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ABSTRACT 

Over the past four years, different research groups involved in the application 

of the Global Positioning System (GPS) have investigated the possibility of solving for 

a combination of dynamical and orbital parameters, along with the station coordinates, in 

order to obtain geodetic solutions below the 1-ppm relative accuracy level over large 

networks. 

It has been shown, using the GPS carrier phase, that this modelling can yield 

solutions at the 0.1-ppm level or below. These results have been obtained using orbital 

arcs modelling varying in length from 1 to 6 days. 

The scope of this thesis is to develop and demonstrate that a similar procedure 

over orbital arcs of about 6 to 8 hours can yield results of the same level of accuracy 

over large networks. We implemented our algorithms in the University of New 

Brunswick GPS software DIPOP 2.0 to demonstrate some results. 

First, a numerical integrator was developed in order to generate short-arc a 

priori trajectories (up to 8 hours) rigourously related to the initial satellite state vectors. 

A force model including the earth's gravitional potential up to degree and order 10, the 

luni-solar gravitational perturbation and a simple solar radiation pressure model have 

been implemented. Afterwards, Keplerian motion is used, in the final least-squares 

adjustment, to approximate the partial derivatives with respect to the initial conditions. 

Our orbit modelling was tested with a subset of the TI 4100 data from the 

Spring 1985 High Precision Baseline Test (HPBT) campaign (including baselines up to 

4000 km). Free-network as well as fiducial network solutions were compared. It will 

be shown that, over long baselines, that these global-network solutions as well as the 

daily-network solutions are at the 0.1-ppm relative accuracy levels. Over shorter 

baselines, the repeatability is at the 0.25-ppm level. 

To further assess the quality of the improved orbit, a pure orbit solution was 

performed in order to produce a set of improved initial conditions. Short-arc orbits are 

then numerically integrated from these improved state vectors, which in tum are used to 

solve a long and a short baseline vector. The relative accuracy of these solutions is at the 

same level as the previously stated accuracies. These results really demonstrate that the 

Keplerian approximation used to compute the partial derivatives with respect the satellite 

initial state vectors is well justified when short-arc approach is used. 
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1. INTRODUCTION 

Although the Global Positioning System (GPS) is not fully operational, it is 

currently used for geodetic applications by several private companies [Leeman et al., 

1985; Cain, 1986; Collins and Leick 1985; McLellan and Schleppe, 1987; Klau, 

1986, Lachapelle and Cannon, 1986] and by some government agencies [MereU, 

1986a; Strange, 1985; McArthur et al., 1985; Moreau et al., 1985; Tessier, 1987; 

Jones et al., 1987; Willis et al., 1986]. Most of these applications have demonstrated 

clearly that phase observations with broadcast ephemeris can provide daily solutions at 

the 1-3 ppm relative accuracy level [Vanicek et al., 1985; Delikaraoglou, 1985; 

Remondi, 1984]. 

When phase observations are used to compute precise geodetic coordinates, the 

principal biases affecting the solution are: the correct phase ambiguity resolution, the 

ionospheric and tropospheric delay, the satellite and receiver clock misalignment, the 

multipath effect, and finally the satellite orbit errors. The observation pre-processing can 

be, to some extent, a factor affecting the solution, for example, the capability to correct 

cycle slips exactly, the optimization of the cut-off angle in order to use the tropospheric 

models properly. Over short-baseline vectors(< 20 km), the effect of the tropospheric 

delay, ionospheric delay and ?rbital errors are of the same order of magnitude (highly 

correlated) at both ends of the baseline. Thus, by differencing the observations from 

one satellite recorded at both stations (single-difference observable), these biases tend to 

cancel out; moreover, the satellite clock misalignment cancels out as well. The receiver 

clock error can be removed by differencing two single-difference observations to two 

different satellites, from a common epoch (double-difference observable). The multipath 

effect can be handled, to a certain extent, by removing all reflecting objects surrounding 

the GPS antenna. For high-precision observations, absorbing material can be used 

around the base of the antenna. When double-difference observables are used over 

short-baselines, the integer value of the ambiguities is usually recovered and fixed in a 

subsequent adjustment to yield a strengthened solution. Usually all solutions over 
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small-scale networks(< 20 km) are at centimetre-level accuracy. 

Over longer baselines, the correlation of the biases at each site decreases and 

mathematical models are required to correct the observations properly; dual-frequency 

observations must be used to correct the bulk (first-order term) of the ionospheric delay 

at each site, whereas surface meteorological data are necessary to model the dry part of 

the tropospheric delay properly; the wet part component can be poorly approximated by 

a surface meteorological model or estimated more accurately using water-vapor 

radiometer (WVR) observations [Ware et al., 1985]. The remaining (unmodelled or 

mismodelled) biases are the second-order term of the ionospheric delay, which is, at the 

present time, of the order of few centimetres [Kleusberg, 1986] (to get worse as the 

sunspot maximum approaches); the mismodelled effect of the wet part of the 

troposphere (when surface meteorological values are used), which is at the centimetre 

level [Hogg et al., 1981], and finally the orbital errors, which can easily reach, for 

broadcast orbits, up to 25-50 metres. 

Among these unmodelled biases over long baselines, the orbital error (with 

broadcast ephemerides) is certainly the most important one affecting the GPS phase 

solution. The systematic effect of the orbital errors is evident in the double-difference 

residuals plot from a long-baseline solution. Fig. 6.8 is an example of such a plot. 

The orbital error has been investigated by Vanicek et al. [1985]. They 

demonstrated that the relative accuracy of a baseline vector obtained from 

double-difference GPS observations can be related to the satellite position error by a 

simple rule of thumb: 

db 

b = 
dr 
r 

(1.1) 

where db is the baseline error, b is the baseline length, dr the orbital error and r is the 

receiver-satellite distance (-20 000 km). According to this relation, 25-metre errors in 

the satellite trajectory will give a relative baseline accuracy of the order of 1 ppm. On the 

other hand, two different results obtained on the same baseline, with orbit differences of 

up to 60 metres (JPL and MIT orbit), have produced compatible solutions at the 0.4 ppm 

level [Ware et al., 1986]. Moreover, with broadcast ephemerides, which are known to 

be at a 25-50 m accuracy level, Kleusberg and Wanninger [1987] recently obtained a 

network solution at a 0.3 ppm level. Although these latest results can be achieved by 

averaging the orbital errors over long observation periods, the relation (1.1) in fact 
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represents the maximum error introduced by a satellite trajectory and should be 

considered as a pessimistic approximation. 

To study the possibility of estimating the orbital biases in a network solution, 

Thornton et al. [1983] used equation (1.1) in the inverse sense: if there is a tracking 

station network of high accuracy (better than 0.1 ppm), these stations, held fixed, can be 

used for precise orbit determination. They conducted a covariance analysis using 

POLARIS VLBI sites as fixed tracking stations (Westford, Richmond, Fort Davis) and 

concluded that an orbit accuracy of better than 3 metres is achievable with Doppler 

observations, and their results were even better with carrier phase observations. 

Beutler et al. [1984a] introduced, in their double-difference analysis programs, 

PRMAC3 and PRMNET, a physical modelling of the orbit allowing the estimation of up 

to six corrective terms to the initial osculating elements for each satellite involved in the 

least-squares solution. At that time, with the data at hand (a small network), he did not 

really demonstrate the benefit of this procedure. 

Beutler with his second generation Bernese software [Gurtner et al., 1985] and 

a part of the 1984 Alaska GPS data set, showed that over large networks (1000-km 

baselines), a solution with orbital parameters estimation can lead to a network accuracy 

of the order of a 0.25 ppm [Beutler et al., 1985]. 

The covariance analysis previously described has led to the fiducial network 

concept [Davidson et al. 1985]. In the fiducial network approach, simultaneous 

observations are performed by fixed receivers at stations whose positions are known 

with high accuracy (fiducial points) and by mobile receivers placed at sites of geodetic 

interest. Observations recorded in such sessions enable the simultaneous determination 

of accurate GPS satellite orbits and geodetic baselines. To demonstrate the possibility of 

this fiducial concept, the Jet Propulsion Laboratory (JPL), in conjunction with 17 other 

institutions, conducted a high-precision baseline test (HPBT) in the spring of 1985. Ten 

sites distributed throughout the United States were occupied by GPS receivers for ten 

days. 

Nakiboglu et al. [ 1985] concluded, in a report produced for the Canadian 

Government, that GPS satellite orbits, over Canadian territory, can be computed at a 

2.5-metre accuracy level with four tracking stations tied to VLBI sites. This analysis led 

the Canadian Geodetic Survey to undertake the Active Control System (ACS) project 

[Delikaraoglou et al., 1986]. One of the principal goals of this project is to establish a 
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set of Active Control Points (ACP) as a zero-order network. First, these ACPs will be 

used to compute precise orbits, and second, by making available the observations 

recorded at each site, the network will be an accessible reference geodetic network. This 

new concept of a reference system involving GPS technology has begun to be 

investigated by other govemement agencies [Merrell, 1986b]. 

At the Fourth International Geodetic Symposium on Satellite Positioning held in 

1986, some preliminary results on GPS orbit estimation were presented based on the 

analysis of the HPBT data set [Abbot et al., 1986; Beutler et al. 1986; Williams, 1986; 

Wu et al., 1986]. All conclusions showed that results of the order of a few parts in a 

107 accuracy level in the station coordinates and baseline length are achievable. 

Beutler et al. [1987a] presented an improved solution for the 1984 Alaska GPS 

campaign using the whole data set (5 receivers, 8 stations). A comparison of the GPS 

and VLBI solutions, established through a seven-parameter tranformation, showed an 

agreement of the order of 0.1 ppm for the station coordinates. The approach used by the 

Bemese group to solve the orbit problem is slightly different than the fiducial approach. 

It is a solution, known as free-network, where the station and satellite coordinates are 

allowed to vary simultaneously in an adjustment by way of imposing relatively strong a 

priori constraints on the orbits and letting the terrestrial network adjust freely 

[Delikaraoglou, 1987]. 

Some other results on GPS solutions including orbital parameters were 

presented at the IUGG meeting held in Vancouver in 1987 [King et al., 1987; 

Delikaraoglou, 1987]. It was concluded that agreement between results from different 

research groups (Berne, Jet Propulsion Laboratory, Massachusetts Institute of 

Technology, National Geodetic Survey) was below the 0.1 ppm level in baseline-length 

repeatability. 

Most of the results presented have been obtained from a 2-day (or more) orbital 

arc length. Although some analysis have been done on the capabilities of a solution over 

short-arc orbits (6-8 hrs), very few results (other than simulation) have been presented 

in the literature. One of the main interest of the short-arc approach is the simplified force 

model that can be used to generate the satellite orbits as well as the possibility to used the 

Keplerian approximation to generate the partial derivatives with respect the initial state 

vectors. 

The scope of this thesis is to develop and to implement a short-arc orbit 
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improvement model in DIPOP 2.0 [Santerre et al., 1987a], the UNB GPS relative 

positioning program, using the double-difference observable. It will be shown, using a 

subset of the previously described HPBT March 1985 data set, that a short-arc orbit 

improvement of- 6-8 hours can easily produce results of the order of 0.1 - 0.2 ppm 

relative accuracy level in a network mode (including few observation sessions) or even 

in a daily network solution. 

As will be explained later, a rigourous orbit improvement procedure implies that 

all satellite positions must be functionally related epoch to epoch. Thus, the equations of 

motion, describing the satellite trajectory, must be integrated from a set of initial 

conditions. A short-arc orbit integrator has been developed allowing initial conditions to 

be computed from broadcast ephemerides. 

The processing of the HPBT TI 4100 data set gave us a severe problem at the 

pre-processing stage, the data being extensively corrupted by cycle slips. This problem 

led us to develop a dual-frequency code-receiver pre-processor having the capability (to 

a certain extent) to detect and correct the cycle slips automatically. 

The principal contributions of this thesis can thus be divided into three parts: 

the development of a procedure to detect, estimate and correct cycle slips in dual 

frequency double-difference data, the development of an orbit integrator, and finally the 

development of a technique to estimate the orbital parameters in DIPOP 2.0 software. 

The thesis has been organized in the following way: 

- Chapter 2 describes the physical approaches used in orbit improvement to estimate 

the orbital parameters; the Keplerian orbit, the perturbed orbit as well as the GPS 

force model are discussed. 

- Chapter 3 deals with the orbital integrator. The equations of motion, the inertial 

system, the force model, the integration technique and the orbit representation are 

described. 

- Chapter 4 is dedicated to our pre-processor. The automatic procedure and 

algorithms used to detect and correct the cycle slips are explained. 

- Chapter 5 is devoted to the GPS observation modelling used in our processing. The 

current DIPOP 2.0 overall adjustment procedure is described and our major 

modifications are presented. 

- Chapter 6 gives the results of the analysis of 4 days of the HPBT March 1985 data 

set. 
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2. ORBIT IMPROVEMENT CONCEPT 

2.1 Statement of the problem 

As is well known in Newtonian mechanics, the motion of a body in an inertial 

system can be easily described if the forces acting on the body are known. The 

dynamics of the body are usually expressed by the equations of motion, which provide a 

relationship between the state vector of the body at any given time and its initial state. 

The equations of motion describing a satellite's trajectory, in a geocentric inertial 

rectangular coordinate system, are of the form: 

GMr 
r" = + P" 

where: 

r" is the total acceleration vector of the satellite, 

GM is the geocentric gravitational constant, 

r is the satellite position vector, 

P" is the vector sum of all perturbing specific forces (force per unit of 

mass) acting on the satellite. 

(2.1) 

As in every differential equation, a unique solution of equation (2.1) is defined 

only when the initial state of the system is known, i.e. a set of integration constants or 

initial conditions must be provided. Equation (2.1) being a second-order differential 

equation in a vectorial form (3-d system), six initial conditions are required: the initial 

position (x,y,z) and velocity (x', y', z') of the satellite or its equivalent osculating 
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Keplerian elements at the initial epoch: the semi-major axis of the orbit a0 , the 

eccentricity e0 , the inclination of the orbital plane i0 , the argument of perigee Ct>0 , the 

ascending node .00 and the time of perigee passage T0 • The transformation of a set of 

Cartesian positions and velocities at a given epoch into osculating Keplerian elements 

can be found in Martinet al. [1980]. 

Integration of equation (2.1) produces a set of satellite positions and velocities 

as a function of the initial conditions. An orbit improvement process involves the 

estimation of corrections to these initial conditions in order to estimate the best orbit from 

satellite observations obtained at sites of known position or whose coordinates are to be 

estimated simultaneously with the initial condition corrections [King et al. 1985]. These 

corrective terms are usually referred to as orbital parameters or orbital biases. The 

corrected initial conditions can be used, afterwards, to re-evaluate (by integration) a new 

set of satellite positions and velocities to be used in a subsequent solution. In a more 

general sense, some dynamical parameters, which are coefficients in the perturbing 

forces expression (GM, geopotential coefficients, solar radiation pressure coefficients, 

air drag coefficients, etc.) can be estimated in the same way. The determination of the 

six initial values, required in the improvement process, is usually referred to as orbit 

determination [Escopal, 197 6]. 

Some other methods can be used to minimize the orbit errors. For example an a 

priori orbit obtained from a broadcast ephemeris can be approximated by some 

polynomial functions (e.g. Chebychev polynomial) where the coefficients can be 

estimated in the least-squares solution using observational data. The program GEODOP 

developed to anaJyse the TRANSIT signal, used a procedure where the orbital arcs are 

simply shifted and rotated. Although this technique can give interesting results 

(especially over small areas), the resulting orbital arcs are not a specific solution of the 

equations of motion, and are thus, physically imprecise [Vanicek et al., 1985]. 

Because the physical modelling approach (using an appropriate force model) is . 
more rigorous, it has been decided to follow this procedure to develop our orbit 

improvement procedure. In order to explain the principles of the physical modelling 

solution, the non-perturbed and the perturbed motion of a satellite are described in the 

following sections. 
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2.2 K«Plerian orbit 

A spacecraft orbiting in a central force field without perturbations follows an 

elliptic trajectory which is known as a Keplerian orbit. The satellite motion in a central 

force field is also known as a two-body problem. The interesting point about this 

problem is that an analytical solution is possible. The solution, for planetary problems, 

was obtained at the beginning ofthe 17th century by J. Kepler and is summarized in his 

three famous laws: 

- within the domain of the solar system all planets describe elliptical paths with 

the sun at one focus, 

- the radius vector from the sun to a planet sweeps equal areas in equal times, 

- the squares of the periods of revolution of the planets about the sun are 

proportional to the cubes of their mean distances from the sun. 

z 

Keplerian orbit 
FIGURE 2.1 
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These laws can be naturally extended to a satellite orbiting the earth. Although 

the mathematical expressions of these laws can be described in a Cartesian coordinate 

system, the usual way to represent an orbit is by means of the so-called Keplerian 

elements. Fig. 2.1 describes the geometry of the Keplerian orbit. 

The shape and size of the elliptic path is given by the semi-major axis a and the 

eccentricity e; the orientation of the orbital plane with respect the inertial system is given 

by the inclination i and the right ascension of the ascending node !2 ; and finally the 

position of the satellite on the ellipse is fixed by the argument of perigee ro and by the 

satellite anomaly or the time of perigee passage T. The perigee being the point of the 

satellite's closest approach to the earth, and the apogee being the point of farthest 

recession, both the perigee and the apogee lie at the ends of the semi-major axis of the 

orbital ellipse, called the line of apsides [Vanicek and Krakiwsky, 1986]. The satellite 

anomaly is the angular distance between the perigee and the satellite position on the 

ellipse. There are three kinds of anomaly, all of them related to each other. 

line of apsides 

-t-x-----1 
1-------a 

Orbital plane coordinates 
FIGURE2.2 
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The true anomaly f is the angle between the line of apsides and the line joining 

the focus to the satellite (see Fig. 2.2). The eccentric anomaly E is the angle between 

the line of apsides and the line joining the geometrical centre of the ellipse with the 

projection of the satellite position on the concentric circle of radius a . The mean 

anomaly M is the true anomaly corresponding to the motion of an imaginary satellite of 

uniform angular velocity. 

The relationship between the true anomaly f and the eccentric anomaly E is 

easily deduced from Fig. 2.2 as: 

tan/ = ( 1 - e 2 )112 sinE 
cos E - e 

(2.2) 

The relationship between the eccentric anomaly E and the mean anomaly M is 

given by Kepler's equation: 

M = E - e sinE (2.3) 

The mean motion n is a function of the geocentric gravitational constant GM 

and the semi-major axis a : 

n =$ (2.4) 

The mean anomaly M , the mean motion n, and the time of perigee passage T 

are related as follows: 

M 
n = 

(t - T) 

M-M 
0 = (t - T ) 

0 

(2.5) 

T is defmed as the time when M = 0, i.e. the epoch of the perigee passage, but T can be 

arbitrarily chosen as well at an epoch T0 where M = M0 • 

The vis viva integral is also an interesting result deduced from the Keplerian 

orbit; it relates the specific kinetic energy K (kinetic energy per unit of mass) at a given 

epoch to the magnitude of the velocity r', the magnitude to the radius vector r, and the 

semi-major axis a : 

K = lr'l2 = GM (~ _ .!.) 
2 2 lrl a 

(2.6) 

Usually, the mean anomaly Misgiven (e.g. GPS broadcast message) and the 

eccentric anomaly E is required in order to compute the satellite Cartesian coordinates, 
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the coordinates being computed with the true anomaly f, which in tum is a function of E 

(eq. 2.2). This can be done by solving Kepler's equation (2.3) iteratively by a technique 

known as Newton's false root method [Krakiwsky and Wells, 1971]. Taking the total 

differential of equation 2.3, 

8M = (1 - e cos E) liE (2.7) 

Given M, we can start the iterative process by making E0 = M; using eq. 2.3 we have: 

E "" M + e sin M (2.8) 

The iterative process is then performed using the following set of equations: 

M. = E. - e sin E. 
1 1 1 

8M = M - Mi 

liE 
8M 

= 1 - e cos E. 
1 

E. 1 = E. + liE (2.9) 
1+ 1 

The process is repeated until convergence (i.e. 8M is less than a certain small 

value). For small values of e, only two or three iterations are usually necessary. 

For the computation of Cartesian satellite coordinates, let us assume for the time 

being that the coordinate system is an inertial frame defined as a right-handed system 

with a Z axis parallel to the CIO pole (average position of the rotation axis during the 

period 1900-1905) and an X axis directed towards the true vernal equinox (see Fig. 

2.1). The procedure to obtain such a system is discussed in Section 3.3. 

The first step is to compute a set of coordinates in the orbital plane, which is a 

rigth-handed system with an x axis being the line of apsides, the z axis perpendicular to 

the orbital plane. According to Fig. 2.2 and equation 2.2 we have: 

:L 
cos/ 

a (cosE - e ) 

sin/ a (1 - 2)112 . E (2.10) = r = e SID 

0 0 

The inertial coordinates are obtained afterwards by three successive rotations to 

take into account the perigee angle, the inclination of the orbital plane and the right 
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ascension of the ascending node: 

X X 

y (2.11) 

z z 
inertial orb 

The rotation matrices R3 and R1 are defmed in Vanicek and Krakiwisky [1986]. 

In a central force field, five of the six Keplerian elements are constant; only the 

anomaly varies with time. From this point of view, a Keplerian orbit is known as a 

stationary orbit, since the elliptical path of the trajectory does not vary with time. When 

a satellite orbits the earth, its real trajectory departs from a Keplerian orbit since the force 

field acting on the satellite is not a perfect central force field. 

There are perturbing forces, from different sources, acting on the spacecraft 

which cause the actual trajectory to depart from the ideal Keplerian orbit (elliptical 

motion). This real trajectory is still defined by Keplerian elements, but in this situation 

all of these are time-varying. At each epoch t, there is a specific set of Keplerian 

elements (osculating elements, a(t), e(t), i(t), .Q(t), c«:t), T(t)) defining an ellipse which 

describes the instantaneous trajectory (osculating orbital ellipse); i.e, for a specific epoch 

t, the satellite rectangular coordinates can be computed with the previous formulas using 

these osculating elements. The inverse situation is the same: given a set of Cartesian 

coordinates and velocities, a set of osculating elements can be computed. 

2.3 Perturbed orbit 

The variation of Keplerian elements in time results in the regression of the 

nodes about the polar axis, constantly changing inclinations, the rotation of the line of 

apsides, and variations in the size and shape of the ellipse and the time of perigee 

passage. These perturbations can be classified by their period, and it is customary to 

divide them into secular, long-period, and short-period perturbations. In the case of 

secular perturbations the orbital element in question varies linearly (or very nearly so) 

with time. The long-period perturbations cause variations in the elements with relatively 

long periods. All other variations are short-period perturbations [Mueller, 1964]. 

These perturbations are usually expressed in the form of disturbing potential 
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functions R, which are to be added to the potential function describing a central field. 

The time derivatives of these elements, or linear perturbations, are given by the 

well-known Lagrangian equations [Mueller, 1964]: 

dQ 1 
= 

dt 
sini 

di 
dt = 1 • ( :: cosi - ~~) 

n a 2 J 1 - e 2 sini 

dro 
dt 

da 

dt 

de 
dt 

dT 

dt 

= 
-cos i 

2 r:---i 
na v1-e 

2 aR 
= 1ili ·aM 

2 1-e 
= --· 2 

na e 

.-
sini 

2 
1- e ()R 2 ()R 

= 22 ·ae + -2-·aa 
n a e n a 

+ 
p 

. -

2 
na e 

(2.12) 

These perturbations are also known as first-order perturbations. For long- and 

short-period perturbations, a second-order correction can be obtained by solving 

equation set (2.12) a second time using the frrst-order results [Kaula, 1966]. 

The perturbing forces acting on earth satellites may be divided into two groups: 

gravitational and non-gravitational effects. By far the most important component of the 

gravitational effects is the one arising from the non-central part of the gravitational field, 

the elliptic term J2 being the most important. The third-body effect is another source of 

gravitational disturbance. All surrounding celestial bodies possess their own attracting 

potentials, which "interfere" with the earth's attracting potential, the most important 

being those generated by the sun and the moon. Although of less importance, ocean 

and earth tides, which cause a variation of the mass distribution, introduce some 

perturbations which are also included in the gravitational effects. 

Non-gravitational perturbations have less effect than gravitational perturbations 
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but should be taken into account to accurately model the satellite trajectory. One of the 

most important for low-orbiting satellites is air friction or drag. Since the atmospheric 

density decreases in altitude, the motion of a low-altitude satellite is more perturbed by 

collisions with air molecules than satellites orbiting at high-altitude. The magnitude of 

this force depends on the velocity (function of the altitude), the shape and size of the 

satellite as well as the atmospheric density. 

The radiation from the sun in a whole spectrum of frequencies introduces 

another perturbation force, known as solar radiation pressure. This force is exerted by 

collisions of incoming photons, which are either absorbed or reflected and, in the 

process, they transfer some of their momentum to the spacecraft [Colombo, 1986]. The 

effect of this force depends largely on the mass of the satellite as well as its shape. 

Lighter and larger satellites are more affected than heavier and smaller ones. At higher 

altitudes this force is more important than air drag, even for small and heavy satellites. 

The direction of the biggest part of this force is usually given by the sun-satellite 

direction, but in certain cases, the solar radiation pressure can introduce a component in 

another direction due to different external factors, such as misalignment of the solar 

panel. This component is usually of less magnitude. The Y-bias effect on the GPS 

satellite is an example of such a perturbation [Fliegel et al., 1985]. 

The solar radiation also introduces an indirect effect: albedo pressure. This is 

simply the pressure of the portion of the direct radiation which is reflected from the 

surface of the earth. The disturbing acceleration introduced by this indirect effect is 

approximately two orders of magnitude smaller than the direct effect [Rizos and Stolz, 

1985]. 

The list of non-gravitational forces can be extended to obtain more and more 

accurate modelling. These forces can range from the virtual effect introduced by the 

equations of motion written according to Newtonian mechanics, which neglects the 

relativistic effects [Martinet al., 1985], to the electromagnetic effects caused by the 

interaction between the electrical charge acquired by the satellite in the ionosphere and 

the magnetic field of the earth. However, for the level of accuracy sought for our orbital 

modelling (at the metre level), the perturbing forces described previously are the most 

important. 

The disturbing acceleration vector sum, P", of equation (2.1) can thus be 

written in a more detailed form: 
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Pll = pll + P11d + ~ pll. + P11 + P11 + P11 + P11 • + ~ pll (2.13) g .l..J tJ ot et rd n .l..J neg(i) 
i =1 i=l 

where: 

P 11 is the vector sum of all perturbing accelerations acting on the 

close-orbiting satellite, 

P11g is the disturbing acceleration caused by the non-central part of the 

gravitational field, 

p II d is the disturbing acceleration caused by the air drag effect, 

pllti is the disturbing acceleration introduced by the third-body effect from a 

celestial body i, 

p 11
01 is the disturbing acceleration introduced by ocean tides, 

P11et is the disturbing acceleration introduced by earth tides, 

P11rd is the disturbing acceleration caused by the direct effect of the solar 

radiation pressure, 

P11 ri is the disturbing acceleration caused by the indirect effect of the solar 

radiation pressure (albedo effect), 

P11neg(i) is the sum of all neglected disturbing accelerations i. 

If all the perturbing accelerations which are part of equation (2.13) were 

known, the satellite trajectory would by perfectly described. It is of course impossible 

to model all of these accelerations for the simple reason that not all of them are perfectly 

known and analytical expressions are impossible to obtain or are simply inaccurate. 

The unmodelled perturbing accelerations will contaminate the satellite 

coordinates through the integration process as the integration interval or arc length 

increases; i.e. the absolute effect of an unmodelled acceleration is magnified in a long 

integration interval. Thus, for short-arc integration, only the principal disturbing 

accelerations have to be modelled in order to respect certain accuracy criteria, but to 

respect this same criteria over long orbital arcs, a better force field must be used. 

The solved-for station coordinates from GPS observations being a function of 

the satellite coordinates, the compromise between the arc length and the force field is an 

important aspect of an orbit improvement process. The next section describes our 

adopted force field model for the GPS satellites. 
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2.4 GPS force model 

The conventional way to analyze the effect of a perturbing force on the orbit 

trajectory (or Keplerian elements) is by means of the Lagragian equations. The potential 

of the disturbing force is introduced into the equation set (2.12) in order to evaluate the 

variation in Keplerian elements. This analytical procedure requires the disturbing 

potential in terms of Keplerian elements. This representation is rather complex to obtain 

and is not within the scope of this thesis. 

Today, with computer facilities, the problem can be analyzed, to some extent, 

by a numerical approach. All possible forces are modelled and a reference trajectory is 

generated by integration; afterwards, the force field is modified by subtracting a specific 

force, and a new trajectory is generated according to this modified force field. The two 

trajectories can thus be compared to analyze the effect of the subtracted disturbing 

forces. Such analyses, for GPS satellites, have been performed by different 

investigators [Nakiboglu et al., 1984, Rizos and Stolz, 1985; Landau and Hagmaier, 

1986]. Similar results are presented in chapter 6. 

Table 2.1 summarizes the principal perturbations acting on the GPS trajectory 

with their magnitudes as a function of arc length. The current GPS satellites orbit 

approximately 20 000 km above the surface of the earth on a nearly circular orbit, with 

an inclination of -64 °. At this altitude, the atmosphere density is almost negligible and 

thus the air drag effect is negligible. However, at this altitude the direct effect of the solar 

radiation pressure is rather important. 

It is clear from Table 2.1 that the accurate modelling of a satellite trajectory is a 

function of the arc length. For the purposes of this thesis. we have decided to use a 

short-arc orbit modellin~ C-6-8 hours) allowin~ a simple force-field model to respect the 

2.5-metre level accuracy in satellite position in order to reach network solution at the 

-Q.1 ppm level (see eq. 1.1). Thus, the earth's non-central gravitational field, the sun's 

and moon's gravitational attraction and the direct solar radiation pressure will be taken 

into account in our equations of motion along with the central part of the earth's 

gravitational field. The mathematical expression of these perturbing forces as well as the 

integration technique used will be discussed in Chapter 3. 

The next section describes the different approaches used to compute the partial 

derivatives included in the linearization of the satellite position as a function of the initial 
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state vector when the dynamical approach is used. 

Source average acceleration 
(m/sec2) 

perturbation 
(m) 

Earth's non-sphericity 

J2 term 

other harmonics 

Third body effect 

Sun+ moon effects 

Tidal effects 

earth tides 

ocean tides 

Solar pressure 

direct effect 

indirect effect (albedo) 

5 x w-5 

3 x w-7 

5 X lQ-6 

1 X 1Q·9 

1 X lQ-9 

1 x w-7 

1 x w-9 

3-hour arc 

-2000 

5-80 

5- 150 

5-10 

Effects of perturbing forces on GPS satellites 
(from King et al., 1985) 

TABLE2.1 

2.5 Dynamical solution 

2-day arc 

-14 000 

100- 1 500 

1000-3 000 

0.5- 1.0 

0.0-2.0 

100- 800 

1.0- 1.5 

The improvement problem will be solved by least-squares techniques where 

observations are involved. These observations, which will be described in Chapter 5, 

are a function of the station coordinates, satellite coordinates and all other parameters 

involved in the solution, such as ambiguities, relative clock misalignment, etc. The 

linearization of the observations as a function of satellite coordinates is straightforward 

(see Chapter 5), but these satellite coordinates are in tum non-linear functions of the 

initial state vector of the satellite. 

Let us assume for the time being that our epoch state vector (S) contains the 
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initial state of the satellite at the initial epoch ( t0 ) and one dynamical parameter Cr related 

to the solar radiation pressure. All the other parameters (the geocentric gravitational 

constant, GM; the geopotential coefficients, Cn,mand Sn,m' etc.) are assumed to be 

known with sufficient accuracy: 

s = { xo, y o• zo, x'o• y'o• z'o• cr}. 

The linearization procedure of the satellite trajectory assumes that an a priori 

orbit r a(t) obtained from a state vectorS must be improved in order to obtain a correct 

(in a least-squares sense) orbit r(t) from an improved set of initial conditions S'. The 

linearization can thus be written in the following form [Beutler et al., 1984a]: 

r(t) = ra(t) + t [ a;:~t)] ( si' - si) (2.14) 
1=1 I 

where the terms si and s\ are elements of the vectorS and S'. 

There are two ways to compute the partial derivatives of the satellite position 

r a(t) with respect the state vectorS: a numerical procedure and an analytical one. The 

numerical procedure calls for a numerical integration process where the partial 

derivatives are the solution of second-order differential equations known as variational 

eQuations. In orbit problems these partials are therefore known as variational panials. 

The variational equations have the same relationship to the variational partials as the 

satellite position vector does to the equations of motion [Martinet al., 1980]. These 

equations are usually written in matrix form. To do this, let us write equation (2.1) in the 

following form: 

r" = VU + p" r (2.15) 

where all the gravitational perturbations as well as the central part of the gravitational 

field are regrouped and represented in a potential form U, p"r being the acceleration 

introduced by the direct solar radiation pressure effect. All other non-gravitational 

perturbations have been discarded for the demonstration. By differentiating equation 

(2.15) with respect to the state vectorS, we obtain the variational equations in vector 

form: 
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ar" 
as 

a = -(VU + p") as r 
(2.16) 

The variational partials (artaS) being a solution of equation (2.16), the 

similarity to the equations of motion is obvious. It must now be understood that the 

potential field is only a function of position; thus, the components of the first term of the 

right-hand side of equation (2.16) can be written as follows: 

(2.17) 

It must also be understood that the partials of the solar radiation pressure with respect to 

the satellite velocity are zero and with respect to the satellite position are negligible 

[Martin et al., 1980]. Accordingly, the variational equations in matrix form can be 

written as follows: 

F = AX + K (2.18) 

where the matrix F represents the left hand-side of equation (2.16): 

ax" ax" ax" ax" ax" ax" ax" 

axo ayo az0 ail ay'o az· acr 0 0 

ay" ay" ay" ay" ay" ay" ay" 
F = ax ayo az ax· ay· az· acr 

(3x7) 
0 0 0 0 0 

az" az" az" az" az" az" az" 
ax ay az ax· ay· az· ac 

0 0 0 0 0 0 r 

where the vector {x, y, z, x', y', z', x", y", z"} is the satellite position, velocity and 

acceleration at epoch (t). The matrix A contains the partial derivatives of the potential 

field U with respect the satellite position at epoch (t): 
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iu iu iu 
0 0 0 

ax ax axay axaz 

A 
iu iu iu 

0 0 0 = ayax ayay ayaz 
(3x6) 

iu a2u iu 
0 0 0 

azax azay azaz 

The matrix X contains the variational partials: 

ax ax ax ax ax ax ax 
~ ayo azo ~ aye) az'o de; 

~ to~~ 'l£; 
az az az az az az az 

X = dx;; ayo azo a~ aye) az'o aq. 

(6x7) ax· ax· ax· ax· ax· ax· ax· 
dx;; ayo azo axe aye) aZ'o aq. 

~ ~fz:~ Yo Zo X:, ~~¥c; Yo z'o q. 

az· az· az· az· az• az· az· 
~ ayo azo a~ aye) az0 aq. 

and finally the matrix K is the direct derivative of the solar radiation pressure with 

respect to the elements of the vectorS: 

K = 
(3x7) 

ap" 
000000 rx 

acr 

ap" 
0 0 0 0 0 0 ry 

acr 

ap" 
000000 rz 

acr 
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Matrices A and X can be split into two parts and (2.18) can be rewritten as follows: 

(2.19) 

where A1 is the first three columns of A; A2 is the three last columns of A; X1 is the 

first three rows of X; and finally X2 is the three last rows of X. This is the form of 

variational equations presented in Beutler et al. [1984a]. It should be noted that when 

there is no air drag penurbation, matrix A2 is a null matrix, i.e. on the right-hand side of 

the equations of motion the velocity (x', y', z') does not appear. When the numerical 

approach is used, the variational equations are integrated along with the equations of 

motion. This integration procedure rigorously propagates the errors of the initial-state 

vector along the trajectory according to a specific force field. For long-arc integration 

such a procedure is essential, the GEODYN [Manin et al., 1980] and the PEP [Ash, 

1972] program suites making extensive use of this approach. 

The second approach is analytical. As mentioned in Section 2.3, the penurbed 

Keplerian elements can be obtained analytically as a function of the disturbing potential 

using the Lagrange equations. If such a representation is available, the partial 

derivatives follow simply by differentiating the system of equations. Moreover, 

approximations of these partials are easily obtained. It has been shown by Beutler et al. 

[1984a] that even a Keplerian approximation can be used with short-arc orbit 

improvement to evaluate the partial derivatives of the satellite position with respect to the 

initial state vector. This procedure greatly simplifies the implementation of the partials 

computation without affecting the results when shon orbital arcs are used. 

The shon-arc approach being adopted in our orbit improvement procedure. we 

decided to used the Keplerian approximation to compute analytically the variational 

partials. The mathematical development of these partials is given in Section 5.2.5. The 

integration of the equations of motion is discussed in the next chapter. 

21 



3. ORBITAL INTEGRATOR 

3.1 Analytical versus numerical methods 

As with the variational equations, the equations of motion (2.1) can be 

integrated numerically or analytically. The principal advantages and disadvantages of 

each approach have been summarized by Beutler et al. [1984a]: 

Numerical methods. advantages: 

a) There is no heavy algebra involved, we need only to code a subroutine giving the 

right-hand side of equation (2.1). 

b) Numerical methods are easy to generalize: modelling an additional force merely 

introduces a new term in equation (2.1 ). 

c) Apart from round-off errors, the approximation can be generated as precisely as 

desired. 

Numerical methods. disavantages: 

a) The integration itself is a heavy consumer of computer time. 

b) Numerical methods are said to be less transparent. 

Analytical method. advantages: 

a) The solutions are explicitly given as functions of the unknown parameters. As 

mentioned earlier, the partials with respect to these unknowns follow simply by 

differentiating the analytical expression, and simple approximations of partials 

are easy to compute. 
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b) Values of the solution for different times are readily available. 

Analytical method. disadvantages: 

a) Heavy algebra is involved; generalizations are not easy to implement. 

b) Many trigonometric functions have to be evaluated. 

c) The solutions obtained are always approximate (Keplerian, first-order 

second-order, ... , nth-order perturbations). 

A practical comparison of the two techniques has been performed by the 

University of Calgary [Nakiboglu et al. 1985]. It has been demonstrated that for 

short-arc orbit integrations (4 hours), the linear perturbation coupled with a second-order 

perturbation fore, ru and M were sufficient to respect the one-meter level accuracy in 

the satellite position (this solution also includes a second-order effect due to J2). But 

this analysis showed that from the computer-time point of view, the numerical method is 

preferable. 

One of the most important aspects of the numerical method is that the 

generalization is very easy to implement: to include a new perturbing force in the force 

model, a subroutine is simply coded. This means that a very sophisticated force model 

can be coded in a general program but the final choice for a specific application can be 

user-selectable. 

Although the analytical Keplerian approximation has been chosen for the partial 

derivatives computation, we have opted for the numerical method to integrate the 

equations of motion because of the obvious advantages of modularity and the facility of 

implementation. The computer-time disadvantage of the numerical method is not a major 

problem with the current computers, since in the overall procedure, as will be explained 

in Chapter 6, the orbit integration takes only a fraction of the processing time when GPS 

networks are concerned. 

The numerical integration of the equations of motion is performed directly in 

Cartesian coordinates. This method is known as Cowell's method [Conte, 1963]. 

Different techniques can be used to perform this integration. Section 3.6 describes our 

numerical integration technique. 
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3.2Equations of motion 

As mentioned in Section 2.4, the perturbation accelerations which must be 

modelled in order to respect the 2.5-metre level for short arcs (-6-8 hours) are the 

earth's non-central gravitational field, the gravitational effect of the sun and the moon, 

and the direct effect of solar radiation pressure. For practical purposes, the equations of 

motion (2.1) can be simplified as follows: 

r" = r" + [P" + p" + p" + p" J g g s m rd 
(3.1) 

where: 

r" is the total acceleration vector of the satellite, 

r"8 is the acceleration vector due to the central part of the earth's 

gravitational field, 

p"8 is the disturbing acceleration vector due to the non-central part of the 

earth's gravitational field, 

p" 5 is the disturbing acceleration vector introduced by the sun's 

gravitational effect, 

p"m is the disturbing acceleration vector caused by the moon's gravitational 

effect, 

p"rd is the disturbing acceleration vector introduced by the direct effect of 

solar radiation pressure. 

The terms in brackets are the biggest components of equation (2.13). In 

practice, the terms r"8 and p"8 are evaluated together by taking the gradient of the earth's 

gravitational potential expressed in spherical harmonics. The third-body effects p"5 and 

p"m are evaluated by the same algorithm using different parameters. Finally, we evaluate 

the solar radiation pressure by a simple model. All the mathematical expressions used in 

these computations are given in the subsequent sections. 

With Cowell's method of integration, all of these accelerations must be written 

in a common Cartesian coordinate system, and to respect Newtonian mechanics the 

adopted system must be inertial, i.e. a non-accelerated system. The next section 

describes the usual coordinate systems used in orbit computation, and the method of 
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obtaining an inertial frame for short-arc orbits is discussed. 

3. 3 Coordinate systems 

The most convenient reference system for orbit computation is a system with its 

origin at the earth's centre of mass, referred to as a geocentric reference system. There 

are several geocentric coordinate systems, the orientation of some being defined 

according to the direction of the line pointing toward the vernal equinox (intersecting line 

of the equatorial plane and the ecliptic), and others being attached to the rotating earth. 

The most important systems related to orbit computation are the following: 

Instantaneous terrestrial system 

This is a right-handed orthogonal geocentric system, with the Z axis pointing north 

along the instantaneous axis of rotation and with the X axis in the equatorial plane 

pointing toward the Greenwich meridian. The Y axis completes the right-handed 

sytem. It is a rotating system. 

Earth-fixed system 

The Earth-fixed or Conventional Terrestrial system has the same characteristics as 

the instantaneous terrestrial system except that the Z axis is aligned with the mean 

pole of the earth defined by the CIO (Conventional International Origin), which is 

the mean position of the instantaneous pole during the period 1900 to 1905. The 

relation between these two systems is given by the wobble rotation matrix. 

True-of-date coordinate system 

The true-of-date coordinate system is a right-handed orthogonal geocentric system, 

with the Z axis pointing along the instantaneous axis of rotation, and the X axis 

pointing toward the vernal equinox of date. The relation between this system and the 

instantaneous terrestrial sytem is given by the rotation angle e. which represents the 

hour angle of the true equinox of date with respect to the Greenwich meridian as 

measured in the equatorial plane. 
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Mean equinox of date system 

The true-of-date vernal equinox direction varies with time under the effect of 

precession and nutation [Mueller, 1969]. The luni-solar precession produces a 

gyration of the earth's axis which describes a cone with a generating angle of -23.5° 

about the pole of the ecliptic, so that the vernal point travels on the ecliptic at a rate of 

-50.4" per year making a complete revolution in about 25 800 years [Torge, 1980]. 

The effect of the planets and the moon introduce a periodic motion of the vernal point 

in the ecliptic plane as well as in the equatorial plane. This periodic motion is known 

as nutation (amplitude -9.2" with a dominant period of -18.6 years). When the 

effects of nutation are removed from the true-of-date coordinate system, the 

resulting system is known as the mean equator and equinox of the date. 

The precession effect is removed to relate a mean equinox of date system to 

another identical system defined with respect to a particular date. For example, most of 

the astronomical quantities given in the Astronomical Almanac are related since 1984 to 

the 12000 system, which is a mean equator and equinox system defined for the epoch 12 

hours IDB (Barycentric Dynamical Time) on 1 January, 2 000. 

Since the instantaneous terrestrial system and the earth-fixed system are not 

inertial owing to the acceleration introduced by the rotation of the earth, they cannot be 

used for integration of the equations of motion. Ideally the mean equinox of date (of a 

particular epoch) would be the best inertial system to use, however, from a practical 

point of view, over short periods of time (-6-8 hours), the effect of the precession and 

nutation are negligible (less than the metre level) and the true of date system can be used 

as the inertial system. Such a simplification has been done by Beutler [1984b]. 

In our development the inertial system adopted is the true-of-date of the initial 

epoch of the integration period. Thus, to transform a satellite state vector from our 

inertial system to the Conventional Terrestrial system (Earth-fixed), only the wobble 

rotation and the Greenwich Apparent Sidereal Time (GAST) rotation have to be applied. 

This transformation can be written as follows: 

r t = WS r. 
C I 

r' = WS r'. + (WS)' r. 
Ct I I 
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where: 

r ' r'. ct' 1 

w 
s 
(WS)' 

are the satellite position vectors in the Conventional Terrestrial system 

and in the inertial system (true-of-date), 

are the satellite velocity vectors in the Conventional Terrestrial system 

and in the inertial system (true-of-date), 

is the wobble rotation matrix, 

is the GAST rotation matrix, 

is the time derivative of the product WS. 

The wobble being considered constant over the integration interval, in our computation 

(WS)' = WS'. Matrices W and S are given as follows: 

w = 

1 

0 

-X 
p 

cosS 

S = -sinS 

0 

0 

1 -y 
p 

1 

sinS 

cosS 

0 

0 

0 

1 

Sis the GAST angle,~ and Yp are the pole coordinates (angular units) and the matrix 

S' is the derivative of S. The inverse computation is performed by using the transpose 

of the rotation matrices since they are orthogonal matrices. The GAST computation is 

given in Kaplan [1981]. 

3.4 Mathematical expressions of the perturbing forces 

3.4.1 Earth's gravitational field 

The usual representation of the earth's gravitational potential field U is given in 
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the spherical harmonics expansion [Torge, 1980]: 

u = a~ { 1 + t, ~ ( :'f P:' (sin$) [ c=cos rnA + s=.m rnA J} (3.4) 

where: 

q, is the geocentric latitude; 

A. is the east longitude, in an Earth-fixed system; 

r is the geocentric satellite distance; 

GM is the geocentric gravitational constant; 

ae is the earth's mean equatorial radius; 

P n m(sin cl>) is the associated Legendre function; 

Cnm, Snm are the denormalized geopotential coefficients; 

The spherical coordinates used in equation (3.4) are related to an Earth-fixed 

system; therefore the relationship between these coordinates and the inertial satellite 

coordinates (x, y, z) is given as follows, 9 being the GAST angle: 

J 2 2 2 
r= x+y+z 

-1 ( z) cl> = sin r (3.5) 

The coordinate transformation through equations (3.5) is important since the earth's 

potential field is not rotationally symmetric [Vanicek, 1973]. 

The acceleration of a satellite caused by the earth's gravity field is given by the 

gradient of the potential field U at the satellite position: 

x" 
au au ar au aq, au aA. 

= 
ax 

= ar ax + -- + --
aq, ax aA. ax 

y" 
au au ar au del> au aA. 

(3.6) = ay = 
ar ay + -- + --

aq, ay aA. ay 
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z" = au 
az 

au ar au aq, au aA. 
+ -- + --aq, az aA. az 

where the related derivatives with respect to the spherical coordinates are the following: 

au 
ar 

au 
a A. 

= -~ { 1 + ~ ~ ( :')' (~»ll P:<sin ~> [ c,mcos rnA + s,msinml. 1} 

= 0~ {~ ~( :')' mJY;<sin~>[ s=cos m~. - c=~"m~.]} 

where the derivative of the Legendre polynomial is: 

a rpm (sin q>)] = vn+l (sin <I>) - m (tan <I>) vn (sin <j>). a;t n n n 

(3.7) 

(3.8) 

(3.10) 

The derivatives of the spherical coordinates with respect to the Cartesian coordinates are 

straightfoward (with r1 = x, r2 = y and r3 = z): 

ar ri 
ar. = r 

1 

a <I> 1 [ -zr; az] ar. = +- (3.11) 
Jx2+y2 l ari 1 

a A. x [ay ydx] 
ar. = 2 2 ar. - 'X ar. 

1 y +X 1 I 

The geopotential coefficients that have been used in this work are those of the 
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GEM-L2 solution given in Melbourne et al. [1983]; the GM and ae constants are those 

related to this specific solution. The GEM-L2 coefficients published are the normalized 

coefficients; the denormalized coefficients have been obtained by applying the following 

factor [Lambeck and Coleman, 1983]: 

1/2 

[ 
(n-m)! (2n+ 1) (2- 0 )] 

C = m C 
run (n+m)! run 

cnm being the normalized coefficients, the same relation is valid for ~run and srun' 

o is the Kronecker delta function; o = 1, for m = 0 and o = 0, for m ;~: 0. m m m 

(3.12) 

These expressions have been programmed in a FORTRAN subroutine GRA VI, 

which calls the subroutine LEGEN to evaluate the associated Legendre functions and the 

subroutine IRTV to retrieve the geopotentiel coefficients. The coefficients are 

denormalized by a separate subroutine DENOR. The output of the subroutine GRA VI is 

the vector (r"g + p"g) of equation (3.1) in our inertial system. 

3.4.2 Third-body effect 

The perturbing acceleration introduced by a third body is easily described in a 

Cartesian coordinate system (see Fig. 3.1). The acceleration is proportional to the force 

exerted on the satellite by the third body minus the acceleration of the geocentre due to 

the gravitational forces exerted on the earth by the same third body [Nakiboglu et al., 

1985]. In a vectorial form, the acceleration is given as follows: 

[ 
(rT-r) rT] r" = GM s - -T •. ,. 3 3 
lrT- r51 lr,J 

(3.13) 

where: 

r"T is the perturbing acceleration vector introduced by the third body, 

G~ is the third body gravitational constant, 

rT is the geocentric position vector of the third body, 

r s is the geocentric position vector of the satellite. 

In this formulation, only the central part of the third body's gravitational field is 
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taken into account; for short integration interval (6-8 hours) at GPS satellite altitudes the 

non-central part can be neglected. Thus, the perturbed acceleration can be directly 

computed in the inertial system since the orientation of the disturbing mass is not 

important. 

The geocentric position vector of the sun is computed using a modified version 

of the subroutine SUN [Beutler, 1984b]. The original version of this subroutine 

computes the sun's position in the mean equator of 1950.0 system using Simon 

Newcomb's tables of the sun. This modification gives the sun's position in the mean 

equator of computation's date system; thus to obtain the position in our true-of-date 

inertial system, the nutation rotation matrix is simply applied. The nutation model used 

(lAG 1980) can be found in Kaplan [1981] and Wahr [1981]. 

satellite trajectory 

------------------------· 
... --····· 

- - - - - • - - - third body 

--· 
____ ..... -·· 

VI gravitational acceleration vector acting on the satellite due to the third body, 

V2 gravitational acceleration vector acting on the earth due to the third body, 

v 3 resulting gravitational perturbation vector acting on the satellite, 

Third body disturbing acceleration 
FIGURE 3.1 

The true-of-date moon position is obtained directly using the subroutines 

MOON and MONTSO [Beutler, 1984b]. The gravitational constant GM.r for the moon 

and the sun are from Melbourne et al. [1983]. A subroutine THBOD has been coded to 

compute the disturbing accelerations introduced by the sun and the moon. The 
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acceleration vectors r"5 and r"m of equation (3.1) are thus computed by the subroutine 

1HBOD with appropriate values as input (i.e, GMm or GM5 and r m orr 5); the output 

vector is in the same system as the input vector. 

3.4.3 Solar radiation pressure 

The disturbing effect of solar radiation pressure is the most difficult perturbation 

to model for GPS satellites. The acceleration is a function of different parameters which 

are themselves difficult to model; the solar radiation pressure P5 is not constant and may 

vary by about 7% over a year [King et al., 1985]; the mass (m) of the satellite varies 

after each manoeuvre when fuel is consumed; the satellite being of irregular shape, the 

area (A) facing the sun varies as the satellite moves in its orbit; and the reflectivity (Cr) 

properties of the different components of the GPS satellite are different. A model which 

would take into account all of these characteristics is very difficult to work out. 

The usual approximation of this problem is a simple model (cannonball model) 

which represents the direct effect of the solar radiation pressure on a spherical satellite of 

constant reflectivity factor (Cr) in the sun-satellite direction: 

r" = 
ro 

_ V p C A (rsun- rs) 
5 r m lr - r I 

(3.14) 
sun s 

where: 

r sun is the geocentric sun position vector, 

is the geocentric satellite position vector, 

is the eclipse factor ( 0 < v < 1 ) which is the fraction of the sun's 

disk covered by the earth as seen from the satellite, 

all the other terms being previously defined. 

The "unknown" constants P5 (Newton/m2), Cr (unitless), and A/m (m2/kg) of 

equation (3.14) are often grouped together in one term usually known as the direct solar 

radiation pressure parameter [Beutler et al., 1986]: 

where: 

r" 
rd = - v • Po • eo 

Po is the direct solar radiation pressure parameter, 
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e0 is unit vector pointing from the satellite to the sun. 

Owing to the uncertainties about the parameter p0, it is a usual procedure to 

estimate it in the solution along with the six initial conditions of the satellite. The 

nominal value for Po is- 1.0 X w-7 m/s2 [Van Dierendonck et al., 1980]. This value 

can vary up to 20% [Beutler et al., 1986]. As will be shown in Chapter 6, for short-arc 

lengths of -6-8 hours, a constant value p0 (at± 10%) can be used without problem if 

the 2.5-metre level accuracy in the satellite position is acceptable. Thus, in our 

development there is no estimation of solar radiation pressure parameters. 

As mentioned in Section 2.4, the so-called Y -axis bias introduces a perturbed 

acceleration other than in the sun-satellite direction of the order of IQ-9 m/sec2• The 

magnitude of this acceleration being so small, it is completly unnecessary to take it into 

account in our force model for short-arc modelling. 

' ... ... ... r (t -1:) .................... ss ........ ...... 

/ virtual motion of t the sun in the geocentric system 

...... 
.... ..... ·- ......... 

Relative positions of sun-earth-satellite for penumbra 
factor calculation 

FIGURE 3.2 

Earth 

Satellite 

The penumbra factor v of equation (3.14) and (3.15) has a certain importance in 

the integration process. The factor v must gradually change between 0 and 1 when 

entering and leaving shadow zones in order to smooth the abruptness for reasons of 

numerical integration stability in addition to the fact that things happen this way in 

nature [Ash, 1972]. We have implemented a modification of the penumbra factor by R. 

Reasenberg [Ash, 1972] in our orbital integrator. 

According to Fig. 3.2, when the magnitude of the sun-satellite vector r 55 is 
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smaller than the magnitude of the sun-earth vector r sW'I.' the penumbra factor v is equal to 

1 (satellite in full sunlight). Otherwise, we first account for the virtual motion of the sun 

in the geocentric coordinate system for the light travel time t, i.e. the photons, which 

perturb the satellite at time t originate from the sun at time (t - t). Thus the effective sun 

position must be computed at time (t- t). The symbol c being the speed of light, the 

light travel time t is: 

t "" 
lr I 

ss (3.16) 
c 

Let us call the corrected sun-satellite vector r 55 , and let us define the projection 

L of the earth-satellite vector r 5 on the sun-satellite vector r 55 as follows: 

r • r 
L = s ss 

lr I 
ss 

Let us define the the closest approach d of the vector r 55 to the centre of the earth: 

d = r ss 
rs- L-1-1 

r ss 

(3.17) 

(3.18) 

With p5 being the sun's radius, we have the angular radius of the sun k5 seen 

from the satellite: 

(3.19) 

If Pe is the earth's radius, the factor v will obviously be equal to 1 as long as the 

following condition is respected: 

(3.20) 

Otherwise the disks of the sun and the earth intersect as seen from the satellite, 

and the fraction of the apparent sun disk must be evaluated. 

The tangent of the angular radius of the earth ke as seen from the satellite can be 

approximated as: 
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k 
e = (3.21) 

and the tangent of the angle between the sun-satellite vector r55 and the earth-satellite 

vector r5 , is: 

d 
s == 

L 

Sun and earth disks as seen from the satellite 
FIGURE 3.3 

Referring to Fig. 3.3, the following parameters are defmed: 

e (
k 2 

-1 e = cos 
2 2) + S - k 5 

2k s 
e 

h = k sinO e 

. -1 (h) a' = SID ks 

a = 1t - a' 

(3.22) 

(3.23) 

Afterwards, the intersecting section of the sun and the earth disks are divided as 
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shown in Fig. 3.4, with the areas of the figures given by: 

A = ak2 
1 s 

A2 = s h 

A3 = ek; (3.24) 

where a and e are in radians. From Fig. 3.4 the non-overlapped area A of the small disk 

(the sun) is: 

A = A1 + A2 - A3 . 

And fmally the penumbra factor v is defmed as follows: 

v = 
A 

2 
7tf 

s 

The sun's disk completly disappears when ke- k5 ~ s (see Fig. 3.3). 

Decomposition of the earth and sun disk 
intersection 

FIGURE 3.4 
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This model can easily be extended for interplanetary spacecraft where all planets 

can be taken into account (see Ash, 1972). The solar radiation pressure computation has 

been coded in a subroutine SOLPR, which calls the subroutine ECLIP for the penumbra 

factor computation. The sun's position is computed by the modified subroutine SUN 

described earlier. 

3.5 Computation of initial conditions 

The initial state of the satellite, which is the starting point of the integration 

process, can be obtained in different ways: from a set of osculating elements, from a 

tabular ephemeris like the Macrometer® T -files, from a set of precise ephemerides 

[Remondi, 1986], or from a set of broadcast messages. 

With a code-tracking receiver, the last option is the most accessible to the user. 

We have opted for this source of information to obtain our initial state vectors. Since the 

accuracy of the satellite position and velocity computed from broadcast messages is a 

function of the difference between the computation time and the reference time toe [Van 

Dierendonk et al., 1980], we have developed a utility program to merge all the broadcast 

messages recorded at different sites during a campaign in order to have as complete a set 

of broadcast messages as possible. This procedure is certainly not necessary for small 

networks since all stations record almost the same information, but for large networks, 

all satellites do not rise and set at the same time, and thus, one receiver frequently 

records more (or different) messages than another one. 

This output file is used afterwards to compute the initial state vectors by 

searching for the ephemeris with the closest reference time. Integration from a state 

vector (x0 , y0 , z0 , x'0 , y'0 , z'0 ) is also possible in order to enable re-integration of a 

corrected trajectory from an improved state vector. The procedure for computing 

satellite position and velocity from broadcast messages can be found in Van Dierendonck 

et al. [1980] or Wells et al. [1986]. 

The initial conditions computation is managed by the subroutine INTCD, 

whereas the computation of the satellite positions and velocities from broadcast 

messages is managed by subroutine SATCP. 
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3.6 Numerical intemtor 

Numerical techniques for integration are divided into two groups: the 

single-step and the multi-step procedures. For example, the Runge-Kutta approach is a 

single-step procedure, whereas predictor-corrector type numerical integrators are 

multi-step procedures. 

In orbit integration problems, the predictor-correctors are usually preferred over 

the single-step method since fewer evaluations of the differential equations (right-hand 

side of 3.1) are required. For example, a simple differential equation of the form y' = 
f(x,y) can be solved using a single-step Runge-Kutta procedure [Hamming, 1962] of 

the form: 

kl = h f(x.,y.) 
I I 

Is = h f(x. + h/2 , y. + k/2) 
I I 

Is = h f(x. + h/2 , y. + Is/2) 
1 I 

k4 = h f(x. + h, y. + Is> 
I I 

(3.27) 

where h is the integration step size. 

Since this specific fourth-order Runge-Kutta method involves four evaluations 

of the differential equation f, it is not an economic solution. A fourth-order 

predictor-corrector formula for the same function f can be written as follows: 

3 

-~ 1 = y. + h ~B. f(x. , y. ) Y i+ 1 L..J 1-n 1-n 1-n 
n=O 

3 

Y~+l = Yi + h L Ai-n+l f(\-n+l ' Yi-n+l) 
n=O 

(3.28) 

(3.29) 

where the coefficients B and A are specific coefficients for the predictor (3.28) and the 

corrector (3.29) formulas, h being the step size [Moursund and Duris, 1967]. A 

procedure to derive the coefficients A and B for different types of predictor-corrector 

formulas is well described by Velez and Maury [1970]. With the multi-step formulas, 

the solution is obtained iteratively. First a value yPi+l is computed with the predictor 
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formula. This value is then used in the corrector formula to compute the corrected value 

yci+l· Iteration is then performed with the corrector until convergence is reached. With 

an appropriate step size, three evaluations of the function f generally will be suffucient (2 

iterations with the corrector). The four initial values (y) required to start the procedure 

can be obtained from a single-step integrator (like Runge-Kutta) or using a special 

starting procedure as will be described later (if we take into account the initial condition 

(y0 ), only three other values have to be computed). 

For fourth-order integrators the difference between the single- and multi-step 

procedure is not so obvious, but for high-order formulas the benifit of the 

predictor-corrector formulas becomes obvious, since only two or three iterations are 

usually necessary to reach convergence. 

The numerical integrator chosen for the solution of our initial value problem is 

an eleven-point multi-step predictor-corrector formula. Our formulation uses a Stormer 

predictor and a Cowell corrector [Velez and Maury, 1970]. This formulation takes 

advantage· of the specific force model described earlier. In the force model described in 

Section 3.4 the velocity vector r' does not appear on the right-hand side of equation 

(3.1). In this case, the three second-order differential equations can be directly 

integrated instead of separating them into six first-order differential equations as is 

usually done. The predictor is given in the following form: 

10 

r(t) = 2 r(t-h) - r(t-2h) + h 2 L ~i r"(t-(1 +i)h) (3.30) 
i=O 

whereas the corrector is: 

10 

r(t) = 2 r(t-h) - r(t-2h) + h2 L 13i r"(t- ih) (3.31) 
i=O 

where: 

h is the step size, 

r(t) is the satellite position at epoch (t), 

r"(t) is the satellite acceleration at epoch (t), 

~i are the predictor coefficients (see Appendix 1), 

13i are the corrector coefficients (see Appendix 1). 

Equation (3.30) and (3.31) require 10 starting values, in addition to the initial 
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conditions, to undertake the integration process. These values are obtained iteratively 

using the starting procedure of Velez and Maury [ 1970]. The initial conditions being at 

epoch (t0 ), solutions are sought at times (t_5, t4 , ... , t_1, t1, ... ,t5); the starter uses the 

following set of equations: 

(3.32) 

where: 

h is the step size, 

K is an integer value varying as -5 S K S -1 and 1 S K S 5, representing 

10 different equations, 5 before the initial epoch (t0 ) and 5 after, 

f1 represents 10 different functions for 10 ~ J ~ 6 and 4 ~ J ~ 0, where 

1=5-K. 

The vectors r(t) and r"(t) being the position and the acceleration vector at epoch (t), the 

functions f1 are defined as follows: 

10 

r(t + Kh) = r(t ) + K h r'(t ) + h2 
0 0 0 I a.1. r"(t + Kh + (J-i)h) 

I 0 
(3.33) 

i=O 

r'(t0 ) being the initial velocity. Ten sets of coefficients a.1i are required to solve the 10 

different sets of equations (see Appendix 1). These 10 different functions are evaluated 

until convergence is reached. The initial values required to start this procedure are 

obtained from a two-body problem as described in Chapter 2. The numerical integration 

is managed by the subroutine NRINT, whereas the starting values computation is 

managed by subroutine INITV. The subroutine START and COWEL have been 

specially coded for the starting and the predictor-corrector procedure. 

3.7 Approximation of the orbit 

The numerical integration produces a set of satellite positions at a specific 

epoch which does not not necessarily correspond to the time tag of the observations to 

be processed. Different interpolation procedures can be used to obtain satellite positions 

at specific epochs from a tabular ephemeris. To solve this problem efficiently, we 

decided to approximate the tabular ephemeris by a set algebraic polynomials. We did not 
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see the benifit of using Chebychev polynomials. Although the Chebychev polynomials 

are more stable at higher degree, we decided to use algebraic polynomials at lower 

degree over small segments by dividing orbital arcs into segments of 1.5 to 2 hours. 

Our orbit approximation is given as follows: 

where: 

n 

j 

. Ln . (t-t. )k I I 10 

rj = Aj,O + Aj,k F. 
k=l I 

is the order of the polynomial, 

is one of the three components of the satellite position 

vector G=l, 2, 3), 

represents a specific segment of the orbital arc, 

tio is the reference time associated with the segment i (if t1 is the 

first epoch of the segment i and ~ the last, then we 

have tio = (t1 + ~)/2 ), 

(3.34) 

A ij,k are the polynomial coefficients (k) associated with the segment (i) and 

the component G), 

~ti is the normalization factor (associated to segment i) used to avoid 

numerical problems (if t1 is the first epoch of the segment i, then we 

have ~ti = tio - t1 ). 

The orbital arcs have to be divided into segments of 1.5 or 2.0 hours to 

maintain sub-metre precision in the satellite positions. This means that for an orbital arc 

of 10 hours with a segmentation of 2 hours there will be 15 different polynomials (five 

for each component). For a polynomial of degree n, 15 (n+ 1) coefficients will represent 

the orbit; for example if n=7, there will be 120 parameters, which is quite acceptable. 

With the broadcast ephemeris representation, the same orbital arc will require 150 

parameters if we assume no satellite clock corrections (15 parameters per message, one 

message per hour). In order to have continuous piece-wise polynomials, two common 

data points are used to approximate two adjacent segments. 

The polynomial coefficients are estimated by least-squares approximation. At 

each integration step a set of normal equations (AT A), and three sets of vectors (A Twj) 

are updated by the subroutine AT AP2. After the integration of one segment, three sets 
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of coefficients (Aij,k) are estimated. The partitioning of an orbital arc into different 

segments is performed by the subroutine NRINT using input parameters. The 

polynomial degree (up to 9) is user-defined. 

These coefficients represent the orbit in a true-of-date system. Thus for each 

orbital arc, the earth's rotation parameters, which must be used to recover the 

coordinates in an Conventional terrestrial system, are stored on a disk file along with the 

coefficients. 

3.8 Improvement of initial conditions 

The idea for the following procedure comes from Beutler et al. [1984a]. It 

concerns the adjustment of the initial conditions using broadcast satellite positions as 

pseudo-observations. As mentioned in Section 3.5, the initial conditions are computed 

using the closest message as possible to the initial epoch. Owing to the limited accuracy 

of each separate broadcast message, it is possible for the initial state vector to be offset 

from the overall broadcast trajectory. A few metres or a few (m/sec) errors in the initial 

state vector can yield an integrated trajectory offset (from the broadcast trajectory) by 

several ten metres after a few hours' integration. 

Assuming the broadcast trajectory to have an accuracy of 25-50 metres, it 

would be interesting to adjust the integrated trajectory to the broadcast one. This 

procedure, at this stage, is an opportunity to avoid an iterative process in the final 

adjustment with the GPS double-difference phase observations. 

To do this, a series of satellite positions is generated at 15 minute intervals 

using the broadcast messages; afterwards, following the procedure described in Section 

2.5, the initial conditions are improved using broadcast satellite positions as 

pseudo-observations. Although the number of iterations is user-defined, usually one 

iteration is sufficient to reach convergence. From the residuals (integrated trajectory 

minus broadcast trajectory), in terms of along-track, across-track and radial direction, 

this preliminary improvement procedure is obviously important, since large offsets 

between the two trajectories exists after the first integration. 

The satellite positions (pseudo-observations) are computed with the subroutine 

INTCD; the subroutine ADJUS proceeds to the least-squares adjustment. The partial 

derivatives used in this adjustment are described in Section 5.2.5. 
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3.9 Program ORDAP 

All the developments presented in this chapter have been regrouped in a 

FORTRAN 77 program ORBDAP (ORBital DAta Preprocessor). The list of the 

subroutines involved in this program is given in Appendix 2. The processing is 

controlled by a me giving all the necessary input parameters, such as the force field 

selection, the integration parameters for segmentation, the polynomial degree, the earth 

orientation parameters, the time start and time end for each satellite involved in the 

observations, the broadcast file name or the osculating element file name. 

The current version of the software does not access earth orientation parameter 

files such as IRIS (International Radio Interferometric Surveying) files. These values 

(xP' Yp• UTl-UTC) have to be input manually in the control file for the specific 

observation session. In a future version, such improvement would worthwhile. 

The output of the program is a file including all coefficients of each segment for 

all satellites in a true-of-date system; the file includes as well the earth orientation 

parameters for subsequent transformation in the Earth-fixed system. The initial 

conditions for each satellite are output in a separate file. The progam also generates an 

alphanumeric output file for analysis; it includes a summary of the options used and all 

the residuals (of the preliminary adjustment) for each satellite after each iteration. 

Appendix 3 gives an example of such output. Fig. 3.5 depicts ORDAP's procedure in a 

flow chart. 
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Orbital data pre-processor flow-chart 
FIGURE 3.5 
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4. OBSERVATIONS PRE-PROCESSING 

4.1 General a1mrocah 

The way observations are pre-processed varies from one piece of software to 

another. With DIPOP 2.0, the UNB GPS software, the principal tasks to be performed 

at the pre-processing stage, are to remove all cycle slips and bad observations, to form 

the double-difference observables and to compute satellite positions and velocities. 

Ionospheric and tropospheric calibration is done during the least-squares final 

adjustment 

The HPBT data set, being extensively corrupted by cyle slips, the zero-order 

polynomial procedure of the first generation TI 4100 UNB pre-processor to evaluate 

cycle slips [Vanicek et al., 1985] was not adequate for solving our problem. Therefore, 

we wrote a procedure which solves this problem automatically, to some extent. 

We first wrote a routine EXTR3 to reformat the HPBT observation files [Scott 

et al., 1986] in the UNB GPS observations data format. Afterwards, a progam 

SINGLE was written to form the inter-satellite single-differences, and to compute the 

satellite positions from a set of broadcast messages or from a set of coefficients obtained 

from the ORDAP program previously described. The output files are then corrected for 

cyle slips by the CSLIP program, which produces pseudo-clean single-difference files. 

This first correction is usually good at the one to three cycle level depending on the data 

gaps accompanying the cycle slips. Afterwards, the DOUBLE program uses two 

single-difference files (inter-satellite), combining them in one double-difference file. 

The remainding cycle slips in this double-difference output file are then corrected again 

by the program CSLIP. 
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Since the differencing of the raw phases is a straightfoward procedure, the next 

sections are dedicated to the cycle slips problem. 

4.2 Cycle slips definition 

The GPS carrier phase observation used to compute precise geodetic positions 

is the difference between the phase of the received carrier signal of a GPS satellite and 

the phase of a local oscillator within the receiver. It is often called the carrier beat phase. 

Measurements of the carrier beat phase can be either "complete instantaneous phase 

measurements" or "fractional instantaneous phase measurements". The distinction 

between the two is that the former includes the integer number of cycles of the carrier 

beat phase since the initial phase measurement, and the latter is a number between zero 

and one cycle [Wells, 1985]. 

The carrier beat phase recorded by the GPS receiver is usually the "complete 

instantaneous phase measurement". Once the satellite signals have been acquired by the 

receiver, the whole number of cycles are tracked and counted as the satellite moves on its 

orbit. By definition, the initial phase measurements are ambiguous by an integer number 

of cycles. Therefore, as long as the receiver keeps phase lock on the incoming satellite 

signals, the initial (unknown) phase measurement, which is an integer number of cycles, 

is the same over a particular observing session. These unknown biases (one for each 

satellite) or ambiguities are introduced in the least-squares estimation as phase 

parameters. 

Sometimes, for different reasons, the receivers lose lock and reacquire the 

signal during the same observing session. The major reasons for such a break in the 

recorded data can be caused by both problems inside the tracking hardware and 

environmental causes, i.e. obstruction of the line of sight, multi path, ionospheric effect, 

etc. [Langley and Parrot, 1987]. After reacquisition of the signal, the fractional phase 

measurement is the same as if tracking had been maintained; however, the initial 

(integer) ambiguity takes a different value. This sudden change in ambiguity is 

evidenced by a sudden jump in the recorded phase data. This occurrence is known as a 

"cycle slip"; if cycle slips are not repaired (i.e. if the new integer number introduced in 

the phase measurement observations is not corrected) each cycle slip introduces a new 

phase ambiguity parameter, which must be solved in the least-squares solution. 
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The task of our CSLIP program is to repair these phase breaks or cycle slips as 

fully as possible; otherwise a new phase ambiguity is introduced in the main processor 

for each uncorrected cycle slip. The next section describes the algorithm used to detect 

the cycle slips. 

4.3 Cycle slip detection 

The algorithm that is described here is based on dual-frequency phase 

observations on L1 and L2. Goad [1985] gives an example of this algorithm to detect 

cycle slips in a raw-data file. To begin with, let us write the raw phase observation 

equation [Kleusberg et al., 1985]: 

'\ k k k k _k '\ ,.k k 
1\.cpl. (ti.A) = c • (dt - dt ) - p. - dl. - dT. + 1\. • (df. t + N. + A - A.) (4.1) ... p iP I I I iP I I 

where: 

cpik(tip) 

tip 
N.k 

I 

is the carrier beat phase observation related to receiver i and satellite k, 

is the observation epoch ~ on receiver time scale, 

is the initial carrier beat phase ambiguity related to satellite k and 

receiver i, 

is the carrier wavelength, 

is the vacuum speed of light, 

is the satellite time offset at epoch ~. 

is the receiver time offset at epoch~. 

is the geometric signal path length between satellite k at the transmitting 

time (different than tip) and receiver i, 

is the ionospheric phase delay, 

is the tropospheric phase delay, 

is the offset from the nominal satellite oscillator frequency, 

is the initial receiver oscillator phase (receiver i), 

is the initial satellite oscillator phase (satellite k). 

For the single-difference observation (inter-satellite) the following equation is obtained: 

47 



(4.2) 

the superscript "1" representing the second satellite. For double-difference observations 

the equation is as follows: 

dl~~ 
lj 

d~ + A.. ~.1 
lj lj 

(4.3) 

In equation (4.2), the receiver clock term is cancelled out, but we still have the 

satellite clock term. In equation (4.3) all clock parameters are cancelled out. 

As mentioned earlier, cycle slips appear like sudden jumps in the raw data 

series; with dual-frequency measurements, cycle slips can occur at either frequency Ll 

or L2, or both. This means that if equation (4.1) is written for Ll and L2 separately, 

the ambiguity parameters Ni\1 or NikL2 (or both) take new values at each epoch ~ 

where a cycle slip occurred. The problem is the same with single- or double-difference 

phase observations. 

If the equation (4.3) is written for Ll and L2 and they are differenced, the following 

result is obtained: 

(4.4) 

In this equation, all clock terms cancel out, and the tropospheric term also drops 

out as the tropospheric delay is not frequency dependent. Since the terms NijklLI and 

NirL2 should remain constant during the whole observing session (assuming no cycle 

slips), the variations in this time series will come from the difference in the ionospheric 

delay on Ll and L2. Equation (4.4) can be written in the same way for single-difference 

phase observations (with one clock term). 

With single- and double-difference phase observations, the time series 

generated by equation (4.4) produces curves with high-frequency noise at the centimetre 

level (or below). Kleusberg [ 1986] investigated this kind of data series for observations 

spanning 2 hours on 13- and 40-km baselines in the Ottawa area. All of the produced 
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residual plots present a total variation of about 20 centimetres for the two hours of data. 

As we have seen, if a cycle slip occurs at time (tP) of magnitude CijklLl cycles 

in L1 and cirL2 cycles in L2, the resulting time series generated by equation (4.4) will 

show a discontinuity of A.uCijkl(tp)Ll- A.L2Cijkl(tp)L2 at epoch (tP). 

This characteristic is used to detect the cycle slips. The difference in the time 

series (4.4) epoch-to-epoch is tracked, and if the difference is greater than a certain 

tolerance, a cycle slip is suspected at this epoch on L1, L2, or both. The weakness of 

this approach is that if the combination Au cir<tp)Ll - A.L2cir<tp)L2 is below the 

tolerance, the cycle slip cannot be detected. An example of this problem would be a 

jump of 19 cycles in L2 and 24 cycles in L1, with a wavelength of -24 em for L2 and 

-19 em for L1; the resulting combination would be close to zero. The probability of 

encountering such a combination is rather low. This detection can be performed either 

on single- or double-difference files. 

The proposed detection algorithm is probably the best existing approach to 

detect cycle slips in dual-frequency, double-difference observables. Using the same 

approach, the cycle slips can be detected in undifferenced as well as single-difference 

(inter-station) dual-frequency data with the same degree of confidence. For 

single-frequency observations in double-difference mode it has been shown by Parrot 

[1988] that the observables (with data interval up to 60 seconds) can be predicted with 

acceptable confidence level to detect the cycle slips at the sub-cycle level (the algorithm 

compared the predicted against the observed values). This approach was generalized to 

include all of the kinds of single-frequency observables (undifferenced, single- and 

double-difference). It has been shown that the succesful cycle slip resolution to the 

sub-cycle is directly related to the rate of data acquisition. Some other investigators used 

triple-difference residuals to detect cycle slips [Lachapelle et al., 1988]. 

4.4 Cycle slip correction 

To correct a cycle slip, the observation data series in the vicinity of the slip is 

approximated by a pair of step-wise continuous algebraic polynomials with a step 

occurring at the cycle slip. The first and higher order terms of the polynomials have 

identical coefficients, with the difference of the zero-order terms corresponding to the 

number of slipped cycles. One estimate is evaluated on L 1 and another is evaluated on 
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L2. In order to obtain better results in our estimation process, the theoretical 

observations are removed from the recorded observations; this yields a times series with 

small variations. 

With inter-satellite single-difference observations, the time series generated by 

equation (4.2) is used to estimate cycle slips; a resolution at the sub-cycle level is not 

guaranteed, owing to the noise introduced by the clock term. However, it should be 

noted that the effect of the satellite clock term in equation ( 4.2) is smaller than the effect 

of the receiver clock term present in the inter-station single-difference, and thus most of 

the cycle slips (but not all) can be resolved with observations of type (4.2). 

After a first correction in a single-difference file, the double-difference 

observations represented by equation (4.3) are formed from two "pseudo-clean" 

single-difference files. In equation (4.3) all the clock terms are cancelled out, and the 

estimation of the cycle slips, by the simple algebraic polynomial, usually gives a 

resolution at the sub-cycle with a high level of confidence. 

In order to obtain a fast algorithm, the algebraic polynomial is fitted to the data 

only around the cycle slip; it uses between 3 and 10 (user selectable) good data points 

before and after the cycle slip. 

As described in Section 4.1, a cycle slip is usually evidenced as a sudden jump 

in the recorded carrier phase data. But for various reasons, sometimes in the data there 

is a series of consecutive outliers which introduce gaps in the time series. When gaps 

occur, it is more difficult to obtain a good estimate of the cycle slip. Some processing 

with our algorithm has shown that a gap of about 10 min. can be very well bridged 

without problem when 30-second data points are used in the double-difference 

observations. Gaps longer than 10 to 15 minutes can be difficult to correct . 

The weakness of our approach is that when many breaks occur in a very short 

time span, the algorithm deletes some observations and creates artificial gaps; this 

problem can be avoided to some extent by using fewer than 10 data points before and 

after each break. Fig. 4.1 describes this problem. When a gap in a data series is longer 

than a threshold value (user-defined), instead of correcting the cycle slips, we introduce 

a new phase ambiguity in the main processor adjustment of the observations. 
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dala deleted when 10 data points are required 
before and after the phase break 

time axis 

data deleted when only 3 data points are '""~"'u"" 
before and after the phase break 

4.5 Practical considerations 

During this time span, 
4 slips will be estimated 

time axis 

Observations deleted by the 
cycle-slip correction algorithm 

FIGURE4.1 

New phase ambiguities are introduced in the main processor simply by 

introducing a "pseudo-satellite" number in the observations file. All data for a particular 

satellite recorded after an "unfixable cycle" slip is assigned a new satellite identification 

number. In this way, the least-squares estimation procedure will estimate a phase 

ambiguity for this pseudo-satellite as it does for all the others. The pseudo-satellites are 

introduced by the CSLIP program only when double-difference observation files are 

input. For example, if at an epoch tx, we have the satellite pairs (6-8) and (8-9), and a 

gap occurs at this time in the data series (6-8), then the satellite pairs (6-28) and (28-9) 
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will be formed after the gap. Here we are dealing with double-difference observations, 

which means it is impossible to known on which satellite the gap has really occured. 

The program always selects the last satellite of the pair to apply the pseudo-satellite 

number. The reference satellite algorithm used in DIPOP [Vanicek et al., 1985] allows 

such a procedure. The pseudo-satellites are always created by adding the constant 20 to 

the satellite PRN number. Such a consistent procedure is important since in the final 

least-squares adjustment the observations of pseudo-satellite 28 must be recognized as 

observations from satellite PRN number 8 in order that the partial derivatives 

computation with respect to the initial conditions of satellite 8 be correctly carried out. 

It should also be mentioned that since our a priori ambiguities are applied on 

double-difference observations, they are all linearly independent of one other; thus the 

reference satellite algorithm used in DIPOP cannot be applied if there is one satellite pair 

number ( e.g. 6-11) which is dependent on two other satellite pair numbers (e.g. 6-8 and 

8-11). The simplest way to overcome this problem is to introduce a pseudo-satellite 

number to destroy this dependence (i.e. replace 6-11 by 6-31). This is an artificial way 

to estimate double-difference ambiguities for each satellite pair, which is required when 

double-difference ambiguities are applied instead of inter-station single-difference 

ambiguities. Such editing must be done manually by the operator, all the other 

operations being automatic. 

According to the pre-processing that has been done, the automatic procedure to 

detect and correct cycle slips succeeds in -95-98% of the cases even with very corrupted 

data. The pre-processing is completed by processing the data baseline by baseline with 

an a priori orbit (held fixed) in order to analyze the residuals plot to see if any cycle slips 

remain. When cycle slips remain, they are fixed manually by means of an interactive 

program using the epoch number of occurrence and the magnitude of the break in terms 

of cycles. The remaining cycle slips, if there are any, are usually of the order of one 

cycle. 

To conclude this section, it should be mentioned that the program SINGLE and 

DOUBLE can differentiate the data of one site from the data of up to nine other sites 

simultaneously; the CSLIP program can process up to 10 files sequentially. All of these 

programs are controlled by command files. 

Fig. 4.2 depicts our pre-processing procedure. While decoding the raw data, a 

scenario file is generated for each observation file in order to facilitate the selection of the 
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reference satellite required in DIPOP to handle the ambiguities estimation [Vanicek et 

al., 1985]. An a priori station coordinates file is required by the cycle slip editor in order 

CL1tlt1iJJ Raw data files) 

+ 
SOFTWARE INTERFACE (EXTR3) 

TO REFORMAT HPBT DATA INTO UNB STANDARD FORMAT 

+ + 

SINGLE-DIFFERENCE MODULE (SINGLE) 
(inter-satellite difference) 

' 
S.D. Files ) 

DOUBLE-DIFFERENCE MODULE (DOUBLE) 

Apriori station 
coord. file 

CYCLE SLIP EDITING SOFIW ARE (CSLIP) 1... () A priori station) 
(OPTIONAL) ~\ coord. file 

~------------~~~------------~ + 

Pre-processor flow chart 
FIGURE4.2 
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to remove the orbit dynamics from the observations prior to fitting the algebraic 

polynomial to the data series (for cycle slip estimation). Removing orbital motion yields 

smoother data series. Appendix 4 gives a list of the subroutines involved in these 

programs. 
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S. MODELLING GPS OBSERV ABLES AND RELATED DERIVATIVES 

5.1 Observation equation 

The current model implemented in the DIPOP 2.0 GPS software accommodates 

the so-called double-difference observables. Observations from codeless as well as code 

receivers can be processed without problem. However, a slightly different approach is 

used for code receiver observations where the advantage of timing information is taken 

into account. To understand the difference between both approaches, let us recall 

equation (4.1): 

k k k k ...k _.Jc k 
A.c)).(t J = C•(dt -dt)- p.- dl.- dl. + A•(df·t. +N. +A -A.) 

1 i If p iP 1 1 1 1 p 1 1 
(5.1) 

In this equation, the range pki must be computed at transmission time (~p- 'tp- dtip) 

where 'tp is the exact signal travel time and dtip is the receiver clock misalignment with 

respect to the GPS time tGPs p (i.e. tip = tGPS p + dtip). The value dtip being small, the 

range pki is usually expanded in a Taylor's series as follows: 

k k k •k 
pi = pi(tiP-'tP- dtiP) = pi(\p-'tp) +pi <\p-'tp)· (-dtiP) (5.2) 

Replacing (tip - 'tp) by a subscript a., substituting (5.2) in (5.1) and after doubly 

differencing the equation between satellite k and 1 with station i and j, the following is 

obtained: 

'\ kl t = - kl kl ...kl - .lcl 0 k 
I\.C!»1·J· ( 1.R) P1.J.a - di 1.J· - dT.. + AN.. - p • (- dt ) 

... IJ 1J ia iP 

• k 1 • 1 
+ P . o (- dt. ) + P . o (- dt. ) - P . o (- dt.R) 

Ja JP 1a 1P Ja Jl' 
(5.3) 
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The satellite clock misalignments (dtk~ and dt1~) do not appear in equation (5.3). 

As we will see, these terms have to be taken into account when code observations are 

used to recover satellite positions at transmission time. When phase observations are 

concerned it is the frequency accuracy and stability of the satellite clocks during the 

satellite pass which is important. In DIPOP, it is assummed that the satellite clocks do 

not contribute measurably to the double-difference observables [Vanicek et al., 1985]. 

The receiver clock misalignment problem is handled as a relative clock synchronization. 

The relative synchronization is simply obtained by setting the term dti~ at zero. Equation 

(5.3) can now be rewritten as follows: 

'\ kl • k • 1 k1 -ld k1 ~ .k1 
A<j> .. (t ) = (- p + p ) • dt - dl.. - dT .. - p + AN .. 

IJ j~ ja ja j~ IJ IJ ija IJ 
(5.4) 

If ~tij = dtj~ and an error £ associated with the observation is added, the basic model 

equation used in DIPOP for the reduction of carrier phase observations is obtained: 

kl • k • 1 k1 ...k1 k1 ~ .k1 
A<j> .. (t.A) = (- p. + p. ) • ~t .. - dl.. - dT .. - P.. + AN .. + £ 

IJ II' Ja Ja IJ IJ IJ !Ja IJ 
(5.5) 

where ~tij will be referred to as the relative clock synchronization error of receiver j with 

respect to receiver i. 

For the squaring-type receiver, equation (5.5) is used with half of the carrier 

wavelength as effective wavelength. The signal travel time t needed to compute satellite 

positions is computed iteratively using positions at receiving time as a priori values. 

Data from code-correlating receivers are usually pre-processed using the timing 

information of the P-code data. The P-code is used to recover the exact transmission 

time corresponding to each receiver time tag in order to compute satellite coordinates. 

For example, let us assume that the reception time of a signal at receiver i is (tOPS~ + 
dtil:i) and the time when this signal left the satellite k is (til GPSk + dtkl:i) where dti~ and 

dtk~ are receiver and satellite clock misalignement, t0 PS ~ and t~ GPSk being the GPS time 

of reception and transmission. The resulting P-code observation will be ( t0 PS l:i - tl:i GPSk 

+ dti~- dtk~). Using the broadcast clock parameters, the major part of the term dtk~ can 

be removed from the P-code observation which can be subtracted afterwards from the 

reception time (fJPS~ + dti~) to recover the transmission time t0PSk~· This is the DIPOP 

procedure for removing the clock term in equation (5.5) when P-code observations are 

available. 
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Some other procedures use a single-point positioning solution to estimate a term 

dtip (which is usually modelled by a low degree polynomial) for each receiver. These 

terms can be used afterwards to cancel the clock term in the observation equation. 

As we will see in chapter 6, our data set from the HPBT campaign was 

corrupted by some timing problems which did not allow us to take advantage of the 

P-code data. We had no choice but to process the TI 4100 data as codeless data with 

observation equation (5.5) including a clock term. Thus, we decided to use equation 

(5.5) as a standard model for our GPS double-difference carrier phase reduction. 

5.2 Partial derivatives 

5.2.1 Station coordinates 

The partials with respect to the station coordinates are obtained in a 

straightforward way. In equation (5.5), the station coordinates are in the term pklij; if 

the station coordinates are denoted by the vector R and if we drop the epoch tag (tip) the 

partials can be written: 

aA.l.1 aA.<j)~_I [ kl k k kl I I] ap.. ap.. ap. ap.. ap.. ap. 
1J = ____!!. 1J 1J 1 + 1J 1J 1 (5.6) aR."'" kl • ---;- • --; • aR. ~·~· aR. 
1 ap .. ap.. ap. 1 ap.. ap. 1 

1J IJ I IJ 1 

where: 

kl k I 
p .. = p .. p .. 

1J 1J 1J 
k k k 

p .. = p. p. 
1J 1 J 
I I I 

pij = pi p. 
J 

(5.7) 

with m = k, 1 and n = i, j , the partials are as follows: 
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aA.cf>~.1 k 1 1J = -e. + e. 
~ 1 1 

1 

()/..cj>~.1 
k 1 1J (5.8) 

~ = e. - e. 
J J 

J 

where em n is the unit vector in station-satellite (n-m) direction. These partials are 

obviously computed with station and satellite coordinates in the same reference system. 

5.2.2 Clock synchronization 

In DIPOP the relative receiver clock synchronization error is modelled by a ftrst 

order algebraic polynomial: 

~t.. = A + A1(t- t ) 
1J 0 0 

(5.9) 

where A0 represents the relative clock offset. and A1 the relative clock drift, t0 is a 

reference time corresponding to the ftrst epoch of observation. The partials are then 

derived as follows: 

k1 aA.q>.. a~t .. 
1J IJ = 

a~tij • oA0 

• k • I 
(-p. + p.) 

J J 
(5.10) 

aA.ct>~_I a~t.. 
= 1J 1J = 

a~t.. • aA1 1J 

• k • 1 
(-p. + p.).(t-t) 

J J 0 
(5.11) 

The option of estimating the coefficients A0 and A1 is user-selectable. 

5.2.3 Phase ambiguity 

It is the inter-station single-difference ambiguties N\. N\ which are estimated 

in DIPOP; moreover, it is a relative estimate which is performed since one satellite 

ambiguity is set at zero (reference satellite). A double-difference ambiguities estimation 

would be possible as well. 

Since the double difference ambiguity in equation (5.5) is given as follows: 
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kl rf.. N.. (5.12) N .. = -IJ IJ IJ 

the partials are given by: 

dAc)>~.l aAc)>~.~ ()N~.~ 
__ I_J 

= IJ IJ = A (5.13) --.--
a~. a~.1 a~. 

IJ IJ IJ 

aAc)>~.1 aAc)>~.l aN~.~ __ IJ 
= IJ IJ = - A (5.14) --.--

aN~. aN~.~ aN~. 
IJ IJ IJ 

In DIPOP the signs of equation (5.13) and (5.14) are inverted; the estimated 

ambiguities are simply of opposite sign. For a squaring type receiver, these partials are 

scaled as half of the carrier wavelength. 

For dual-frequency data, a linear ionospheric free combination is used in order 

to remove the bulk of the dispersive ionospheric delay [Vanicek et al., 1985; Kleusberg, 

1986]. In this case the ambiguity term of equation (5.5) is a product of a real number 

and an integer number: 

where: 

c2 ( N~~~ N~~2) _ 77 ( ~ .1c1 ~ .1c1 ) 
--- • -- - -- - 2329 Au 77 NijLI - 60 NijL2 
r:_l - r:_2 Au A.L2 

is the L1 frequency 1575.42 MHz, 

is the L2 frequency 1227.60 MHz. 

(5.15) 

When this linear combination is used, the term in parenthesis on the right-hand 

side of equation (5.15) is estimated. Although this term is an integer by definition, it is 

very sensitive to small changes in the ambiguity terms on L 1 and L2. For example, if 

the ambiguities NirLI = 10 and NirL2 = 5, the estimated ambiguity term (from 5.15) 

should be (77*10- 60*5) = 470. Iffor some reasons (multipath effects, orbit accuracy, 

internal tracking errors, etc.) the real estimated ambiguities for each frequency cannot be 

better than NirLI = 10.08 and Ni/1L2 = 4.91, which are very close to integer values, 

the estimated value (from 5.15) will be 481.56. This is quite far from the expected value 

59 



(470). Thus, it is almost impossible to resolve the ambiguity from the estimated 

ambiguity term of equation (5.15). In all network solutions presented in chapter 6 we 

used the ionospheric free linear combination with real estimated values. 

5.2.4 Tropospheric zenith delay 

This is a parameter that we have implemented in our new version of DIPOP. 

This parameter is in fact a correction applied to the modified Hopfield model [Wells, 

1974] used in DIPOP 2.0. The tropospheric delay dTk\, at site i, can be written as 

follows [Santerre, 1987]: 

where: 

1(. 
I 

d~1 = (1 + Kj) • dTo~ (5.16) 

is the single-difference tropospheric correction computed 

according to the modified Hopfield model, 

is the parameter of interest, a corrective term to the computed 

delay at sites i (scale factor). 

This corrective term Kj can be viewed as a correction applied to the tropospheric 

zenith delay. Since~ is a constant value we assume that this parameter will absorb, to 

some extent, the constant unmodelled part of the relative tropospheric zenith delay by the 

surface meteorological data. This can include the malfunctioning of the meteorological 

devices or will simply allow ~s to use standard meterological data without too many 

problems (when there is no meteorological data available). 

This estimate being a constant, if standard meteorological data are used at sites 

where meteorological conditions vary significantly (during the observation period), the 

results might be doubtful. On the other hand, if the temperature, pressure and relative 

humidity are rather constant at sites, the estimation of this parameter may be useful if the 

standard meteorological values used are far from the real surface meteorological data. 

For widely varying meteorological conditions, a linear (or higher degree) model or the 

estimation of scale parameters at every hour should be investigated. The in depth study 

of tropospheric refraction not being within the scope of this thesis, we opted for the 
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zero-order model. 

In our model, one tropospheric parameter can be estimated on demand at each 

site involved in a baseline or a network solution. The double-difference tropospheric 

delay of equation (5.5), at each of the sites, can be written as follows: 

d~ = di'l dT.kl 
1J 1 J 

dt.ct = di' dT 
1 1 1 

dt.ct = di' dT (5.17) 
J J J 

The partial derivatives follow from (5.5), (5.16) and (5.17): 

(5.18) 

A similar equation is written for K:j, and finally we have: 

aA.q,~_I 
--1-1 = dT k dT 1 - o. + o. 

dK. 1 1 

(5.19) 

1 

aA.q,~.~ 
__ 1J 

dKj 
= k I dTo. - dTo. 

J J 
(5.20) 

with dTomn being the modified Hopfield correction applied on the range between satellite 

m and receiver n. 

5.2.4 Satellite initial state vector 

The partials with respect to the satellite initial state vectorS are obtained as 

follows: 
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aA.q,~_I __ I_J aA.e~>~.1 = __ IJ ·- (5.21) 
as~ arn as~ 

I I 

where n = k or 1, whereas the si (i=1,2, .. ,6) represents the six Keplerian elements of 

the initial state vectorS. The first part of the right-hand side of equation (5.21) is 

obtained with equation (5.6) replacing R by r: 

(2.11): 

aA.e~>~.1 k k ___!!,. = -e. + e. 
ark J I 

(5.22) 

aA.e~>~.1 1 1 __ IJ 

= e. e. 
ar1 J I 

(5.23) 

The second part of the partials is obtained with the aid of equations (2.10) and 

X 

y 

z 
inertial 

a (cosE- e) 

= R3(-.Q) R1(-i) ~(-ro) a (1- i)112sinE 

0 

(5.24) 

Using equations (2.3), (2.4) and (2.5) the eccentric anomaly E can be 

expressed in the following way: 

@ 
E = 'V a 3 • (t- T ) + e sinE (5.25) 

Equations (5.24) and (5.25) are the basic equations needed to derive the partial 

of the inertial satellite position r(t) with respect to the initial six Keplerian elements 

defined in the same inertial system. 

To derive the partials let us write equation (5.24) as a product of two matrices 

f1 and f2: 
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r(t) = f1 (i ,co ,n) • f 2(a,e ,E ) (5.26) 

f1 being the first three terms of equation (5.24) and f2 the last term in brackets of the 

same equation. According to this simple form, the partials with respect to an element si 

can be written as follows: 

ar ar2 ar1 
-=f.-+-a .r2 as. 1 as. s. 

(5.27) 
1 1 1 

Since f1 and f2 are not functions of the same elements there will always be only one 

term on the right-hand side of equation (5.27). Another simplification can be introduced 

when we realize that the third element of the (3x 1) matrix f2 is zero. This implies that 

the (3x3) matrix f 1 can be reduced to a (3x2) matrix. By performing the matrix 

multiplication and dropping the third column the following is obtained: 

cosfl cosro - sinfl cosi sinro , - cosfl sinro - sinfl cosi cosro 

f = sin n cosro - cosfl cosi sinro , - sinfl sinro + cosfl cosi cosco (5.28) 
1 

sini sinro , sini cosro 

The partials of f1 with respect to ro, n and i, are derived directly: 

[

-cosfl sinro - sinfl cosi cosro , -cosfl cosro + sinfl cosi sinrol 

= -sinfl sinro + cosfl ~o~ cosro , -sinfl cosro - cosfl c~s~ si.nro (5.29) 

smz cosro , -smz smro 

-sin.O cosro - cosfl cosi sinro , sinfl sinro - cosfl cosi cosro 

= cosfl cosro - sinfl cosi sinro , -cosfl sinro - sinfl cosi cosro (5.30) 

0 0 

63 



sin.Q sini sina> , sinD sini cosro 

= -cos.Q sini sina> , -cos.Q sini cosro (5.31) 

cosi sina> , cosi cosro 

Dropping the last element of the column matrix f2, the following is obtained: 

[ 
a (cosE - e) ] 

a (1 - e 2)In. sinE 
(5.32) 

E being a function of a, e and T, the partials of f2 with respect to these three elements 

can be written in the following way: 

= 

= 

= 

. E ()E 
(cos£ - e ) - a sm • aa 

2 1/2 2 1/2 ()£ 
(1 - e ) sinE + a ( 1 - e ) cos£ • ()a 

-a (1 +sinE • ~! ) 
a smE + a (1 - e ) cos£ • -s-( 

-e ) . 2 112 oE 
(l - e 2)1/2 ue 

-a sinE 
aE ·-(Jf 

a (1 - e 2) 112 cos£ ()E .(J[ 
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The partials of the eccentric anomaly E with respect to the three elements a, e 
and Tare: 

(5.36) 

aE sinE 
= ae ( 1 - e cosE ) 

(5.37) 

(5.38) 

The partials of the satellite positions r(t) with respect to the Keplerian elements can now 

be obtained according to equation (5.27): 

ar ar2 

aa = fl ·-aa (5.39) 

ar ar2 

ae = fl.-ae (5.40) 

ar ar2 

aT 
= fl ·-aT 

(5.41) 

ar ar1 
= - .f am am 2 

(5.42) 

ar ar1 
= - • f2 an an 

(5.43) 

ar ar1 

a; = a; • rz (5.44) 

These equations have been spelled out in Langley et al. [1984] and coded in a 

Univeristy of Berne subroutine RPART. In their equations (4.22), (4.23) and (4.24) 
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which are our equations (5.36) (5.37) and (5.38), the following equivalence has been 

used: 

a 1 
= (5.45) 

r (1- e cosE ) 

where r is the magnitude of the vector r(t). 

In Langley et al. [1984] a minus sign was omitted in their equation (4.24). It is 

obviously a typing mistake since the equation is correctly coded in subroutine RPART. 

In their equations set (4.25), the second part of the right-hand side of the equation 

related to CJr/CJe (our equation 5.34) a minus sign related to the eccentricity e also was 

omitted. In subroutine RPART, the sign is also missing. This mistake introduces only 

few centimetres of error in the improved satellite positions when a good a priori value of 

the eccentricity e is known (close to I0-6). A corrected version of RPART is used in 

our new version of DIPOP to compute these partials. 

5.3 Actual DIPOP adjustment a£1£1roach 

The first version of DIPOP (1.0) has been well described in Vanicek et al. 

[1985], Santerre et al. [1985] and Langley et al. [1986a], whereas the second version 

(2.0) is described in Santerre et al. [1987]. This section describes the main idea behind 

the nuisance parameters elimination approach that is an important feature ofDIPOP. 

In the sequential least-squares parametric adjustment used in DIPOP, the 

estimated parameters are divided into parameters of interest (station coordinates) and 

nuisance parameters (biases), which are all other parameters contributing to the 

observation equations. 

The observations are also divided into several independent groups or sessions 

where a session is characterized by a common set of nuisance parameters. In the current 

DIPOP (2.0) version, a session is defined by all the observations related to a specific 

baseline vector where common nuisance parameters are clock synchronization terms and 

phase ambiguities. It should be noted that in network mode, this definition assumes no 

correlation between simultaneous double-difference observables formed by different 

pairs of receivers. 

The observations within a session are divided into sequences. A sequence is a 
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unit of the sequential adjustment. The algorithm is such that a sequence can be just one 

epoch (one observation) or may cover a complete session. 

To understand this approach, let us define the following example; we have three 

receivers (2 independent baselines) simultaneously observing 4 satellites over two 

different observation sessions (2 different days). This collected data can be organized in 

a solution involving 3 stations (A, B, C: 9 coordinates) as parameters of interest plus 8 

clock parameters (2 by baseline over 2 sessions) and 16 ambiguties (4 by baseline over 2 

sessions) as nuisance parameters. The schematic design matrix of this problem for a 

conventional least-squares batch solution is given in Fig. 5.1. Since there are 4 satellites 

observed, 3 independent double-difference observables are formed and each line of a 

block session (observation related to a specific baseline) of Fig. 5.1 represents all 

observations pertaining to a specific double-difference observable. Thus, black squares 

represent non-zero sub-matrices (nx1) whereas empty squares are zero sub-matrices. 

Such a representation is used by Mikhail and Ackerman [1976] to study the 

computational efficiency of large least-squares problems. 

stat. coord. nuisance parameters; (2 clocks+ 4 amb.)/baseline 

A I B I c A-B I A-C I A-B 

~aseline A-B 

baseline A-C 

~aseline A-B 

~aseline A-C 

Design matrix for classical least-squares batch solution 
(solution for 3 receivers, 2 observation sessions, 

4 satellites, 2 clocks/baseline) 
FIGURE 5.1 

I A-C 

Assuming that we fix station A with an appropriate P x matrix, the schematic 

normal equation matrix (A TpA + P x> from the design matrix of Fig. 5.1 is given in Fig. 
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5.2 where black squares represent non-zero elements whereas empty squares are zero 

elements). This result is obtained with an identity matrix P, i.e. no correlation between 

observations of different baselines is taken into account. The elimination algorithm used 

in DIPOP is based on the special form of the matrix presented in Fig. 5.2. Since there is 

no correlation between nuisance parameters from one baseline to another, the adjustment 

station 
coordinates 

Normal equations (ATPA + P ) associated with 
the design matrix of Fig. 5.1 (fl =identity matrix) 

FIGURE5.2 

may process the observations of each baseline sequentially by rigourously eliminating 

the nuisance parameters from the normal equations (related to station coordinates) after 
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all observations pertaining to a specific baseline have been processed. From this 

procedure, a baseline vector can be defined as a specific session. This approach is a 

powerful tool by which to reduce the memory storage requirement. For a specific 

number of station coordinates, an unlimited number of sessions can be processed in a 

network mode since the observations from one more session do not increase the storage 

requirement. The algorithm of this sequential least-squares adjustment is described in 

detail in Vanicek et al. [1985]. 

Although the correlation between simultaneous observations of different 

baseline vectors cannot be easily taken into account when a session is defined as 

baseline, the correlation between double-difference observations of the same baseline 

can be handled without problem. This option is part of DIPOP 2.0. 

If an orbit improvement is to be implemented in DIPOP 2.0, the current 

defmition of a session must be modified since the orbital parameters are common to all 

observations pertaining to a specific orbital arc. The next section describes the principal 

modifications that we performed to handle this situation. 

5.4 Principal DIPOP modifications 

We introduced three different types of modification in DIPOP 2.0, the most 

important being the modifications related to the orbit improvement. Some other 

modifications, as mentioned earlier, were done to improve the observations modelling, 

and finally modifications for data handling were done. 

The major modification which was implemented in order to obtain orbit 

improvement capability was the redefinition of a session. All the internal bookkeeping 

was redesigned to produce a flexible organization of the observations in different session 

spans. Although our orbit modelling was designed for short-arc orbits of -6-8 hours, as 

long as the memory is not a limiting factor, a session can be extended up to several days. 

Following this new definition, when orbital parameters must be estimated, we will refer 

to an "orbital session" as the unit of the nuisance parameters elimination algorithm. This 

orbital session is defined by the arc length generated by the numerical integrator. 

Although this session reorganization is necessary for an orbit solution, it will allow (in 

future development) the correlation between all simultaneous observations as described 
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in Beutler et al. [1987b] to be taken into account. Owing to the major changes in most 

of the array dimensions, the program DPDIM [Santerre et al.,l987], which creates the 

include file containing the DIPOP dimension parameters needed during the complilation 

of the main and post-processor, was modified. 

Orbitals Clocks Phase 

New partitioning of parameters within the design matrix 
FIGURE 5.3 

The algorithm of the sequential least-squares adjustment was not modified. The 

elimination is now performed after each orbital session. We only reorganized the design 

matrix; the new partitioning of the parameters within the matrix is presented in Fig. 5.3. 

In our new version the following options are possible: 

1. pure orbit improvement, where only orbital parameters and ambiguities have to 

be estimated; all stations are fixed, 

2. simultaneous solution, where orbital parameters and all station coordinates are 

estimated along with ambiguities (free-network solution), 

3. simultaneous solution, where orbital parameters and some of the stations 

coordinates are estimated along with ambiguities; some stations are held fixed 

(fiducial network solution), 

4. standard geodetic solution where only station coordinates are to be estimated 

along with ambiguities (fixed-orbit solution), 

5. option to estimate clock synchronization parameters for code or codeless 

receivers for each receiver pair pertaining to a baseline, 

6. option to estimate a tropospheric scale factor at each site involved in a session, 

7. the set of orbital parameters to be estimated is user defined; one to six parameters 

can be estimated, 

8. a preliminary observation elevation angle cutoff can be applied on the input data. 

With the exception of the ambiguity parameters, all estimated values can be 

constrained by a diagonal P x matrix. Although the standard geodetic solution (fixed 
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orbit) can be obtained through an appropriate P x matrix, there is an option where the 

estimation of orbital parameters is not included (no partials are computed). 

In DIPOP 2.0, the input data files for code and codeless receivers contain 

different types of information; the first contains the satellite positions at transmission 

time, whereas the second contains the satellite positions and velocities at the reception 

time. Since the input data is different in each case, the partials are computed by two 

different subroutines. We have unified this approach. In our new version the input data 

for code and codeless receivers are the same, and in both cases the partials computation 

is managed by the same subroutine EQOBS. Moreover, the new input file contains only 

the double-difference phase observations, the satellite positions and velocities being 

computed during the processing using polynomial coefficients obtained from a separate 

file (coefficients previously computed by the orbital pre-processor). In such an 

approach, a wavelength factor is to be provided in order to scale the effective carrier 

wavelength properly. The elimination of satellite coordinates in the input files reduces 

the data storage by approximatly 50%. 

The computation of satellite positions and velocities during the processing stage 

has obvious advantages. First the observations data preprocessing can be performed 

with any kind of a priori orbit to produce definitive clean input data files; second if an 

iteration, or simply a re-evaluation of a baseline with an improved orbit is required, the 

original observations data do not need to be re-preprocessed with the new orbital 

information: only an updated set of polynomial coefficients (obtained by the orbital 

pre-processor) must be provided to the main processor along with the same observation 

input files. This is important since the pre-processing is time-consuming. 

The post-processor program, which analyzes the adjustment results, was also 

modified to take into account all the new parameters and the new session definition. The 

command file, which controls all the selected options for a specific run, was redesigned 

as well. An example of the new control file is presented in Appendix 5. 

A flow chart of the general procedure to obtain an orbit solution with our 

package is presented in Fig. 5.4. As mentioned in the introduction we tested our 

development with observations from the March 1985 HPBT data set. These results are 

presented in the next chapter. 
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NUMERICAL INTEGRATION 
(ORDAP PROGRAM) (optional) 

PRE-PROCESSOR 
(CYCLE SLIP EDITING) 

MAIN PROCESSOR "MPROC" 
(sequential least-squares adjusunent) 

Storage files 
Link between the main processor 

and the post-processor 

POST PROCESSOR "PPROC" 
(Results analysis) 

Row chan of modified DIPOP version 
FIGURE 5.4 
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6. RESULTS 

6.1 Data set description 

As mentioned in the introduction, the Jet Propulsion Laboratory (JPL) in 

conjunction with 17 other institutions conducted a high-precision baseline test (HPBT) in 

the spring of 1985 in order to evaluate the capability of GPS for crustal dynamics studies 

[Davidson et al., 1985]. 

Between 29 March and 5 April, dual-frequency GPS receivers were operated at 

10 sites in the continental U.S. (see Fig. 6.1). All 10 sites were occupied by Texas 

Instruments TI 4100 receivers. At two sites (Mojave and Big Pine) JPL's SERIES-X 

receivers were also operated and at Westford, Richmond, and Fon Davis, Air Force 

Geophysical Laboratory dual-frequency receivers were additionally operated. The 

receivers were used with a variety of frequency standards: hydrogen masers, cesium, 

rubudium as well as receiver internal oscillators. Water-vapour radiometers were 

operated at three of the sites in California: Hat Creek, Mojave and Big Pine. 

The GPS satellites were visible over the continental U.S. during two daily 

windows, one from about 3 hours to 11 hours UT, when satellites PRN 4, 6, 8, 9, 11, 

12, 13 were visible, and one from about 17 hours to 21 hours, when only satellites 8, 9, 

11 and 12 were briefly visible. The consecutive sessions have been numbered 0 through 

15 with the major sessions being even-numbered [Langley et al., 1986b]. 

At the ARL (Applied Research Laboratory at Austin) and NSWC (Naval Surface 

Weapons Center at Dahlgren) sites, the TI 4100 receivers were operated throughout the 

test with external cesium beam-tube frequency standards. At Mammoth Lakes an external 

rubidium standard was used. At the Westford, Richmond, and Fort Davis VLBI sites, 

the hydrogen maser standard was always used. And for the two days on which the 
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Point Mugu receiver participated, the internal crystal oscillator of the receiver was used. 

At Mojave, Big Pine and Hat Creek a variety of frequency standards were used on an 

alternating basis. A summary of the observation sessions as well as the frequency 

standards related to the TI 4100 receivers is presented in Fig. 6.2 [Langley et al., 

1986b]. 

50 

40 

30 

20 

240 

• TI 4100 

260 

1!1 AFGL d'IW...frtq. 

280 

0 SERIES-X 

Spring 1985 Hight Precision Baseline Test (HPBT) site locations 
FIGURE6.1 

300 

This HPBT test was specially designed to include orbit improvement using GPS 

observations from VLBI sites, tropospheric correction including estimates of wet-path 

delay based on water-vapor radiometer (WVR) observations and ionospheric correction 

based on dual-frequency carrier-phase observations [Ware et al., 1986]. 

The HPBT data set is then designed perfectly to demonstrate the capability of 

our software to obtain highly accurate station coordinates by estimating orbital 

parameters since the coordinates of six of the ten stations of the network are accurately 

known from VLBI observations (stations Mojave, Westford, Richmond, Fort Davis, 

Hat Creek and Big Pine). The WGS72 VLBI coordinates have been obtained from 

Langley [1987]. They are those used by the Bernese group in their preliminary analysis 
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of the HPBT campaign. This coordinate set differs by a rotation angle of 0.54 arcsec. 

around the Z axis from those published by Kroger [1986]. Table 6.1lists the VLBI 

coordinates (including the GPS antenna eccentricities) in the WGS72 system that we 

have used as a basis of comparison. 

Since our approach is designed for short orbital arc we have decided, to 

demonstrate the correctness of our algorithms, to process only a subset of the HPBT TI 

4100 data set instead of processing the data from the whole campaign. We have selected 

the first four full (9 stations) TI 4100 sessions as a subset, numbered 02, 04, 06 and 12 

(see Fig. 6.2). 

Station 

Austin (ARL) 

Westford 

Richmond 

Fort Davis 

Mojave 

Big Pine 

Hat Creek 

Mammoth 

Dahlgren 

Pt Mugu 

Dates and session number 

II No external frequency s~dard 

II Cesium 

m Hydrogen Maser 

~ Rubidium 

6.2 Test descriptions 

TI 4100 observation schedule 
(from Langley et al., 1986b) 

FIGURE 6.2 

We have performed different kinds of tests in order to assess our software 

development. We will present the most interesting ones in the following sections. The 
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first series of tests are related to our orbit integrator; we produced some plots to see the 

different effects of the perturbing forces on the GPS satellites as described in Section 

2.4. These plots were produced to assess the correct implementation of the perturbing 

force models as well as to represent graphically the complexity of the force field required 

for orbital arc modelling up to 2 days. 

SITE Monument inscription X y z 

Big Pine ( BP ARIES 3) -2409654.7415 -4478261.9504 3838638.7329 
Fort Davis (HARVARD RM 41980) -1324205.7179 -5332056.0713 3232043.6300 
Westford (OCP 3 NOAA TM NOS NGS21) 1492398.4454 -4457293.8953 4296819.2655 
Hat Creek (LM NO.1 M) -2523882.5946 -4123573.0094 4147719.3431 
Mojave (MOJAVE NCMN N0.3 1983) -2356576.1550 -4646565.1052 3668427.6533 
Richmond (TIMER 1962) 961302.9852 -5674057.1094 2740563.8693 

WGS72 VLBI coordinates (metre) 
TABLE6.1 

The second test series is related to the data subset described in the previous 

section. After the baseline by baseline pre-processing, we first combined all 

double-difference observations in a fixed-orbit network solution (NETFX) in order to 

obtain an idea of the broadcast ephemerides accuracy. The rms of the coordinate 

residuals between our solution and the VLBI WGS72 coordinates was used to judge the 

accuracy of the broadcast ephemerides. 

This estimated broadcast orbit accuracy was used subsequently as a priori 

constraints (through the P x matrix) in a free-network solution (NETFR), where all 

station coordinates are free to adjust along with the orbits. The quality of the network 

solution was evaluated through a seven-parameter transformation (see Appendix 6) using 

VLBI coordinates as fixed stations. The same network adjustment was performed in a 

fiducial network mode (NETFD) where the VLBI stations Westford, Richmond, Fort 

Davis and Hat Creek were held fixed by means of the P x matrix. Afterwards, the fiducial 

approach was used to perform an independent solution for each day involved in the 

network (02FD, 04FD, 06FD, 12FD). These 4 independent results were used to 

evaluate the day-to-day network repeatability as well as the internal network accuracy. 

The characteristics of these solutions appear in Table 6.2. 
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Finally, we solved for pure orbit solutions using station Westford, Richmond, 

Fort Davis and Hat Creek as fiducial sites. The improved orbit was subsequently used 

to process some baselines. 

The data from the Westford station recorded in session 04 have been discarded 

since only few data points were recorded. For sessions 02, 06 and 12, all the 

observations were differenced with respect to observations from Westford (8 

baselines/per day) whereas all data from session 04 were differenced with Hat Creek 

observations (7 baselines). 

As mentionned in Chapter 5, during the HPBT campaign, there was a 

malfunctioning of the internal receiver software since large clock offsets were found in 

the 114100 data by the Bernese group [Beutler et al., 1986]. The clock offsets obtained 

from the double-difference phase solutions were not consistent with the same offsets 

obtained from point positioning (P-code). One of the possible reasons to explain this 

problem is the non-synchronization of the P-code and the phase measurement, i.e. the 

two different observations were not observed at the same time although they were 

recorded with an identical time tag. The DIPOP 2.0 version not being able to estimate 

these offsets for code receiver data, we were obligated, as mentioned in Section 5.1 to 

generalize the clock estimation procedure in the software. We thus estimated two clock 

parameters (offset and drift) for each baseline involved in our solutions. We found clock 

synchronization offsets of up to 6 milliseconds (see Appendix 7). 

Solution Total Number of J2arameters Total# 
# obs. coord. am b. clock tropos. orbit parameters 

NETFX 41168 24 229 62 35 0 350 
NETFR 41168 27 229 62 35 168 521 
NETFD 41 168 15 * 229 62 35 168 509 
02FD 9 214 15 * 58 16 9 42 140 
04FD 10000 12 * 54 14 8 42 130 
06FD 10772 15 * 59 16 9 42 141 
12FD 11182 15 * 58 16 9 42 140 

* Fiducial solution with 12 station coordinates fixed by means of P x matrix 

Different GPS solutions 
TABLE 6.2 
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Seven satellites were observed during each session, and thus (7 -1 = 6) 

ambiguities usually had to be estimated for each baseline, i.e. 48 ambiguities for a 

session involving 9 stations (8 independent baselines) and 42 for a session involving 8 

stations (7 independent baselines). In Table 6.2 there are more ambiguity parameters 

than the minimum required. This large number of ambiguity parameters is explained by 

the pseudo-satellites introduced in the solution because of gaps in the data series caused 

by cycle slips or the necessity to destroy, as mentioned in Section 4.5, the linear 

dependency between each satellite pair involved. Needless to say that these additional 

unknowns along with the clock parameters weaken our solutions substantially. 

Because we did not have access to surface meteorological data, we decided to 

solve for a tropospheric scale factor at each station using standard values of 

meteorological data as a priori values. To be on the safe side with the tropospheric 

model, we used a cut-off satellite elevation angle of 20° for each solution. 

Although the argument of perigee and the time of perigee passage are highly 

correlated, we decided to solve for 6 parameters for each orbital arc. The selection of the 

orbital constraints used in the solution will be discussed later. 

It should be mentioned that all subroutines that we have developed, to generate 

our results, are coded in FORTRAN 77 language and all our processing has been 

performed on the Micro VAX minicomputer of an Intergraph series 250 system. 

6.3 Numerical integrator test 

This section has been included in order to assess the correct implementation of 

the force model described in Section 3.4. We proceeded as explained in Section 2.4. We 

generated a reference trajectory using a complete force model including the earth's 

geopotential coefficients up to degree and order 8, the third-body effect of the sun and 

the moon and our simple solar radiation force model. From this reference trajectory, each 

component of the force model can be easily analyzed graphically. 

Although the numerical integrator has been designed to be used for short-arc 

orbits owing to the specific force model used, the integrator can easily generate a 2-day 

arc-length trajectory. We obtained from the broadcast ephemerides (from session 02) a 
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set of osculating elements for satellite PRN 8 at the osculating epoch 46154.1250 MID 

(modified Julian date) to integrate a 2-day reference orbital arc. The osculating elements 

at the epoch are: 

a = 26 561 740.4 m 
e = 0.004 1338 
i = 63.25° 
Q = 148.29° 
ro = - 23.93° 
T = 46154.1059 

We first investigated the effect of the higher-order geopotential coefficients, i.e 

coefficients higher than degree and order 4. We then generated a trajectory with all 

perturbing forces where the geopotential model was truncated to the degree and order 4. 

Afterwards, this trajectory was compared at each 10-min. interval (over 48 hours) with 

the reference trajectory previously described. Fig. 6.3 gives the effect of this truncation 

in terms of radial, along-track and across-track errors. Clearly, a (4,4) model is not 

sufficient for short-arc modelling of 6-8 hours when half-metre accuracy level is 

required, since the total error reach up to 0.60 metres after 6 hours. But if a 0.1 ppm 

solution is sought, according to equation (1.1), a 2.5-metre accuracy in satellite positions 

is sufficient and a (4,4) model can be adequate. It can be shown in the same way 

[Landau and Hagmaier, 1986] that a (8,8) model is sufficient to integrate a 6-day arc at 

the sub-metre accuracy level. 

In the same way we plotted the combined effect of the gravitational attraction of 

the sun and the moon. Fig 6.4 shows the residuals of this comparison. The third-body 

effects along with the moon and sun positions computation seems to be correctly 

implemented since our results correlate with those of Table 2.1. After 3 hours of 

integration we accummulated a total error up to 132 metres and after two days integration 

the error reached up to 2750 metres, the along-track component being the most affected. 

The solar pressure model correlates as well with the results of Table 2.1. The 

Fig. 6.5 shows the errors introduced in a trajectory when the solar radiation pressure is 

not modelled. After 3 hours we accumulated up to 5.5 metres of errors and after two 

days the error reached up to 480 metres for this specific trajectory. 

The force model being well implemented, we can now explain why we do not 
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estimate any solar radiation parameters along with our orbital parameters. Beutler et al. 

[1986] in their preliminary analysis of the HPBT campaign estimated the direct solar 

radiation parameter along with the orbital parameters. A cursory analysis of their results 

shows that the estimated values for each satellite vary between 0.83 and 1.02 (x10·7 

m/sec2). Thus, we can say that the direct solar radiation pressure parameters for this 

campaign can be evaluated as 0.94 x 10·7 ± 10%. We investigated the effect of an error 

of 10% in the solar radiation pressure parameter. These results are shown in Fig. 6.6. 

The effect is simply one order of magnitude less than the total effect illustrated in Fig. 

6.5. For 4 hours of integration the 2.5-metre accuracy level is well maintained; after 7 

hours of integration the accumulated errors can reach up to 1.85 m, which is, to a certain 

extent, acceptable since only satellite PRN 11 has to be integrated over 7 hours (for this 

specific campaign), all other satellites being integrated for arc-lengths of about 4 hours. 

However, it is clear from this plot that for arc-lengths longer than 8 hours a solar 

radiation pressure parameter p0 (see equation 3.15) has to be estimated (for each satellite) 

if the 2.5-metre level is sought in the satellite positions. The negligible effect of 

estimating solar radiation pressure parameters over short-arcs has also been pointed out 

by different authors [Williams, 1986; Beutler et al., 1986]. 

According to this latest result, all trajectories were integrated with a value of 

0.94 x 10·7 m/sec2 as solar radiation pressure parameter. The integrator is organized in 

such a way that up to 10 orbital sessions can be integrated sequentially in one run. Using 

an appropriate step size, the integration of 7 arcs per day over 4 days, including a 

preliminary improvement (see Section 3.8), takes no more than 40 minutes on our 

MicroVAX (when a preliminary improvement is required, the integration is performed 

twice for each satellite). 

6.4 Network solutions 

We have computed a fixed orbit solution (NETFX) using integrated trajectories 

adjusted to the broadcast ephemerides as fixed orbit (see Section 3.8). The q.ifference 

between the "adjusted-integrated" trajectories and the broadcast ephemerides is usually at 

the metre level, Fig. 6.7 gives an example of these residuals. A significant discontinuity 

is observed between an old message (AODE = 28 hrs) and a fresh one (AODE = 2.8 
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hrs). This example demonstrates why the broadcast ephemerides have to be smoothed 

prior to use. Since our data set has been collected in 1985, it should be mentioned that all 

our computations were performed using the WGS72 GM value. 

The ionosphere-free combination ofL1 and L2 was used in this solution and in 

all subsequent solutions. For this specific solution, the Westford station was held fixed 

at the sub-millimetre level through the P x matrix. The quality of the broadcast 

ephemerides are as expected. Table 6.3 gives the difference between the NETFX 

solution and the VLBI coordinates. 

Since baselines of up to 4 000 km are involved in the network, the horizontal 

components of our solution are at the- 0.7 ppm relative accuracy level whereas the 

vertical components are good at the 1.5 ppm level. Without Richmond these values drop 

to 0.3 and 0.8 ppm. Our results demonstrated the better agreement of the horizontal 

components when using the broadcast ephemerides. The vertical component is usually 2 

or 3 times worse than the horizontal components. Table 6.3 also shows the effect of the 

better north-south coverage of the current constellation; the latitude is usually better 

resolved. 

Site North (m) East (m) 

Big Pine -0.311 -1.371 
Fort Davis -0.186 0.007 
Hat Creek 0.269 -2.254 
Mojave -0.108 -1.171 
Richmond 0.313 -7.276 

Rms of horizontal residuals 2.62 m 
Rms of vertical residuals 6.02 m 

Difference between fixed-orbit GPS 
solution and the VLBI WGS72 coordinates 

TABLE 6.3 

Height (m) 

-3.794 
-2.426 
-1.782 
-3.261 

-10.518 

According to equation ( 1.1 ), a relative accuracy of the order of 0. 7 ppm results 

in an orbital error of -16 m. We used this simple approach to constrain the orbital 

parameters in the free network solution. 
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It should be noted that we are talking here about average errors and it may be 

posssible that some orbits are worse than others. We selected the following a priori 

constraints to be applied on each orbital element (through the P x matrix); the induced 

orbit errors are given in parentheses: 

a 
e 
i 
n 
(I) 

T 

= 
= 
= 
= 
= 
= 

2m 
1.0 x w-7 

0.02 arcsec. 
0.02 arcsec. 
0.02 arcsec. 
0.004 sec. 

( 2m) 
(-3m) 
(-3m) 
(-3m) 
(-3m) 
(-15m) 

These a priori weights are similar to those used by Beutler et al. [1987a]. The 

selected a priori weight for the time of perigee passage was selected to be larger only to 

be on the safe side, since the largest portion of the error is usually along-track. The 

selection of the orbital parameter a priori weights have been investigated by Beutler et al. 

[1987a]. It was clearly shown that a priori weights ranging between 0.1 and 10 times the 

values previously selected do not significantly affect the final results. 

This a priori orbital information was then used to constrain 6 initial conditions 

per satellite in a free-network solution (NETFR) where all stations were constrained 

within 100 metres in x, y and z coordinates. Table 6.4 gives the results of the 

seven-parameter transformation between our free-network solution and the WGS72 

VLBI coordinates. 

These results are very interesting: horizontal components have improved by a 

factor of -20 with respect to the fixed orbit solution whereas the vertical component has 

improved by almost two orders of magnitude. The better north-south resolution is still 

well observed. Considering that the network is of the order of 4 000 km, this solution is 

well below the 0.1-ppm accuracy level. However, there are two significant translation 

parameters (on x and z axis) which may reflect the poor capacity of phase observations 

for absolute positioning. There is also a slight scale factor and two small rotation angles 

between the coordinte sets. Table 6.4 demonstrates, to a certain extent, the correct 

implementation of the orbit improvement process. 

To verify the orbital constraints effect, we have relaxed by a factor of 2 the 

constraints used previously. The agreement of this new solution with VLBI coordinates 
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was - 0.12 m in the horizontal components and- 0.10 m in the vertical component. This 

result corroborated the Beutler conclusions mentioned previously. 

Residuals of the transformation (GPS-VLBI in metres) 
Site North East Height 

Big Pine 
Fort Davis 
Westford 
Hat Creek 
Mojave 
Richmond 

-0.015 
0.004 
0.201 

-0.049 
0.043 

-0.152 

rms of horizontal residuals 
rms of vertical residuals 
Translation of x axis 
Translation of y axis 
Translation of z axis 
Rotation around x axis 
Rotation around y axis 
Rotation around z axis 
Scale factor 

0.11 m 
0.07m 

10.54 ± 
3.73 ± 
6.88 ± 
0.02 ± 

-0.08 ± 
-0.05 ± 
0.07 ± 

-0.006 
-0.116 
0.102 
0.130 
0.047 

-0.120 

0.19m 
0.27m 
0.35 m 
0.02 arcsec. 
0.01 arcsec. 
0.01 arcsec. 
0.03 ppm. 

0.057 
0.071 
0.053 

-0.092 
-0.054 
-0.034 

Seven-parameter transformation between GPS free-network 
solution and the VLBI WGS72 coordinates 

TABLE6.4 

In our fiducial network test, we left the orbits almost free to adjust since the 

coordinates of 4 network stations were held fixed. The following a priori weights on the 

orbit initial conditions were used in our fiducial solution (NETFD): 

a = 50m 
e = 2.0 x 10-5 

i = 1.0 arc sec. 
Q = 1.0 arc sec. 
(I) = 1.0 arc sec. 
T = 0.250 sec. 

The Westford, Richmond, Fort Davis and Hat Creek stations were held fixed. 

The quality of the solution can be checked by looking at the results for the other two 
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VLBI sites Mojave and Big Pine. Table 6.5 gives the difference of the estimated 

coordinates with the VLBI WGS72 coordinates. The discrepancies at Mojave and Hat 

Creek are of the same order of magnitude as the residuals of Table 6.4, which suggests 

that free-network and fiducial network approaches have almost the same capabilities to 

solve the orbit improvement problem to recover accurate relative coordinates. However, 

as far as the stability of the reference frame is concerned, the fiducial approach is 

certainly more stable than the free-network approach. 

Site 

Big Pine 
Mojave 

Nonh 

0.014 
0.067 

East 

-0.077 
-0.012 

Height 

0.056 
-0.091 

Discrepancy between fiducial solution and 
VLBI WGS72 coordinates (metre) 

TABLE6.5 

Solution 

Orbit fixed 
Free network 
Fiducial network 

rms (em) 

49.04 
1.92 
1.92 

Rms of double-difference phase residuals 
TABLE6.6 

Table 6.6 gives the rms of double-difference phase residuals for each network 

solution; the large rms of the fixed orbit solution is simply due to large systematic trends 

in the double-difference residuals introduced by the orbital errors. Fig. 6.8 illustrates 

such trends using 3 hours of data (epoch interval = 30 seconds). When orbital 

parameters are estimated, the rms drops significantly by a factor of 30 which means that 

the systematic trends greatly disappear. Fig. 6.9 shows the double-difference residuals 

of the same observations using an improved orbit integrated from a set of initial 

conditions obtained from the fiducial solution. 

The agreement of the NETFR and NETFX solutions with respect the VLBI 

WGS72 coordinates being - 0.1 ppm, or even below, it would be interesting to compare 

89 



these two solutions at non-fiducial sites. This comparison is summarized in Table 6.7; 

VLBI stations Mojave and Big Pine, which were left free in the fiducial solution are also 

part of this comparison. The free-network coordinates used in this comparison are those 

obtained after transformation with VLBI WGS72 coordinates (transformation of Table 

6.4). 
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The rms of the comparison is roughly 7 em (in the three components). which 

means that the agreement between the two solutions is better than 0.05 ppm level. We 

also compared the baselines derived from each solution with the VLBI-derived baseline 

length. We restrained this comparison to the baselines where double-difference 

observables were formed. i.e. only baselines including Westford and Hat Creek are 

compared. The results are shown in Table 6.8. 

Site 

Dahlgren 
Austin 
Big Pine 
Mammoth 
Mojave 

North 

0.128 
0.008 

-0.029 
-0.033 
-0.025 

East 

0.033 
-0.148 
0.071 
0.083 
0.059 

Height 

-0.049 
0.032 
0.002 

-0.010 
0.036 

Discrepancy (metre) between fiducial solution and 
free-network solution at non-fiducial sites 

TABLE 6.7 

SOLUTION 

Baseline length NETFX NETFR NETFD 

(km) diff. (m) ppm diff. (m) ppm diff. (m) ppm 

HY-RC 2 045.6 0.608 0.30 0.406 0.20 
HY-FD 3 135.6 -0.503 0.16 0.265 0.08 
HY-BP 3 928.9 0.145 0.04 0.116 0.03 0.079 0.02 
HY-HT 4 032.9 1.363 0.34 -0.067 0.02 
HY-MJ 3 904.5 0.051 0.01 0.026 0.01 -0.045 0.01 
HT-RC 4 065.7 -7.625 1.88 -0.183 0.05 
HT-FD 1 933.4 1.547 0.80 -0.228 0.12 
HT-BP 484.1 0.817 1.69 -0.108 0.22 -0.053 0.11 
HT-MJ 728.8 0.688 0.94 -0.134 0.18 -0.068 0.09 

HY Westford (Haystack) HT Hat Creek FD FonDavis 
RC Richmond MJ Mojave BP Big Pine 

Baseline comparison with respect to 
VLBI derived baselines 

TABLE6.8 
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The results of Table 6.8 probably give a better idea of the real accuracy of our 

solutions. First, as it has been pointed out by Beutler et al. [1987a] and Delikaraoglou 

[1987], the agreement of the shortest baselines is slightly worse. This effect is less 

apparent in the fiducial solution since one end of the baseline was held fixed (Hat Creek); 

thus, the baseline accuracy represents, to a certain extent, the accuracy of the coordinates 

of the other end of the baseline. The relative accuracy of the shortest baselines is usually 

worse than the longest ones since biases which are independent of the baseline length 

(such as tropospheric effects) magnify the relative accuracy over small vectors [Beutler et 

al., 1987c; Delikaraoglou, 1987], i.e., 0.25 m error on 2 500 km baseline represents 

only 0.1ppm relative accuracy whereas the same error on a 250 km baseline represents 

1.0 ppm relative accuracy. 

According to Table 6.8, the orbit-fixed solution relative accuracy is at the 0.7 

ppm level (average) as we expected in horizontal. The fiducial network is at 0.06 ppm 

level wereas the free network solution is at 0.10 ppm (average). The fiducial network 

seems to be of better quality than the free-network solution, but as mentioned previously 

in the fiducial solution one end of the baseline is fixed, as opposed to the free-network 

solution where coordinate errors of two stations contribute to the relative baseline errors. 

Thus, as far as relative accuracy is concerned, it is difficult to conclude from 

Table 6.8 that the fiducial approach is better than the free-network solution. The only 

disadvantage that we can point out about the free-network approach is that the final 

solution is not well aligned with the adopted reference system (the reference system is 

not stable) and a small scale factor exists, which means that these coordinates cannot be 

used directly with coordinates derived from the adopted reference frame. The 

free-network coordinates have to be transformed before any manipulation, whereas the 

fiducial-network coordinates can be used directly with those in the adopted reference 

system. 

The complete output listing of our fiducial network solution is presented in 

Appendix 7. Appendix 8 presents the difference between improved orbits from this 

solution with respect to a priori orbits (for March 30). 

In almost all our baseline results using a priori orbits (integrated orbits adjusted 

to broadcast ephemerides) the rms of double-difference phase residuals which include 

PRN 4 (e.g. 12-4, 13-4) were always larger (by a factor of 2 or more) than all other 
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satellite pairs. These large systematic phase residuals may explain the larger orbital 

residuals of satellite PRN 4 in Appendix 8. 

In Table 6.9 we summarize the coordinates of the non-fiducial sites of this 

solution (NETFD) along with their formal errors. Although the estimated coordinate 

errors represent 1 sigma, they are still too optimistic. The same estimated errors for the 

free-network solution are larger by approximately two orders of magnitude. But in that 

case, they are too pessimistic. This can be explained easily by the poor capacity of the 

double-difference observables for absolute positioning (the large translation parameters 

of Table 6.4 is also a demonstration of this weakness). However, in both cases, when 

these errors are translated into north, east and height components, the north components 

are systematically of better quality than the east components (see Appendix 7). This is 

usually attributed, as we mentionned earlier, to the superior north-south coverage 

provided by the present constellation [Abbot et al., 1986]. 

Site 

Big Pine 
Mojave 
Dahlgren 
Austin 
Mammoth 

X 

-2409654.826 ± 0.007 
-2356576.115 ± 0.008 
1123313.689 ± 0.010 
-740328.391 ± 0.008 

-2444443.598 ± 0.007 

y 

-4478261.945 ± 0.006 
-4646564.999 ± 0.008 
-4882071.059 ± 0.012 
-5457067.648 ± 0.008 
-4428696.329 ± 0.006 

Fiducial network solution (metre) 
(non-fiducial sites) 

TABLE6.9 

z 
3838638.778 ± 0.006 
3668427.655 ± 0.006 
3934412.026 ± 0.013 
3207239.691 ± 0.006 
3875726.899 ± 0.005 

To conclude this section, we can say, according to Tables 6.4, 6.5 and 6.8 that 

our software has the capability, for short-arc orbits, to achieve the 0.1 ppm level over 

long baselines in both approaches, fiducial and free-network mode. The next section is 

devoted to the daily solution repeatability. 
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6.5 Day-to-day re.peatability 

Since the fiducial approach yields solutions that are well aligned in the reference 

system, we selected this approach to present a day-to-day repeatability. To test the 

accuracy of the coordinate repeatability, we tabulated the difference between the 

coordinates of the non-fiducial stations Big Pine and Mojave with their VLBI WGS72 

positions. The results are shown in Table 6.10; network values have been also included. 

These results can be seen as a measure of the external accuracy of the solution. In 

session 04, Mojave was used as a fiducial point since the Westford station was not used. 

The effect of a new fiducial configuration at session 04 can easily be observed on the 

north-south and the vertical component of station Big Pine. Fig. 6.10 represents the 

situation in diagrammatic form. 

Site Session North East Height 

Big Pine 02 0.029 -0.077 -0.029 
Big Pine 04 -0.026 -0.074 0.142 
Big Pine 06 0.010 -0.121 0.066 
Big Pine 12 0.012 -0.092 0.104 
Big Pine (fid.-network) 0.014 -0.077 0.056 

Mojave 02 0.079 0.003 -0.141 
Mojave 04 
Mojave 06 0.070 -0.141 -0.090. 
Mojave 12 0.064 -0.006 -0.045 
Mojave (fid. -network) 0.067 -0.012 -0.091 

Fiducial daily solutions with respect to 
VLBI WGS72 positions (metre) 

TABLE6.10 

The internal accuracy of the fiducial network solution can be verified, to a 

certain extent, by comparing the daily solutions with our network solution. The 

difference in the coordinate components obtained in the daily solutions and the overall 

network solution is a measure for the impact of the unmodelled effects [Kleusberg and 

Wanninger, 1987]. Table 6.11 presents this comparison. The different fiducial 

configuration in session 04 is the biggest systematic effect that can be outlined. It is very 
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well observed especially at Dahlgren, which is really outside the area covered by the 

Richmond, Fort Davis, Mojave and Hat Creek stations. If we exclude the Dahlgren 

determination of session 04, the internal accuracy of the coordinates is below the 

10-centimetre level, which means an internal accuracy (and daily repeatability) of the 

order of- 0.03-ppm level. 

The same comparison can be performed on the baseline repeatability. Table 

6.12 summarizes the relative baseline accuracy with respect to VLBI-derived baselines, 

whereas Table 6.13 summarizes the relative internal accuracy (with respect to our 

fiducial network solution) of the same baselines plus all other baselines including 

non-fiducial sites. 
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Site Session Nonh East Height 

Big Pine 02 0.014 0.000 -0.085 
Big Pine 04 -0.040 0.003 0.087 
Big Pine 06 -0.005 -0.044 0.011 
Big Pine 12 -0.002 -0.015 0.049 

Mojave 02 0.012 0.015 -0.050 
Mojave 04 
Mojave 06 0.003 -0.129 0.000 
Mojave 12 -0.003 0.006 0.046 

Dahlgren 02 0.004 0.007 0.021 
Dahlgren 04 0.376 0.595 -0.069 
Dahlgren 06 -0.041 0.082 0.143 
Dahlgren 12 0.018 -0.067 -0.142 

Austin 02 -0.010 0.016 -0.007 
Austin 04 0.060 0.034 -0.027 
Austin 06 0.009 -0.012 -0.018 
Austin 12 -0.009 0.006 -0.038 

Mammoth 02 0.007 -0.004 -0.075 
Mammoth 04 -0.041 0.016 0.046 
Mammoth 06 -0.007 -0.052 0.049 
Mammoth 12 0.002 0.004 0.037 

Daily solutions (non-fiducial sites) with respect 
to our fiducial network solution (metre) 

TABLE6.11 

According to Table 6.12, the relative accuracy of the shonest baselines are 

worse than those obtained in the network solution. This suggests that some baseline 

independent biases (e.g. atmospheric biases) can be averaged out over long observation 

periods. For the longest baseline the repeatability is still below the 0.1-ppm level. The 

good agreement of the HT-BP baseline for session 04 is probably due to the addition of 

the Mojave station, in the fiducial configuration, which is very close to Big Pine. 
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SESSION 
Baseline length (km) 02 04 06 

HY-BP 3 928.9 0.01 0.03 
HY-MJ 3 904.5 0.02 0.02 
HT-BP 484.1 0.14 0.03 0.15 
HT-MJ 728.8 0.10 0.19 

HY Westford (Haystack) HT Hat Creek 
MJ Mojave BP Big Pine 

Daily baseline comparison (in ppm) with respect to 
VLBI derived baselines 

TABLE6.12 

12 

0.03 
0.01 
0.12 
0.08 

The most interesting result is the internal accuracy. Over long baselines (> 1 000 

km) the daily baseline repeatability (average) is at the 0.01 ppm level, whereas for the 

shortest baselines it is at the- 0.05 ppm level (average). 

SESSION 
Baseline length (km) 02 04 06 12 

HY-BP 3 928.9 0.008 0.011 0.007 
HY-MJ 3 904.5 0.008 0.028 0.003 
HY-NS 669.3 0.011 o.b27 0.037 
HY-AR 2 678.0 0.003 0.000 0.003 
HY-MM 3 959.4 0.006 0.016 0.002 
HT-BP 484.1 0.031 0.079 0.041 0.009 
HT-MJ 728.8 0.007 0.093 0.097 0.011 
HT-NS 3 731.3 0.003 0.109 0.035 0.029 
HT-AR 2 417.4 0.007 0.005 0.008 0.001 
HT-MM 416.4 0.025 0.107 0.046 0.004 

HY Westford (Haystack) HT Hat Creek l\1M Mammoth 
MJ Mojave NS Dahlgren (NSWC) 
BP Big Pine AR Austin 

Daily baseline comparison (in ppm) with respect to 
our fiducial network solution 

TABLE 6.13 
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In order to assess our development further, we will compare the repeatability of 

a 484-km and a 4 000-km baseline computed with an orbit obtained from a pure orbit 

improvement solution. 

6.6 Re.peatability usin~ improved orbit 

We used the POLARIS Westford, Fort Davis and Richmond stations together 

with Hat Creek as fiducial sites to produce a pure-orbit improvement solution. 

Observations from session 02, 06 and 12 were combined in a fiducial network to 

produce three independent sets of short-orbital arcs. The solved-for parameters of this 

solution were one tropospheric scale factor for each station, one relative clock offset and 

one relative clock drift for each baseline, the ambiguities and 6 orbital parameters for 

each satellite. Session 04 was not used since there was not enough data recorded at 

Westford to be combined with the other stations. 

The improved set of initial conditions for each arc were integrated over a few 

hours. Afterwards, these trajectories were used to solve a short baseline of 484-km 

between Big Pine and Hat Creek and a 4 000-km baseline between Westford and 

Mojave. This test will further assess the modelling of our orbital integrator. 

Site Session North East Height 

Big Pine 02 0.199 -0.011 0.271 
Big Pine 06 0.270 -0.059 0.375 
Big Pine 12 0.191 -0.100 0.263 

Mojave 02 0.129 -0.018 0.083 
Mojave 06 0.131 -0.005 0.334 
Mojave 12 0.202 0.122 0.388 

Daily coordinate repeatability (metre) using an improved orbit. 
Comparison with WGS72 VLBI coordinates 

TABLE6.14 

For this baseline processing, we solved for two clock parameters, for the 

ambiguties and for three station coordinates for each baseline. Coordinates of Westford 

and Hat Creek were held fixed. The coordinate and baseline comparisons are with 
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respect to the WGS72 VLBI coordinates. Table 6.14 gives the coordinate comparison 

whereas Table 6.15 gives the baseline comparison. 

The coordinate repeatability accuracy for the short baseline is of the order of 0.5 

ppm. For the long baseline, the repeatability accuracy is of the order of 0.05-ppm. As 

far as baseline repeatability is concerned, the short baseline repeats at the 0.5 ppm level, 

the long baseline repeats well below the 0.05-ppm level. 

The results on the shortest baseline are worse still. This is not surprising since 

the coordinate discrepancies of Table 6.14 are of the same order either for the long or the 

short baseline, suggesting an unmodelled constant effect. The estimation of a 

tropospheric scale factor did not really improve the results on the long baseline. For the 

short baseline, the results were slightly worse. Since the tropospheric model was unable 

to remove a portion of this effect, if the unmodelled effect is from the troposphere, we 

must assume that the meteorological conditions at Big Pine or Hat Creek or both stations 

were not constant during the observation period. 

SESSION 
Baseline length (km) 02 06 12 

HY-MJ 3 904.5 0.00 0.01 0.02 
HT-BP 484.1 0.37 0.55 0.46 

HY Westford (Haystack) HT HatCreek 
MJ Mojave BP Big Pine 

Daily baseline repeatability (in ppm) using improved orbit. 
Comparison with respect to VLBI derived baselines 

TABLE6.15 

We can conclude from the results of Table 6.14 and 6.15 that the force model of 

our orbital integrator is satisfactory since the solutions obtained with the integrated orbit 

are of the same order of magnitude than those obtained in our fiducial network solution. 
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7. CONCLUSIONS AND RECOMENDATIONS 

We have demonstrated in two different ways that a simple force model including 

the earth's gravitational field up to degree and order 4, the gravitational attraction of the 

sun and the moon and a simple solar radiation pressure model are sufficient to integrate 

precise short orbital arcs of -6-8 hours. The plots generated in Section 6.3 showed that 

such a model over 6-8 hours can preserve the 2.5-metre accuracy in the satellite's 

position if the solar radiation constants are known at ±10%. Results of Section 6.6 are 

consistent with this assumption, since results of 0.05 ppm (over a long baseline) and 

-Q.4 ppm (over a short baseline) were obtained in baseline length when solutions were 

computed with integrated orbits from improved initial conditions. The results on the 

longest baseline are a better measure of the relative accuracy. From these results we can 

conclude that the orbital integrator program ORDAP is operating well and can be used 

without problem to generate precise short-arc orbits. 

From our subset of the HPBT campaign, we have demonstrated the correct 

implementation of the orbital parameter estimation using a Keplerian approximation to 

compute partial derivatives with respect to the initial state vector. 

From a fixed-orbit network adjustment over 4 days, using integrated orbits with 

initial conditions derived from broadcast ephemerides, we have realized that the 

broadcast ephemerides were of good quality. The rms of the coordinate residuals 

(between GPS and VLBI) has shown a network accuracy of 0. 7 ppm in horizontal 

components and 1.5 ppm in the vertical component. 

When the same network is processed in free-network mode, where orbital 
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parameters are estimated along with all station coordinates, the improvement in the 

solution is significant. First, the rms of double-difference phase residuals of our 

network solution dropped from 49 em to roughly 2 em, which means that most of the 

systematic trends in the double-difference residuals have disappeared. Second, the 

general agreement at the VLBI sites has improved by a factor of 20 in horizontal 

components and by two order of magnitude in the vertical component, which implies a 

solution at the 0.1-ppm level and even below in the station coordinates. 

A network solution in a fiducial mode has produced results compatible at the 

0.05-ppm level, in the coordinates, with the free-network solution, suggesting that both 

solutions are almost equivalent. With the exception of short baselines, the comparison 

with VLBI-derived baselines is at at the 0.1-ppm accuracy level for the free-network 

solution, whereas the fiducial-network-derived baselines compare at slightly better than 

the 0.1 ppm level. 

Although free-network and fiducial network solutions seem to provide 

equivalent results, it has been shown that the free-network approach is not very stable in 

a short-arc mode as far as the reference frame is concerned. 

The day-to-day fiducial adjustment solution repeatability was surprisingly good. 

The coordinate comparisons with the WGS72 VLBI station coordinates were still at the 

0.1-ppm level. The internal fiducial network accuracy has been evaluated using results of 

the daily solutions. The coordinate comparison showed an agreement of the order of 

0.05-ppm. From the day-to-day repeatability, it has been pointed out, from the 

solution of session 04, that the fiducial network configuration has a significant effect on 

the results. The day-to-day baseline comparison with VLBI vectors were still below the 

0.1-ppm level for long baselines, whereas the shortest baseline repeated at the 0.15-ppm 

level. The internal baseline· comparison (with respect to our global fiducial network 

solution) is rather amazing; over long baselines the repeatability is well below the 0.05 

ppm level. 

According to these tests, there is some evidence, that our fiducial and even our 

free-network solutions are at the - 0.1 ppm level. However, we believe that a better 

pre-processing of the observations will strengthen the solution considerably, since, in 

our pre-processing, artificial phase breaks had to be introduced in order to eliminate the 

linear dependency between satellite pairs (see Section 4.5). It is clear that our 

pre-processing was done correctly, but it is also clear that this is not the optimum 
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procedure. 

At the time of writting this thesis, a new dual-frequency pre-processor, to be 

used along with the DIPOP 2.0 main processor, was under development at the 

University of New Brunswick. If this new pre-processor is to be used with our new 

DIPOP version, some modifications will have to be made to ensure compatibility with 

the new version. The most important will be the output modification, which is very easy 

to implement. Since data validation can be done without problem with the broadcast 

ephemerides, the implementation of orbit computation from coefficients is not really 

necessary. 

We also suggest introducing a single point positioning solution at the 

pre-processing stage in order to produce a priori station coordinates as well as a clock 

alignment verification. A more general pre-processor to detect cycle slips should also be 

developed in order to preprocess single-frequency observations as well as 

dual-frequency observations. 

As far as orbits are concerned, the next step to be undertaken will be to extend 

the orbital length capability of the developed software. First, the force model will have to 

be completed (depending on the arc length sought) with some other forces. With the 

numerical integration approach, this will be straightfoward. The more important 

modification will be to introduce the least-squares process one solar radiation parameter 

for each satellite, and if orbital arcs longer than 2 days are sought, two other parameters 

will have to be estimated for each satellite in order to take into account the Y -axis bias. 

The subroutine EQOBS in our software will also have to be modified in order to accept 

these new partial derivatives. Although these estimations have not been implemented in 

our version of DIPOP, there is provision in the arrays for these future parameters. The 

defmition of the inertial system will also have to be reviewed since some simplifications 

have been used owing to the short-arc approach. 

As far as the DIPOP least-squares filter is concerned, the development of an 

algorithm to compute the weight matrix of simultaneously observed double-differences 

from n (>2) receivers tom (>1) satellites should be investigated (the case of n=2 is 

already implemented). This improvement will be a major modification of the sequential 

procedure since all simultaneous observations will have to be loaded into memory 

simultaneously. 

Although the extension of the arc length will not improve the results 
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significantly, it will certainly provide a more stable reference frame from the orbit point 

of view. One of the advantages of the longer orbital-arc approach is the large decrease 

in the number of the parameters involved in the solution. 

Our DIPOP modifications along with an optimum pre-processor can now be 

used to investigate: 

- the limit of the orbit-improvement capability as far as network size is concerned, 

- the sensitivity of a solution as a function of the fiducial network configuration, 

- the benefit of including the pseudo-range observations in a pure orbit solution. 
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APPENDIX 1 

STARTER AND 

PREDICTOR - CORRECTOR COEFFICIENTS 



STARTER AND 

PREDICTOR - CORRECTOR COEFFICIENTS 

(from Velez and Maury, 1970) 

The ordinate 11-point predictor formula is: 

10 

r(t) = 2 r(t-h) - r(t-2h) + h2 L ~i r"(t-(1+i)h) 
i=O 

where the coefficients ~- are the following: 
1 

~ = 263 465 639 I 159 667 200 

~1 = -296 725 183 I 79 833 600 

~2 = 1 742 930 263 I 159 667 200 

~3 = -424 402 351 I 19 958 400 

~ = 2 337 301 223 I 79 833 600 

~5 = -1 155 556 697 I 39 916 800 

~6 = 1 637 523 683 I 79 833 600 

~7 = -29 064 973 I 2 851 200 

~8 = 539 999 083 I 159 667 200 

~9 = -53 797 223 I 79 833 600 

~10 = 3 250 433 I 53 222 400 
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The 11-point corrector formula is: 

10 

r(t) = 2 r(t-h) - r(t-2h) + h2 L ~i r"(t- ih) 
i=O 

where the coefficients ~i are the following: 

~0 = 3 250 433 I 53 222 400 

~1 = 3 124 027 I 3 193 344 

~2 = -57 128 921 I 159 667 200 

~3 = 16 745 741 I 19 958 400 

~4 = -88 645 069 I 79 833 600 

~5 = 42 375 577 I 39 916 800 

~6 = - 2 342 533 I 3 193 344 

~7 = 7 139 837 I 19 958 400 

~8 = -18 674 153 I 159 667 200 

~9 = 1 838 819 I 79 833 600 

~10 = -330 157 I 159 667 200 
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The starter formulas are in the following form: 

10 

r(t + Kh) = r(t ) + K h r'(t ) + h2 ~ a1. r"(t + Kh + (J-i)h) 
0 0 0 £.J I 0 

i=O 

where 10 equations can be written for -5 ~ K ~ -1 and 1 ~ K ~ 5 and 

10 ~ J ~ 6 and 4 ~ J ~ 0, i e J = 5 - K 

The coefficients a1i are the following for the different values of J and K: 

1= 10 K=-5 

<Xw,o = -77 425 I 38 320 128 

<llO,l = 62 875 I 2 737 152 

<ll0,2 = -1 539 875 I 12 773 376 

<ll0,3 = 208 625 I 532 224 

<ll0,4 = -5 942 875 I 6 386 688 

<Xw.s = 10 314 625 I 3 193 344 

<ll0,6 = 22 426 625 I 6 386 688 

<l10,7 = 5 650 375 I 1 596 672 

<ll0,8 = 21 348 625 I 12 773 376 

<l10,9 = 21 621 125 I 19 160 064 

<llO,lO = 202 025 I 3 483 648 
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1=9 K=-4 

a9.o = -52 I 461775 

a 9,1 = 758 I 461775 

a 9,2 = -356 I 31 185 

a 9,3 = 8 368 I 155 925 

a9,4 = -6 584 I 31 185 

a 9,5 = 280124 I 155 925 

a 9,6 = 532 184 I 155 925 

a 9,7 = 2 704 I 1485 

a 9,8 = 23 756 I 22 275 

a 9,9 = 122 I 1 701 

a 9,10 = -124 I 93 555 

J=8 K=-3 

a8,o = -1 063 I 3 942 400 

a 8,1 = 6 511 I 1 971 200 

a 8,2 = -10 833 I 563 200 

a 8,3 = 1 029 I 14 080 

a8,4 = -88 827 I 394 240 

a 8,5 = 280 821 I 191 120 

a 8,6 = 4 345 149 I 1 971 200 

a 8,7 = 464 187 I 492 800 

a 8,8 = 7 443 I 71 680 

a 8,9 = -529 I 78 848 

a 8,10 = 1 693 I 3 942 400 
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1=7 K=-2 

a7,o = -263 I 1 871 100 

a 1,1 = 263 I 149 688 

a7,2 = -131 I 12 474 

a7,3 = 159 I 3 850 

a7,4 = -41 543 I 311 850 

a 7,5 = 111 973 I 124 740 

a 7,6 = 35 932 I 31 185 

a 7,7 = 263 I 5 670 

a 7,8 = 3 587 I 623 700 

a7,9 = -707 I 534 600 

a 7,10 = 109 I 935 550 

1=6 K=-1 

a6.o = -14 797 I 191 600 640 

a 6,1 = 90 817 I 95 800 320 

a 6,2 = -1 763 939 I 319 334 400 

a 6,3 = 166 919 I 7 983 360 

a 6,4 = -10111 819 I 159 667 200 

a6,5 = 31 494 553 I 79 833 600 

a 6,6 = 14 797 I 82 944 

a 6,7 = -60 917 I 1 900 800 

a6,8 = 466 157 I 63 866 880 

a6,9 = -79 829 I 68 428 800 

a 6,10 = 87 299 I 958 003 200 
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1=4 K= 1 

a4,0 = 87 299 I 958 003 200 

a 4,1 = -79 829 I 68 428 800 

a4,2 = 466 157 I 63 866 880 

a4,3 = -60 917 I 1 900 800 

a4,4 = 14 797 I 82 944 

a4,5 = 31 494 553 I 79 833 600 

a4,6 = -10 111 819 I 159 667 200 

a4,7 = 166 919 I 7 983 360 

a4,8 = -1 763 939 I 319 334 400 

a4,9 = 90 817 I 95 800 320 

a 4,10 = -14 797 I 191 600 640 

1=3 K=2 

a3,o = 109 I 935 550 

a 3,1 = -707 I 534 600 

a 3,2 = 3 587 I 623 700 

a3,3 = 263 I 5 670 

a3,4 = 35 932 I 31 185 

a3,5 = 111 973 I 124 740 

a3,6 = -41 543 I 311 850 

a 37 = 159 I 3 850 
' 

a 3,8 = -131 I 12 474 

a3,9 = 263 I 149 688 

a 3,10 = -263 I 1 871 100 
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1=2 K=3 

a2.o = 1 693 I 3 942 400 

a 2.1 = -529 I 78 848 

a2.2 = 7 443 I 71680 

a2,3 = 464187 I 492 800 

a2,4 = 4 345 149 I 1971200 

a 2,5 = 280 821 I 197 120 

a2,6 = -88 827 I 394 240 

a2.1 = 1 029 I 14 080 

a 2,s = -10 833 I 563 200 

a2,9 = 6 511 I 1971 200 

a 2.10 = -1063 I 3 942 400 

1=1 K= 4 

a 1,0 = -124 I 93 555 

a 1,1 = 122 I 1 701 

a 1.2 = 23 756 I 22 275 

a 1,3 = 2704 I 1485 

a 1,4 = 532 184 I 155 925 

a 1,5 = 280 124 I 155 925 

a 1,6 = -6 584 I 31 185 

a 1.1 = 8 368 I 155 925 

a 1,8 = -356 I 31 185 

a 1,9 = 758 I 467 775 

a 1,1o = -52 I 467 775 

11 9 



J=O K=5 

a o,o = 202 025 I 3 483 648 

a 0.1 = 21 621 125 I 19 160 064 

a o.2 = 21 348 625 I 12 773 376 

a 0,3 = 5 650 375 I 1 596 672 

a 0.4 = 22 426 625 I 6 386 688 

a o,s = 10 314 625 I 3 193 344 

a o,6 = -5 942 875 I 6 386 688 

a o,7 = 208 625 I 532 224 

a o.s = -1 539 875 I 12 773 376 

a o.9 = 62 875 I 2 737 152 

a o.1o = -77 425 I 38 320 128 
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APPENDIX 2 

"ORDAP" PROGRAM SUBROUTINES LIST 



"ORDAP" PROGRAM SUBROUTINES LIST 

Subroutine Description From 

ORDAP Main program. D. Parrot 

AD JUS Least-squares adjustment for preliminary 
inititial conditions improvement. D. Parrot 

ANMLY Compute mean, eccentric and true anomaly 
from ephemerides. UNBLIB 

ANML2 Convert eccentricity and mean anomaly to 
eccentric and mean anomaly. UNBLIB 

ATAP2 Compute matrix AT A and vector A Tw for 
coefficients computation (least-squares 
approximation). D. Parrot 

BROA3 Read broadcast message files. D. Parrot 

CGMST Compute Greenwich mean sidereal time. D. Parrot 

CKCOR Convert GPS times to GPS times from 
reference epoch t0 • UNBLIB 

CLKAN Correct coefficients for improved clock model. UNBLIB 

COWEL Numerical integration. D. Parrot 

DATUM Initialize datum values. UNBLIB 

DEN OR Denormalized geopotential coefficients. D. Parrot 

DJULl Compute Modified Julian Day from y/rn/d. ASTLIB 

ECLIP Compute eclipse factor. D. Parrot 

EPHEM Compute satatellite position and velocity from 
osculating elements. ASTLIB 

FFIEL Compute acceleration acting on a satellite. D. Parrot 

GEOPT Block data to initialize the geopotential 
coeffficients. D. Parrot 
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GRAVI Compute acceleration due to the earth 
gravity field. D. Parrot 

INTV Manage the computation of the starting values 
require for the numerical integration. D. Parrot 

INTCD Manage intial conditions computation 
from broadcast ephemerides. D. Parrot 

IRTV Select position in the geopotential coefficients 
vector. D. Parrot 

!ZERO Zero integer arrays. D. Parrot 

KLORB Compute satellite earth-fixed position and 
velocity from broad. ephemerides. UNBLIB 

LEG EN Compute associated Legendre functions. D. Parrot 

MONSO Compute perturbation of the moon. ASTLffi 

MOON Compute moon position. ASTLffi 

MUL33 3 X 3 matrix multiplication. D. Parrot 

NORM Compute the norm of a vector. D. Parrot 

NRINT Manage numerical integration and orbital 
coefficients computation. D. Parrot 

NUT AT Nutation matrix computation. UNBLIB (mod.) 

OPERV Perform vectorial operations. D. Parrot 

RANGE Compute range between two points. UNBLIB 

SATCP Manage satellite pos. and vel. computation 
from broadcast ephemerides. D. Parrot 

RCTLF Read control file. D. Parrot 

RESI Radial, along-track and cross-track 
from x, y, z residuals. D. Parrot 

RDIN Read input osculating elements file. D. Parrot 

RPART Partial derivatives of satellite positions with 
respect to initial conditions (Keplerian 
approximation). ASTLffi (mod.) 
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SIDER GAST rotation matrix. D. Parrot 

SOLPR Solar radiation pressure (acceleration). D. Parrot 

SPIN Matrix inversion. UNBLIB 

START Starter iterative procedure. D. Parrot 

SUNl Compute sun positions. AS1Lffi (mod.) 

TIIBOD Compute acceleration due to a third-body. D. Parrot 

VALID Validate control file information. D. Parrot 

XYZEE Orbital elements computation from satellite 
position and velocity. AS1Lffi 

ZERO Zero real matrices. D. Parrot 
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APPENDIX 3 

"ORDAP"PROGRAM 
INPUT AND OUTPUT FILES 



"ORDAP" PROGRAM INPUT FILE 

(example) 

(integration of one satellite) 

ORBIT GENERATION CONTROL FILE 

FORCE FIELD PARAMETERS 
RADIATION PRESSURE COEF. (CR) :0.940000D-07 
DEGREE AND ORDER (MAX 10X10) 8 8 
COMPUTE SUN EFFECT (1 YES,O NO): 1 

MOON EFFECT 1 
SOLAR PRESSURE EFFECT 1 

NUMBER OF ITERATIONS 

SESSION INFORMATION 
NUMBER OF ORBITAL SESSIONS 

SESSION NUMBER 
GPST-UTC (SECOND) 

1 

1 

1 
4 

XP, YP (ARC-SECOND) :-0.1927 +0.2169 
UT1-UTC (SECOND) :-0.30242 
STEP SIZE (SECOND) FOR NUM. INT.: 720 
SEGMENTATION LENGTH (HRS) 2.0 
POLYNOMIAL DEGREE (max. 9) 9 
NUMBER OF SATELLITE 1 
ISAT YRS1 M1 D1 HRS1 YRS2 M2 D2 HRS2 (HRS MUST BE UT TIME) 

9 1985 3 30 05.3 1985 3 30 9.2 

COEFFICIENTS FILE NAME : DEMO.COE 
INITIAL CONDITION FILE NAME : DEMO.INT 
BRODCAST MESSAGE (=1), OSCULATING ELEMENTS (=2) 

1 ZFA1: [017015.DATA.SPR85]BRD89A.EPH 
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"ORDAP" PROGRAM OUTPUT FILE 
(output of the previous control file) 

ORBITAL DATA PREPROCESSING (summary) 

Input file 
Control file name TEST.COR 

Output files 
Initial conditions file name DEMO.INT 

Coefficients file name ........ : DEMO.COE 

Force field parameters 

-Earth gravity field ................ : GEM-L2 
(degree 8 order 8) 
Geocentric gravitational constant ... : 0.3986008000000+15 
Equatorial radius (Ae) ............. : 0.6378144110000+07 

- Gravitational attraction of the sun 
Heliocentric gravitational constant 

- Gravitational attraction of the moon 

0.1327124400000+21 

Lunar gravitational constant ........ : 0.4902799300000+13 

- Solar radiation pressure (flat-plate model) 
Solar pressure constant ............. : 0.9400000000000-07 

ORBITAL SESSION INFORMATION 

SESSION 1 

- Earth rotation parameters: 
UT1-UTC (sec.) ..................... : -0.302420+00 
X pole (arc-sec.) .................. : -0.192700+00 
Y pole (arc-sec.) .................. : 0.216900+00 
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- Time frame : 
GPST-UTC (sec.) ................... : 4 

- Integration parameters: 
Integration step (sec.) ............ 720 
Segmentation length (hrs) .......... : 2.0 
Algebraic polynomial degree ........ : 9 

- Constellation to be integrated: 
Sat. PRN Time start (mjd) int. period (hrs) 

9 46154.2208333333 3.90 

- Broadcast file used to compute 
initial conditions ................ :ZFAl: [017015.DATA.SPR85]BRD89A.EPH 

- Difference between initial condition epoch and referecence 
time of the braodcast message used in the computation 

Sat. PRN Time difference (hrs) 
9 -0.699 

- SV accuracy table 

Sat. PRN Accuracy (m) for each message 

9 4 4 4 4 4 4 4 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 

- SV health table 

Sat. PRN Health for each message 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 

- GPS week table 

Sat. PRN Week number of each message 

9 272 272 272 272 272 272 272 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 
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- Satellite PRN number 9 

Iteration 0 

Epoch (mjd) radial (m) along tr. (m) 
46154.2208333333 0.00 0.00 
46154.2312500000 -0.01 0.05 
46154.2416666667 -0.03 0.05 
46154.2520833333 -0.05 0.01 
46154.2625000000 -0.04 -0.08 
46154.2729166667 0.01 -0.17 
46154.2833333333 0.12 -0.26 
46154.2937500000 0.38 -6.76 
46154.3041666667 0.44 -6.81 
46154.3145833333 0.55 -6.84 
46154.3250000000 0.69 -6.88 
46154.3354166667 0.86 -6.97 
46154.3458333333 1. 02 -7.12 
46154.3562500000 1.19 -7.32 
46154.3666666667 1. 35 -7.58 
46154.3770833333 1. 52 -7.82 

INITIAL CONDITIONS 

SEMI-MAJOR AXIS (m) 26558781.226 
ECCENTRICITY ............... : 0.010706511 
INCLINATION (deg) .......... : 63.85218 
ASCENDING NODE (deg) ....... : 26.13577 
PERIGEE (deg) .............. : 70.34261 
TIME OF PERIGE PASSAGE (hr) .: 0.20786 

CORRECTIVE TERMS 

SEMI-MAJOR AXIS (m) ......... 4.038 
ECCENTRICITY ............... : 0.000000127 
INCLINATION (") ............ : 0.00769 
ASCENDING NODE (") ......... : 0.08240 
PERIGEE (") ................ : 3 . 50 8 56 
TIME OF PERIGE PASSAGE (sec): 0.11522 

Iteration 1 

Epoch (mjd) 
46154.2208333333 
46154.2312500000 
46154.2416666667 
46154.2520833333 

radial(m) 
1.16 
0.50 

-0.12 
-0.67 

along tr. (m) 
0.36 
0.46 
0.66 
0.98 
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cross tr. (m) 
0.00 

-0.05 
-0.06 
-0.04 

0.02 
0.14 
0.31 

-6.05 
-7.17 
-8.12 
-8.86 
-9.50 
-9.82 
-9.91 
-9.80 
-9.70 

cross tr. (m) 
-3.26 
-2.09 
-0.85 

0.45 



46154.2625000000 -1.11 1.38 1. 77 
46154.2729166667 -1.41 1. 88 3.12 
46154.2833333333 -1.56 2.47 4.46 
46154.2937500000 -1.45 -3.29 -0.79 
46154.3041666667 -1.45 -2.58 -0.91 
46154.3145833333 -1.30 -1.85 -0.95 
46154.3250000000 -1.01 -1.15 -0.92 
46154.3354166667 -0.59 -0.55 -0.92 
46154.3458333333 -0.09 -0.09 -0.75 
46154.3562500000 0.51 0.22 -0.51 
46154.3666666667 1.19 0.35 -0.23 
46154.3770833333 1. 93 0.35 -0.12 
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"ORDAP" PROGRAM INPUT FILE 
(example) 

(Integration of 7 satellites over 4 orbital arcs each) 

ORBIT GENERATION CONTROL FILE 

FORCE FIELD PARAMETERS 
RADIATION PRESSURE COEF. (CR) :0.940000D-07 
DEGREE AND ORDER (MAX 10X10) 8 8 
COMPUTE SUN EFFECT (1 YES,O NO): 1 

MOON EFFECT 1 
SOLAR PRESSURE EFFECT 1 

NUMBER OF ITERATIONS 

SESSION INFORMATION 
NUMBER OF ORBITAL SESSIONS 

SESSION NUMBER 
GPST-UTC (SECOND) 

1 

4 

1 
4 

XP, yp (ARC-SECOND) :-0.1927 +0.2169 
UT1-UTC (SECOND) :-0.30242 
STEP SIZE (SECOND) FOR NUM. INT.: 720 
SEGMENTATION LENGTH 
POLYNOMIAL DEGREE 
NUMBER OF SATELLITE 
ISAT YRS1 M1 D1 

6 1985 3 30 
8 1985 3 30 

11 1985 3 30 
9 1985 3 30 

13 1985 3 30 
12 1985 3 30 

4 1985 3 30 

SESSION NUMBER 
GPST-UTC (SECOND) 

(HRS) 
(max. 

HRS1 
03.0 
03.0 
03.8 
05.3 
06.8 
07.2 
09.1 

XP, YP (ARC-SECOND) 
UT1-UTC (SECOND) 

9) 

YRS2 
1985 
1985 
1985 
1985 
1985 
1985 
1985 

M2 
3 
3 
3 
3 
3 
3 
3 

2.0 
9 
7 

2 
4 

D2 
30 
30 
30 
30 
30 
30 
30 

HRS2 (HRS MUST BE UT TIME) 
07.0 
07.0 
10.9 

9.2 
11.0 
10.3 
11.6 

:-0.1927 +0.2169 
:-0.30242 

STEP SIZE (SECOND) FOR NUM. INT.: 720 
SEGMENTATION LENGTH (HRS) 2.0 
POLYNOMIAL DEGREE (max. 9) 9 
NUMBER OF SATELLITE 7 
ISAT YRS1 M1 D1 HRS1 YRS2 M2 D2 HRS2 (HRS MUST BE UT TIME) 

6 1985 3 31 03.0 1985 3 31 07.0 
8 1985 3 31 03.0 1985 3 31 07.0 

11 1985 3 31 03.8 1985 3 31 10.9 
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9 1985 3 31 04.4 1985 3 31 9.2 
13 1985 3 31 06.8 1985 3 31 11.0 
12 1985 3 31 06.9 1985 3 31 10.3 

4 1985 3 31 09.1 1985 3 31 11.6 

------------------------------------------------------------------
SESSION NUMBER 3 
GPST-UTC (SECOND) 4 
XP, yp (ARC-SECOND) :-0.1927 +0.2169 
UT1-UTC (SECOND) :-0.30242 
STEP SIZE (SECOND) FOR NUM. INT.: 720 
SEGMENTATION LENGTH (HRS) 2.0 
POLYNOMIAL DEGREE (max. 9) 9 
NUMBER OF SATELLITE 7 
ISAT YRS1 M1 D1 HRS1 YRS2 M2 D2 HRS2 (HRS MUST BE UT TIME) 

6 1985 4 01 02.9 1985 4 01 06.9 
8 1985 4 01 02.9 1985 4 01 06.9 

11 1985 4 01 03.7 1985 4 01 10.8 
9 1985 4 01 05.2 1985 4 01 9.1 

13 1985 4 01 06.7 1985 4 01 10.9 
12 1985 4 01 07.1 1985 4 01 10.2 

4 1985 4 01 09.0 1985 4 01 12.0 

SESSION NUMBER 4 
GPST-UTC (SECOND) 4 
XP, yp (ARC-SECOND) :-0.1963 +0.23459 
UT1-UTC (SECOND) :-0.31181 
STEP SIZE (SECOND) FOR NUM. INT.: 720 
SEGMENTATION LENGTH (HRS) 2.0 
POLYNOMIAL DEGREE (max. 9) 9 
NUMBER OF SATELLITE 7 
ISAT YRS1 M1 D1 HRS1 YRS2 M2 D2 HRS2 (HRS MUST BE UT TIME) 

6 1985 4 04 02.6 1985 4 04 06.9 
8 1985 4 04 02.6 1985 4 04 06.9 

11 1985 4 04 03.4 1985 4 04 10.7 
9 1985 4 04 04.1 .. 1985 4 04 9.1 

13 1985 4 04 06.6 1985 4 04 10.9 
12 1985 4 04 06.5 1985 4 04 10.2 

4 1985 4 04 08.7 1985 4 04 12.0 

COEFFICIENTS FILE NAME : NETBR.COE 
INITIAL CONDITION FILE NAME : NETBR.INT 
BRODCAST MESSAGE (=1), OSCULATING ELEMENTS (=2) 

1 ZFAO: [017004.SPR85]BRD89A.EPH 
1 ZFA0:[017004.SPR85]BRD90A.EPH 
1 ZFAO: [017004.SPR85]BRD91A.EPH 
1 ZFAO: [017004.SPR85]BRD94A.EPH 
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APPENDIX 4 

SINGLE, DOUBLE AND CSLIP 
PROGRAM SUBROUTINES LIST 



"SINGLE" PROGRAM SUBROUTINES LIST 

Subroutine Description From 

SINGLE Main program. D. Parrot 

ANMLY Compute mean, eccentric and true anomaly 
from ephemerides. UNBLIB 

ANML2 Convert eccentricity and mean anomaly to 
eccentric and mean anomaly. UNBLIB 

BROA2 Read broadcast messages. D. Parrot 

CGMST Compute Greenwich mean sidereal time. D. Parrot 

CKCOR Convert GPS times to GPS times from 
reference epoch t0 • UNBLIB 

CONTI Read single-difference control file. D. Parrot 

DATUM Initialize datum values. UNBLIB 

IZERO Zero integer arrays. D. Parrot 

IMPCK Modification of CLKAN subroutine. D. Parrot 

KLORB Compute satellite earth-fixed position and 
velocity from broadcast ephemerides. UNBLIB 

MUL33 3 X 3 matrix multiplication. D. Parrot 

RANGE Compute range between two points. UNBLIB 

RDCOE Read orbital coefficients. D. Parrot 

REAll Read observations from the first 
observation files. D. Parrot 

REA22 Read observations from all subsequent 
observation file. D. Parrot 

REFS2 Get reference satellite from scenario file. D. Parrot 

REFS4 Get reference satellite from observation file. D. Parrot 
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SA1RD Manage satellite coordinates computation. D. Parrot 

SATR2 Satellite coordinates computation from 
polynomial coefficients. D. Parrot 

SIDER GAST rotation matrix. D. Parrot 

TIMET Find time tag aligned with the GESAR software 
synchronization. D. Parrot 

ZERO Zero real arrays. D. Parrot 
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"DOUBLE" PROGRAM SUBROUTINES LIST 

Subroutine Description From 

DOUBLE Main program. D. Parrot 

AMBCR Compute double-difference a priori ambiguities. D. Parrot 

AMBGT Apply double-difference a priori ambiguities. D. Parrot 

!ZERO Zero integer arrays. D. Parrot 

RSTAC Read a priori station coordinates. D.Parrot 

RANGE Compute range between two points. UNBLIB 

ZERO Zero real arrays. D. Parrot 
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"CSLIP" PROGRAM SUBROUTINES LIST 

Subroutine Description From 

CSLIP Main program. D. Parrot 

DISTl Compute theoritical single-difference. D. Parrot 

DIST2 Compute theoritical double-difference. D. Parrot 

IZERO Zero integer arrays. D. Parrot 

LSQR Estimation of cycle-slip. D. Parrot 

RCON2 Read CSLIP control file. D. Parrot 

RECRD Record clean observation file. D. Parrot 

RSTAC Read a priori station coordinates. D.Parrot 

RANGE Compute range between two points. UNBLIB 

SPIN Matrix inversion. D. Parrot 

ZERO Zero real arrays. D. Parrot 
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APPENDIX 5 

CONTROL FILE FOR NEW 
VERSION OF DIPOP 



CONTROL FILE FOR NEW 
VERSION OF DIPOP 

(example from our fiducial network solution) 

CONTROL FILE 

GENERAL FILE INFORMATION 
1) MAIN PROCESSOR 
2) INTERMEDIATE SOLUTION 
3) FINAL SOLUTION (MPROC) 
4) NUISANCE PARAMETERS 
5) RESIDUALS 
6) POST PROCESSOR 
7) DISCREPANCIES 
8) FINAL SOLUTION & COV. (PPROC) 
9) ORBITAL COEFFICIENTS FILE 

10) INITIAL CONDITIONS FILE NAME 
11) A-PRIORI STATION COORD. FILE 

(OUTPUT) 
(OUTPUT) 
(OUTPUT) 
(OUTPUT) 
(OUTPUT) 
(OUTPUT) 
(OUTPUT) 
(OUTPUT) 
(INPUT ) 
(INPUT ) 
(INPUT ) 

12) UPDATED INITIAL CONDITIONS FILE NAME (OUTPUT) 
13) SEVEN-PARAMETER TRANSFORMATION FILE (OUTPUT) 

1) MPNETFD.OUT 
2) INTSOL.OUT 
3) FIN.OUT 
4) NUIS.OUT 
5) DUMMY.OUT 
6) PRNETFD.OUT 
7) DI.OUT 
8) FINS.OUT 
9) ZFAO: [017004.SOURCE.ORBIT]NETBR.COE 

10) ZFAO: [017004.SOURCE.ORBIT]NETBR.INT 
11) SPR85 .AP3 
12) ZFAO: [017004.SOURCE.ORBIT]NETFD.INT 

I 13) NETFD.CRD I 

1---------------------------------------------------------------------------l 
I 

OPTION INFORMATION Y(l), N(O) 
RESIDUAL COMPUTATION, : 0 

I TAKE INTO ACCOUNT DBL.-DIFF. CORRELATION : 0 I 

1---------------------------------------------------------------------------l 
INITIAL CONDITIONS 
COMPUTED FROM COEFFICIENTS (0) 
READ FROM INITIAL CONDITIONS FILE (1) : 1 I 

1---------------------------------------------------------------------------l 
I NUIS. PAR. SEQ. SOLUTION EACH N EPOCH : 500 
I STA. COORD. SEQ. SOLUTION EACH M EPOCH : 500 

1---------------------------------------------------------------------------l 
I I 
I CROSS-CORRELATION VALUE COMPARISON : 0.9 I 

1---------------------------------------------------------------------------l 
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I OBSERVATION FILES, BINARY(O) OR ASCII(1) : 1 

1---------------------------------------------------------------------------l 
I I 
I CUT OFF ANGLE (degree) : 20 

1---------------------------------------------------------------------------l 
I 

WAVELENGTH SC. FAC. (TI4100=1, V-1000=2) : 1 

---------------------------------------------------------------------------1 
DEFAULT MSL METEOROLOGICAL VALUES 

PRESSURE (mbar) 1013.25 
TEMPERATURE (Celsius) 17.85 
RELATIVE HUMIDITY (%) 48.34 I 

---------------------------------------------------------------------------1 
ORBITAL A-PRIORI INFORMATION (0 IF NOT ESTIMATED) 
(SIGMA) ------- -------
SEMIMAJOR AXIS (M) 50.0000000 
ECCENTRICITY 0.0000200 
INCLINATION (") 1.0000000 
ASCENDING NODE (") 1.0000000 
PERIGEE (") 0.0000000 
PERIGEE PASSING TIME (SEC) 0.2500000 

SOLAR RADIATION PRESSURE COEFFICIENTS 
A-PRIORI INFORMATION (0 IF NOT ESTIMATED) 

DIRECT RPR PARAMETERS 
(RESERVED FOR A SECOND PARAMETER) 
(RESERVED FOR A THIRD PARAMETER ) 

-.-----D+--
O.OOOOOD+08 

1-----------------~---------------------------------------------------------

-.-------D+-- (rn**3 /sec**2) 
GM VALUE (WGS72J 3.9860080D+14 

1---------------------------------------------------------------------------
l 
I OBSERVATION INFORMATION 

(---------------------------------------------------------------------------
ORBITAL SESSION 
AMBIGUITY EVALUATION, Y (1), N (0) 

ROUND OFF NEAREST INTEGER, Y(1), N(O) 
TROPOSPHERIC SCALE FACTOR Y(1), N(OJ 
SIGMA FOR TROPOSPHERIC SCALE FACTOR 

1 
1 

0 

1 
1. OD-00 

NUMBER OF CLOCK PARAMETERS TO BE ESTIMATE: 1 
RESPECTIVE SIGMA FOR EACH PARAMETER 1.0D-01 

OBSERVATION FILE + TYPE OF SOLUTION + 2 METEO FILES 

HYRC89A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY89A.MET 

3 
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1.0D-04 
lA-PRIORI 
!SIGMA rnrn 

10 



RC89A.MET 

HYFD89A.DBS 
SOLUTION L1:1, L2:2, L1&L2:3 
HY89A.MET 
FD89A.MET 

HYHT89A.DBS 
SOLUTION L1:1, L2:2, Ll&L2:3 
HY89A.MET 
HT89A.MET 

HYBP89A.DBS 
SOLUTION L1:1, L2:2, L1&L2:3 
HY89A.MET 
BP89A.MET 

HYMJ89A.DBS 
SOLUTION L1:1, L2:2, Ll&L2:3 
HY89A.MET 
MJ89A.MET 

HYAR89A.DBS 
SOLUTION Ll:1, L2:2, L1&L2:3 
HY89A.MET 
AR89A.MET 

HYNS89A.DBS 
SOLUTION Ll:1, L2:2, Ll&L2:3 
HY89A.MET 
NS89A.MET 

HYMM89A.DBS 
SOLUTION Ll:l, L2:2, L1&L2:3 
HY89A.MET 
MM89A.MET 

3 

3 

3 

3 

3 

3 

3 

ORBITAL SESSION 2 
AMBIGUITY EVALUATION, Y(1), N(O) 1 
ROUND OFF NEAREST INTEGER, Y(l), N(O) 0 
TROPOSPHERIC SCALE FACTOR Y(l), N(O) 1 
SIGMA FOR TROPOSPHERIC SCALE FACTOR 1.00-00 
NUMBER OF CLOCK PARAMETERS TO BE ESTIMATE: 1 
RESPECTIVE SIGMA FOR EACH PARAMETER 1.00-01 

OBSERVATION FILE + TYPE OF SOLUTION + 2 METEO FILES 

HTRC90A.DBS 
SOLUTION L1:1, L2:2, L1&L2:3 
HT90A.MET 
RC90A.MET 

HTFD90A.DBS 

3 
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1.0D-04 

10 

10 

10 

10 

10 

10 

10 

lA-PRIORI 
!SIGMA mm 

10 

10 



SOLUTION L1:1, L2:2, L1&L2:3 
HT90A.MET 
F090A.MET 

HTBP90A.OBS 
SOLUTION L1:1, L2:2, L1&L2:3 
HT90A.MET 
BP90A.MET 

HTMJ90A.OBS 
SOLUTION L1:1, L2:2, L1&L2:3 
HT90A.MET 
MJ90A.MET 

HTAR90A.DBS 
SOLUTION .L1:1, L2:2, L1&L2:3 
HT90A.MET 
AR90A.MET 

HTNS90A.OB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HT90A.MET 
NS90A.MET 

HTMM90A.OB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HT90A.MET 
MM90A.MET 

ORBITAL SESSION 
AMBIGUITY EVALUATION, Y(l), N(O) 
ROUND OFF NEAREST INTEGER, Y(1), N(O) 
TROPOSPHERIC SCALE FACTOR Y(1), N(O) 
SIGMA FOR TROPOSPHERIC SCALE FACTOR 

3 

3 

3 

3 

3 

3 

3 

1 
0 

1 

1.00-00 
NUMBER OF CLOCK PARAMETERS TO BE ESTIMATE: 1 
RESPECTIVE SIGMA FOR EACH PARAMETER 1.00-01 

OBSERVATION FILE + TYPE OF SOLUTION + 2 METEO FILES 

HYRC91A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY91A.MET 
RC91A.MET 

HYFD91A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY91A.MET 
FD91A.MET 
-.0000000-01 

HYHT91A.OBS 
SOLUTION L1:1, L2:2, L1&L2:3 
HY91A.MET 

3 

3 

3 
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1.00-04 

10 

10 

10 

10 

10 

lA-PRIORI 
!SIGMA mm 

10 

10 

10 



HT91A.MET 

HYBP91A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY91A.MET 
BP91A.MET 

HYMJ91A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY91A.MET 
MJ91A.MET 

HYAR91A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY91A.MET 
AR91A.MET 

HYNS91A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY91A.MET 
NS91A.MET 

HYMM91A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY91A.MET 
MM91A.MET 
-.0000000-01 

ORBITAL SESSION 
AMBIGUITY EVALUATION, Y(l), N(O) 
ROUND OFF NEAREST INTEGER, Y(1), N(O) 
TROPOSPHERIC SCALE FACTOR Y(1), N(O) 

3 

3 

3 

3 

3 

4 

1 

0 

1 
SIGMA FOR TROPOSPHERIC SCALE FACTOR 1.00-00 
NUMBER OF CLOCK PARAMETERS TO BE ESTIMATE: 1 
RESPECTIVE SIGMA FOR EACH PARAMETER 1.00-01 

OBSERVATION FILE + TYPE OF SOLUTION + 2 METEO FILES 

HYRC94A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY94A.MET 
RC94A.MET 

HYFD94A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY94A.MET 
FD94A.MET 

HYHT94A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY94A.MET 
HT94A.MET 

3 

3 

3 
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1.00-04 

10 

10 

10 

10 

10 

lA-PRIORI 
!SIGMA mm 

10 

10 

10 



HYBP94A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY94A.MET 
BP94A.MET 

HYMJ94A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY94A.MET 
MJ94A.MET 

HYAR94A.DB5 
SO~JTION L1:1, L2:2, L1&L2:3 
HY94A.MET 
AR94A.MET 

HYNS94A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY94A.MET 
NS94A.MET 

HYMM94A.DB5 
SOLUTION L1:1, L2:2, L1&L2:3 
HY94A.MET 
MM94A.MET 
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SEVEN-PARAMETER TRANSFORMATION 



SEVEN-PARAMETER TRANSFORMATION 

The seven-parameter transformation model (used in chapter 6) expresses the 

relationship between two coordinate systems by three translations (X0 , Y 0 , Z0 ), three 

rotations (Ex, £Y, Ez) and one scale factor (x:). 

X 

z 
Terrain 

'=>;:,~,. : point i 

y 

Seven-parameter transformation model 
FIGUREA6.1 

According to Fig.A6.1, the two sets of network coordinates for any terrain 

point i are related as follows: 

(A6.1) 

the rotation angles being small values, the rotation matrix Re is given by: 
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1 E -E z y 

R = -E 1 E z X 
£ 

Ey -E 1 
X 

The vectors ri (and pi) are used as observables. Thus, the observation equation 

can be derived directly from equation (A6.1): 

F. = r + (1 +lC) R r. - p. = 0 
1 0 £ 1 1 

(A6.2) 

Let us define the parameter vector as X= {X0 , Y0 , Z0 , Ex,~· Ez, 1C}. The 

equation (A6.2) being linear, the a priori values X0 required to evaluate the partial 

derivatives of function F with respect to X can be chosen as follows: 

(A6.3) 

Thus, according to (A6.2) and (A6.3), the elements of the design matrix Ai can 

be evaluated following the simple form: 

1 0 0 0 -z. y. X. 
1 1 1 

()F. 
0 1 0 0 A. 

1 z. -x. y. (A6.4) = axiX0 = I I I 
I 

0 0 1 -yi X. 0 z. 
I I 

One sub-matrix Ai is generated for each point i known in both coordinate 

systems. The design matrix A is the concatenation of all sub-matrices Ai. The 

misclosure vector Wi is also obtained using (A6.2) and (A6.3): 
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x. - X. 
1 1 

(A6.5) W y. - Y. . = 1 1 
1 

z. - z. 
1 1 

The least-squares solution is fmally obtained as follows: 

(A6.6) 
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APPENDIX7 

FIDUCIAL NETWORK SOLUTION 



RE-EVALUATION OF NUISANCE PARAMETERS 
==================================== 

ORBITAL SESSION: 1 

ORBITAL PARAMETERS (improvement in kepl. elements) 

--------------------------------------------------
SATELLITE ID.: 6 

A (m) -3.541 +I- 2.207 
E -0.00000033 +I- 0.00000006 
I (") 0.0458 +I- 0.0089 
KN (") -0.0624 +I- 0.0119 
PER (") -1.3879 +I- 1. 13 99 
TO (sec) -0.04551 +I- 0.03751 

SATELLITE ID.: 8 
A (m) 3.235 +I- 1. 378 
E -o. oooooo11 +I- 0.00000002 
I (") -0.0454 +I- 0.0158 
KN (") 0.1393 +I- 0.0093 
PER (") -4.5118 +I- 1. 5553 
TO (sec) -0.14843 +I- 0.05112 

SATELLITE ID.: 11 
A (m) -0.073 +I- 1. 027 
E -0.00000002 +'/- 0.00000002 
I (") 0.0125 +I- 0. 012 9 
KN (") 0.1016 +I- 0.0118 
PER (") 2.9149 +I- 0.4456 
TO (sec) 0.09932 +I- 0.01607 

SATELLITE ID.: 9 
A (m) 7.018 +I- 2.350 
E 0.00000001 +I- 0.00000002 
I (") 0.0074 +I- 0.0132 
KN (") -0.0535 +I- 0.0071 
PER (") 6.5420 +I- 1.0581 
TO (sec) 0.21422 +I- 0.03387 

SATELLITE ID.: 13 
A (m) 2.683 +I- 1.909 
E 0.00000008 +I- 0.00000002 
I (") 0.0251 +I- 0.0123 
KN (") 0.1158 +I- 0.0161 
PER (") -o. 8218 +I- 1. 5784 
TO (sec) -0.02506 +I- 0.05153 

SATELLITE ID.: 12 

A (m) -15.793 +I- 6.118 
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E 
I (") 

KN (") 

PER (") 

TO (sec) 

SATELLITE ID. : 4 

A (m) 

E 

I (") 

KN (") 

PER (") 

TO (sec) 

TROPOSPHERIC SCALE FACTOR (l+k) 

-------------------------------
HY -0.0028 +I- 0.0038 
RC 0.0127 +I- 0.0057 
FD 0.0078 +I- 0.0051 
NS 0.0331 +I- 0.0040 
HT 0.0063 +I- 0.0067 
AR 0.0329 +I- 0.0042 
BP -0.0246 +I- 0.0058 
MM -0.0034 +I- 0.0068 
MJ -0.0088 +I- 0.0053 

CLOCK AND AMBIGUITY PARAMETERS 

FILE: HYRC89A.DBS 
STATIONS: HY RC 

0.00000054 
0.0163 
0.0182 

-2.7551 
-0.07257 

24.096 
-0.00000166 

0.5733 

-0.5179 
0.0690 

0.02214 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET 
DRIFT 

AMBIGUI,TY 
AMBIGUITY 
AMBIGUITY 
AMBIGUITY 
AMBIGUITY 
AMBIGUITY 
AMBIGUITY 
AMBIGUITY 
AMBIGUITY 

-.545713D-02 
0.827427D-08 

WRT REFERENCE 
6 
8 

31 
9 

13 
12 

4 
51 

FILE: HYFD89A.DB5 
STATIONS: HY FD 

+/-0.137771D-03 
+/-0.893280D-08 

SATELLITE : 11 
-3306.42 

-728.48 
10.42 

-3335.33 
-1982.18 
-3767.69 
-3788.82 
-1358.81 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET : 0.1262470-02 +/-0.168059D-03 

1 51 

+I- 0.00000017 

+I- 0.0142 
+I- 0.0131 
+I- 1.3910 
+I- 0.05159 

+I- 12.839 
+I- 0.00000060 

+I- 0.1793 

+I- 0.1586 

+I- 1.8992 

+I- 0.06256 

+I- 6. 79 

+I- 10.61 
+I- 2.41 
+I- 12.68 

+I- 16.56 
+I- 29.72 
+I- 292. 65 
+I- 1. 90 



DRIFT : 0.219179D-08 +/-0 .135722D-07 

AMBIGUITY WRT REFERENCE SATELLITE : 11 

AMBIGUITY 6 -2337.29 +I- 22.84 
AMBIGUITY 8 -2012.61 +I- 22.53 
AMBIGUITY 31 3.62 +I- 1.18 
AMBIGUITY 9 -1876.28 +I- 17.03 
AMBIGUITY 13 68.88 +I- 27.00 
AMBIGUITY 12 -1291.39 +I- 21.01 
AMBIGUITY 4 -1149.81 +I- 184.38 

FILE: HYHT89A.DB5 
STATIONS: HY HT 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET -.5570520-02 +/-0.2195900-03 
DRIFT 0.2655420-07 +/-0.1954690-07 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 -1264.36 +I- 33.51 
AMBIGUITY 8 -1896.81 +I- 28.29 
AMBIGUITY 31 -2.92 +I- 1.53 
AMBIGUITY 9 -1240.26 +I- 29.77 
AMBIGUITY 13 632.60 +I- 38.45 
AMBIGUITY 12 -842.35 +I- 29.82 
AMBIGUITY 4 573.83 +I- 235.99 

FILE: HYBP89A.DB5 
STATIONS: HY BP 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET -.5354250-02 +/-0.2099640-03 
DRIFT 0.1312400-07 +/-0.180034D-07 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 -1471.04 +I- 32.66 
AMBIGUITY 8 -1800.43 +I- 28.57 
AMBIGUITY 31 -2.21 +I- 1.13 
AMBIGUITY 9 -1640.54 +I- 27.72 
AMBIGUITY 13 252.65 +I- 36.38 
AMBIGUITY 12 -1289.81 +I- 25.56 
AMBIGUITY 4 -299.56 +I- 167.88 

FILE: HYMJ89A.DB5 
STATIONS: HY MJ 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET -.5856510-02 +/-0.205572D-03 
DRIFT 0.9562970-08 +/-0.174597D-07 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 -1688.24 +I- 32.25 
AMBIGUITY 8 -1628.02 +I- 28.83 

152 



AMBIGUITY 31 -1.11 +I- 1.14 
AMBIGUITY 9 -2004.20 +I- 26.79 
AMBIGUITY 13 -116.53 +I- 35.76 
AMBIGUITY 12 -1720.39 +I- 24.25 
AMBIGUITY 4 -1059.34 +I- 147.87 

FILE: HYAR89A.DBS 
STATIONS: HY AR 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET 0.118275D-02 +/-0.152248D-03 
DRIFT 0.226351D-08 +/-0 .119284D-07 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 -3312.03 +I- 17.52 
AMBIGUITY 8 -807.93 +I- 18.58 
AMBIGUITY 31 -1.67 +I- 1.26 
AMBIGUITY 9 -3058.08 +I- 13.16 
AMBIGUITY 13 -2204.54 +I- 22.69 
AMBIGUITY 12 -3244.38 +I- 21.40 
AMBIGUITY 4 -12963.70 +I- 210.45 

FILE: HYNS89A.DB5 
STATIONS: HY NS 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET -.577807D-02 +/-0.570053D-04 
DRIFT -.167572D-07 +/-0.407786D-08 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 -1284.30 +I- 3.29 
AMBIGUITY 8 207.12 +I- 4.08 
AMBIGUITY 29 12277.24 +I- 3.94 
AMBIGUITY 31 26695.84 +I- 1.13 
AMBIGUITY 13 12118.84 +I- 5.93 
AMBIGUITY 12 12126.47 +I- 9.22 
AMBIGUITY 4 10708,95 +I- 92.12 
AMBIGUITY 51 14907.28 +I- 1. 45 

FILE: HYMM89A.DBS 
STATIONS: HY MM 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET -.529526D-02 +/-0.2124370-03 
DRIFT 0.157995D-07 +/-0.182587D-07 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 1211.03 +I- 32.95 
AMBIGUITY 8 -3413.78 +I- 28.70 
AMBIGUITY 31 0.84 +I- 1.16 
AMBIGUITY 9 47.24 +I- 28.15 
AMBIGUITY 13 2496.42 +I- 36.82 
AMBIGUITY 12 3668.27 +I- 26.19 
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AMBIGUITY 4 : 2809.75 +I- 17 6. 65 

ORBITAL SESSION: 2 

ORBITAL PARAMETERS (improvement in kepl. elements) 

--------------------------------------------------
SATELLITE ID. : 6 

A (m) 11.873 +I- 2.469 
E 0. 00000011 +I- 0.00000006 
I (") 0.1175 +I- 0.0101 
KN (") 0.1018 +I- 0.0174 
PER (") -4.6515 +I- 1.2555 
TO (sec) -0.14520 +I- 0.04144 

SATELLITE ID.: 8 
A (m) 6.995 +I- 1. 709 
E 0.00000023 +I- 0.00000005 
I (") -0.0357 +I- 0.0177 
KN (") 0.3464 +I- 0.0119 
PER (") 0.5329 +I- 1.8233 
TO (sec) 0.02558 +I- 0.05993 

SATELLITE ID.: 9 
A (m) 5.889 +I- 1. 287 
E -0.00000005 +I- 0.00000002 
I (") 0.0582 +I- 0.0124 
KN (") -0.0006 +I- 0.0098 
PER (") 2.3649 +I- 0.6014 
TO (sec) 0.08157 +I- 0. 0192 9 

SATELLITE ID.: 11 
A (m) 4.106 +I- 1.521 
E -0.00000007 +I- 0.00000004 
I (") 0.0048 +I- 0.0142 
KN (") 0.2602 +I- 0.0081 
PER (") l. 7120 +I- 0.4393 
TO (sec) 0.05721 +I- 0.01664 

SATELLITE ID.: 13 
A (m) 8.322 +I- 1. 375 
E 0.00000018 +I- 0.00000002 
I (") 0.0805 +I- 0.0095 
KN (") 0.1703 +I- 0.0116 
PER (") 3.1563 +I- 1.2011 
TO (sec) 0.11184 +I- 0.03917 

SATELLITE ID.: 12 
A (m) 4.843 +I- 2.015 
E -0.00000010 +I- 0.00000004 
I (") o. 0871 +I- 0.0140 
KN (") 0.0586 +I- 0.0141 
PER (") -1.3509 +I- 0.8665 
TO (sec) -0.04221 +I- 0.03187 
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SATELLITE ID. : 4 

A (m) 19.372 +I- 1.681 

E -0.00000197 +I- 0.00000002 

I (") -0.0274 +I- 0.0119 

KN (") 0.1947 +I- 0.0172 

PER (") 6.3720 +I- 1. 4192 

TO (sec) 0.23158 +I- 0.04629 

TROPOSPHERIC SCALE FACTOR (1+k) 

-------------------------------
HY 0.0000 +I- 0.0192 

RC -0.0025 +I- 0.0057 
FD -0.0026 +I- 0.0053 
NS 0.0242 +I- 0.0052 
HT 0.0128 +I- 0.0049 
AR -0.0080 +I- 0.0045 
BP -0.0120 +I- 0.0046 
MM -0.0041 +I- 0.0055 
MJ 0.0090 +I- 0.0048 

CLOCK AND AMBIGUITY PARAMETERS 

FILE: HTRC90A.DB5 
STATIONS: HT RC 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET -.245313D-04 +/-0.202898D-03 
DRIFT -.115345D-06 +/-0.179196D-07 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 -3877.63 +I- 61.72 
AMBIGUITY 8 1051.85 +I- 33.69 
AMBIGUITY 9 -1638.32 +I- 36.72 
AMBIGUITY 13 -2242.37 +I- 27.55 
AMBIGUITY 12 -2638.95 +I- 39.29 

FILE: HTFD90A.DB5 
STATIONS: HT FD 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET 0.587296D-03 +/-0.144065D-03 
DRIFT -.653972D-07 +/-0.857559D-08 

AMBIGUITY WRT REFERENCE SATELLITE 11 

AMBIGUITY 6 -841.52 +I- 21.95 
AMBIGUITY 8 800.44 +I- 11.21 
AMBIGUITY 31 7 65. 95 +I- 4.47 
AMBIGUITY 9 -1208.13 +I- 13.94 

AMBIGUITY 13 -1216.50 +I- 12.21 

AMBIGUITY 12 -1638.43 +I- 18.39 
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AMBIGUITY 4 -1042.03 +I- 22.92 
AMBIGUITY 33 -5513.88 +I- 12.12 
AMBIGUITY 24 -2247.46 +I- 22.94 

FILE: HTBP90A.DB5 
STATIONS: HT BP 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET 0.219040D-03 +/-0. 427214D-04 
DRIFT -.205202D-07 +/-0.285988D-08 

AMBIGUITY WRT REFERENCE SATELLITE 11 
AMBIGUITY 6 -385.18 +I- 3.69 
AMBIGUITY 8 155.48 +I- 3.29 
AMBIGUITY 31 308.47 +I- 1.60 
AMBIGUITY 9 -627.68 +I- 2.41 
AMBIGUITY 13 -612.75 +I- 4.16 
AMBIGUITY 12 -740.05 +I- 5.09 
AMBIGUITY 4 -725.90 +I- 7.27 

FILE: HTMJ90A.DB5 
STATIONS: HT MJ 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET 0.306489D-03 +/-0.615076D-04 
DRIFT -.215673D-07 +/-0. 399047D-08 

AMBIGUITY WRT REFERENCE SATELLITE 11 
AMBIGUITY 6 -747.48 +I- 5.35 
AMBIGUITY 8 351.59 +I- 4.59 
AMBIGUITY 31 346.60 +I- 2.22 
AMBIGUITY 9 -1189.15 +I- 3. 48 
AMBIGUITY 29 -7865.17 +I- 4. 60 
AMBIGUITY 28 7605.39 +I- 4.73 
AMBIGUITY 49 13307.73 +I- 3.70 
AMBIGUITY 13 -7958.56 +I- 5.65 
AMBIGUITY 12 -8502.89 +I- 7.l6 
AMBIGUITY 4 -8278.27 +I- 9.96 

FILE: HTAR90A.DB5 
STATIONS: HT AR 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET 0.726372D-02 +/-0 .183571D-03 
DRIFT -.917890D-07 +/-0.102102D-07 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 -2999.52 +I- 31.55 
AMBIGUITY 8 1413.16 +I- 15.85 
AMBIGUITY 31 717. 98 +I- 5.78 
AMBIGUITY 9 -1486.22 +I- 19.59 
AMBIGUITY 13 -2655.50 +I- 15.50 
AMBIGUITY 12 -2035.61 +I- 23.30 

156 



AMBIGUITY 4 : -2984.99 +1- 28.50 

FILE: HTNS90A.DB5 
STATIONS: HT NS 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET 0.9308510-03 +/-0.259706D-03 

DRIFT -.179247D-06 +/-0.159991D-07 

AMBIGUITY WRT REFERENCE SATELLITE 9 
AMBIGUITY 6 1222.27 +I- 52.19 
AMBIGUITY 8 2560.48 +I- 47.75 

AMBIGUITY 11 -99.09 +I- 33.13 
AMBIGUITY 13 -2170.86 +/- 31.73 

AMBIGUITY 33 -2176.92 +I- 31.68 
AMBIGUITY 12 -14934.22 +I- 34.67 
AMBIGUITY 4 -1512.47 +I- 49.03 

FILE: HTMM90A.DB5 
STATIONS: HT MM 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET 0.179417D-03 +/-0.371073D-04 
DRIFT -.1087450-07 +/-0.241740D-08 

AMBIGUITY WRT REFERENCE SATELLITE 11 
AMBIGUITY 6 3281.17 +I- 3.14 
AMBIGUITY 8 -668.33 +I- 3.01 
AMBIGUITY 31 1561.57 +I- 1.51 
AMBIGUITY 9 4651.39 +I- 2.08 
AMBIGUITY 13 5270.16 +I- 3.74 
AMBIGUITY 12 8455.02 +I- 4.45 
AMBIGUITY 4 5964.93 +I- 6.39 
AMBIGUITY 33 11170.32 +I- 3.75 
AMBIGUITY 24 11866.53 +I- 6.39 

ORBITAL SESSION: 3 

ORBITAL PARAMETERS (improvement in kepl. elements) 

SATELLITE ID. : 6 
A (m) 18.404 +I- 2.063 
E 0.00000016 +I- 0.00000005 
I (") 0.0715 +I- 0.0076 
KN (") -0.0568 +I- 0.0118 
PER (") 3.6325 +I- 1.0161 
TO (sec) 0.12066 +I- 0.03346 

SATELLITE ID. : 8 
A (m) 9. 267 +I- l. 439 
E 0.00000001 +I- 0.00000002 
I (") 0.0565 +I- 0.0155 
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KN (") 0.3224 +I- 0.0092 

PER (") -0.6939 +I- 1.5492 

TO (sec) -0.02494 +I- 0.05090 

SATELLITE ID.: 11 

A (m) 7.834 +I- 0.967 

E 0.00000000 +I- 0.00000002 

I (") 0.0755 +I- 0.0129 

KN (") 0.1347 +I- 0.0101 

PER (") 1.3308 +I- 0.4083 

TO (sec) 0.03294 +I- 0.01475 

SATELLITE ID. : 9 
A (m) 3. 482 +I- 2.051 
E -0.00000014 +I- 0.00000002 
I (") -0.0152 +I- o. 0110 

KN (") -0.0877 +I- 0.0071 

PER (") 0.8531 +I- 0.9919 

TO (sec) 0.02919 +I- 0.03178 

SATELLITE ID.: 13 
A (m) -2. 693 +I- 1. 485 

E 0.00000002 +I- 0.00000001 

I (") 0.0938 +I- 0.0106 
KN (") 0.0933 +I- 0.0125 

PER (") -7.3117 +I- 1. 2583 
TO (sec) -0.23901 +I- 0.04099 

SATELLITE ID.: 4 
A (m) 11.047 +I- 1.591 
E -0.00000200 +I- 0.00000002 
I (") -0.0212 +I- 0.0143 
KN (") 0.0458 +I- 0.0151 

PER (") 11.8381 +I- 1.2209 
TO (sec) 0.40249 +I- 0.03981 

SATELLITE ID. : 12 
A (m) -16.585 +I- 4.847 
E 0.00000074 +I- 0.00000013 

I (") 0.0603 +I- 0.0120 
KN (") 0.0621 +I- 0.0119 
PER (") -10.6326 +I- 1. 3378 
TO (sec) -0.33840 +I- 0.04921 

TROPOSPHERIC SCALE FACTOR ( 1+k) 

-------------------------------
HY -0.0256 +I- 0.0035 
RC -0.0194 +I- 0.0050 
FD 0.0088 +I- 0.0045 
NS -0.0671 +I- 0.0038 

HT 0.0027 +I- 0.0065 
AR -0.0082 +I- 0.0036 
BP 0. 0130 +I- 0.0056 

MM 0. 02 61 +I- 0.0066 
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MJ 0.0173 +I- 0.0051 

CLOCK AND AMBIGUITY PARAMETERS 

------------------------------
FILE: HYRC91A.DB5 
STATIONS: HY RC 

CLOCK PARAMETERS (RECEIVER 2 W~T RECEIVER 1) 

OFFSET -.635029D-02 +/-0.134786D-03 

DRIFT 0.633423D-07 +/-0.809313D-08 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 -3108.08 +I- 5.77 

AMBIGUITY 8 -611.4 0 +I- 10.21 

AMBIGUITY 31 15.95 +I- 2.42 
AMBIGUITY 9 -3348.25 +I- 12.07 

AMBIGUITY 13 -1891.85 +I- 12.95 
AMBIGUITY 4 -2635.39 +I- 19.18 
AMBIGUITY 51 -1264.79 +I- 3.77 

FILE: HYFD91A.DB5 
STATIONS: HY FD 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET -. 63192 6D-02 +/-0.161667D-03 

DRIFT 0 .115286D-06 +/-0.123238D-07 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 -1475.50 +I- 21.30 
AMBIGUITY 8 -1322.16 +I- 19.44 

AMBIGUITY 31 5.28 +I- 1.16 

AMBIGUITY 9 -2572.40 +I- 17.45 

AMBIGUITY 13 -722.79 +I- 23.68 
AMBIGUITY 12 -2503.00 +I- 20.40 
AMBIGUITY 4 -2043.08 +I- 38.20 

FILE: HYHT91A.DB5 
STATIONS: HY HT 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET -.590685D-02 +/-0. 211857D-03 
DRIFT 0.145677D-06 +/-0.168146D-07 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 -532.46 +I- 31.45 
AMBIGUITY 8 -1870.46 +I- 24.62 
AMBIGUITY 31 -4.54 +I- 1. 48 

AMBIGUITY 9 -1310.97 +I- 32.32 
AMBIGUITY 13 458.81 +I- 41.60 
AMBIGUITY 12 -1179.78 +I- 30.27 

AMBIGUITY 4 -858.65 +I- 53.68 
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AMBIGUITY 33 5977.72 +I- 41.75 
AMBIGUITY 24 4659.87 +I- 54.06 

FILE: HYBP91A.DB5 
STATIONS: HY BP 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET -.582993D-02 +/-0 .198389D-03 
DRIFT 0.128240D-06 +/-0.157882D-07 

AMBIGUITY WRT REFERENCE SATELLITE 11 
AMBIGUITY 6 343.81 +I- 30.64 
AMBIGUITY 8 -464.93 +I- 24.76 
AMBIGUITY 31 1335.15 +I- 1.12 
AMBIGUITY 9 -402.86 +I- 29.68 
AMBIGUITY 13 1362 .oo +I- 37.74 
AMBIGUITY 12 -208.90 +I- 26.50 
AMBIGUITY 4 -136.23 +I- 51.45 

FILE: HYMJ91A.DB5 
STATIONS: HY MJ 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET -.602011D-02 +/-0.194666D-03 
DRIFT 0 .137167D-06 +/-0.154224D-07 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 -1225.60 +I- 30.23 
AMBIGUITY 8 -1592.25 +I- 24.93 
AMBIGUITY 31 3. 62 +I- 1.14 
AMBIGUITY 9 -2099.71 +I- 28.44 
AMBIGUITY 13 -314.17 +I- 36.12 
AMBIGUITY 12 -1987.84 +I- 25.21 
AMBIGUITY 4 -1981.20 +I- 50.79 

FILE: HYAR91A.DBS 
STATIONS: HY AR 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET 0.161716D-04 +/-0.148510D-03 
DRIFT 0.101099D-06 +/-0.109349D-07 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 -2965.29 +I- 16.38 
AMBIGUITY 8 -743.96 +I- 16.12 
AMBIGUITY 31 3.39 +I- 1. 24 
AMBIGUITY 9 -3151.67 +I- 13.19 
AMBIGUITY 13 -2360.22 +I- 18.51 
AMBIGUITY 12 -3356.72 +I- 19.78 
AMBIGUITY 4 -4282.16 +I- 31.34 

FILE: HYNS91A.DBS 
STATIONS: HY NS 
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CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET -.580452D-02 +/-0.568023D-04 

DRIFT 0.582842D-08 +/-0.365354D-08 

AMBIGUITY WRT REFERENCE SATELLITE : 11 

AMBIGUITY 6 -1051.53 +I- 3.00 
AMBIGUITY 8 285.71 +I- 3.58 
AMBIGUITY 29 12165.15 +I- 3.60 

AMBIGUITY 31 29596.88 +I- 1.18 

AMBIGUITY 13 12008.06 +I- 4.06 

AMBIGUITY 12 12363.09 +I- 7.87 

AMBIGUITY 4 10877.45 +I- 7.00 

AMBIGUITY 51 14818.60 +I- 1.38 

FILE: HYMM91A.DB5 

STATIONS: HY MM 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET -.589867D-02 +/-0.200758D-03 

DRIFT 0.142109D-06 +/-0.159876D-07 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 1794.48 +I- 30.92 
AMBIGUITY 8 -3316.70 +I- 24.88 
AMBIGUITY 31 -2.39 +I- 1.15 
AMBIGUITY 9 37.16 +I- 30.20 

AMBIGUITY 13 2327.89 +I- 38.42 
AMBIGUITY 12 3450.27 +I- 27.07 

AMBIGUITY 4 1645.11 +I- 52.01 

ORBITAL SESSION: 4 

ORBITAL PARAMETERS (improvement in kepl. elements) 

SATELLITE ID.: 6 
A (m) 1.135 +I- 1.926 
E -0.00000025 +I- 0.00000005 
I (") 0.0562 +I- 0.0069 
KN (") -0.0320 +I- 0.0100 
PER (") -1.6192 +I- 0.9948 
TO (sec) -0.05292 +I- 0.03276 

SATELLITE ID.: 8 

A (m) 1.119 +I- 1.263 
E -0.00000021 +I- 0.00000002 
I (") -0.0837 +I- 0.0137 

KN (") 0.2268 +I- 0.0088 

PER (") -6.6546 +I- 1. 4741 
TO (sec) -0.22087 +I- 0.04845 

SATELLITE ID. : 11 
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A (m) -3.137 +I- 0.802 

E 0.00000010 +I- 0.00000002 

I (") -0.0273 +I- 0.0116 
KN (") 0.0996 +I- 0.0088 

PER (") 4.6492 +I- 0.3686 

TO (sec) 0.16043 +I- 0.01329 

SATELLITE ID.: 9 
A (m) 7. 897 +I- 1. 881 

E -0.00000008 +I- 0.00000002 
I (") -0.0033 +I- 0.0097 
KN (") -0.0651 +I- 0.0069 
PER (") 4.6605 +I- 0. 8909 
TO (sec) 0.15307 +I- 0.02853 

SATELLITE ID.: 13 
A (m) -2.332 +I- 1. 404 
E 0.00000003 +I- 0.00000001 
I (") -0.0079 +I- 0.0100 
KN (") 0.0725 +I- 0.0113 
PER (") -6.2048 +I- 1.2026 
TO (sec) -0.20291 +I- 0.03915 

SATELLITE ID.: 12 
A (m) 0.434 +I- 4. 392 
E 0.00000005 +I- 0.00000012 
I (") 0.0430 +I- 0.0101 
KN (") 0.0210 +I- 0.0105 
PER (") -4.9851 +I- 1.1709 
TO (sec) -0.16466 +I- 0.04348 

SATELLITE ID.: 
A (m) 5.675 +I- 1. 4 73 
E -0.00000199 +I- 0.00000002 
I (") -0.1010 +I- 0.0136 
KN (") 0.0023 +I- 0. 012 9 
PER (") 7.0664 +I- 1.1257 
TO (sec) 0.23540 +I- 0.03664 

TROPOSPHERIC SCALE FACTOR (1+k) 

-------------------------------
HY -0.0275 +I- 0.0032 
RC -0.0053 +I- 0.0045 
FD 0.0116 +I- 0.0042 
NS -0.0557 +I- 0.0034 
HT o. 0077 +I- 0. 0062 
AR -0.0011 +I- 0.0034 
BP -0.0176 +I- 0.0053 
MM 0.0026 +I- 0.0063 
MJ 0.0081 +I- 0.0048 

CLOCK AND AMBIGUITY PARAMETERS 

------------------------------
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FILE: HYRC94A.DB5 

STATIONS: HY RC 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET 0.6370270-03 +/-0.125880D-03 

DRIFT 0.9753180-08 +/-0.7312000-08 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 -1783.24 +I- 5.16 
AMBIGUITY 8 -40.93 +I- 9.36 
AMBIGUITY 31 1123.64 +I- 2.27 

AMBIGUITY 9 -1547.42 +I- 10.26 
AMBIGUITY 13 -349.57 +I- 11.36 

AMBIGUITY 12 -1734.96 +I- 22.10 

AMBIGUITY 4 -1190.27 +I- 17.93 

AMBIGUITY 51 -54.12 +I- 1.25 

FILE: HYFD94A.OB5 
STATIONS: HY FO 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET -.581904D-02 +/-0.148425D-03 
DRIFT 0.282533D-07 +/-0 .1097250-07 

AMBIGUITY WRT REFERENCE SATELLITE 11 
AMBIGUITY 6 -429.72 +I- 20.61 
AMBIGUITY 8 -121.95 +I- 18.15 
AMBIGUITY 31 1355.63 +I- 1.12 

AMBIGUITY 9 -1181.15 +I- 14.78 
AMBIGUITY 13 696.24 +I- 17.70 

AMBIGUITY 12 -1300.84 +I- 16.48 

AMBIGUITY 4 -897.43 +I- 30.72 

FILE: HYHT94A.DB5 
STATIONS: HY HT 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1) 

OFFSET -. 7942010-02 +/-0.185324D-03 
DRIFT 0.681953D-07 +/-0.143205D-07 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 21.74 +I- 30.08 
AMBIGUITY 8 -1000.16 +I- 22.86 
AMBIGUITY 31 1016.31 +I- 1. 44 
AMBIGUITY 9 -330.55 +I- 24.91 
AMBIGUITY 13 1413.45 +I- 29.02 
AMBIGUITY 12 -266.29 +I- 25.07 
AMBIGUITY 4 39.53 +I- 39.69 

FILE: HYBP94A.DB5 

STATIONS: HY BP 
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CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1} 

OFFSET -.4447400-02 +/-0.1767220-03 

DRIFT 0.4203270-07 +/-0.135610D-07 

AMBIGUITY WRT REFERENCE SATELLITE 11 

AMBIGUITY 6 -125.85 +I- 29.43 

AMBIGUITY 8 -733.17 +I- 23.02 

AMBIGUITY 31 1248.10 +I- 1.10 

AMBIGUITY 9 -555.88 +I- 23.34 

AMBIGUITY 13 1222.29 +I- 26.31 

AMBIGUITY 12 -463.64 +I- 21.34 
AMBIGUITY 4 -449.77 +I- 38.37 

FILE: HYMJ94A.DB5 
STATIONS: HY MJ 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1} 

OFFSET -.6744510-02 +/-0.173981D-03 
DRIFT 0.4750280-07 +/-0.133088D-07 

AMBIGUITY WRT REFERENCE SATELLITE 11 
AMBIGUITY 6 -263.77 +I- 29.09 
AMBIGUITY 8 -407.52 +I- 23.17 

AMBIGUITY 31 1379.73 +I- 1.11 
AMBIGUITY 9 -789.32 +I- 22.66 
AMBIGUITY 13 904.71 +I- 25.32 

AMBIGUITY 12 -902.87 +I- 20.07 
AMBIGUITY 4 -853.40 +I- 38.25 

FILE: HYAR94A.DB5 
STATIONS: HY AR 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1} 

OFFSET -.5755940-02 +/-0.137081D-03 
DRIFT 0.2167110-07 +/-0.981766D-08 

AMBIGUITY WRT REFERENCE SATELLITE : 11 
AMBIGUITY 6 -1233.62 +I- 15.85 
AMBIGUITY 8 1364.90 +I- 15.10 
AMBIGUITY 31 1639.27 +I- 1.19 
AMBIGUITY 9 -2066.45 +I- 11.64 
AMBIGUITY 13 -1200.68 +I- 14.60 
AMBIGUITY 12 -2900.43 +I- 16.62 
AMBIGUITY 4 -3448.62 +I- 26.08 

FILE: HYNS94A.DB5 
STATIONS: HY NS 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 1} 

OFFSET -.6285160-02 +/-0.525339D-04 
DRIFT 0.5251590-08 +/-0.3370250-08 
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AMBIGUITY WRT REFERENCE SATELLITE 11 

AMBIGUITY 6 774.02 
AMBIGUITY 8 2111.39 
AMBIGUITY 31 1834.36 
AMBIGUITY 9 -361.99 
AMBIGUITY 13 -565.21 
AMBIGUITY 12 -479.60 
AMBIGUITY 4 -1673.56 
AMBIGUITY 51 2214.86 

FILE: HYMM94A.DB5 
STATIONS: HY MM 

CLOCK PARAMETERS (RECEIVER 2 WRT RECEIVER 

OFFSET -.617353D-02 
DRIFT 0.552196D-07 

AMBIGUITY WRT REFERENCE 
AMBIGUITY 6 
AMBIGUITY 8 
AMBIGUITY 31 
AMBIGUITY 9 
AMBIGUITY 13 
AMBIGUITY 12 
AMBIGUITY 4 

REFERENCE ELLIPSOID 
AE = 6378135.0, F-1 

+/-0.178544D-03 
+/-0.137103D-07 

SATELLITE 11 
4966.67 

72.83 
3569.66 
3519.00 
5853.90 
6806.72 
5074.54 

298.2600, XE = 

A POSTERIORI VARIANCE FACTOR : 3.6692 

CROSS-CORRELATION BETWEEN STATIONS 

+I- 3.19 
+I- 3.83 
+I- 1.09 
+I- 3.44 
+I- 3.84 
+I- 6.83 
+I- 6.60 
+I- 0.89 

1) 

+I- 29. 68 
+I- 23.13 
+I- 1.13 
+I- 23.68 
+I- 26.77 
+I- 21.89 
+I- 38.70 

0.000, YE 

ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

BASELINE: STATION : HY AND STATION : RC 

STATION NAME : HY 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

42 37 21.84550 
- 71 29 18.02122 

93.8914 

A POSTERIORI ELLIPSOIDAL COORDINATES 

LATITUDE 42 37 21.84550 +/-
LONGITUDE 
HEIGHT 

- 71 29 18.02122 
93.8914 

CROSS-CORRELATION BETWEEN COORDINATES 

+/­

+/-
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ALL I CROSS-CORRELATION VALUES I SMALLER THAN 

A POSTERIORI CARTESIAN COORDINATES 
X 1492398.4454 M +I- 0 MM 
y -4457293.8953 M +I- 0 MM 
z 4296819.2655 M +I- 0 MM 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUES I SMALLER THAN 

STATION NAME : RC 

-----------------
A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 25 36 50.75301 
LONGITUDE 
HEIGHT 

- 80 23 3.17181 
-21.1879 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

25 36 50.75301 
- 80 23 3.17181 

-21.1879 

CROSS-CORRELATION BETWEEN COORDINATES 

+!­
+/­

+I-

0.90 

0.90 

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X 
y 

z 

961302.9852 M 
-5674057.1094 M 

2740563.8693 M 

+!­
+!­
+I-

CROSS-CORRELATION BETWEEN COORDINATES 

0 MM 
0 MM 
0 MM 

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

BASELINE : HY RC 

A-PRIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE - 17 0 31:09250 
DELTA LONGITUDE 
DELTA HEIGHT 

8 53 45.15059 
-115.0793 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE - 17 0 31.09250 +/-
DELTA LONGITUDE 8 53 45.15059 +/-
DELTA HEIGHT -115.0793 +I-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X -531095.4602 M +/- 0 MM 
DELTA Y 
DELTA Z 

-1216763.2141 M +/-

-1556255.3962 M +/-

0 MM 
0 MM 
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CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

BASELINE LENGTH 2045606.5030 M +/- OMM 

AZIMUTH HY TO RC 
AZIMUTH RC TO HY 

-153 50 46.214 +/-

21 6 6.230 +/-

0.000 SEC 
0.000 SEC 

BASELINE: STATION : HY AND STATION : FD 

STATION NAME : HY 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 42 37 21.84550 
LONGITUDE 
HEIGHT 

- 71 29 18.02122 
93.8914 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 42 37 21.84550 +/-

LONGITUDE - 71 29 18.02122 +/-

HEIGHT 93.8914 +I-

CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

A POSTERIORI CARTESIAN 
X 1492398.4454 M 
Y -4457293.8953 M 
Z 4296819.2655 M 

COORDINATES 
+1-
+1-
+I-

CROSS-CORRELATION BETWEEN COORDINATES 

0 MM 
0 MM 
0 MM 

ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

STATION NAME : FD 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 30 38 9.60561 
LONGITUDE 
HEIGHT 

-103 56 49.65601 
1585.3693 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

30 38 9.60561 
-103 56 49.65601 
1585.3693 

CROSS-CORRELATION BETWEEN COORDINATES 

+1-
+1-
+I-

ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

A POSTERIORI CARTESIAN 
X -1324205.7179 M 
Y -5332056.0713 M 

COORDINATES 
+I-
+ I-

0 MM 
0 MM 
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z : 3232043.6300 M +I- 0 MM 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

BASELINE : HY FD 

A-PRIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 
DELTA LONGITUDE 
DELTA HEIGHT 

- 11 59 12.23990 
- 32 27 31.63479 
1491.4779 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE - 11 59 12.23990 +/-

DELTA LONGITUDE - 32 27 31.63479 +/-
DELTA HEIGHT 1491.4779 +I-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X -2816604.1633 M +I- 0 MM 
DELTA y -874762.1760 M +I- 0 MM 
DELTA z -1064775.6355 M +I- 0 MM 

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

BASELINE LENGTH 3135636.3040 M +/- OMM 

AZIMUTH HY TO FD 
AZIMUTH FD TO HY 

-104 4 54.034 +/-

56 6 27.069 +/-

0.000 SEC 
0.000 SEC 

BASELINE: STATION : HY AND STATION : NS 

STATION NAME : HY 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

42 37 21.84550 
- 71 29 18.02122 

93.8914 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

42 37 21.84550 
- 71 29 18.02122 

93.8914 

CROSS-CORRELATION BETWEEN COORDINATES 

+I­
+ I­
+I-

ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 
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A POSTERIORI CARTESIAN COORDINATES 
+I-X 1492398.4454 M 

y 

z 
-4457293.8953 M +/-

4296819.2655 M +/-

CROSS-CORRELATION BETWEEN COORDINATES 

0 MM 
0 MM 
0 MM 

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

STATION NAME : NS 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

38 19 55.47490 
- 77 2 32.50317 

-18.4557 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

38 19 55.47388 
- 77 2 32.49886 

-18.2342 

CROSS-CORRELATION BETWEEN COORDINATES 

+/­
+/­

+I-

5 MM 
9 MM 

17 MM 

ALL I CROSS-CORRELATION VALUES I SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X 1123313.6887 M +I- 10 MM 
y -4882071.0587 M +I- 12 MM 
z : 3934412.0257 M +I- 13 MM 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

BASELINE : HY NS 

A-PRIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 4 17 26.37060 
DELTA LONGITUDE 5 33 14.48194 
DELTA HEIGHT -112.3471 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 
DELTA LONGITUDE 
DELTA HEIGHT 

4 17 26.37163 
5 33 14.47763 

-112.1256 

+/­

+!­
+I-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X -369084.7567 M +/- 10 MM 
DELTA Y 
DELTA Z 

-424777.1634 M +/-

-362407.2398 M +/-

12 MM 
13 MM 

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

169 

5 MM 
9 MM 

17 MM 



BASELINE LENGTH 669326.6793 M +/- 5 MM 

AZIMUTH HY TO NS 
AZIMUTH NS TO HY 

-133 29 53.300 +/-
42 53 32.331 +/-

0.003 SEC 
0.003 SEC 

BASELINE: STATION : HY AND STATION : HT 

STATION NAME : HY 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

42 37 21.84550 
- 71 29 18.02122 

93.8914 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

42 37 21.84550 
- 71 29 18.02122 

93.8914 

CROSS-CORRELATION BETWEEN COORDINATES 

+/­

+/­

+I-

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X 
y 

z 

1492398.4454 M +/­

-4457293.8953 M +/-

4296819.2655 M +/-

CROSS-CORRELATION BETWEEN COORDINATES 

0 MM 
0 MM 
0 MM 

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

STATION NAME : HT 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 40 49 1.36259 
LONGITUDE 
HEIGHT 

-121 28 9.18879 
997.9798 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

40 49 1.36259 
-121 28 9.18879 

997.9798 

CROSS-CORRELATION BETWEEN COORDINATES 

+/­
+/­

+I-

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN 
X -2523882.5946 M 

COORDINATES 
+I-

y 

z 
-4123573.0094 M +/-

4147719.3431 M +/-

0 MM 
0 MM 
0 MM 
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CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

BASELINE : HY HT 

A-PRIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 1 48 20.48291 
DELTA LONGITUDE 
DELTA HEIGHT 

- 49 58 51.16756 
904.0884 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 
DELTA LONGITUDE 
DELTA HEIGHT 

1 48 20.48291 
- 49 58 51.16756 

904.0884 

+/­
+/­

+I-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X -4016281.0400 M +/- 0 MM 
DELTA Y 
DELTA Z 

333720.8859 M +/­
-149099.9224 M +/-

0 MM 
0 MM 

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

BASELINE LENGTH 4032879.0967 M +/- OMM 

AZIMUTH HY TO HT 
AZIMUTH HT TO HY 

- 75 20 49.948 +/-

70 10 56.192 +/-

0.000 SEC 
0.000 SEC 

BASELINE: STATION : HY AND STATION : AR 

STATION NAME : HY 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 42 37 21.84550 
LONGITUDE 
HEIGHT 

- 71 29 18.02122 
93.8914 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

42 37 21.84550 
- 71 29 18.02122 

93.8914 

CROSS-CORRELATION BETWEEN COORDINATES 

+1-
+1-
+I-

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X : 1492398.4454 M +I- 0 MM 
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y 

z 
-4457293.8953 M 

4296819.2655 M 
+1-
+1-

CROSS-CORRELATION BETWEEN COORDINATES 

0 MM 
0 MM 

ALL \CROSS-CORRELATION VALUES\ SMALLER THAN 0.90 

STATION NAME : AR 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 30 23 1.00124 
LONGITUDE 
HEIGHT 

- 97 43 32.93395 
217.5207 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 30 23 1.00160 +/-
LONGITUDE 
HEIGHT 

- 97 43 32.93692 
217. 6016 

CROSS-CORRELATION BETWEEN COORDINATES 

+I­
+ I-

ALL \CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X -740328.3905 M +/- 8 MM 
y 

z 
-5457067.6475 M +/-

3207239.6910 M +/-

CROSS-CORRELATION BETWEEN COORDINATES 

8 MM 
6 MM 

ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

BASELINE : HY AR 

A-PRIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE - 12 14 20.84426 
DELTA LONGITUDE 
DELTA HEIGHT 

- 26 14 14.91273 
123.6293 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE - 12 14 20.84391 +/-
DELTA LONGITUDE 
DELTA HEIGHT 

- 26 14 14.91570 
123.7102 

+I­
+ I-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X 
DELTA Y 
DELTA Z 

-2232726.8359 M +/-
-999773.7522 M +/-

-1089579.5745 M +/-

8 MM 
8 MM 
6 MM 

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

3 MM 
8 MM 
9 MM 

BASELINE LENGTH : 2678021.7192 M +/- 6MM 
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AZIMUTH HY TO AR -111 35 42.169 +/­
AZIMUTH AR TO HY 52 31 47.465 +/-

0.000 SEC 
0.000 SEC 

BASELINE: STATION : HY AND STATION : BP 

STATION NAME : HY 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 42 37 21.84550 
LONGITUDE - 71 29 18.02122 
HEIGHT 93.8914 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 42 37 21.84550 +I- 0 
LONGITUDE - 71 29 18.02122 +I- 0 
HEIGHT 93.8914 +I- 0 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL I CROSS-CORRELATION VALUES I SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X 1492398.4454 M +I- 0 MM 
y -4457293.8953 M +I- 0 MM 
z 4296819.2655 M +I- 0 MM 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL I CROSS-CORRELATION VALUES I SMALLER THAN 0.90 

STATION NAME : BP 

-----------------
A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 37 13 55.17406 
LONGITUDE -118 17 1.40030 
HEIGHT 1183.2557 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 37 13 55.17452 +I- 2 
LONGITUDE -118 17 1.40343 +I- 7 
HEIGHT 1183.3112 +I- 8 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL I CROSS-CORRELATION VALUES I SMALLER THAN 0,90 

A POSTERIORI CARTESIAN COORDINATES 
X -2409654.8262 M +I- 7 MM 
y -4478261.9452 M +I- 6 MM 
z 3838638.7780 M +I- 6 MM 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 
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BASELINE : HY BP 

A-PRIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 5 23 26.67145 
DELTA LONGITUDE 
DELTA HEIGHT 

- 46 47 43.37908 
1089.3643 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 5 23 26.67098 +/-
DELTA LONGITUDE - 46 47 43.38220 +/-
DELTA HEIGHT 1089.4198 +I-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X -3902053.2716 M +/-
DELTA Y 
DELTA Z 

-20968.0499 M +/-

-458180.4875 M +/-

7 MM 
6 MM 
6 MM 

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

BASELINE LENGTH 3928916.9948 M +/- 6MM 

AZIMUTH HY TO BP 
AZIMUTH BP TO HY 

- 82 29 42.462 +/-
66 25 52.950 +/-

0.000 SEC 
0.000 SEC 

BASELINE: STATION : HY AND STATION : MM 

STATION NAME : HY 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 42 37 21.84550 
LONGITUDE 
HEIGHT 

- 71 29 18.02122 
93.8914 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

42 37 21.84550 
- 71 29 18.02122 

93.8914 

CROSS-CORRELATION BETWEEN COORDINATES 

+1-
+1-
+I-

ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X 1492398.4454 M +I- 0 MM 
y -4457293.8953 M +I- 0 MM 
z 4296819.2655 M +I- 0 MM 
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CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

STATION NAME : MM 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

37 38 39.88027 
-118 53 48.28696 
2390.9932 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

37 38 39.88019 
-118 53 48.28684 
2390.9409 

CROSS-CORRELATION BETWEEN COORDINATES 

+1-
+1-
+I-

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X 
'[ 

z 

-2444443.5976 M +/-

-4428696.3285 M +/-
3875726.8993 M +/-

CROSS-CORRELATION BETWEEN COORDINATES 

7 MM 
6 MM 
5 MM 

ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

BASELINE : H'l MM 

A-PRIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 4 58 41.96524 
DELTA LONGITUDE 
DELTA HEIGHT 

- 47 24 30.26574 
2297.1018 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 4 58 41.96531 +/-

DELTA LONGITUDE 
DELTA HEIGHT 

- 47 24 30.26561 
2297.0494 

+I­
+ I-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES I SMALLER THAN 0.90 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X -3936842.0430 M +I- 7 MM 
DELTA '[ 28597.5668 M +I- 6 MM 
DELTA z -421092.3662 M +I- 5 MM 

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

2 MM 
7 MM 
7 MM 

BASELINE LENGTH 3959401.7065 M +/- 6MM 

AZIMUTH H'l TO MM - 81 31 28.625 +/- 0.000 SEC 
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AZIMUTH MM TO HY 66 50 37.068 +/- 0.000 SEC 

BASELINE: STATION : HY AND STATION : MJ 

STATION NAME : HY 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

A POSTERIORI 
LATITUDE 
LONGITUDE 
HEIGHT 

42 37 21.84550 
- 71 29 18.02122 

93.8914 

ELLIPSOIDAL COORDINATES 
42 37 21.84550 

- 71 29 18.02122 
93.8914 

CROSS-CORRELATION BETWEEN COORDINATES 

+I-
+I-
+I-

ALL !CROSS-CORRELATION VALUES I SMALLER THAN 

A POSTERIORI CARTESIAN COORDINATES 
X 1492398.4454 M +I- 0 MM 
y -4457293.8953 M +I- 0 MM 
z 4296819.2655 M +I- 0 MM 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUES I SMALLER THAN 

STATION NAME : MJ 

-----------------
A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 35 19 52.48371 
LONGITUDE -116 53 33.13647 
HEIGHT 898.0025 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 35 19 52.48588 +I-
LONGITUDE -116 53 33.13694 +I-
HEIGHT 897.9119 +I-

CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUES I SMALLER THAN 

A POSTERIORI CARTESIAN COORDINATES 
X -2356576.1146 M +/- 8 MM 
y 

z 
-4646564.9994 M +/-

3668427.6554 M +/-

CROSS-CORRELATION BETWEEN COORDINATES 

8 MM 
6 MM 

0.90 

0.90 

0.90 

ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 
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BASELINE : HY MJ 

A-PRIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 7 17 29.36179 
DELTA LONGITUDE - 45 24 15.11525 
DELTA HEIGHT 804.1111 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 
DELTA LONGITUDE 
DELTA HEIGHT 

7 17 29.35963 
- 45 24 15.11571 

804.0205 

+1-
+1-
+I-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X -3848974.5600 M +/-
DELTA Y -189271.1041 M +/-

DELTA Z -628391.6101 M +/-

0.90 

8 MM 
8 MM 
6 MM 

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

BASELINE LENGTH 3904523.6240 M +/- 8MM 

AZIMUTH HY TO MJ 
AZIMUTH MJ TO HY 

- 86 14 35.611 +/-

64 12 49.147 +/-
0.000 SEC 
0.000 SEC 

BASELINE: STATION : RC AND STATION : HT 

-:TATION NAME : RC 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 25 36 50.75301 
LONGITUDE 
HEIGHT 

- 80 23 3.17181 
-21.1879 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

25 36 50.75301 
- 80 23 3.17181 

-21.1879 

CROSS-CORRELATION BETWEEN COORDINATES 

+/­
+/­

+I-

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X 961302.9852 M +/- 0 MM 
y 

z 
-5674057.1094 M 

2740563.8693 M 
+/­

+/-

CROSS-CORRELATION BETWEEN COORDINATES 

0 MM 
0 MM 

177 

0 MM 
0 MM 
0 MM 

3 MM 
9 MM 
8 MM 



ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

STATION NAME : HT 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 40 49 1.36259 
LONGITUDE 
HEIGHT 

-121 28 9.18879 
997.9798 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 40 49 1.36259 +/-

LONGITUDE -121 28 9.18879 +/-

HEIGHT 997.9798 +I-

CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X -2523882.5946 M +/- 0 MM 
Y -4123573.0094 M +/- 0 MM 
z : 4147719.3431 M +I- 0 MM 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

BASELINE : RC HT 

A-PRIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 15 12 10.60959 
DELTA LONGITUDE 
DELTA HEIGHT 

- 41 5 6.01698 
1019.1677 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 
DELTA LONGITUDE 
DELTA HEIGHT 

15 12 10.60959 
- 41 5 6.01698 
1019.1677 

+1-
+1-
+I-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X -3485185.5798 M +/- 0 MM 
DELTA Y 
DELTA Z 

1550484.1000 M +/-
1407155.4738 M +/-

0 MM 
0 MM 

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

0 MM 
0 MM 
0 MM 

BASELINE LENGTH 4065784.7948 M +/- OMM 

AZIMUTH RC TO HT 
AZIMUTH HT TO RC 

- 55 31 38.528 +/-

101 4 19.994 +/-

0.000 SEC 
0.000 SEC 

178 

0 MM 
0 MM 
0 MM 



BASELINE: STATION : FD AND STATION : HT 

STATION NAME : FD 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 30 38 9.60561 
LONGITUDE 
HEIGHT 

A POSTERIORI 
LATITUDE 
LONGITUDE 
HEIGHT 

-103 56 49.65601 
1585.3693 

ELLIPSOIDAL COORDINATES 
30 38 9.60561 

-103 56 49.65601 
1585.3693 

CROSS-CORRELATION BETWEEN COORDINATES 

+I-
+I-
+I-

ALL I CROSS-CORRELATION VALUES I SMALLER THAN 

A POSTERIORI CARTESIAN COORDINATES 
X : -1324205.7179 M +I- 0 MM 
y -5332056.0713 M +I- 0 MM 
z 3232043.6300 M +I- 0 MM 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL I CROSS-CORRELATION VALUES I SMALLER THAN 

STATION NAME : HT 

-----------------
A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 40 49 1.36259 
LONGITUDE -121 28 9.18879 
HEIGHT 997.9798 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 40 49 1. 36259 +I-
LONGITUDE -121 28 9.18879 +I-
HEIGHT 997.9798 +I-

CROSS-CORRELATION BETWEEN COORDINATES 
ALL I CROSS-CORRELATION VALUES I SMALLER THAN 

A POSTERIORI CARTESIAN COORDINATES 
X -2523882.5946 M +I- 0 MM 
y -4123573.0094 M +I- 0 MM 
z 4147719.3431 M +I- 0 MM 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 

BASELINE : FD HT 

-------------------
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A-PRIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 10 10 51.75699 
DELTA LONGITUDE - 17 31 19.53277 

DELTA HEIGHT -587.3895 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 
DELTA LONGITUDE 
DELTA HEIGHT 

10 10 51.75699 
- 17 31 19.53277 
-587.3895 

+I­
+ I­
+I-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X -1199676.8767 M +/-

DELTA Y 1208483.0619 M +/-

DELTA Z 915675.7131 M +/-

0 MM 
0 MM 
0 MM 

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

BASELINE LENGTH 

AZIMUTH FD TO HT 
AZIMUTH HT TO FD 

1933421.3020 M +/-

- 49 36 50.461 +/-

120 3 40.496 +/-

OMM 

0.000 SEC 
0.000 SEC 

BASELINE: STATION : NS AND STATION : HT 

STATION NAME : NS 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 38 19 55.47490 
LONGITUDE 
HEIGHT 

- 77 2 32.50317 
-18.4557 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

38 19 55.47388 
- 77 2 32.49886 

-18.2342 

CROSS-CORRELATION BETWEEN COORDINATES 

+1-
+1-
+I-

ALL I CROSS-CORRELATION VALUES I SMALLER THAN 

A POSTERIORI CARTESIAN COORDINATES 
X 112 3313. 6887 M +I- 10 MM 
y -4882071.0587 M +I- 12 MM 
z 3934412.0257 M +I- 13 MM 

CROSS-CORRELATION BETWEEN COORDINATES 

5 MM 
9 MM 

17 MM 

0.90 

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 
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STATION NAME : HT 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 40 49 1.36259 
LONGITUDE -121 28 9.18879 
HEIGHT 997.9798 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

40 49 1.36259 
-121 28 9.18879 

997.9798 

CROSS-CORRELATION BETWEEN COORDINATES 

+/­
+/­

+I-

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN 
X -2523882.5946 M 
Y -4123573.0094 M 
z 4147719.3431 M 

COORDINATES 
+/-

+/-
+I-

CROSS-CORRELATION BETWEEN COORDINATES 

0 MM 
0 MM 
0 MM 

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

BASELINE : NS HT 

A-PRIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 2 29 5.88769 
DELTA LONGITUDE - 44 25 36.68562 
DELTA HEIGHT 1016.4355 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 2 29 5.88872 +/-
DELTA LONGITUDE 
DELTA HEIGHT 

- 44 25 36.68993 
1016.2141 

+/­

+/-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X -3647196.2833 M +/- 10 MM 
DELTA Y 758498.0493 M +/- 12 MM 
DELTA Z 213307.3174 M +/- 13 MM 

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

0 MM 
0 MM 
0 MM 

BASELINE LENGTH 3731334.8860 M +/- 11 MM 

AZIMUTH NS TO HT 
AZIMUTH HT TO NS 

- 71 29 24.402 +/-
79 20 14.811 +/-

0.000 SEC 
0.000 SEC 
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BASELINE: STATION : HT AND STATION : AR 

STATION NAME : HT 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 40 49 1.36259 
LONGITUDE 
HEIGHT 

A POSTERIORI 
LATITUDE 
LONGITUDE 
HEIGHT 

-121 28 9.18879 
997.9798 

ELLIPSOIDAL COORDINATES 
40 49 1. 36259 

-121 28 9.18879 
997.97 98 

CROSS-CORRELATION BETWEEN COORDINATES 

+I-
+I-
+I-

ALL I CROSS-CORRELATION VALUES I SMALLER THAN 

A POSTERIORI CARTESIAN COORDINATES 
X -2523882.5946 M +I- 0 MM 
y -4123573.0094 M +I- 0 MM 
z 4147719.3431 M +I- 0 MM 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL I CROSS-CORRELATION VALUES I SMALLER THAN 

STATION NAME : AR 

-----------------
A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 30 23 1. 00124 
LONGITUDE - 97 43 32.93395 
HEIGHT 217.5207 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 30 23 1. 00160 +I-
LONGITUDE - 97 43 32.93692 +I-
HEIGHT 217.6016 +I-

CROSS-CORRELATION BETWEEN COORDINATES 
ALL I CROSS-CORRELATION VALUES I SMALLER THAN 

A POSTERIORI CARTESIAN COORDINATES 
X -740328.3905 M +I- 8 MM 
y -5457067.6475 M +I- 8 MM 
z 3207239.6910 M +I- 6 MM 

CROSS-CORRELATION BETWEEN COORDINATES 

0.90 

0.90 

0.90 

ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

BASELINE : HT AR 

A-PRIORI ELLIPSOID BASELINE COMPONENTS 
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DELTA LATITUDE 
DELTA LONGITUDE 
DELTA HEIGHT 

- 10 26 0,36135 
23 44 36.25484 

-780.4591 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE - 10 26 0.36099 +/-

DELTA LONGITUDE 23 44 36.25186 +/-

DELTA HEIGHT -780.3783 +I-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X 
DELTA Y 
DELTA Z 

1783554.2041 M +/­
-1333494.6381 M +/-

-940479.6521 M +/-

8 MM 
8 MM 

6 MM 

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0,90 

BASELINE LENGTH 2417390.2302 M +/- 7MM 

AZIMUTH HT TO AR 
AZIMUTH AR TO HT 

110 53 48.435 +/­

- 55 5 31.816 +/-

0.000 SEC 
0.000 SEC 

BASELINE: STATION : HT AND STATION : BP 

STATION NAME : HT 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 40 49 1.36259 
LONGITUDE -121 28 9.18879 
HEIGHT 997.9798 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 40 49 1.36259 
LONGITUDE 
HEIGHT 

-121 28 9.18879 
997.9798 

CROSS-CORRELATION BETWEEN COORDINATES 

+/­
+/­

+I-

ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X 
y 

z 

-2523882.5946 M 
-4123573.0094 M 

4147719.3431 M 

+/­

+/­

+I-

CROSS-CORRELATION BETWEEN COORDINATES 

0 MM 
0 MM 

0 MM 

ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

STATION NAME : BP 
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A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 
LONGITUDE 
HEIGHT 

37 13 55.17406 
-119 17 1.40030 
1193.2557 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 37 13 55.17452 +/-

LONGITUDE 
HEIGHT 

-119 17 1. 40343 
1193.3112 

CROSS-CORRELATION BETWEEN COORDINATES 

+/­
+/-

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X -2409654.9262 M +/- 7 MM 
Y -4478261.9452 M +/- 6 MM 
Z 3838638.7780 M +/- 6 MM 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

BASELINE : HT BP 

A-PRIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 3 35 6.18854 
DELTA LONGITUDE 
DELTA HEIGHT 

311 7.78849 
185.2758 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 3 35 6.18807 
DELTA LONGITUDE 3 11 7.79536 
DELTA HEIGHT 185.3314 

+/­

+/­

+I-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X 114227.7684 M +/- 7 MM 
DELTA Y 
DELTA Z 

-354688.9358 M +/-

-309080.5651 M +/-

6 MM 
6 MM 

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

2 MM 
7 MM 
9 MM 

BASELINE LENGTH 484131.2012 M +/- 4 MM 

AZIMUTH HT TO BP 
AZIMUTH BP TO HT 

144 15 33.692 +/­
- 33 44 0.937 +/-

0.002 SEC 
0.002 SEC 

BASELINE: STATION : HT AND STATION : MM 
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STATION NAME : HT 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 40 49 1.36259 
LONGITUDE 
HEIGHT 

-121 28 9.18879 
997.9798 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 40 49 1.36259 +/-
LONGITUDE -121 28 9.18879 +/-

HEIGHT 997.9798 +I-

CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUES I SMALLER THAN 

A POSTERIORI CARTESIAN COORDINATES 
X -2523882.5946 M +I- 0 MM 
y -4123573.0094 M +I- 0 MM 
z 4147719.3431 M +I- 0 MM 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUES I SMALLER THAN 

STATION NAME : MM 

A-PRIORI ELLI~SOIDAL COORDINATES 
LATITUDE 37 38 39.88027 
LONGITUDE 
HEIGHT 

-118 53 48.28696 
2390.9932 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 37 38 39.88019 +/-
LONGITUDE 
HEIGHT 

-118 53 48.28684 
2390.9409 

CROSS-CORRELATION BETWEEN COORDINATES 

+1-
+1-

0.90 

0.90 

ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X -2444443.5976 M +/- 7 MM 
Y -4428696.3285 M +/- 6 MM 
Z 3875726.8993 M +/- 5 MM 

CROSS-CORRELATION BETWEEN COORDINATES 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

BASELINE : HT MM 

A-PRIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 3 10 21.48233 
DELTA LONGITUDE : 2 34 20.90183 
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DELTA HEIGHT : 1393.0134 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 
DELTA LONGITUDE 
DELTA HEIGHT 

3 10 21.48240 
2 34 20.90195 

1392.9610 

+/­

+/­

+I-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X 
DELTA Y 
DELTA Z 

79438.9970 M +/­
-305123.3191 M +/-

-271992.4438 M +/-

7 MM 
6 MM 
5 MM 

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

BASELINE LENGTH 416402.0697 M +/- 4 MM 

AZIMUTH HT TO MM 
AZIMUTH MM TO HT 

146 56 32.713 +/­

- 31 25 47.523 +/-

0.003 SEC 
0.003 SEC 

BASELINE: STATION : HT AND STATION : MJ 

STATION NAME : HT 

A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 40 49 1.36259 
LONGITUDE 
HEIGHT 

-121 28 9.18879 
997.9798 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 40 49 1.36259 +/-

LONGITUDE 
HEIGHT 

-121 28 9.18879 
997.9798 

CROSS-CORRELATION BETWEEN COORDINATES 

+/­

+/-

ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X 
y 

z : 

-2523882.5946 M 
-4123573.0094 M 

4147719.3431 M 

+/­

+/­

+I-

CROSS-CORRELATION BETWEEN COORDINATES 

0 MM 
0 MM 
0 MM 

ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

STATION NAME : MJ 
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A-PRIORI ELLIPSOIDAL COORDINATES 
LATITUDE 35 19 52.48371 
LONGITUDE -116 53 33.13647 
HEIGHT 898.0025 

A POSTERIORI ELLIPSOIDAL COORDINATES 
LATITUDE 35 19 52.48588 +/-

LONGITUDE 
HEIGHT 

-116 53 33.13694 
897.9119 

CROSS-CORRELATION BETWEEN COORDINATES 

+/­

+/-

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

A POSTERIORI CARTESIAN COORDINATES 
X 
y 

z 

-2356576.1146 M +/-

-4646564.9994 M +/-

3668427.6554 M +/-

CROSS-CORRELATION BETWEEN COORDINATES 

8 MM 
8 MM 
6 MM 

ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

BASELINE : HT MJ 

A-PRIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 5 29 8.87888 
DELTA LONGITUDE 4 34 36.05232 
DELTA HEIGHT -99.9773 

A POSTERIORI ELLIPSOID BASELINE COMPONENTS 
DELTA LATITUDE 
DELTA LONGITUDE 
DELTA HEIGHT 

5 29 8.87672 
4 34 36.05185 

-100.0680 

+/­

+/­

+I-

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUES! SMALLER THAN 0.90 

A POSTERIORI CARTESIAN BASELINE COMPONENTS 
DELTA X 
DELTA Y 
DELTA Z 

167306.4800 M +/­

-522991.9900 M +/-
-479291.6877 M +/-

8 MM 
8 MM 
6 MM 

CROSS-CORRELATION BETWEEN BASELINE COMPONENTS 
ALL !CROSS-CORRELATION VALUESI SMALLER THAN 0.90 

3 MM 
9 MM 
8 MM 

BASELINE LENGTH 728857.0517 M +/- 5MM 

AZIMUTH HT TO MM 
AZIMUTH MM TO HT 

145 9 28.711 +/­

- 32 0 55.818 +/-
0.002 SEC 
0.002 SEC 
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