 Atlantic Ocean 480 308° 549 out of 2245 2 1.1 4.0 

Table 2. Gravity interpolation in Canada using the arithmetic mean, the weighted mean based on 
distance, the weighted mean based on distance and standard deviation, and the least­
squares collocation solution. 

Block Arithmeoc . Weighted mean Least-squares 
number mean distance · dist. & std. dev. collocation 

1 14.4 14.2 14.2 14.7 
2 8.6 8.6 8.6 9.2 
3 2.6 2.6 3.2 2.7 
4 5.3 5.2 5.2 4.9 
5 2.5 2.5 2.5 2.5 
6 2.2 1.9 1.7 1.8 
7 1.1 1.0 1.0 1.0 

Table 3. Comparison of gravity interpolation in Nonh American Rockies using the Bouguer 
coefficient (0.1119) and other elevation correlation coefficients (b and h0 ). 

Block S-W comer #of points b ho RMS difference (mgal) 
number of block estimated using -b(h-h0 ) using -0.1119h 

1 yy 241° 489 .094 701 6.2 6.0 
2 ?IY 2460 655 .044 1247 7.0 4.6 
3 ?IY 251° 419 .069 1589 4.9 3.5 
4 35° 241° 677 .071 1501 6.6 5.7 
5 3SO 2460 573 .084 1686 8.9 3.6 
6 35° 251° 638 .062 2044 7.9 4.4 
7 4(f' 236° 288 .062 908 8.9 7.6 
8 4(f' 241° 225 .064 1389 7.9 5.9 
9 4(f' 2460 891 .090 1763 5.0 5.6 
10 4(f' 251° 271 .062 1507 4.9 4.7 
11 45° 236° 330 .073 878 12.4 6.5 
12 45° 241° 392 .066 1193 15.5 6.8 
13 45° 2460 371 .078 1248 5.6 7.3 
14 XJ3 231° 336 .062 877 24.4 12.7 
15 XJ3 236° 420 .085 1326 10.0 6.4 ·-
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Table 4. Statistics of the gridded gravity set. 

Region: Latitude 
Longitude 

Number of gravity observations : 
Number of 5' by 5' cells : 

# of cells with no observation : 
#of cells with 1 obs.: 
#of cells with 2-10 obs.: 
#of cells with 10 and more obs.: 
# of cells interpolated using 
5 nearest obs. within 30 km : 
#of cells interpolated using 1, 

N35° to N90° 
W40° to Wl50° 

572,476 
=456,000 

=288,000 
84,390 
71,229 
11,921 

. 416,538 

2, 3 or 4 nearest obs. within 30 km : 22,552 

Comparison between the new and the old gridded 
gravity sets: 
#of 5', 10' 15' and 20' cells : 
Maximum Difference (mgal): 
Minimum Difference (mgal): 
Mean Difference (mgal): 
RMS Difference (mgal): 
% Difference smaller than I 5 I mgal : 
% Difference smaller than I 10 I mgal : 

167,540 
174 

-387 
0.8 

16.1 
69% 
93% 

Comparison between the collocation and mean 
solutions, both using a maximum of 5 nearest 
observations within 30 km : 
# of cells interpolated : 
Maximum Difference (mgal): 
Minimum Difference (mgal): 
Mean Difference (mgal): 
RMS Difference (mgal): 
% Difference larger than I 5 I mgal : 
%Difference larger than 110 I mgal: 

451,011 
94 

-36 
-0.1 
3.1 
7% 

1.8% 

15 
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Figure 1. Surface gravity observations distribution in Canada used to create the gravity grid. 
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Figure 4. Fifteen 5 by 5 arcdegree regions in Nonh American Rockies 

where interpolation techniques were tested with the Bouguer 

plate coefficient and other elevation correlation coefficients; and, 

seven 1 by 1 arcdegree regions in Canada where interpolation 

techniques \l.'ere tested using Bouguer and free-air gravity 

anomalies. 
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APPENDIX B 

Excerpt from a letter SM2800-337703 of 25 October 1989 

Dr. A. Mainville 
Geodetic Survey Division 
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EXCERPT FROM A LETTER SM2800-337703 OF 25 OCTOBER 1989 BY 
DR. A. MAINVILLE, GEODETIC SURVEY DIVISION, EMR, OTTAWA. 

~pport to the geoid contract, please find enclosOO- a magnetic tape con~g 
the 5' X 5' and the 1° X 1° grids of gravity anomalies covering Canada. The 
contents and format are described below. There are 4 flies st<ired as matrices. 
The edges of the 2 maps enclosed show the coverage of the grids. The coverage 
of the 2 grids is basically from latitudes N90" to N35" and longitudes E210" to 
E320". 

The gridded anomalies refer to GRS80. and the atmospheric gravity correction 
(.87 to .54 mgal) has already been applied. 

The first grid is stored in 3 files, the second grid in one file. The first point of 
each file is the centre of the most north-west cell . You then read from west to 
east for each latitude down to the south limit of the region (e.g. the ftrst point in 
file # 1 is lat. 55° 2.5' and long. 210° 2.5'). 

FILE #1 : Spacing: 5' by 5', Latitude: 55" to 35", Longitude: E210" to E320" 
Size: 33,413 blocs or 17 mbytes (240 rows x 1320 columns) 

FILE #2: Spacing: 5' by 5', Latitude: 75" to 55", Longitude: E210" to E320. 
Size: 33,413 blocs or 17 mbytes (240 x 1320) 

FILE #3: Spacing: 5' by 5', Latitude: 90· to 75", Longitude: E210· to E320. 
Size: 25,060 blocs or 13 mbytes (180 x 1320) 

FLLE #4: Spacing: 1· by 1", Latitude: 90· to 35", Longitude: E210· ro E320. 
Size: 733 blocs or 0.4 mbytes (55 x 110) 

Canada 
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The 5' by 5' Free Air Anomaly Grid 

FILES 1 to 3: RECORD= 53 I BLOCK= 5300 I DENSITY= 6250, ASCII. 

Column# 1 : Free air gravity anomaly ~gnc (mgals) 
Column# 2: Mean variance of observed anomalies (mgals) 
Column# 3 : Mean height of observed anomalies (metres) 
Column# 4 : Height from the Digital Elevation Model, OEM (metres) 
Column# 5 : Free air gravity anomaly corrected for the DEM ~&: (mgals) 
Column # 6 : Mean distance from the centre of the cell to the observations (km) 
Column# 7 : Number of observations used to estimate the free air anomaly 
Column # 8 : Number of quadrants where the observed anomalies are distributed 

FORMAT: F8.2, F8.2, F8.1, F8.1, F8.2, F6.2, 15, I2 

N.B.: You must use column# 5,4 and 2 (Do not use 1 and 3). Columns 1, 3, 6, 
7 and 8 are for quality and statistical analysis only. 

The grid was computed in the following way. If a cell has 5 or more 
observations, the arithmetic mean of these observations, once corrected to the 
DEM mean height of the cell, gives the representative value of the cell (column 
#5). In the other cases, we were averaging the 5 closest observations to the centre 
of the cell inside a 30 km radius. Again, the estimated mean free-air had to be 
corrected for the difference between the mean height of the observations and the 
DEM. 

where 

N.B.: We found several blunders in the OEM which was used in the previous 
grid that you used in 1986. We corrected a large number of those errors but some 
still exist. The file has been considerably improved, to our satisfaction, until a 
better file is made available from some institution. 
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The 5' by 5' free-air anomaly grid contains 871,200 cells (660 x 1320). Of those 
cells 651,766 (74.8%) were computed, the remaining cells are undefined (empty) 
and are indicated by a record 9999. 9999. 9999. HDEM 9999. 9999. 0 0. 
One way to reject the edges is to use the distance in column #6. Caution must be 
taken to use the elevation values (e.g. when computing topographic effect or 
indirect effect). The H0 EM value in column #4 is negative over the oceans (which 

is the depth of the ocean), however the elevation of the free air in column #5 
should in this case be column #3 instead of column #4. Column #3 will often 
give an elevation zero over ocean but will give a value different than zero near the 
coast which must be used. 

The 1 o by 1 o Free Air Anomaly Grid 

FILE 4: RECORD = 61/ BLOCK= 6100 I DENSITY= 6250, ASCII. 

Column# 1 : Mean free air gravity anomaly ~~ (1 ° by 1•, mgals) 
Column# 2 : Mean variance of the 5' by 5' (mgals) 
Column# 3 : Mean height of observed anomalies (metres) 
Column# 4 : Mean height from the OEM (metres) 
Column# 5 : Free air gravity anomaly corrected for the OEM ~& (mgals) 
Column# 6 : Mean distance from the center of the cell to the observations (km) 
Column# 7 : Number of 5' by 5' used to estimate free air anomalies 
Column# 8 : Number of observed anomalies 

FORMAT F8.2, F8.2, F9.2, F9.2, F8.2, F8.2, 14, 17 

N.B.: Again, you must use column# 5,4 and 2 (Do not use 1 and 3). Columns 
1, 3, 6, 7 and 8 are for quality and statistical analysis only. 

The 1 o by 1· cells were computed from the 5' by 5' grid. We computed the 
arithmetic mean on the sphere of the 5' cells inside the 1 • cell. The weight is 
equal to the cosine of the latitude of the 5' cell. 

n 

L L\gc5 cos <1> 

i=l 
Llgcl=-------------

n 

2: cos <1> 
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Abstract 

This paper examines two methods for considering the 
effect of terrain in the calculation of geoid undulations. 
One method is that associated with the usual terrain 
correction as documented by Moritz (1968). The second 
method, developed by Vanicek and Kleusberg (1987), uses 
a correction term depending on topography, but in a much 
different way from Moritz. A theoretical discussion 
shows that the Moritz interpretation results in a free-air 
anomaly on the surface of a co-geoid defined by the 
Helmert second condensation procedure. The Vanicek­
Kleusberg reduction implies a free-air anomaly that refers 
to a surface of varying elevation. We feel that the use of 
such an anomaly in the Stokes' equation is inappropriate. 

Numerical calculations were carried out with a 30" digital 
terrain model in rugged 1 o x 1 o areas of California and 
Colorado. The range of the Vanicek-Kleusberg anomaly 
correction term (-510 to 310 mgal) was substantially 
larger than the range of the terrain correction (2 to 65 
mgals) in California. The range of the undulation 
correction terms was -110 em to -9 em for the Vanicek­
Kleusberg method and 115 em to 174 em for the terrain 
correction technique, again in California The root mean 
square undulation difference, due to the different anomaly 
correction terms, was 182 em in California and 139 em in 
Colorado. 
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We also calculated the undulation differences, due just to 
the correction terms, for 4 lines 10 km in length, and one 
line 30 km in length. We found that the difference 
between the undulation differences implied by the anomaly 
correction terms reached 32 em (llppm) for one 30 km 
line, and 34 em (34 ppm) for one 10 km line. Such 
differences are significant as we go to precise geoid 
determinations for GPS applications so that the correct 
procedure, which we believe is that due to Moritz, must 
be used. 

I. Introduction 

The effect of topography on the calculation of precise 
geoid undulations or height anomalies has been considered 
by many authors in the past. Recognizing that a valid 

solution to geoid determination would occur only if there 
were no masses external to the geoid, Helmert suggested 
that such masses be condensed as a surface layer on the 
geoid. This condensation implies certain corrections to 
the gravity anomaly and the introduction of the indirect 
effect which occurs due to potential changes caused by the 

· condensation process. A discussion of some attributes of 
the Helmert's second method of condensation may be 
found in Heiskanen and Moritz (1967, p. 145), 
Wichiencharoen (1982), etc. 

The importance of the terrain (and the terrain correction) 
was emphasized by Pellinen (1962) in the solution of the 
Molodensky boundary value problem. Moritz (1968, 
1980) examined the role of the terrain to show a 
relationship between Helmert's condensation reduction and 
the Pellinen approximate solution of the Molodensky 
boundary-value problem. 

V anicek and Kleusberg ( 1987) discussed the effect of the 
terrain through the "squashing" of all the topographical 
masses onto the geoid. They calculated the "topographical 
attraction effect" and an indirect effect These correction 
terms were used in the determination of geoid undulations 
in Canada. 

Comparing the anomaly correction terms developed by 
Moritz and by Vanicek and Kleusberg one lmds a 
difference. The anomaly correction term of Moritz (and 
others) is the classical terrain correction which is always 
positive. The correction term used by Vanicek and 
Kleusberg can be positive or negative. The indirect effect 
terms are essentially the same. 

This paper considers the two different methods for 
considering the terrain and forms conclusions on the most 
appropriate technique. 

2. Outline of Moritz's and Vanicek-
Kieusberg's Results 

It is ftrst noted that both Moritz and Vanicek-Kieusberg 
use the Helmert's second method of condensation. For our 
discussion we will not distinguish between geoid 



undulations and height anomalies which are the emphasis 
in the Moritz discussion. Both methods require a 
correction to the free-air anomaly that is used in the 
Stokes' equation, and the indirect effect term that is caused 
by the potential change due to the mass condensation. We 
ignore the secondary indirect effect correction that should 
be used to refer the anomalies to the co-geoid of the 
condensation reduction (Wichiencharoen, 1982). 

The formula for the geoid undulation is given in Moritz 
(1980, eq. 48-32): 

NT= ~ff (.1g+C) s (v) dA + t 
41t'Y A (1) 

where C is the terrain correction. which in a linear. planar 
approximation is: 

(2) 

In (2) d is the distance between h and hp: 

2 2 2 
d =(x-xJ + (y-yJ (3) 

The t term (Moritz, ibid. eq. 48-30) is neglected in Moritz 
but should be retained for high precision calculations. In 
addition we have (in (1) and (2)): 

average Earth gravity; 

R mean Earth radius; 

A unit sphere; 

S(\jl) -- Stokes' function; 

G gravitational constant; 

uniform topographic density; 

hp elevation at the point at which C is being 
computed. 

The indirect effect for the Helmert second condensation 
method has been discussed by Wichiencharoen (1982). 
The effect can be expressed as the sum of a plane plate 
effect and the effect of the irregular topography. The latter 
term is expressed in an infinite series related to odd powers 
of elevation differences. Retaining only one series term 
the indirect effect could be written (ibid, eq. (44), (49) and 
(56)) as: 
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2 

<iNr= _ ltGcrhP _!.. Gcr J- J 
y 6 'Y -

3 3 
h -h 
-~p<k dy 

3 
d (4) 

where hp is the elevation at the geoid undulation 
computation point 

Vanicek and Kleusberg (ibid) have derived a different 
correction term to be applied to the free-air anomaly due to 
the topography. This term is given (ibid, eq. (14)) as: 

2 2 

O&T"' !_ Gcr f -f h -:P ck dy 
2 - d (5) 

Comparison of the terrain correction term (eq. (2)) used by 
Moritz with equation (5) indicates a difference in the 
numerators: (h-hp)2 vs (h2-h~). Vanicek and Kleusberg 
(ibid) also derive the indirect effect term which is identical 
to equation (4). 

The correction to the geoid undulation caused by using (2) 
or (5) may be significantly different One notes that Cp is 
always a positive quantity while (5) may be plus or 
negative. In the next section the theoretical reason for the 
differences is examined followed by numerical evaluations 
of the differences in undulation estimates to be expected. 

3. A Comparison of the Moritz and Vanicek­
Kleusberg Derivations 

First consider the potential of the topography at point P, 
on the topographic surface, as shown in Figure 1. 
Following Vanicek and Kleusberg (ibid, eq. (11)) the 
topographic potential can be written as: 

(6) 

with 



z 

i 
h 

1~ 
0 

Figure 1. Location of Point P on the Terrain Relative to 
a Point on the Geoid. 

The attraction of the topography at point P is: 

h 
aw J-J 11 A=--=Gcr - dx.dy 
ahp _ L 0 

(8) 

Equation (8) indicates that the attraction of the topography 
consists of the attraction Bouguer plate and the terrain 
correction. This equation is the same as equation {44) in 
Moritz (1968) after a plane approximation. 

The potential of the condensed layer at the point P is 
(Vanicek and Kleusberg (ibid) eq. (12)): 
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W' == Gcr f ~ f ~, dx dy 
(9) 

with 

2 2 2 
L' == d + hP (10) 

The attraction of the condensed layer at the ~ 
is given by: 

(11) 

where 

(12) 

The correction, to the free-air anomaly at 1X2int.£, is 
given by: 

ogT=- A+ A,= c- &1- (13) 

Eq. (13) is identical to eq. (5). The C - &I term was given 
in (Wang, 1988, p. 3). Here it is emphasized that the 
reduced gravity anomaly L\g+O&T is at the point P, not at 
a point on the geoid! 

If one chooses the computation point Po on the condensed 
layer as Moritz did, then (Heiskanen and Moritz, 1967, eq. 
(1-17a)): 

M ()W'[ 
A, =- ohP h?l = 2nGcrhP-

(14) 

Combining eq. (8) and eq. (14), one has: 



(15) 

as shown by Moritz (1968, eq. (63)). Note now the 
computation point Po is on the condensed layer and the 
correction term ogM is referenced to the geoid. 

This discussion is now related to the classical free-air 
anomaly, which should refer to the geoid, and the ~ 
free-air anomaly of the Mo1odensky theory. 

The classical free-air anomaly is defmed as (Heiskanen and 
Moritz, 1967, p. 146): 

~g a::: g - ()g H - 'Yo 
ah 

(16) 

where g is the gravity on the earth's surface, H is the 
orthometric height and 'YO is the normal gravity on the 
ellipsoid. The gravity anomaly, ~go. is referenced to the 
geoid. Adding the terrain correction, to take into account, 
the topography yields the Faye anomaly (Moritz, 1980, p. 
419). This anomaly is a terrain corrected anomaly 
referenced to the geoid and is given as: 

(17) 

The free-air anomaly has a different meaning in 
Molodensk.y's problem. The surface free-air anomaly is 
defined as (Moritz, 1980, p. 293): 

( 
2 ) d"f. 1d'Y 42 

~&s=g- 'Yo+ -H +--H + _ 
ah 2 oh2 

{18) 

where H* is the normal height We can write: 

(19) 

Since H* == H the two anomalies (eq. (16) and (19)) are 
essentially the same. The ogT value (from Vanicek and 
Kleusberg (ibid)) has been calculated at the topographic 
surface and should be added to ~gs from (19). This 
anomaly is designated as: 

(20) 
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Since this anomaly refers to a surface that is continually 
varying in height, it cannot be used in the Stokes' 
equation. If, ~gy, is reduced to the geoid using the linear 
gradient correction terms(&!). (see Wang (1988, eq. 12)) 
the anomaly (eq. (17)) on the geoid is obtained. 

4. The Evaluation of the Effect of ogT on the 
Geoid Undulation Computation 

Consider next an expression for the contribution of 
Vanicek-Kleusberg's anomaly correction term to the geoid 
undulation. The Stokes' operator (Moritz, 1980, p. 393-
394) in planar form, is: 

(21) 

where f can be the gravity anomaly. One can introduce 
the gradient operator L (f): 

1 f-f f-f L(f) =- -fdxdy 
21t - d (22) 

Applying (22) to (21) one has (Moritz, ibid): 

L { S (f)} = S { L (f)} = - f (23) 

Applying (22) to the Vanicek-Kleusberg correction term, 
eq. (5), yields: 

ogT= 7tGcrL ~ ~ (24) 

The contribution of ogT to the geoid undulation, as 
computed by V anicek and Kleusberg, is given by applying 
(21) to (24) and using (23): 

1 1 2 
ONv= s (og~-=- -1tGcrh 

y y p (25) 

Comparing (25) with the formula of the indirect effect , 
one finds that oNy is the same order of magnitude as the 
indirect effect 

In this paper the 2D Fourier transform of h (for example) 
is defmed as follows: 

J -J -jc.(~.-.y) 
G(u,v)=F{h)= e h(x,y)<k.dy 

- (26) 

where u, v are frequency variables. The inverse 20 
Fourier transform would then be: 



-1 
h (x, y) = F {G(u, vl} 

J -f j2:n{ux._.,.) = _ e G (u, v) <it dv 
(27) 

Applying the Fourier transformation to eq. (5) 
yields: 

~gT= F -t {- 2n: 2 Gcrro F {h 2}} (28) 

where ro = (u2 + v2)1fl. In practice the data are given as 
discrete point values or mean block values. Therefore, the 
discrete Fourier transformation can be used to evaluate eq. 
(5). One first constructs a new kernel function: 

~={ : 
3 
d 

d~ 

Then eq. (5) can be written as: 

~T=i<l<r[DF< { DF {~} DF {h'}} 

- h: DF'{ DF {~} DF(l} }]Ax 6y 

(29) 

(30) 

where DF, op-1 denote the discrete Fourier transformation 
and its inverse; Lh., 6.~ are the grid interval. The value of 
the kernel function do at the origin has no effect on the 
computation value, because the center block (point) of the 
integral (5) has no contribution. 

For the numerical calculation of the terrain correction, eq. 
(2), a similar procedure was used.. 

Applying the planar Stokes' formula to the Vanicek­
Kleusberg's correction, one has: 

ON= _1 f -f ~g T dx. dy 
2n:y - d (31) 

The plane approximation is not accurate enough for the 
geoid determination by using the full gravity anomaly, 
but it is sufficient for the computation of a geoid 
undulation correction. 
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Applying the discrete Fourier transformation to (31). one 
obtains: 

oN= - 1- DF -1 f\ DF {og) DF {l}} 6.x !J.y 
2n:y d (32) 

In the computation of (32) there is a singularity at the 
origin. The method to overcome this problem is described 
in Wang (1988, p. 13). 

Other methods to eliminate the singularity problem are 
discussed in (Heiskanen and Moritz, (1967) and Schwarz, 
et al., (1988)). 

5. Numerical Calculations and Computations 

In order to study the magnitude and differences of the two 
correction terms, two test areas, 1 o x 1° in size, were 
chosen. Area A (36° S cjl S 37°,241° SA. S 242°) was in 
California where the cell contained topography that ranged 
from 150 m to 4270 m. Area B (38°Scji:S39°, 
253°SA.S254°) was in a high rugged area of central 
Colorado. The elevations were given at 30"' interval. In 
order to avoid leakage, elevation data out to 1 o from the 
test cell borders was used. 

Table 1 shows information related to the anomaly 
correction terms in the two test areas. 

Table 1. Magnitudes of the Anomaly Correction Terms 
(mgals) 

Area A AreaB 

c ~ c OgT 
minimum 2 -510 1 -479 
maximum 65 310 44 251 
mean 12 -2 4 -1 
RMS 13 68 6 67 
Std. Dev. +7 68 4 67 

From Table 1 it is apparent that Area A could be 
considered a rougher area through a comparison of the 
magnitudes of the terrain correction (C). Although the 
mean value of bgT is smaller than C, the magnitudes of 
b&T are considerably larger than the terrain correction. 

The anomaly correction terms were then used in equation 
(32) to obtain undulation correction terms. These values 
are shown in Table 2. 



Table 2. Undulation Correction Tenns (em) 

Area A Area B 

c OgT c on 
minimum 115 -100 78 -100 
maximum 174 -9 103 -31 
mean 150 -24 85 -53 
RMS 151 26 85 54 
Std. Dev. +17 ±10 ±6 ±12 

From Table 2 it is seen that the terrain correction has a 
dominantly systematic correction term. This was also 
seen by Rapp and Wichiencharoen (1984). The mean 
undulation corrections are significantly (greater than 1 m) 
different in both test areas. 

The undulation correction terms were next differenced at 
each of the grid points in the 1° cell. The statistics on 
these differences are shown in Table 3. 

Table 3. Information on Undulation Correction Term 
Differences (SNT- SNy) (em) 

Area A AreaB 

Minimum 121 114 
Maximum 265 194 
Mean 180 138 
RMS 182 139 
Std. Dev. +28 16 

Table 3 shows that the difference between the undulation 
correction terms can reach 2.6 m in Area A and 1.9 m in 
Area B. Since most of the difference is a systematic one 
the standard deviation of the differences is considerably 
smaller than the root mean square difference. 

Of increasing importance for GPS application is the 
calculation of geoid undulation differences (e.g. Kadir and 
Rapp, 1988). Consider the role of the anomaly and 
undulation correction terms in calculating such differences. 
To do this a base point is picked in the center of the test 
area and then 4 points at 10 km from the base point in 4 
different directions (point 2 was south west, 3 north west, 
4 north east and 5 south east). Point 6 was taken 30 km 
south of the first poinL The undulation correction tenns 
from each method were differenced with the results given 
in each area in Table 4. 

74 

Table 4. Undulation Difference for Selected Lines Due 
to Anomaly Correction Tenns (em) 

Area A AreaB 

Line c on c O_ET 
1-2 -3.8 -11.1 1.0 -6.8 
1-3 3.1 15.1 -1.9 4.3 
1-4 2.1 12.7 -4.1 30.0 
1-5 -1.4 -13.4 0.6 -4.5 
1-6 15.1 -16.5 0.4 1.5 

From Table 4 it is clear that the correction term effects are 
generally larger when Sg-r is used. In area A the largest 
difference between the C and ogr corrections is for the 30 
km line (1-6) reaching 32 em (11 ppm). In area B the 
largest discrepancy is 34 em (34 ppm) for line 1-4. Each 
of these differences is substantially higher than the 
accuracy (1 ppm) needed. It is therefore important to 
choose the proper correction term. Note that the results 
given in Table 4 are sensitive to the points selected. 
Other test point selections could yield different results. 
However the results shown in Table 4 indicate the 
differences between the C and ogr method, for undulation 
difference computations, is not negligible. 

A final calculation was made to assess the accuracy of the 
approximation to SNv given by equation (25). ·This was 
done by comparing the result from (25) with the value 
given from the equation, (32). The results are given in 
Table5. 

Table 5. Difference of Simple (eq. (25)) and Complex 
(eq. (32)) Calculation for oNv (em) 

Area A AreaB 
Minimum -6 -6 
Maximum 6 3 
Mean -1 -2 
RMS 2.2 2.7 
Std. Dev. +2.1 +1.2 

Recalling from Table 2 that the root mean square 
undulation correction (RMS) for area A is 26 em, and area 
B, 54 em, it is apparent that the approximate formula 
works well in calculating oNy. 



5. Summary and Conclusion 

Vanicck and Kleusberg (ibid) have used an anomaly 
correction that differs from the terrain correction term 
proposed by Moritz (1968). This paper examines the 
theoretical background for each technique and argues that 
the Moritz procedure of reduction is the more correct 
method as it reduces the anomaly to a constant elevation 
surface, the geoid; the Vanicek-Kleusberg correction leaves 
the anomaly referenced to a surface of varying height 
Such anomalies should not be used in the Stokes' 
equation. The key point giving rise to the anomaly 
correction term difference is the selection of the elevation 
point where the attraction of the condensed topography is 
evaluated. 

Numerical evaluations were carried out in two test areas; 
1 °X 1° cells in California (area A) and in Colorado (area 
B), where 30" elevation data was available. The 
computations showed that the magnitude of ogT was 
considerable larger than the magnitude of C (the terrain 
correction). 

The undulation correction terms showed disagreement at 
the 1 m level. For example, the root mean square 
undulation corrections in area A were 151 em {from C) 
and 26 em (from ogr ). A great part of this difference is 
attributed to the systematic contributions ofC (150 em). 

Undulation differences associated with the anomaly 
correction terms were also calculated. Such differences are 
important when undulation differences are needed in the 
application of GPS derived ellipsoidal height differences. 
Four lines of 10 Ian and one line of 30 km in length were 
considered. The differences between the correction term 
effects reached 32 em (30 km line) in area A and 34 em 
(10 km line) in area B. These large differences indicate 
that it is important to determine the proper method to 
calculate the anomaly correction terms. This paper argues 
that the proper method is the one derived by Moritz (1968) 
and that the Vanicek-Kleusberg method is incorrect. The 
use of the Vanicek-Kleusberg method in mountainous 
areas will yield undulation differences that can be 
substantially wrong in comparison with GPS elevation 
difference accuracies. 

Finally, note the importance of applying the indirect effect 
term (eq. (4)) when precise undulations (or undulation 
differences) are being computed. Although not of 
significance for the computations of this paper since the 
indirect effect is the same for both methods studied, the 
magnitude of the correction can be significant. 
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Abstract 

An argument is put forward in favour of using a model gravity field of an order higher than 2 

as a reference in gravity field studies. Stokes's approach to the evaluation of the geoid from 

gravity anomalies is then generalized to be applicable to a higher than second-order reference 

spheroid. The effects of truncating Stokes's integration and of modifying the integration kernels 

are investigated in the context of the generalized approach. Equations are derived for changing the 

geoid evaluated by means of the generalized approach with modified kernels in response to change 

of the reference field. As an example, the effect of exchanging GEM9 for T1 reference fields on 

the UNB Dec. '86 geoid is shown. 

Introduction 

After the famous Newton-Cassini argument about the basic shape of the earth (oblate vs. 

prolate) was settled by the French Academy's mid-eighteenth century expeditions, the oblate 

biaxial ellipsoid became the reference surface in geodesy. There is, of course, much to be said 

about the appropriateness of such a simple surface for the purpose of positioning. We wish to 

argue here, however, that for gravity field studies a higher than second-order surface- a spheroid 

of degree and order M- may now be used with considerable advantage. 

This is not, of course, a new idea. Earth Gravity Models (EGM) expressed in terms of a series 

of zonal spherical harmonics have become part of the definition of geodetic reference systems -

see, for instance, the definition of GRS 80 [Moritz, 1980], or WGS 1984 [Smith, 1988]. Low­

degree and -order fields, mostly determined from satellite orbits, have been used by many 

researchers, e.g., Nagy and Paul [1973], in the past few decades, mostly without acknowledging 

their reference role explicitly. We wish to point out that there is a definite gain in insight and thus a 

didactic advantage in the explicit acknowledgment of the reference field role played in effect by the 

EGMs. 

To be sure, there is, and always will be, an error in any EGM to be adopted as a reference 

field. But this situation is no different from that we now face with the second-degree zonal 

(Somigliana-Pizzeti) field, a situation we have been living with for at least two centuries. There are 

ways of dealing with this problem and we shall try to point them out as appropriate. 

Throughout this paper, we shall be expressing the gravity field (the geoid in particular) or its 

components interchangeably in terms of convolution integrals of Green's type and in terms of finite 

or infinite series of spherical harmonics. We shall speak of those respectively as integral or 

spectral representations, as has recently become the custom in geodesy. 

In addition, it should be emphasized that the residual geoid obtained using a higher-degree and 

-order reference field may have particular advantages for regional geophysical interpretation, see, 
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e.g., Sjoberg [1984c] and Christou et al. [1989]. This fact alone should motivate a closer study of 

Stokes's formula for a higher-degree and -order reference field. 

Reformulation of Stokes's Convolution Integral 

Let us start by considering Stokes's original formula for geoid undulation N referred to the 

geodetic reference ellipsoid [Heiskanen and Moritz, 1967]: 

(1) 

where K: = R/(41ty), Randy are the mean surface radius and mean gravity of the earth, L\g is the 

gravity anomaly defined as 

L\g = g~- 'Ye = g- 'Yo (2) 

(g~ = g is the actual gravity on the geoid, and Ye = y0 is the normal gravity on the ellipsoid, both 

along the same normal to the ellipsoid), and the integration kernel S is called the Stokes function. 
The integration is carried over the whole reference ellipsoid 8 or, equivalently, over a unit sphere. 

We use the approximate equality sign because the expression is correct only to the order of e2 (the 

square of eccentricity of the reference ellipsoid) [Van~ek and Krakiwsky, 1986]; this is known as 

the "spherical approximation." Stokes's function is usually written as a series of Legendre 

polynomials Pn, 

oa 2n+1 
S('lf) = L ~ Pn (COS'If) , 

n=2 
(3) 

where 'If is the geocentric angle between the point of interest and the dummy point in the 

integration. 

It has been shown by many authors, e.g., Lachapelle [1977], or VaniCek and Krakiwsky 

[1986], that if a spheroid of degree M given by the first M degree spherical harmonic components 

(N i) of the geoid 

M 
(N)M = L Ni , 

i=2 
(4) 

where Ni contains (2i+ 1) spherical harmonics of appropriate orders, is taken as a reference 

surface, then the geoidal height NM above that spheroid is given by the following equation, correct 

to the order of the eccentricity of the reference ellipsoid squared (e2). We have: 
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oo 2n+1 
sM(\j/) = L -1- Pn(COS\j/) 

n=M+l n-

M 2n+1 = S(\j/) - L. - 1- Pn(COS\j/) , 
n=2 n-

4 

(5) 

(6) 

(7) 

and 'Yn is defined below. In the sequel, we shall call the spheroid of M-th degree and order simply 

"spheroid of M-th degree." 

The following two notes are required. First, writing eqn. (5), we have neglected a term 

(8) 

which equals to zero when 'v'n .$. M: ~g~ = gn - 'Yn = 0, i.e., in the absence of errors in the low-

degree harmonic components gn and 'Yn of the observed gravity g and the model gravity y. This 

condition will clearly not be satisfied generally - as the analogous condition for g0 and 'Yo is not 

satisfied in the original Stokes formulation- and we will bring the neglected term into the picture 

later when we start discussing observational errors. Second, we note the non-standard use of the 
symbols 'Yn and "'(M. By 'Yn we denote the spherical harmonic components of gravity generated by 

the EGM, i.e., the "model gravity" on the spheroid. The model gravity -fM plays exactly the same 

role here as the normal gravity 'Yo does in the original Stokes development. (It should be noted that 

y0 does not figure in any of the new expressions as it should not. In practical computations, 

however, ~g around the world would be available rather than gin which case 'Yo obviously has to 

be taken into account. But this step is irrelevant to the theory presented here.) The only place the 

reference ellipsoid is implied is in eqn. (4); by eqn. (4) the reference spheroid is presumed to be 

referred to the reference ellipsoid. Clearly (N)M + NM = N as required. As expected, as the 

degree M grows, ~gM tends to zero. Moreover, for n > M: ~g~ = gn, since, by definition, for n 

>M: 'Yn=O. 

Equation (5) is an exact counterpart of the original Stokes formula (1) derived for the second­

degree reference spheroid (i.e., the reference ellipsoid) and we shall be calling it the "generalized 
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Stokes formula." It is accurate, like its original second-degree counterpart, to terms of the order of 

e2, i.e., to the order of 0.3%. Since for a reasonable choice of M, say M = 20, INMI is about one 

order of magnitude smaller than INI, the effect of this inaccuracy is also one order of magnitude 

smaller, which amounts to a few centimetres. 

We note that in eqn. (5) ~gM can be replaced by ~g without any effect on the resultant NM 

because SM is "blind" to the first M harmonic components of ~g. This result follows from the 

orthogonality of sperical harmonics on the sphere. Nevertheless we shall systematically use ~gM, 

because we will want to perform certain operations on the generalized Stokes function SM which 

may destroy its "blindness," and the retention of the low-order part of ~g in the convolution 

integral would give rise to unjustifiable terms. 

We wish to point out that the adoption of the higher-degree reference spheroid in the Stokes 

theory as discussed above is responsible for the change in the shape of the Stokes kernel from S 

(really S2) to SM. The latter tapers off more rapidly than the former, see, e.g., Jekeli [1980], i.e., 

the influence of distant gravity anomalies on local geoidal height is reduced. The reduction is 

proportional to the degree M of the reference spheroid. Thus, to evaluate the geoidal height NM 

above the M-th degree reference spheroid, distant gravity anomalies may be treated in a more 

cavalier way than in the standard second-order Stokes theory. 

As with the standard Stokes formula, the generalized formula is oblivious to the scale of the 

reference spheroid and to the geocentricity of the reference field. The question of "forbidden 

harmonics" [Heiskanen and Moritz, 1967] does not arise since we do not need to transform ~g1 to 

N 1· We leave the topographical, indirect, and atmospheric effects in the generalized Stokes 

approach out of the discussion here. These effects were discussed exhaustively by Van~ek and 

Kleusberg [1987]. However, again we wish to point out that most errors, linear and non-linear, 

coming from various sources, are reduced when transferring to a higher-degree reference field (see 

Heck [1989]). 

Numerical Evaluation of the 
Generalized Stokes Convolution Integral 

Theoretically, the integration implied by eqn. (5) has to be carried out over the whole earth. 

This is a nuisance, because gravity coverage of the earth's surface is irregular and incomplete. 

Also the numerical effort involved would be huge. This is where the fast convergence of sM to 

zero with growing 'I' becomes very helpful. The integration does not have to be carried out all the 

way to 'I'= 1t, because the contributions to NM from distances 'I' larger than a certain value 'l'o 

become manageably small. For practical evaluation of the convolution integral, we would 

welcome the critical distance 'l'o to be as small as possible. This would imply that as high a degree 
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of M should be used for the reference spheroid as possible. On the other hand, the error in the 

reference field grows with growing M. Normally, therefore, a compromise value ofM is used. 

Writing now eqn. (5) as 

NM ;, K f J eo SM(\jf) ~gM de 

(9) 

+ K ff SM(\jl) ~gM de ' 
e-eo 

where eo denotes a spherical cap of radius \jf0 , we can study the effect of M and 'l'o on the geoidal 

height NM. The first term denotes the "truncated" convolution integral (for 'I' ~ \jf0), while the 

second term describes the "truncation correction," or the negative "truncation error" oNM 

committed when the truncated integral is taken instead of the complete integral over the whole 

earth. Note that we still use the approximate equality because of the spherical approximation. 

It was Molodenskij et al. [1960], who first introduced the idea of reducing the value of 'l'o 

further by allowing the kernel to be modified in such a way as to minimize the second term in eqn. 

(9), i.e., the truncation correction or truncation error. This idea has since been explored and 

developed in different directions by scores of researchers. 

To explain the similarities and differences between the various possibilities, let us first explain 

how the Molodenskij type modification works within the framework of generalized Stokes theory. 

Molodenskij's idea is to change (modify) the integration kernel by subtracting a modifying function 

Ms from it. We then get the modified kernel sM* in the following form: 

SM*('I') = SM( 'I')- Ms( \jl) (10) 

Substituting this into eqn. (9) we obtain 

(11) 

where the first term on the right-hand side represents a new approximation of NM, and the last two 

terms are the new truncation correction to be minimized. 

To make things easier, the modifying function Ms is now chosen so that the last term 

disappears. Disregarding, once again, any errors in the EGM and in the low-degree components 
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of ~g. all components ~~of degree lower than or equal to M disappear, and any polynomial in 

Pn of degree lower than or equal toM will satisfy the above requirement. (The effect of this 

disregarded term in the presence of long wavelength errors will be treated later.) We then choose 

M 2n+1 
Ms(\jl) = L - 2 - tn Pn(cos\jl) , 

n=O 
(12) 

where the factors (2n+1)/2 are introduced for computational convenience, and tn, called 

"Molodenskij's modification coefficients," are to be determined so that the new truncation error 

(13) 

is minimized in one sense or another. 

If the generalized Stokes formula is applied to a properly scaled EGM expressed in a geocentric 

coordinate system, then the summation (12) may begin with n=2. This is what we shall assume 

for simplicity from now on, so that we write 

M 2n+1 
SM*(\jl) = SM(\jl)- L - 2 - tn Pn(COS\jl) 

n=2 
(14) 

From Schwarz's inequality applied to eqn. (13) it follows that 

(15) 

where 

(16) 

Now, Molodenskij required that the upper bound of 18NM*I (cf. eqn. (15)) be the minimum. For a 

given ~gM (fixed reference field and location), the norm MgMII is constant, while !ISM* II varies 

with the choice of tn (it = 2,3, ... ,M). Minimizing the latter norm leads to the following system of 

normal equations: 

or 



85 
8 

* r aMs 
'v'n~: SM* dt sin\jf d\jf = 0. 

'lf='lfo n 
(17) 

Carrying out the differentiation we obtain 

'Vn~: [ (SM - Ms) Pn(cos\jf) sin\jf d'lf = 0 
'lf='lfo 

(18) 

Employing the usual notation, 

[ Pi(cos\jf) Pj(COS'lf) sin\jf d'lf = eij(\jf0 ) , 

'lf='lfo 
(19) 

(20) 

(21) 

we get fmally: 

M 2k+1 M M 2k+1 
'v'n~M: L -- en1c tk = Q = Qn- L -- enk . 

k=2 2 n k=2 2 
(22) 

This represents a system of M-1 linear equations for tk which can be solved for any given 'l'o· 

These (Molcx:lenskij-like) coefficients !k are then substituted into eqn. (14) to give the Molodenskij­

type modified kernel for the generalized Stokes formula. This approach was used in prcx:lucing the 

"UNB Dec. '86" Canadian geoid [Varucek et al., 1988]. 

Equations (22) are slightly different from the original Molodenskij equations and the resulting 
parameters tn are also different from Molodenskij's. But it turns out that the generalized Stokes 

function SM modified ala Molodenskij (S~:1) is exactly the same as Molodenskij's modified 

* original Stokes's function (SM01). This is understandable because in both approaches we seek a 

function so modified as to have the minimal L2-norm, and in both cases only the low frequencies 

(up to wave number M) are allowed to change. There is however a significant difference between 
* the geoidal height NMol obtained by applying Molodenskij's modified kernel in the original Stokes 

theory and applying it in the generalized Stokes theory: the upper bound of the truncation error is, 
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for the same radius of integration 'l'o· significantly smaller for the generalized theory. To show 

this, let us write 

(23) 

and, similarly, for the original truncation error: 

(24) 

The expected value of ll~gMII is significantly smaller than the expected value of ll~gll, which proves 

the point. 

Spectral Representation of Different Kinds 
of Geoidal Heights 

Before we discuss the modification issue further, let us derive the spectrum (harmonic series) 

representation of the individual kinds of geoidal heights. The simplest expression is obtained for 

the "exact" geoidal height NM given by eqn. (5). Expressing both SM and ~gM in Legendre's 

polynomials, we get 

NM ;, c 2, _1_ ~gM 
n-1 n n=M+l 

(25) 

where c = R/(2y), and ~g~ can be replaced by ~gn because for n>M the two are identical. We use 

again the approximate equality symbol because the accuracy is only to the order of e2. Bringing 

into the discussion also the term Et. given by eqn. (8) which was neglected originally, we get an 

additional term 

M 2 M 
EI = C 2, - ~g 

n=2 n-1 n 

The sum of eqns. (25) and (26) gives the complete expression: 

• oo 2 M 
NM= c L - ~g 

n=2 n-1 n 

in the expected and correct form. 

(26) 

(27) 
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Let us now turn to the spectral representation of the geoidal height obtained from the truncated 

integration, i.e., from eqn. (9). First, to simplify the forthcoming equations, we introduce a new 

kernel SM by the following expression, 

{ 
sM 

sM= o 
for \j/~\j/0 

for '1/>'l'o 

and write it in a Legendre's polynomial series form as 

- oo 2n+l 
sM = L -2- Sn Pn(COS\jl) ' 

n=2 

where sn are some coefficients to be determined. Disregarding the truncation error we have 

NM~ 1C J feo sM~gMdC: 

= lC#e sM~gMd~ 

(28) 

(29) 

(30) 

Taking eqn. (29) into account, we can transfer this convolution integral into its spectral form as 

follows: 

00 

NM~ c I, Sn~g~, 
n=2 

or, equivalently, 

(31) 

Here we recognize the first term to be again caused by long wavelength errors in yM and g; it 

would disappear if the EGM were errorless and if g were not contaminated by long wavelength 

errors. 

The coefficients sn can be easily determined from 

or, equivalently, from 

Vn: sn = J 7t SM(\jl) Pn(cos\jl) sin\jl d\jl , 
'lf=O 



Clearly, 

Sn = 

and eqn. (31) becomes 

88 

1t 

Vn: Sn = f sM Pnsimjf d\jf 
'lf=O 

- f 1t SM Pn sin\jf d\jf . 
'lf='lfo 

- QM for n :S M n 

2 QM for n > M n-1 - n 

11 

(32) 

(33) 

(34) 

Here again, the first term will have a non-zero value only because of long wavelength errors in the 

EGManding. 

It is interesting now to have a look also at the spectrum of the truncation error. The complete 

truncation error can be obtained from eqn. (9) and by considering the originally neglected term EJ. 

We obtain 

oNM = - K J' ( SM .1gM de 
J e-eo 

(35) 

- 1( cffe (S- sM) .1gMde. 

This can be written in a spectral form as 

(36) 

Subtracting oNM from NM (given by eqn. (34)) we obtain NM (eqn. (27)) as we should. 
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Similarly, the geoidal height NM* computed by means of a modified generalized Stokes 

function SM* (eqn. (11)) has the following spectrum: 

(37) 

+ C r (.1_ -Q~ *)..1gn, 
n=M+l n-1 

M* where we use the symbol Q0 to denote 

(38) 

Both the long and short wavelengths are affected by the modification. The difference between the 

geoidal heights computed from the truncated integration using the generalized Stokes kernel and the 

modified generalized Stokes kernel is given by 

NM - NM = - c L tn - .L --r ein ti ..1~ * - M ( M 2i+ 1 ) M 

n=2 1=2 

M 2i+1 
+ c L L --r ein ti ..1gn . 

n=M+l i=2 

(39) 

The critical role played by the Molodenskij modification coefficients tn is clearly demonstrated in 

this equation. 

The complete truncation error of modified geoidal height increased by the term £1 is 

(40) 

In a spectral form it can be written as 

(41) 
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which, once again, subtracted from NM* (eqn. (37)) gives NM. 

We note that Molodenskij's modification (eqn. (22)) implies that 

rendering the following result 

M* 
Vn~M: Q0 =0 

M* · M ( 2 ) M oo M* BNMol =- c L, n-l + tn L1g0 - c L Q0 L1gn. 
n=2 n=M+l 

The Molodenskij modified geoidal height spectrum is then 

13 

(42) 

(43) 

Comparing now eqns. (37) and ( 43), we see that the Molodenskij modification affects not only 

the long wavelength geoidal heights - in the presence of long wavelength errors in t1gM- but 

also the short wavelengths. The ~· factors in the two equations are different, as is apparent from 

eqn. (38): in the former case the modification coefficients are unspecified, in the latter case they 

are given by eqns. (22). This is true, of course, only for the modification which uses Legendre's 

polynomials up to the M-th degree. Other modification schemes can be used, and it will be 

interesting to investigate, for instance, modification schemes which use Legendre's polynomials up 

to a degree L higher than the degree M of the reference spheroid. 

To do so, we rewrite eqn. (5) in the following rather general way: 

(44) 

or equivalently, 

(45) 

where 

L 2k+l 
VL ~ M: SL(\jl) = S(\jl)- L, - 2 - Sn P0 (COS\jl), 

k=2 
(46) 
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V n ::;; L: Q~(\jfo) = j SL(\jf) Pn(cos\jf) sin\jf d\jf 
'l'o 

(47) 
L 2k+l 

= Qn('l'o)- L - 2 - enk('l'o) Sk. 
k=2 

In eqn. (45) we have divided the integration area into a cap eo of spherical angle 'l'o around the 

computation point and a remote zone area e-e0 • The latter integral becomes 

(48) 

which when inserted into eqn. (44) yields eqn. (45). We have assumed that the maximum degree 

of modification (L) is at least as high as the degree of the reference field, i.e., 12M, and we will 

use this assumption throughout the rest of this paper. We also assume that potential coefficients, 

typically determined from satellite orbit analyses, are available to degree and order L. However, 

only the first M degrees and orders are used to define the reference spheroid. 

Referring now to eqn. (45), it follows that Vn>M: .1g~ = .1gn. Furthermore, due to the 

orthogonality of the Laplace harmonics, it follows that eqn. (44) is equivalent to eqn. (5) for any 

choice of the parameters sn (k=2,3, ... ,L). (For clarification, SL is denoted by SL*, when sn = 
(2/(n-1) + tn.) Equation (44) is essential in the error estimates to be derived below. 

One thing is clear, however: compared to the standard Stokes approach, truncation of the 

convolution integral does much less damage in the generalized Stokes approach. The price one has 

to pay for this is the introduction of unmitigated errors in the EGM (really in (N)M). We shall 

investigate the effect of these errors together with the effect of errors in .1g later. 

The other source of errors, the discretization error in the numerical evaluation of the 

convolution integral for NM*, is considered outside the scope of this paper. It represents a 

problem from the domain of numerical analysis and as such calls for development of techniques 

from that mathematical domain. 

Two Generic Estimators 

To be able to treat the case of different degrees (and orders) of the reference spheroid (M) and 

the modification (L), we shall directly introduce two kinds of generic estimators of NM rather than 

deriving them from some desired properties. Later, we shall show that specific selections of free 

parameters Sn lead to specific properties of these estimators. 

Consider first the following general estimator ofNM (cf. Sjoberg [1987]) 
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(49) 

where L\gM and dgn are observed values (estimates) of L\gM and L\gn, respectively. ~M' suffers 

from errors in L\gM and L\~ as well as from the truncation error arising from the limited integration 
area eo. 

A slightly different general estimator is given by (cf. Sjoberg [1984a,b; 1987]) 

(50) 

Note that the summation terms on the right-hand side of eqns. (49) and (50) reflect the 

assumptions that Vn~M: L\g~ = 0, i.e., that the reference field represents the first M degrees of 

the actual field perfectly, and, by definition, Vn>M: L\g~ = dgn (cf. discussion following eqn. 

(8)). 

The errors of the two estimators ( 49) and (50) will be discussed in the next section. 

Error Estimation 

Let us denote the errors in terrestrial gravity and the reference field harmonics of anomalies by 

E T and Es, respectively. The n-th Laplace harmonics of these errors are denoted by E! and E~. 

Then the estimator N"M can be rewritten as 

L 
+ c · L (Q~ + Sn)(dgn + E~) , 

n=M+l 

where we have taken, following eqn. (7): 

dgM = L\gT- dgs = L\g + ET- (dgM + ES) = L\gM + ET- ES, 

and 

By adding the stipulated (estimated) reference spheroid 

(51) 

(52) 

(53) 
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(54) 

one obtains an estimator (N') for the total undulation above the reference ellipsoid. Equations 

(51), (54), (4), and (45) yield the expression for the total geoid undulation error which includes 

both the truncation error and the errors in the satellite and terrestrial gravity anomalies: 

Note that eqn. (52) yields 

and 

Using the following relations between integral convolutions and Laplace expansions: 

and 

where 

and 

Vn>L: e5 =0 n 

for 2 ~ n ~ L 

for n > L 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 
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one obtains, finally, the spectral form of the total error: 

(62) 

Assuming that the observation errors have zero expectation, i.e., 

V'n: E(E~) = E(E~) = 0, and thus also E(ET) = E(ES) = 0, (63) 

it follows that the expected value of the total error is 

-, -, co L 
BN = E(BN ) = -c L Qn .1gn 

n=L+l 
(64) 

Introducing the global average operator 

(65) 

we note that 

f'(BN') = -c I_ Q; r(.1gn) = 0 
n=L+l 

(66) 

i.e., the global average of BN' is unbiased. However, BN' itself is locally biased, because for any 

given locality, the expected value BN' is not equal to zero. To study the local bias, we introduce: 

r[(BN')2] = c2 I, (Q;)2 Cn > 0 , 
n=L+l 

(67) 

where Cn are the so-called "anomaly degree variances" 

(68) 

which reflect the global behaviour of the gravity field and have nothing to do with observing 

errors. Note also that the anomaly degree covariances vanish: 
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(69) 

This shows that the estimator N' is locally biased from degree and order L+ 1 up. This is caused 
by the truncation of Stokes's integration to a cap eo and by the use of a harmonic series to degree 

and order Lin eqn. (49) (see also Sjoberg [1987]). 

In a similar way, the error of the second general estimator N" becomes (cf. eqns. (49) and 

(50)) 

(70) 

with the expectation 

(71) 

It follows that the estimator N" is again globally unbiased but is locally biased from degree and 

order M+ 1 up. Clearly, if Lis selected to equal to M, both estimators will have the same local 

bias. 

Next we will determine the variances of the estimators N' and N". We will use the following 

notations for the gravity anomaly error covariances 

Vn,k: E(e! ~) = An1c and Vn,kg_,: E(E~ ~) = Onk . (72) 

Note that Ank and Qnk are position dependent! Furthermore, we assume that errors in f1gT and 
A"S d . ugn are uncorrelate , 1.e., 

'v'n¢k: E(e! ~) = 0 . (73) 

This implies that terrestrial gravity should not have been used in the computation of the potential 

coefficients defining either the reference spheroid or the potential coefficients of degrees between 

MandL! The case of correlated ET and t:S was treated by Sjoberg [1987]. Finally, we note that 

potential coefficient derived anomaly errors (E~) will contribute to the variances of N' and N" both 

through the reference field (see eqn. (54)) (2 ~ n ~ M) and through the potential coefficient 

representation for degrees between M and L. 

Then the (expected) "local mean square error" of N' becomes 
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(74) 

where 

(75) 

and 

- - ( oo L ]2 Bias2(N') = [E(N') - N]2 = c2 I, Q n ~gn . 
n=L+l 

(76) 

Similarly, one obtains the (expected) local mean square error of the estimator N": 

(77) 

where 

(78) 

where 

P~={ <t for 2 ~ n ~ M 

0 for M < n ~ L 

(79) 

and 

- ( oo L J2 Bias2(N") = c2 I Q n L\gn · 
n=M+l 

(80) 

Note that the above local mean square errors, variances, and biases are position dependent! 
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We now proceed to the global averages of the local mean square errors which we shall call 

"global mean square errors." For the estimator N' we obtain: 

r[MSE(N')] = r [Var(N')] + r [Bias2(N')] , (81) 

where 

(82) 

and 

- co L r [Bias2(N')] = c2 L (Qn)2 Cn. 
n=L+l 

(83) 

In these derivations, we have employed the following notation: 

for n=k 
(84) 

for n#k 

and 

{ 
( cr~)2 for n=k 

f'(Qnk) = • 
0 for n#k 

(85) 

where (cr~)2 and (cr~)2 are called the "error degree variances" of the terrestrial and of the potential-

coefficient-generated anomalies, respectively. In addition, equations (68) and (69) were used to 

derive the global averages of squared biases. 

In the same way, the global mean square error of N" is derived: 

r [MSE(N")] = r [Var(N")] + r [Bias2(N")] , (86) 

where 

r [Var(N")] = r [VarcN')l - c2 ~ Q~(Q~ + 2s0)(cr~)2 
n=M+l 

(87) 

and 
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r [Bias2(N")] = c2 i (Q~)2 Co 
n=M+l 

(88) 

It is interesting to note that the mean square errors of N' are independent of the choice of degree 

M(~ L) of the reference field, while for N" they depend on M (cf. eqns. (74) to (87)). 

Some Special Modifications 
We will now consider some special cases of modifying Stokes's formula, namely the 

"Molodenskij modification," the "strict separation modification," and the "least-squares 

modification." The first method, limited to L=M, was formulated already above and will now be 

only restated for L ~ M. 

Molodenskij 's Modification 

To begin with, we rewrite eqn. (45) as 

(89) 

The truncation error is described by the second term (which is not contained in NM''): 

(90) 

In view of Molodenskij's choice of parameters s0 , this solution implies that 

\in~I..: QL = 0 . o . (91) 

Hence the two estimators (49) and (50) become identical, with 

(92) 

with the local mean square error: 

(93) 
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The global mean square error becomes: 

(94) 

Clearly, the errors of Molodenskij 's modification of Stokes's formula are independent of the 

degree (M) of the reference field; rather they depend on the degree L of modification. Due to eqn. 

(69), the resulting truncation error becomes 

(95) 

independent of the choice of degree M. This implies that the smaller truncation error bound for a 

higher-degree (M) reference field discussed earlier must be taken as applying rather to the degree L 

of modification for which M is the lowest bound. 

The Strict Separation Modification 

Frequently the combined solution of the truncated (and modified) Stokes's formula and the 

reference field of degree M is said to be a merger of long-wavelength features given by the latter 

and short-wavelength features given by the former. This separation is generally not rigorous, and 

it is highly dependent on the type of modification of Stokes's function, i.e., the choice of the 

parameters Sn. For some applications, a strict wavelength separation might be advantageous. The 

derivation of such a solution, which we have not found in the open literature, is the intention of 

this section. 

Reconsider the total error ( 62) of the general estimator NM. If Sn is selected in such a way that 

L 2 
V 2 ~ n :S; M ~ L: Q + Sn = - 1 n n- (96) 

then the error becomes 

oN = c L -=I En +c L n-1 - Qn n -Qn .tlgn . A , L 2 S oo [( 2 L JT. L ] 
n=2 n n=L+l 

(97) 

We have thus shown that for this choice of sn, the estimator 
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(98) 

is strictly determined from estimated Laplace harmonics of ~g up to degree L and from observed 
1\ 1\ 

terrestrial gravity anomalies above degree L. Here it is completely irrelevant whether ~gM or ~g is 

the argument under Stokes's integral of eqn. (98). The local and global mean square errors 

become 

and 

(100) 

1\ 

Similarly, we could get the estimator N" and its mean square errors from eqns. (96), (50), (74) 
1\ 

to (76), and (77) to (80). N" and its errors are dependent on the degree (M) of the reference field, 
1\ 

while this is not the case with N' . 

The Least-Squares Modifications 

The least-squares modification minimizes the mean square errors of the solution with respect to 

the choice of the parameters s0 (k=2,3, ... ,L). For each of the general estimators .NM' and .NM", 

one obtains two least-squares solutions: one locally best estimator, minimizing the (local) mean 

square error (eqns. (74) to (76)), and one globally best estimator, minimizing the global mean 

square error (eqns. (77) to (80)). In each case, the MSEs of the general solutions, i.e., equations 

(74) to (76) and (77) to (80), can be written in the following general form [Sjoberg, 1987] 

MSE = a + s T As - 2s Th , (101) 

where a is the MSE without modification, i.e., for all s0 set to zero, A is a symmetrical matrix, and 

h is a vector. For instance 
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(102) 

and 

(103) 

where a1 and a2 refer to the r(MSE) ofN' and N", respectively. 

The minimum variance is obtained for 

dMSE ----as- = As - h = 0 . (104) 

Thus the optimum set of parameters ~ are the solution of the system 

A 
As= h , (105) 

yielding the MSE: 

/\.... A A 
MSE = a - s 1 As = a - s T h (106) 

The elements of A and h are given as follows: 

(a) Least-squares estimator unbiased to degree and order L. 

(i) The locally best estimator: 

Vn,k=2, ... ,L: Ank =.I. .I. (Oni- Eni) (Okj- Ekj) (Qij + Aij) 
1=2 J=2 

(107) 

+ I. I. Eni Ekj ~gi ~gj , 
i=L+l j=L+l 

00 00 

[ 2 J Vn=2, ... ,L: hn =.I. .I. (Oni- Eni) Aij ("'=I- Qj)- QijQj 
1=2 j=2 J 

(108) 

and 
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{ 
1 for i=j 

Oij = 0 for i;t:j 

is the Kronecker symbol, and 

E ._ 2n+1 
m- 2 eni . 

(ii) The globally best estimator (see also Sjoberg [1984b; 1987]): 

2r+1 2k+1 
Vk,r = 2, ... ,L: Akr = Xk Okr- - 2- Xk ekr- - 2 - Xr erk 

2k+1 2r+1 00 

+ - 2 - --2- L enk enr Xn, 
n=2 

2(cr~)2 
Vk = 2, ... ,L: hk = k-1 - Qk Xk 

2k+ 1 oo [ 2 T 2] +-2- n~2 Qn enk Xn- n-1 enk (cr n) 

and 

where 

Xn = (o-!)2 + { 

( crs)2 for 2~n~L n 

Cn for n>L 

25 

(109) 

(110) 

(111) 

(112) 

(113) 

(114) 

(115) 
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(b) Least-squares estimator unbiased to degree M (degree and order of the reference field.) 

(i) The locally best estimator: 

and 

where 

DO DO * 
Vn,k=2, ... ,M: An1c = .L .L (Oni- Eni)(Okj- Ekj)(Aij + Oi1.) 

1=2 J=2 

Vn=2, ... ,M: hn = r r (oru-Eni) [(·21 - Q1·)Ai1·-Q~. ] 
i=2 j=2 j- 1J 

* { !lij n .. = 
1J 

0 

for ivj~M 

otherwise 

(ii) The globally best estimator: 

and 

a=c2[I(·2
1 -Qil2(o:!) 2 + I Q~x~*], 

i=2 1- ) 1 i=2 1 1 

where 

26 

(116) 

(117) 

(119) 

(120) 

(121) 

(122) 
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for 2 ~ n ~ M 
(123) 

for n > M 

and 

for 2 ~ n ~ M 
(124) 

for n > M 

Final Remarks and Conclusions 

The generalized Stokes approach parallels the classical Stokes approach when the reference 
ellipsoid is replaced by an M-th degree spheroid, normal gravity y0 on the reference ellipsoid is 

replaced by a model gravity "f1 on the spheroid, and the Stokes integration kernel S is replaced by 

the spheroidal kernel SM. In standard geodetic practice, gravity values g are reduced to gravity 
anomalies ~g by subtracting normal gravity y0 . In the context of the generalized Stokes approach, 

gravity values are reduced even more by subtracting the model gravity yM to obtain generalized 

gravity anomalies ~gM. For growing M, the ~gM tends to zero, and for n > M the harmonic 

components ~~ become identically equal to the harmonic components gn of the gravity itself. 

In both the classical Stokes approach and the generalized Stokes approach, the spherical 

approximation causes an error in the evaluated geoidal height but for growing M the error 

diminishes. For M = 20, the error is estimated to be within a few centimetres. In both 

approaches, the error in the reference field (second degree and M-th degree, respectively) has to be 

treated separately, and both approaches are oblivious to the scale of their respective reference 

surfaces and their geocentricity. 

The main advantage of the generalized Stokes approach is that the integration kernel SM 

converges rapidly to zero for the growing integration distance. Consequently, the effect of 

individual gravity anomalies vanishes more rapidly with distance from the point of interest, and the 

numerical evaluation of the convolution integral may thus be truncated much closer to the point of 

interest to achieve the same accuracy as with the classical Stokes approach. Thus the evaluation of 

the generalized Stokes convolution integral requires less computational effort. 

Various modification schemes may also be used for practical evaluation of the generalized 

Stokes convolution integral. It turns out that if the classical Molodenskij modification is used with 

modification of degree M, the modified SM has exactly the same shape as the original Molodenskij­

modified S. However, the upper bound of the truncation error for the same radius of integration 

'l'o is significantly smaller. 
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We have considered two generic models {F~M' and N"M'') for the modification of Stokes's 

formula for a higher-degree reference field. For unbiased data, the first model is locally unbiased 

to the degree of modification (L) which equals to the maximum degree of harmonic coefficients, 

while the second model is locally unbiased to the degree (M :s; L) of the reference field. The error 

of N"M' is therefore independent of the choice of M, while the error of N"M" is generally dependent 

on M. The choice between the two models, and the choice of degree M for N"M" are still open 

questions. However, for Molodenskij's modification, the two estimators coincide. The Examples 

2 and 4 in Sjoberg [1987] show that the biased least-squares estimator is superior to the unbiased 

estimator in the limiting case of a vanishing cap size. These examples also indicate that a low­

degree reference field is to be preferred in this particular case. 

We have derived a new type of least-squares estimator, namely the locally best one. Its 

application is restricted by the limited knowledge of the local error covariance functions of 

terrestrial gravity, the correlations among the potential coefficients, and the high degree spectrum 

of gravity. These limitations are considerably relaxed in the more modest global least-squares 

modifications. 
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