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ABSTRACT

The curvature of the plumb line should be considered
in order to find the undistorted geodetic networks without
the plumb line curvature effect and to determine the astro-
geodetic geoid as well as for other purposes. A few
approaches have been developed to estimate the <curvature
effect. In most of the methods, the need for sufficient
gravity data, the knowledge of the density distribution, and
other data make the estimation of the plumb line curvature
effect 2 difficult task.

Without knowing the density distribution inside the
earth, the curvature effect can be determined from the use
of Vening Meinesz’s and Molodenskij’s formulae together.
However, the procedure is laborious and time-consuming, and
the integrations should be extended over the whole earth.

This thesis investigates the utilization of the
combination of Stokes’s and Molodenskij’s approaches to
determine the curvature effect of the plumb line. In other

words, the determination of the curvature effect of +the

plumb line is based on combining Vening Meinesz’s and
Molodenskij’s formulae. In this approach, the integrations
will not be extended over the whole earth but a 25x25

minutes rectangular area.



A determination of the plumb line curvature effect
has been attempted at six stations in New Brunswick. The
results show that this approach has been successfully used
and can give a higher accuracy. The estimation of the
curvature effect of the plumb line is no longer a difficult

job.
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CHAPTER 1

INTRODUCTION

The utilization of the concepts of gravity and its
potential in geodesy can be classified into two groups: the
operation with the magnitude of gravity in the gravimetric
methods and the use of the direction of +the gravity vector
in the astro-geodetic methods. The gravity vector at any
point is tangential to the plumb line at that point.
Because of the irregular density distribution of the earth,
the plumb line is not a straight |line but a curve.
Therefore, the astronomic observations made on the surface
of the earth are not identical to their corresponding values
on the geoid. The discrepancies arise from the effect the
curvature of the plumb line. In order to make these
quantities <comparable, the correction of the —curvature
effect of the plumb line must be taken into account.

For the determination of the geoid by means of the
astro-geodetic mehtod, the astro-geodetic deflections (or

surface deflections) must be reduced downward to the geoid.

This reduction is achieved by taking into account the
curvature of the plumb line. The determination of the geoid
by the astro-gravimetric method also necessitates the
surface deflections and the goidal deflections to be
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compatible. This compatibility is brought through the
application of a <correction due to the «curvature of the
plumb line.

A few researchers such as Helmert(1880), Graaff-
Hunter and Bomford(1928), Ledersteger (1955), Arnold(1956),
Ndyetabula(1974), Groten(1981) and others have investigated
the problem of the curvature of the plumb line. The plumb
line curvature effect of the actual gravity field is more
important but ‘extremely difficult to determine (Groten,
1981). So far some approaches for the estimation of the
curvature effect of the plumb |line have been developed:
using the gravity field models, using a relation between the
curvature effect and orthometric height <correction, using
density models, and by using Vening Meinesz’s and
Molodenskij’s formulae together, etc. These will be
introduced in Chapter 3.

The curvature of the plumb line is mainly due to the
topographic irregularity and the density distribution within
the earth. In the Alps, the curvature effects of the plumb
line wup to 12" have been obtained (Kobold and Hunziker,
1962). Without knowledge of the density distribution inside
the earth, the accuracy of the plumb line curvature effect
obtained by wusing the first three methods is questionable
(Ndyetabula, 1974). Utilizing the first two approaches, a
dense gravity net around the computation point is needed

(Heiskanen and Moritz, 1967) . With the wuse of Vening



3
Meinesz’s and Molodenskij’s formulae, it becomes complicated
and time-consuming to compute the geoidal and Molodenskij’s
deflections separately. Besides, the integrations should be
extended over the whole earth.

Using the above mentioned ways, the evaluation of the
curvature effect is a difficult task due to the fact that
sufficient gravity and height data or +the data for the
density distribution inside the earth are necessary.

In this study, an alternative approach, developed by
Vanicek and Kfakiwsky (1982), is used to evaluate the effect
of the curvature of the plumb Iline. The method is based on

the combination of Stokes’s and Molodenskij’s approaches.

An analytical form is given of the difference between the
geoidal and Molodenskij’s deflections. In this thesis, the
analytical form is called the Stokes-Molodenskij formula.
This formula <can compute the plumb |ine curvature effect

more conveniently than Vening Meinesz’s and Molodenskij’s

formulae together. In addition, the distant zones can be
neglected without the loss of accuracy, and the density
distribution is not needed to determine the plumb line

curvature effect.

If the geoidal and the surface deflections are known,
the plumb line curvature effect <can be straightforwardly
determined. In this study, a comparison between the plumb
line curvature effect determined from the Stokes-Molodenskij

formula and that obtained from the geoidal and the surface
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deflections is made at six stations in the province of New
Brunswick.

A few definitions and basic philosophical backgrounds
are outlined in Chapter 2. In Chapter 3, Stokes’s and

Molodenskij’s approaches for evaluating the deflections of

the wvertical are given briefly. Some approaches for
computing the plumb line curvature effect are also reviewed.
The mathematical development of the method <combining

Stokes’s and Molodenskij’s approaches +to determine the

curvature effect is given.

For practical =evaluation of the curvature effect of
the plumb line by means of the Stokes-Molodenskij formula,
there are two different zones needed: innermost and inner.
The data wused include the point gravity anomslies and

heights, and the mean gravity anomalies and mean heights for

the 5x5 minutes blocks used. The estimation of the tangent
of the terrain inclination is rigorously treated to give a
reliable contribution to the plumb line curvature effect.

The possibility of neglecting the distant regions beyond the

inner zone without affecting accuracy is discussed in
Chapter 4.

There are six stations tested, two in mountainous
areas and four in flat areas. The results are presented in
Chapter 5. For convenience, the curvature effect determined

from the Stokes-Molodenskij formula is called the Stokes-

Molodenskij curvature effect, and the curvature effect
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obtained from the geoidal and the surface deflections s
called the astro-gravimetric curvature effect. A comparison
between them is also shown in this chapter. The analysis
and explanation for the comparison are given. Finally, a

few conclusions are drawn and recommendations are given for
further studies.

As a guide to the reader, the goal of each chapter is
presented below:

1. The goal of Chapter 2 is +to review the general
concepts for the gravity field of the earth and give
an insight into the topic. Three types of the
deflections of the vertical used in geodesy and the
differences among them were described.

2. The goal of Chapter 3 is to review and relate the
different approaches for evaluating the <curvature
effect of the plumb line. In addition, the
mathematical developement of the method based on
combining Stokes’s and Molodenskij’s approaches is
also reviewed. The approach can compute the plumb
line curvature effect without the knowledge of the
density distribution inside the earth and to a high
accuracy.

3. The goal of Chapter 4 is to perform a practical
evaluation of the Stokes-Molodenskij formula. It is
shown that the distant zones whose spherical

distances from the computation point exceed 13 can be
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neglected without any loss of accuracy. In order to
get reliable results, the evaluation of the terrain
slope was treated rigorously.

The goal of Chapter 5 is to demonstrate the
computational results and make comparisons between
the Stokes-Molodenskij and the astro-gravimetric
curvature effects. The comparisons show that the
model based on the Stokes-Molodenskij formula «can
give a much higher accuracy than the astro-
gravimetric model. Besides, the former can be easily
applied to evaluate the curvature effect of the plumb
line.

A few contributions are made in this work. These are
zed below:

First practical testing of the Stokes-Molodenskij
formula, developed by Vanicek and Krakiwsky (1982),
for the determination of the curvature effect of the
plumb line.

Development of an algorithm for numerical evaluation
of the Stokes-Molodenskij formula.

Formulation of an algorithm for terrain slope

evaluation.



CHAPTER 2

DEFINITIONS AND GENERAL BACKGROUND

2.1 GQRAVITY POTENTIAL, EQUIPOTENTIAL SURFACE, AND PLUMB

A body rotating with the earth is subjected to the
gravitational force due to the mass of the earth and the
centrifugal force due to the earth’s rotation. The sum of
the gravitational and the centrifugal forces is «called the
force of gravity.

The magnitude of the force of gravity is not the same
everywhere on the surface of the earth; namely, it is a
function of position. The gravity force on the neighborhood
of the poles is greater than 1t is on the equator. In
addition, the gravity forée undergoes temporal variations
resulting from the gravitational force of celestial bodies,
crustal deformations, and tectonic deformations (Vanféek and
Krakiwsky, 1982).

There is a potential corresponding to the gravity
force, called the potential of gravity, W. It is the sum of
the gravitational potential, denoted by Wg, and the
centrifugal potential, denoted by Wc (Heiskanen and Moritz,

1967):

W= Wg + Wc . (2.1)



The gradient vector of W,

3 = Vu (2.2)

is called the gravity field. The magnitude of g is measured

in gals (1 gal =1 cm-sec =1 dyne/g ) or in metres per
second squared. The sciences of geodesy and geophysics have
adopted the more suitable unit --- the milligal ( 1 mgal =

10-3gal). The direction of the gravity vector is known as

the direction of the plumb line, or the vertical.
The term equipotential surface means a surface on
which the potential W is constant. The general equation of

an equipotential surface is expressed by

W( ¥ ) = const. (2.3)
It is a continuous and smooth surface. Although an infinite
number of equipotential surfaces <can be accredited by

different values to the potential, they never intersect one
another. The equipotential surfaces define the horizontal
direction; thus they are also «called level surfaces. The
lines of gravity force normal to the =earth’s equipotential
surfaces at every point are called the plumb line (Fig.2.1).
Because of the uneven density distribution of the earth, the

plumb lines are curved and twisted (Vanicek and Krakiwsky,

1982).



oreNTIAL SURFace
e

e

Figure 2.1: Equipotential surfaces and plumb lines (Vanicek
and Krakiwsky, 1982).
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2.2  REFERENCE ELLIPSOID AND NORMAL GRAVITY FIELD

The Bureau Gravimetrique Internationale in Paris, an
institution of the IAG, maitains worldwide gravity data. A
few million observations show that the magnitudes of gravity
vary locally and regionally. Due to the =elevation of
stations, the oblateness of the earth, and the uneven mass
distribution within the earth, the yariations reach more
than 5 gals for the magnitude of gravity g (Vanf;ek and
Krakiwsky, 1982).

For geodetic purposes, a reference gravity field is
selected such that the average difference between this field
and the actual gravity field is as small as possible. An
approximate represention of the actual gravity potential may
be achieved by an ellipsoid.

A reference ellipsoid is an ellipsoid of revolution

which is an equipotential surface of a normal gravity field.

It is also <called the level ellipsoid. The reference

ellipsoid possesses the following characteristics:
1. The mass of the reference ellipsoid is equal to the
total mass of the earth, including the mass of the

atmosphere.
2. It spins around its minor axis with the same angular
velocity as that of the earth.

3. Its center coincides with the gravity center of the

earth.
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The reference ellipsoid generates a reference gravity

field, called normal gravity field. A reference potential,
denoted by U, is usually adopted to approximate the actual
potential. In analogy to (2.2), the normal gravity vector

is given by
¥ = Vu . (2.4)

The Geodetic Reference System 1967(GRS67), a geocentric
equipotential ellipsoid, adopted at the XIV General Assembly
of IUGG in 1967, represents the size, shape, and gravity
field of the earth. The primary geometric ellipsoidal

parameters are:

equatorial radius( major semi-axis ) a

6378160 metres

flattening of reference ellipsoid f = 1/298.247
The corresponding normal gravity § of level ellipsoid is
given by

Y = 978031.8(1+0.005 3024-sin2d-0.000 0059~sin22¢) mgals.

(2.5)

It was perceived that GRS67 no longer approximates the
actual figure and gravity field of the earth to an adequate
accuracy. Therefore, it was replaced by the Geodetic
Reference System 1980, also based on the theory of the
geocentric equipotential ellipsoid (Moritz, 1980a). The
parameters are a= 6378137 metres and f=1/298.257. The

international gravity formula(1980) is given by
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¥ = 978032.7(1+0.005 3024‘sin2¢—0.000 0058-sin22¢) mgals,

(2.6)

where b is the latitude of station.

2.3 GEQID AND GEOIDAL HEIGHT

The geoid is an equipotential surface of the earth’s

gravity field which is approximately represented by mean sea

level . The geoid is known as the datum for orthometric
height system. Besides, the geoid is often referred to as
the figure of the earth, because it closely approximates

about 727 of the terrestrial globe.

The separation between the geoid and a reference
ellipsoid is the geoidal height N (Fig.2.2). At present,
there are several possible methods of geoid determination:
gravimetric method, astro-geodetic method, astro-gravimetric
method, satellite geodynamics, satellite altimetry, direct
determination from 3D positions and orthometric heights
(Rizos, 1982), etc. It is not within the scope of this

thesis to give a description of all the techniques.
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~—2Z

ellipsoid

Figure 2.2: Geoid, quasigeoid and telluroid.
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2.4  DISTURBING POTENTIAL AND GRAVITY ANQMALY

For the gravity field of the earth, the actual

potential W at any point can be =expressed by the sum of a

normal potential U and a small remainder T:
W Fr)=u(F) +«T(CT7) ., (2.7)

T(r)=w(r)-u(7+) . (2.8)

The difference T between the actual potential and the normal
potential is called disturbing potential, or anomalous
potential. Similarly, the gravity gpat'P is approximated by
the <corresponding normal gravity B; at point Q@ on the
equipotential surface U=Ug(Fig.2.3).

The difference in magnitude between them is known as
the gravity anomaly at the point P:

A9=|§p|-|§{gl. (2.9)

The vertical gradient of T is given by:
VTI( T )=VM(+F) -u(7))=VM-u). 2.10
( 5 )= V0u( p) ( p)) () p) ( )

After inserting (2.2) and (2.4) into (2.10), the vertical

gradient of the disturbing potential becomes

VT = - = g— ¥ . (2.11)

were n’ is the ellopsoidal normal (Fig.2.3).



Figure 2.3: Gravity vectors on the actual and the normal

potential surfaces.
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The normal gravity Xb at point P may be evaluated by the

following linear form (Heiskanen and Moritz, 1967, p.85):

SN (2.12)

0T oy

- i = gp - y@— S . ND (2.13)
0T oy

ey =Ag — > Ny (2.14)

Since the relation between the geoidal height and the

disturbing potential is given by Bruns as (Ibid., p.85)

i (2.15)
N = — 2.15
¥

and if the directions of geoidal normal n and ellipsoidal

’

normal n’ are considered to almost coincide, equation (2.14)

becomes

oT
On 0

Sy
o<

=)

e . (2.16)
Xp

Rearranging (2.16) and disregarding the subscripts, we have

0T 1 0y

D ¥ da

T + Ag =0 . (2.17)
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This expression is known as the fundamental equation of

physical geodesy.

2.5 TELLURQID, QUASIGEQID, AND HEIGHT ANOMALY

Two reference surfaces, the reference ellipsoid and
the geoid, are used in the <conventional approach to the
determination of the figure of the earth. Molodenski j
proposed a different approach in 1945. In Molodenskij’s

approach the reference surface is no longer the geoid but

the telluroid. There are two different surfaces defined in
this approach, telluroid and quasigeoid. The quasigeoid
does not have a physical interpretation, except at sea.

The telluroid is originally defined as the locus of
points whose normal potential U is wequal to the actual
potential Wp at the surface of the earth. On the other

hand, the telluroid can also be defined as a locus of normal
N

heights H measured along the normal plumb line from the

reference ellipsoid (Vanféek, 1974).

The separation between the terrain and the telluroid

is called height anomaly, denoted by S. A locus of height
anomalies reckoned along the normal plumb 1line from the
ellipsoid is known as the quasigeoid.

From fig.2.3 , the relationship between +the height

anomaly 5 and the geoidal height N can be deduced from the

following equations:

S=h - H (2.18)

N="h-H, (2.19)
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where h is ellipsoidal height, and H is orthometric height.
It is instructive to compare the height anomaly and geoidal

height. Combining equations (2.18) and (2.19) yields
N -5 =H - H. (2.20)

This difference is fairly small and =elevation-dependent.
For instance, the difference is about -1.8 m for Mt. Blanc
in the Alps (Arnold, 1960). 1In the open ocean the geoid and

quasigeoid coincide, so N=3

2.6 DEFLECTIONS OF THE VERTICAL

The deflection of the vertical is defined as the
spatial angle between the normal gravity vector and the
actual bravity vector. The deflection of the vertical can
be decomposed into two orthogonal components, the north-

south (2long the astronomical meridian) and the east-west
(in the prime vertical) components, denoted by g and ? .
For instance, if the geodetic reference ellipsoid is aligned
to the Conventional Terrestial coordinate system(CT), and if
astronomic coordinates and geodetic <coordinates are denoted
by (®,A) and (p.A), respectively, then the components of

the deflection of the vertical are given by:

5 =%-9¢

2.21
(A-2)-cosop , ( )

~3
i
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The origin of the CT system is at the centre of mass of the
earth, z-axis points to the Conventional International
Origin(CIOD), the xz-plane <contains the mean Greenwich
Observatory, and the y-axis is selected to make the system
right-handed.

The deflection obtained <can be either absolute or

relative according to which kind of reference ellipsoid is
adopted. If a non-geocentric ellipsoid is used, it will
result in the relative deflection of the vertical. The
deflection, however, is absolute when the adopted reference
ellipsoid is geocentric.

It should be mentioned here that +there are three
species of deflection used in geodesy. These are:

1. The surface deflection of the vertical 8 , defined as
the angle at the surface of +the earth between the
directions of the plumb line and the normal (through
point P) to the reference ellipsoid (Fig.2.4). The
deflection components are denoted by g' and O'. The
surface deflection <can be obtained from astronomic
observations. The actual or normal gravity is not
required.

2. The geoidal deflection of the vertical B8 is defined
as the angle (on the geoid) between the directions of
the plumb line and the ellipsoidal normal (through
point Po), see Fig.2.5. The components of the

deflection are denoted by E and Y) .
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3. Molodenskij’'s deflection of the vertical B is defined

by Molodenskij as the angle between the directions of

the plumb line (at point P) and the normal (through

point P) to the telluroid (Fig.2.5). The deflection
components are denoted by % and 6 .

Clearly, due to the curved and twisted plumb line the

surface and geoidal deflections for the same point (with

respect to the same reference ellipsoid) are different.
Ordinarily, the differences between them are expected to be
more significant in mountainous areas than in the flat-
terrain regions. In the Alps, the differences of up to 12"

have been obtained by Kobold and Hunziker(1962).

The surface deflections are also different from
Molodenskij’s deflections. The deviation coming from th;
curvature of the normal plumb line between the ellipsoid and
the telluroid is a function of the latitude and height of
the computation station. Greater differences occur at the

higher elevations.



plumb line

terrain

ellipsoid

Figure 2.4:

Surface deflection (or astro-geodetic
deflection).
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plumb Tline
W=W
terrain
telluroid
W= W,
geoid
ellipsoid U= W,
)
Q
(o]

Figure 2.5: Molodenskij’s deflection and geoidal
deflection.



CHAPTER 3

MATHEMATICAL DEVELOPMENT FOR THE CURVATURE
EFFECT OF THE PLUMB LINE

3.1 GEQOIDAL DEFLECTION OF THE VERTICAL

The geoidal deflection mentioned in the preceding
chapter is the angle between the actual gravity vector on
the geoid and the normal gravity vector on the reference
ellipsoid. The determination of the geoidal deflections is
one of the tasks in geodesy, since it is usually required
for geodetic purposes. In Stokes’s approach to the geodetic
boundary-value problem the geoid serves as a physical
reference surface. It must be assumed that there are no
masses outside the geoid, otherwise the theorem of Stokes is
not valid to determine +the deflection of the vertical as
well as the geoid by means of gravity. In fact, there are
masses above the geoid, so they must be either completely
removed or moved inside the geoid. For this reason, some
assumptions and hypotheses concerning the density of mass
above the geoid must be made. The gravity measured on the
surface of the earth, therefore, has to be reduced downward
to the geoid.

If gravity has already been reduced to the geoid

appropriately, then the gravity anomaly pAg on the geoid can
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be obtained. In geodesy, the free-air gravity anomalies are
used to determine the geoidal height and the geoidal
deflection of the vertical. The derivation of the formulae
for determining the deflections has been described in a few
texts( e.g. Heiskanen and Vening Meinesz, 1958; Heiskanen
and Moritz, 1967; Vanicek and Krakiwsky, 1982). It will not
be discussed here. The formulae, referred to as the Vening

Meinesz formulae, are:

. 1 ds (V)
5 - 4T ¥ JL ST

. 1 ds (¥) _

where Y% is the mean normal gravity on the ellipsoid,

(3.1)

Ag is the free-air gravity anomaly,

VY is the spherical distance between the computation
point P and the dummy point P’ (Fig.3.1),

K is the azimuth of the line PP’, and

dV is a solid angle element (Vis the spherical surface
of the earth).

dS(¥)/d¥Y ., known as the Vening Meinesz function, is given by
(Heiskanen and Moritz, 1967, p.114):
ds (Y) - cos (¥/2) l—sin(Ur)/Q)

= + 8sin(Y) —6cos(¥/2)—- 3
d¥ 2$in2(q}/2) sin(Y)

+ 3sin(P) - In( sin(Y/2)+sin(W/2) ). (3.2)

and Ag is written as:
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Geometry of a sphere and its sections.

Figure 3.1:
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Ag = g + 0.3086-H - Yo . (3.3)

where g is the observed gravity in mgals on the surface of
the earth, Xo is the normal gravity in mgals on the

ellipsoid, H is the orthometric height of the observation

point in metres, and the factor 0.3086 is in mgal/m.

3.2 MOLODENSKIJ'S DEFLECTION OF THE VERTICAL

In 1945, Molodenskij proposed a different approach to

formulate the geodetic boundary-value problem for the
earth’s surface without a hypothesis. The reference surface
is not the geocid but the telluroid. In Molodenskij’s

approach the actual potential W on the earth’s surface is
approximated by ; normal potential U on the telluroid, and
the disturbing potential T is taken for the point on the
earth’s surface. Accordingly, in this approach, the gravity
anomaly is a boundary value on the surface of the earth.
The gravity anomaly on the earth’s surface, denoted by AE,
is called the surface gravity anomaly here. It is the
difference between the actual gravity on the earth’s surface

and the normal gravity on the telluroid, given by:

~ N
2g =g - ( Yo -0.3086-H ) . (3.4)
The deflection of +the vertical in Molodenskij’s
theory, mentioned in the preceding chapter, is an angle

between the actual gravity vector on the earth’s surface and
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the normal gravity vector on the telluroid. Molodenskij’s
formulae for the deflections, based on the first
approximation for the surface layer density, are the

following (Molodenskij et al, 1962; Heiskanen and Moritz,

1967; Vanicek and Krakiwsky, 1982):

ds (V)

cosok-dV —

E

>
°<l<oz

— [, (a3 s 00, tang

(3.5)

;? 1 jf ( a3 ) ds () Ag
= — Ag + AG ) ‘sink.dV - — .tang ,
any /y 4y ¥ Py
where
N
R2 H — H 3
po = —|[ 52 (45« — ). 0 (3.6)

2TC Y s 2R
and

R

s
|

- [ (a5 e ne s (.7)
arf )]y
where ¥ is the normal gravity on the telluroid,
R is the mean radius of the earth,
ﬁ . ﬁ are the terrain inclinations in the north-south
1 2
and the east-west directions, respectively,
N N
Hp , H are the normal heights of the computation point P
and the dummy point P’, respectively(Fig.3.2),
s is the distance between P and P’, and

S(Y) is Stokes’s function.

R, s, and S(VY) are given by:

, or R=a (1-+f), (3.8)
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s = 2Rsin(Y/2) , (3.9)
1
S(Y) = —— + 1 — 5cos(Y) -6sin(Y/2)
sin(V¥/2)

3cos(W) - In( sin(Y/2) + sinz(W/Q) ) . (3.10)

According to the different theories and the different
definitions, Molodenskij’s deflections are indeed different
from the surface and the geoidal deflections. The
difference between Molodenskij’s deflection and the surface

deflection arising from the curvature of the normal plumb

line is only about 0.85 arcseconds for Mt. Blanc in the
Alps. However, the difference between the geoidal
deflection and the surface deflection was up to 12

arcseconds at the same place (Kobold and Hunziker, 1962).
It is obvious that Molodenskij’s deflection is always much
closer to the surface deflection +than to the geoidal

deflection in mountainous area.



Figure 3.2:

Spherical

approximation.
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3.3  SOME TECHNIQUES FOR COMPUTING THE CURVATURE EFEECT OF
THE PLUMB LINE
The plumb line, the so-calied line of gravity force,
is bent and twisted. Some- of the geodetic measurements on

the physical surface of the =earth, e.g. triangulation and
levelling, make use of the plumb line. For some geodetic
missions, the influence of the <curvature of the plumb line
should be taken into account when the reduction of geodetic
or astronomic observations to the geoid or to the ellipsoid
is needed. No matter how the plumb lines bend and twist
within the earth, the curvature effect of the plumb line
between the wearth’s surface and the geoid is usually
considered in the field of geodesy. That is to say, +that
the deviation between the gravity vector on the wearth’s
surface and the gravity vector on the geoid is investigated.
It is also convenient for geodetic purposes to decompose the
curvature effect, denoted by AB, into the north-south
component Ag and the east-west component A$7 as the same way
as the deflection of the vertical is decomposed.

There are a few ways of determining the «curvature
effect of the plumb line: by using the gravity field models,
by wusing a relation between the <curvature effect and
orthometric height correction, by using density models, by
using Vening Meinesz’s and Molodenskij’s formulae together,

etc.
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3.3.1 Using the gravity field models
Taking the origin at the computational point, we set
up 2 rectangular coordinate system xyz with z-axis ;Iong the
vertical and the «x- and y-axes on the horizontal plane
pointing northwards and eastwards, respectively. Such a
system is called the Astronomical system(LA).

The two orthogonal components of the plumb line

curvature effect are given by (Heiskanen and Moritz, 1967):

Ho1
AE =—J - a—guh
o g X
(3.11°
Ho1
AYY =—J ~a—g»dh,
o g 0dy

where H is the orthometric height of the computation point.
In order to evaluate the above integrals, a knowledge of the
gravity and its horizontal gradients at every point along
the plumb line is necessary. Because the density
distribution and the gravity variations inside the earth are
not well-known, it is difficult to evaluate the curvature
effect of the plumb line from these formulae.

If the actual gravity g is replaced by the normal
gravity X in the equation (3.11), the curvature effect of
the normal plumb line will be obtained. Using (2.5), we

obtain the curvature effect of the normal plumb line:
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N "
AE = - 0.17-sin2dH
(3.12)

N
AY]: o ,

where H is the orthometric height in kilometres. Since the

normal gravity field is independent of longitude, the east-

west component is zero.

3.3.2 Using the relation between curvature effect and
or

This approach is developed on the basis of a relation

between the actual plumb line curvature effect (From now on
we shall leave out the word "actual"™.) and the orthometric
height correction. The curvature effect of the plumb line

is given by the following vformulae (Heiskanen and Moritz,

1967) :

Ho5 g-g OH

2% - - =22, =

g O g dx
(3.13)

Hds  g-g OH

2 - - -2 2220

g Oy s Oy
where g is the mean gravity along the plumb line. In order
to get reliable results, a dense gravity net around the

computation point is necessary to determine the horizontal
gradients of mean gravity 0g/ox and 0g/ oy, and the
determination of mean gravity g along the plumb line must

be accomplished carefully. Even though horizontal gradients
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of gravity are less sensitive to small density variations
than vertical gravity gradient, they are difficult +to
evaluate precisely (Groten, 1981).

Alternatively, (3.13) may be written as:

g-3 OH

Q
(o]

+

AE .cosch + A .sinck = — , (3.14)

) 0s

|| T
oV
0

where oA is the azimuth of section AB going through the
computation point P (Fig.3.3).

An alternative model to compute the plumb line
curvature effect and the Poincaré—Prey reduction constant by

means of the least-squares adjustment is (Ndyetabula, 1974):

F = Ag-coso<+ Av~sind~+ —i'( g — K-h ;1
2S
.(QB_ QA_4.K.(HB_HA)+8), (3.15)
where
o - w)
m 1 H - h
6 = (-1)-( —— -k ) —L—= (3.16)
2 Oh h

and H if H > H
0 H H A B” A
] A L
m = ; H = \\\. h if H = H )

1L when Ko < H ' B A
H if H H
B B A
where g and h, g and H , and g and H_ are the gravity

A A B B
values and the heights at the computation point, at station

A, and at station B, respectively (Fig.3.3). For the

derivation of the above formula see Ndyetabula (1974,
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pp.49-63). The Poincaré—Prey reduction constant, denoted by
K, is given by (Heiskanen and Moritz, 1967):

K = i-(bl+4ncp) , (3.17)
2 oh

where O0f/0h is the free-air vertical gradient of gravity,

G is the gravitational constant, and

O is the density of the earth’s crust.
If the normal density O of 2.67 g/cm3 is adopted, the
Poincaré-Prey reduction constant K is -0.0424 mgal/m. The
genera] form of mean gravity g along the plumb line is

expressed as:

9= g - K-H. (3.18)



(g,.H,)

Figure 3.3: Consideration of the plumb line curvature
effect for section AB.
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The point P on the earth’s surface and the
corresponding point Po on the geoid are subjected to
different gravity forces. The direction of the vertical
changes from the earth’s surface to the geoid due to the
irregular mass distribution inside the earth’s crust. If
the density distribution is known, the deviation between
these two directions of the vertical can be determined by

Newton’s law of gravitation.

The general idea of evaluating the curvature effect
of the plumb line using the model will be outlined in this
subsection. First, taking 2 local astronomical coordinate

system (Fig.3.4), we define P to be the computation point on
the earth’s surface, Po to be the corresponding point on the
geoid, and Q to be the attracting point. In the figure, the
origin O of the system is located on the geoid.

Let us now consider a mass element dm 2t point Q, and

dm is equal to Q.dv, where dv is the volume of the element
and O is the density of the element. According to Newton’s
law of gravitation, the resulting force dF at P is given
by:

- G-dm G-P-dv

dF = o= Q- (3.19)



plumb line

/
/
1
’
’
/
b ’
46
geoid o
Oi
|
Qp‘ g
Figure 3.4: A local astronomical

coordinate system.
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The three components of the force dF along the x, y, and z

axes respectively are:

. GPdv O —

dFx = 12 cos( % ., i)

N G-Pdv L

dFy = I cos( 2 . ) (3.20)

. GPdv - -

dFz = 12 cos( Q . k),
where T, T, and k are unit vectors along the x, 'y, and z
axes, respectively. In the coordinate system, the volume of
the element dv is equal to dxdydz. Then, the components of

the total force F- are:

J f peos(L.7 )
Fx =G 3 -dxdydz
e

\Y
Fy =0 J S p'cos(ﬂg - )-dxdydz (3.21)
V S —
.cos .k
Fz =G Jj P ;i )~dxdydz ,

v
where V is the volume of the earth. Similarly, the

three components of total E; at point Po are:

V
Fy, = @ QS Alv] )'dxdydz (3.22)

Fz =@ U)( O-cos (2, ¥ )‘dxdydz
v
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In the coordinate system the z-axis <coincides with

the gravity vector on the earth’s surface, so that the x and
y components of force F are zero and Fz s equal to -g at

the surface of the earth. The curvature effect of the plumb

line, therefore, can be obtained from (Fig.3.5):

4%
vy

In equation (3.22), the evaluations of Fx, Fy., and Fz

arctan( - Fx, [Fz, ) (3.23)

arctan( - Fyo/an ).

can be easily done using a circular <cylinder method. The
volume of the element dV is here equal to rdAdrdz (Fig.3.6),
where A is the azimuth of the element. Substituting

dv=rdAdrdz into (3.20), the components of'ﬁ are given by:

p~cos(:R,T )
Fx, = G'jj 5 rdAdrdz
J

v
ccos(1,.7 ) '
Fy = G‘JJ P _ rdAdrdz (3.24)
v

(O.cos(_;z k)
|

Fz = G.

-rdAdrdz

Integrating (3.24), +the x and y components of F are
obtained from (Heiskanen and Vening Meinesz, 1958, p.253;

Zakatov, 1962, p.193):

Fx, Gip.'ﬁ'(sin Az-— sin A1).|n(r2/,.1)
(3.25)

. u _
Fy, =G > P-H (cos A, - cos Az)'ln(rz/r1) .
i=1j ]
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where Aland A2, rland r, are the boundaries of the compartment,
u is the number of the compartments,

.is the density of the j-th compartment, and
J y

Hjis the mean height above the geoid of the compartment.
The component Fz  can be approximated by -g at the computation

point P:

Fz = - g . (3.26)

Unless the density distribution around the point of
computation is well known, to calculate the curvature effect
of the plumb line, assumptions concerning the density must
be made and the heights around +the computation point are
required. If the assumption that the density is constant is
made, only the terrain effect on the plumb line is taken
into account without considering the effect of the density
distribution. In this approach the uncertainties in
estimating the density distribution inside the earth are the
predominant error sources. If +the distribution of density

is not well known, the errors may be very large (Zakatov,

1962) .
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Figure 3.5: The north-south component of the plumb line
cruvature effect.
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Attraction of one compartment.

Figure 3.6:
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3.4 STOKES-MOLODENSKIJ METHOD FOR COMPUTING THE CURVATURE

The methods of determing the curvature effect of the
plumb line outlined in the preceding sections «can be
regarded as direct ways to compute the deviation between the
actual gravity vector on the earth’'s surface and the actual
gravity vector on the geoid. In this section, the possible
way of utilizing the geoidal deflection and Molodenskij’s
deflection to estimate the plumb line curvature effect will
be discussed.

If the astronomical coordinates of point P on the
earth’s surface are denoted by (®,A ) and if they have been
corrected for the curvature effect of the actual plumb line,
then we get reduced astronomical coordinates (@:j{) on the

geoid (Groten, 1981):

KA
0

$ + A5
* (3.27)
N+ AYZ /coscb.

S
]

Rearranging (3.27) yields

*

AE =9 - 3

Y

" (3.28)
(A-A) cosdp .

In Fig.3.7, we use the following notations:



n

terrain
telluroid
A
g 2
.
parallel to
equator
s“_‘-\
geoid
¢
2 - = ellipsoid
Q, Q,
Figure 3.7: Normal

and actual plumb line curvature effects.
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n is the surface normal to the ellipsoid; n is the
geoidal normal to the ellipsoid. For determining the
surface deflections, we may neglect the deviation

between n and n (Heiskanen and Moritz, 1967).

(@,j\) are the astronomical coordinates at P.

(b, LX) are the geodetic coordinates in Helmert’s
projection system.

gp is gravity at P; g is gravity on the geoid
located on the actual plu;b line of P .

Xp is normal gravity at P.

AGN is the deviation between Ypand n due to the

curvature effect of the normal plumb line.

AB is the deviation between g and g due to the
p P

°

curved and twisted plumb [ine.
The rest of the symbols in Fig.3.7 have the same
meaning as before.

The equations (3.28) can be rewritten as:

BE - (B-d) - (B-d)

Y7

(3.29)

]

(A -2) cosd- (A-A) cosd.

Assuming that three kinds of the deflections are referred to

the same ellipsoid (aligned to the CT system), equation

(3.29) beconmes

A%
AN

. (3.30)

1}
~5 U
I
5 u
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A8 = 8 -8, (3.31)

where 8 and 8' are the geoidal deflection and the surface
deflection, respectively. If the geoidal and the surface
deflections are known, the curvature effect of the plumb
line can be straightforwardly obtained by wusing equations
(3.30).

A relation between the surface deflection and
Molodenskij’s deflection can be obtained from Fig.3.7:

N ~

A8 = 8 -8, (3.32)
where 8 is Molodenskij’s deflection of the vertical. From
equation (3.32), apparently, the difference between these
two deflections is caused by the effect of the curvature of
the normal plumb line. The east-west component of the

curvature effect is equal to zero. Equation (3.32) <can be

written as:
8 = B8 - 40 . (3.33)

Substituting (3.33) into (3.31), we have

- N
AB = B -8B + AB . (3.34)

In order to describe easily the relationship among the three

deflections, the situation is summarized in Fig.3.8
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true vertical

( surface )
normal to
telluroid |
N
20
1
normal to .
ellipsoid true vertical
( geoid )
Figure 3.8: Relationship between deflections and curvature

effects (Vanieck and Krakiwsky, 1982).
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Obviously, if the geoidal deflection and
Molodenskij’s deflection are available, the curvature effect
of the plumb 1Iine <can be obtained by equations (3.34).
These deflections are obtained from Vening Meinesz’s formula
and Molodenskij’s formula. Due to +the law of error
propagation, the errors of the geocidal deflection and of
Molodenskij’s deflection will contribute to the werrors of
the plumb |ine curvature effect at the <computation point.
In addition, it is clearly uneconomical to compute the
geoidal deflection and Molodenskij’s deflection separately.
The procedures for the calculation of the geoidal deflection
and Molodenskij’s deflection are basically the same. It is
instructive to compare them.
Referring to equations (3.1) and (3.5), the

difference between them is:

~

s ()

X

ds (¥) A3 {ta"ﬁl}. (3.35)

dY o+ —
tanpz

4V ¥
From (3.3) and (3.4), the difference between the free-air
gravity anomaly on the geoid and the gravity anomaly on the

earth’s surface is obtained from:

~ N
Ag - Ag = 0.3086-( H - H- ) , (3.36)
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N - v 7 .
where H <can be replaced by H-g/Y , and ¥ is the mean normal
gravity along the normal plumb line, given by (Heiskanen and

Moritz, 1967):
= N
¥ = Yo - 0.1543-H , (3.37)

where the factor 0.1543 is in mgal/m. Substituting the

N =
relation H = H-g/Y into (3.36) yields

Ag — 43 = 0.3086-H - ( d % °y . (3.38)

From (3.37) and (3.18) and setting the density 0 equal to

2.67g/cm% the difference between the mean normal gravity K

and the mean gravity g is:

Yy - g={( Yo - 0.1543 - H" ) - (g + 0.0424-H ) , (3.39)

¥ -9=-(g+0.1967-H - Yo ) , (3.40)

where the factors 0.0424 and 0.1967 are also in mgal/m.

Because the Bouguer anomaly, denoted by AgB , is
defined as the difference between the Bouguer gravity g?:
g+0.1967-H on the geoid and the normal gravity referred to
the ellipsoid-- without taking {nto account the variation of

the actual topography -- (Heiskanen and Moritz, 1967), the

equation (3.40) can be written as:
Y- 9= - ad. (3.41)

Therefore, equation (3.38) becomes
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Ag - A9 = - 0.3086-H.ag%/¥ . (3.42)
The mean normal gravity ? can be replaced by the mean
gravity fn on the ellipsoid. The relative error of this
approximation is less than 17. Substituting (3.42) into

(3.35), we obtain finally (Vani{lek and Krakiwsky, 1982):

T - B cOSs
8 -8 = 51 % i J/ ( 0.3086- H 2 , AG ) - { d}
Y7 Y] 47(¥m v Ym sinX

ds () AS ta"ﬁ|

X dY o+ = (3.43)

d¥ &\ tanﬁ2
For convenience, equation (3.43) is here called the
Stokes-Molodenskij formula. In this equation, the

contribution of the first term in the subintegral function
may be regarded as the effect of the difference between the
free-air anomalies on the geoid and those on the earth’s
surface on the plumb line curvature. The contribution of
the second term may be regarded as the regional terrain and
gravity effect on the curvature. The last term in (3.43)
may be regarded as the north-south and east-west terrain
profile effects (point effects) on the plumb line curvature.

It is apparent that the Stokes-Molodenskij formula «can

compute the curvature effect of the plumb 1line more
conveniently than Vening Meinesz’s and Molodenskij’'s
formulae together. The curvature effect of the plumb line,

therefore, can be easily determined by combining the Stokes-
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Molodenskij formula and the equation of the curvature effect

of the normal plumb line.



CHAPTER 4

PRACTICAL EVALUATION OF THE STOKES-MOLODENSKIJ
FORMULA

4.1  INTRODUCTION

The Stokes-Molodenskij formula requires the knowledge
of the gravity anomaly AE, and the normal height HN for the
solution of the terrain correction AG at any point on the

surface of the earth. Practically, due to the discrete data

~ N
for Ag and H available, the formula (3.43) is evaluated as

summations. The small element dV is replaced by an
appropriate area element (compartment or block). A mean
gravity anomaly and a mean normal height are necessarily
computed for each compartment or block. Since the

difference between the normal height and the orthometric
height is fairly small, wusually it does not exceed 0.1 m
(Vanféek, 1974) . In practice the former can be replaced by
the latter without affecting the accuracy of the value AG.
For the computation of Stokes's integral, blocks of
various sizes bounded by geographical grid lines 5x5, IxI’,
30&30C 5§5t and smaller are considered (Moritz. 1980b). In
the neighborhood of the computation point, it is proper to

use smaller blocks or compartments than for distant zones.

For the Vening Meinesz integral, such blocks of a few sizes
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can also be used. Because Vening Meinesz’'’s integral has a
stronger singularity than Stokes'’'s integral, it requires
more detailed representation of AE and more rigorous

treatment around the computation point (Moritz, 1980b) .
Obviously, the integral in the Stokes-Molodenskij formula is
similar to the Vening Meinesz integral so that the above
applies to it too.

For the determination of the curvature effect of the
plumb line by means of the Stokes-Molodenskij formula in
this study, there are two different zones needed: innermost
and inner (Fig.4.1). The reason for neglecting outer zone
contribution to the curvature effect of the plumb line will
be given later.

The innermost zone is chosen to be enclosed by a

rectangle of the dimensions 9x7 km for ¢)=45°(approximate|y

5x5 minute rectangle). It consists of 63 1x1 km blocks
(Fig.4.2). In the <central block around the computation
point, <circle-ring method is adopted for the <central area
contribution. The outer radius is equal to 564 m chosen on
the basis of the same area as the central 1x1 km
compartment. The inner zone covers an area of a 25x25
minute block around the computation point, excluding the
innermost zone. It is subdivided into a few equal 5xb
minute cells. The choice of the boundary of the inner zone

is discussed in Section 4.6.
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Figure 4.1:



Figure 4.2:

Innermost zone.
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The choice of 5 x SIbIocks is based on the fact that

the mean gravity anomalies and the mean heights for these

blocks are readily available. The data sets wused for the
numerical evaluation of the Stokes-Molodenskij formula
include the point gravity anomalies, and the 5x5 minutes
mean gravity anomalies and mean heights. The mean heights

of 1x1 km blocks needed for the innermost zone are obtained
from the topographic maps at the scale 1:50,000.

In the Stokes-Molodenskij formula, if the orthometric
height is equal to 1000m, the first term in equation (3.43),
0.3086HAgB/¥%, is about 10—3 times smaller than the term Ag
in Vening Meinesz’s formula, equation (3.1). Besides,
orthometric heights of almost 727 of the points in the world
could be regarded as zero due to the fact that the about 727
of global area is covered with water. The contribution of
the term to the plumb line curvature effect should be small.

In order to exemplify the above reasoning, a few points in

New Brunswick (NB) have been tested. The contributions are
smaller than O"001 everywhere. Therefore, the first term
can be neglected. It could be said that the term makes no
contribution to the curvature effect of the plumb line.

The numerical evaluation of the Stokes-Molodenskij
formula is, therefore, integrated by a summation over

discrete data:
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£ -1 ds(¥) A9
A = AG- ‘cosX -AYV + — -tan
T 4y A
(4.1)
? =1 ds (V) , A9
A = AG- -sinck-AYV + —-tan
4KX% d¥ %\ PZ
and 2 -
. R H —H 3y
G = — ——=P (45 + —-5)-aV, (4.2)
2T s 2R
where H is the mean height of the small compartment AV, In

equation (4.2), if the height anomaly 5 is unknown, it may
be determined from satellite potential <coefficients, i.e.
Rapp 180 (Rapp, 1981). Because the value of 3¥/2R is small
(approximately 0.23 mgal/m), if the value of 3'X/2R'S'is
smaller than the error of the gravity anomaly Ag, this term
can be neglected. The height anomaly in the province of New
Brunswick, the tested area, approximately ranges from -1 m
to 2 m (Merry, 1975). This gives values of order of -0.2 to

0.5 mgal for 3g72R'5. Then, equation (4.2) becomes

RZ T - H 5

AG = —- 3= A9 Ay (4.3)
27T s ’

Due to the fast growing denominator in equation
(4.3), the value of AG will disappear very rapidly. For the
outside of the inner zone, the contribution of AG is
approximately equal to zero. A test of the contribution

will be given in Section 4.6.
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Therefore, the summation in equation (4.1) can be

split into three parts, and the curvature effect components

of the plumb line are given by:

ZX?; =Z3§H 4-A§;2-+A§§3 + AE;N
80 =) 8 80
1 2 3

where‘Ag and Ag,are the contributions of the innermost and
1 2

(4.4)

inner zones for the north-south component,

Aﬁ? and Aﬁ? are the contributions of the innermost and
1 2

inner zones for the east-west component,

AE;and E? are the north-south and the east-west terrain
3 3

profile contributions to the curvature effect

of the plumb line, respectively.

The terrain profile contributions are written as:

4%

3

"
s<
o
(]
2
™

(4.5)

AY? = Ei'tanﬁz.

3

N
AE; is the north-south component of the curvature effect of

the normal plumb line.
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4.2 PREDICTION OF MEAN GRAVITY ANOMALY
For the contribution of the innermost zone, the mean
free-air and the mean Bouguer gravity anomalies of the 1xl
km blocks are computed from the point gravity data. The

mean gravity anomaly, Ag, for a region of area A, is given

by (Heiskanen and Moritz, 1967):

Ag = EUAAg-dA , (4.6)

A
where Ag is the point gravity anomaly. Because the blocks
are small, there may not always be data available in the
area. In order to determine the mean anomalies for such
small areas, the point anomalies in those blocks «can be
predicted first, +then the mean anomalies are determined by
equation (4.6). There are several methods to predict the
point anomalies, e.g. graphical interpolation from the
gravity anomaly map, the least-squares surface fitting, the
least-squares collocation, etc. Since the purpose of this

thesis is not to determine an optimal value for the gravity
anomaly, the most simple approach will be adopted: the
least-squares surface fitting technique. This technique has
been used successfully for a number of different purposes
(Vanféek and Merry, 1973; Vanféek and Christodulides, 1974;
Merry, 1975).

Since the Bouguer anomalies are always smooth enough

for interpolation and extrapolation purposes, the prediction
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of free-air anomalies s often performed through the
intermediate step of Bouguer anomaly prediction (Sunke!l and
Kraiger, 1983).

In order to predict the 1x1 km mean anomalies within
the innermost zone, all of the anomalies distributed within
the zone are taken into account in the surface-fitting
technique. For this technique, the Bouguer anomalies can be
represented by an algebraic polynomial:

B . n J k
Age(X,Y) = > a2 XY . (4.7)
j. k=0 jk

The degree of the polynomial, n, will depend on the amount
of data available and on the complexity of the surface
desired. In general, a polynomial of second order is
commonly wused (Merry, 1975). The <coefficients of +this
polynomial, ﬁk ,are determined by using the least-squares
fit to the Bouguer anomalies. The local coordinates (X,Y)
are centred at an arbitrary point. The coordinates may be
obtained from geodetic coordinates by means of the following

equations:

X = R(¢ - )

(4.8)
Y = R(R—Ro)-cosq}o ,

where (b, ) ) are the geodetic latitude and longitude of
the measured point,
(qa.ao) are the coordinates of the arbitrary origin,

and R is a mean radius of the earth.
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After the coefficients %k and the covariance matrix C

of the coefficients are obtained, the Bouguer anomaly Ag?at
the <center of the i-th block and its standard deviation

can be evaluated. The determinations of a , C ., AgB. and

JL a i

the standard deviation of the Bouguer anomaly are given in

Appendix I.
On the basis of the polynomial of the second order
used, the mean Bouguer anomaly jﬁ? and mean free-air

anomalies Zgi for the i-th block are obtained from the

following equations:

1

_B B

Ag = —~j{ Ag-dA . (4.9)
A A

Substituting (4.7) into (4.9) becomes
— 8 2 j k
Ag = — > a H X -Y-dA . (4.10)
',k=0 Jk A
Integrating (4.10), if the origin (X,'Ya) is selected to

coincide with the midpoint (X ,Y ) of the i—th block, we get
[ |

(Appendix II):

—B '
X ,Y. )= - = - = . , 4.11
A8 ( | | ) aOO * 202 3 ¥ 820 3 ! a22 9 ( )

where 2r, 2s are the north-south and east-west extents of

the i-th block, respectively.
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Because the free-air anomaly is given by (Heiskanen

and Moritz, 1967):
8
Ag(Xi,Yi) = Ag (Xi,Yi) + 0.1119-H(X;.Y;) , (4.12)

where the factor 0.1119 is in mgal/m, the mean free-air

anomaly is determined from:

1 8 0.1119
ag(Xx,.Y;) = —J/ Ag - dA + ——————~fj H-dA . (4.13)
A A

Equation (4.13) can be hence written as:

as(x..Y;) = EEB(xi.Yi) + 0.1119-H , (4.14)
where
_ 1
H = —~j[ H(X,Y)-dA . (4.15)
A /A

Since it is difficult to know the function H(X,Y), an

alternate formula is:

1

o= -Ef: . (4.16)

2
3
i}
—

where n is the number of measured heights H at the block.

2
The variance Oi of the mean height is given by:

o = . (4.17)
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Equation (4.11) can be written in matrix form as:

8 T
Ag® = b.a (4.18)
where
2 = 0" %02" %20’ 22] ’ b = b w by by b4]‘

and

b =1, b.=s2/3, b=r2/3, b =resl/9 . (4.19)

I 2 3 4
Then, applying the law of propagation of <covariance

(Vanicek, 1980), the variance of '2g% is obtained from:

T

2
® .=bC b . (4.20)
AgB - a-

Assuming that the mean Bouguer anomaly is uncorrelated with

the mean height, the variance of Ag is given by:

2 2 2
O =, (0’1119'0ﬁ ) . (4.21)

AQ AQ

4.3 INNERMOST ZONE CONTRIBUTION

In the vicinity of the computation point, Vening

Meinesz’s function is approximated by (Heiskanen and Moritz,

1967):

as (¥) 2
= - _2‘ (4.22)

d ¥ P
The relative error of this approximation is about 17 for the

linear distance s=10 km from the computation point, and

about 37 for s=30 km (ibid.. p.121). Within the small
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spherical distance { (corresponding to a linear distance of
a few kilometres), we may regard the sphere as a plane,
where Y is given by:

WV = s/R . (4.23)

Substituting (4.23) into (4.22) yields:

2
as(y) . 2R
= - — (4.24)
¥ s
The solid angle element dV in the rectangular

coordinate system and in the polar coordinate system are

written respectively as:

dx-dy
dy = 5 (4.25)
R
and
s-ds. dX
dV = 5 (4.26)
R

Substituting (4.24) and (4.25) into (3.43), the contribution

of the innermost zone to the curvature effect components is:

2
-1 —2R dx -dy
LIS & SR s R
2 (4.27)
-1 —2R dx .dy
A = J/ AG- ‘sind -
Y?1 4J(%n A, 32 R2

Rearranging (4.27) yields:

‘dx-dy

D>
ol
1]
—
~—
>
>
[
[e]
[o}
N0
R

(4.28)

1]

1 sinX
Aﬁi ”;AG' 3 dx-dy
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and (cf. equation (3.6))

1 H-H_
AG - // A dxdy (4.29)
27C 7/a4,

s
where AA, is the area of the 1x1 km block inside the
innermost zone. Therefore, the part of equation (4.1)

pertinent to the innermost zone is given by:

1 ni ax - ay
Ag > AG -coso - )

W omke ST s
(4.30)
1 ni (Ax-Ay)
A = AG - sind-
Y?L1 ot i=1 JPC
and
1 _ _ Ax-Ay
AG = — - (H—=—H ) ag-( 3 ) (4.31)
i 27TC i p i s i
AA, = Ax-4y , (4.32)
where nt is the number of 1x1 km blocks used,

ﬁ‘ is the mean value of the height in the i-th block,

Zﬁi is the mean value in the i-th block of the
free-air anomaly,

K, is the azimuth of the line connecting the computa-
tion point and the midpoint of the i-th block,

ax = oy = 1 km,

s is the distance between the computation point and
the midpoint of the i-th block, and

dT' s are given by:
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o = arctan - P ) (4.33)
Xj— Xp
. = J(xi-xp)2+ (v; -v,)" (4.34)

where (xp'Yp) are the coordinates of the computation point,
and (Xi’Yi) are the coordinates of the midpoint of the i-th
block in a local plane coordinate system (Fig.4.2).

For the 1x1 km blocks near the computation point, in
equations (4.30), it is not accurate enough to evaluate the
values of Ax~Ay/s2 and A%Ay/s3 at the center of each block.
A more rigorous approach is to integrate over the block.
Setting C=AwAy/s2 and D=AxAy/s3, the more proper values of C

and D are given by:

ol
I

s

: (4.35)

o

ol
i

1
AA,
1
AA,
where C and D denote the mean values of C and D for the

block, and AA, is the block area.

The error in the numerical integration is illustrated
in Table 4.1.

For those blocks within a rectangular region of the
dimensions 7x7 knm, centred on the computation point, the
mean values (4.35) are used. The relative error is thus

kept below 1.87 for C and 47 for D.
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TABLE 4.1
The differences between the values C and D and their mean
values.
dist. C c error D D error
(s) (%) (%)
1 km 1.00E+0 1.16E+0 13.9 1.00E-3 1.40E-3 28.7
2 km 2.50E-1 2.60E-1 4.0 1.25E-4 1.37E-4 8.8
3 km 1.11E-1 1.13E-1 1.8 3.70E-5 3.86E-5 4.0
4 km 6.25E-2 6.31E-2 1.0 1.56E-5 1.60E-5 2.3
5 km 4.00E-2 4.03E-2 0.7 8.00E-6 8.12E-5 1.5
For the central block where the computation point
lies, since the midpoint of the block coincides with the

computation point, equations (4.30) cannot be used to
evaluate the contribution of the central block. For this
reason, the circular-ring method is adopted. In this study,
there are three rings used whose radii are 100m, 200m, and
564m (Fig.4.3). The outer radius is chosen on the basis of
the same area as the central compartment, therefore the
total area of 4 corners is equal to the total area of 4
overlaps (Fig.4.3). It is assumed that the contributions of
the corners and the overlaps are balanced out.

Substituting (4.24) and (4.26) into (3.43), we obtain

-1 —2R2 s -ds . -dx
[ s 2 o 2
A

>
uf
I

1 47 {m 2 52 R2
2 (4.36)
-1 I/ —2R s ds- dx
= AG-—5— sinx  ————=—
AY71 attnlly s2 RZ

2
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and 2

R H-H s .ds- dX
AG = ——I[ 3E~A§« . (4.37)

where A, is the central block area, and
AA, is the area of the circular—ring compartment.

Rearranging equations (4.36) and (4.37), we obtain

1 cos
AE J} AG - — ds. du
4.38
1 sink
A = JJ AG - -ds. dX
Y?] QKXE Ay s
and
1 H—-H
AG = ——}/ ———72-'A§~ds-dd . (4.39)
2K aA s

2

Then performing these integrations, the contribution of the
central block is given by (Appendix III):
1 m

> AG’(sind2—sindl)'ln(s /s )
1.2 ordm jo1 277

o>
U
1}

(4.40)
. ) )
A = : AG -(cosX — cosc “In(s, /s
Ya o orke i ! 2 2!
and
1 _ 11
AG = -—~(x-—ml).(H —H )ag-(—--) . (4.41)
iooem 2 i op i s, s,

where Hjis the mean height of the j-th compartment,
d‘.dz are the azimuths of two edges of the compartment,

respectively, and d2>cXI(Fig.4.4),



70
s ., s, are the inner and outer radii,

Ag. is the mean free-air anomaly, and

J

m is the number of the compartments used (within the
circular rings).

Finally, the total contribution of the innermost zone

is obtained from:

I

AE%
%

A§11*A§12
.Avm +A%2

(4.42)

1}

4.4  INNER ZONE CONTRIBUTION

The inner zone, <composed of 2 number of 5x5 minutes
blocks, covers an area of a 25x25 minute geographic
rectangle, excluding the innermost zone. Analogous to

(4.30) and (4.31), the contribution of the inner zone can be

written as {(cf. equation 4.1):

-1 n2 ds (Y
Ag = Z AG - ( ( )) -cosd - cos - AD-AR
2 ankn 21 i aVW T i i
(4.43)
-1 n2 ds (YY)
AYZ = Z AG - ( )~cosq>-sino(~Aq>-A7\
2 4Tim i=1 i d i i i
and
R’ (H. - Hp)
AG = — - ——1_3—‘ Ag - cosP -AD-AA , (4.44)
i 2n s i i
s = 2Rsin(Y/2) . (4.45)

where n2 is the number of 5'x5' blocks used,

¢i is the latitude of the midpoint of the i-th block,
AP =41 = 5",
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and the other symbols have the same meaning as before.

In the above equations, Y., X; are given by:

\})‘. = arccos | sin¢p~sin¢i + cos¢ﬁcos¢i~cos(2i—)p) ) (4.46)

cos®. sin(A.-A)
K = arctan( : ' P

). (4.47)
coscbp-si ncbi - si nq>£§cosq>i-cos (}\i—;lp)
where (CPD, Ap ) are the geodetic <coordinates of ‘the
computation point, and (cpi,xi) are the geodetic coordinates
of the midpoint of the i-th block.
Due to the rapid change in Vening Meinesz’s function,

it should be treated rigorously

“dA (4.48)

ds(¥) 1}] ds(¥)
v ala au
where m denotes the mean value of dS(Y)/dy for the
block, and A is the block area. For those blocks whose
spherical distance from the computation point is smaller
than 0°5, the value of dS(Y)/dV is replaced by the mean
value of dS(¥)/dY (Merry, 1975).

Analogously, the mean value of R2-cosq)-Ad>~A'/\/s3 in

4.44) is iven by:
g Y

1 Rz'coscb-Ad)M
£ I[ —dn (4.49)
ALV s
where AA is the 5x5 block area. Since 4A =R2'coscp4Ad>-A) ,

equation (4.49) may be written as:
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E =}/AA—:—3—-dA . (4.50)

Equation (4.50) is used when the spherical distance of those
blocks is smaller than 15. The relative error will be below

47 .

4.5 TERRAIN PROFILE CONTRIBUTION

The terrain profile contribution to the components of

the curvature effect are given by equation (4.5). These can

attain large values in steep mountains. For the terrain
profile contribution, sometimes the wuncertainties of the
terrain inclination will give large error for the curvature.
For the small terrain inclination, betweeq 0" and QSt the
error of 1°in B value will give the error of 0"004/mgal for
the plumb line curvature effect. For instance, when the
free-air anomaly is 50 mgals, the error of the curvature
effect is O"2. No matter how the terrain inclinations are

measured, either from topographic maps or from field works,
the evaluation of the inclinations should be performed

carefully.

4.5.1 Evaluation of terrain slope

The evaluation of terrain slope can be done simply.
Let the north-south (or east-west) terrain profile be a
function of horizontal coordinate x (or y). Then we may

write the north-south and east-west terrain profiles,

denoted by H(x) and H(y) respectively:
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c

T
~—~
x
~
"
0
x

(4.51)

T
—~~
<
~—

]
Mc

[
<

where ci . di are some coefficients, u is the number of
coefficients, and (x,y) are the coordinates referred to the
local system, whose origin coincides with the computation
point P. Measuring the heights H(x) and H(y) for several
values x and y, the coefficients ci and di can be determined

using the least-squares procedure. The north-south and

east-west terrain slopes are given by the coefficients cland

d, .

This simple model has been tested in two different
kinds of areas, flat and hilly. Twenty one data for each
profile are measured at the following coordinates: -250m,
-200m,...., 200m, 250m, in 25m interval. The results are

shown in Tables 4.2 and 4.3. As can be seen, the number of

the coefficients does not make significant difference for

the terrain profile contribution in flat area. However, the
significant difference is demonstrated in hilly area. In
this case, the choice of the number of the coefficients

comes into question.

Therefore, another approach to estimate the terrain
slope is developed. Fig.4.5 shows the north-south terrain
profile at the computation point. Let us choose points P

2

and P1 to be north and south of the computation point P,
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TABLE 4.2
Terrain profile contribution in flat area.
Number of N —S standard E— W standard

coefficient

component

deviation

componen

t deviation

L

L]

3 -0.016 0.003 0.032 0.003
4 -0.043 0.001 0.013 0.005
5 -0.043 0.001 0.013 0.002
6 -0.044 0.002 0.019 0.003
7 -0.044 0.002 0.019 0.003
8 -0.043 0.003 0.017 0.005
TABLE 4.3
Terrain profile contribution in hilly area.
Number of N —S standard E—W standard

coefficient

component

deviation

component deviation

"

3 0.758 0.058 0.428 0.085

4 0.820 0.149 0.709 0.207

5 0.820 0.088 0.709 0.121

6 0.918 0.159 0.915 0.213

7 0.918 0.120 0.915 0.140

8 1.063 0.187 1.145 0.210
respectively. In Fig.4.5, Hzand H1 are the heights of the

oints P
P 2

determined from:

tan ﬁ1

and P

Therefore,

AH

2r

the terrain

slope can

be

(4.52)



Figure 4.5:

North-south terrain profile at computation
point.

75
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where r is the distance from the computation point P. Then
the terrain profile contribution to +the curvature effect of
the plumb line is determined using (4.52) and (4.5). Since
the tangent of ﬁ% is a very localized parameter, if we choose
10 different values of r and compute the terrain slopes and

the curvature effects, the results are different (Tables 4.4

and 4.5). In flat area, maximum difference between the
curvature effects determined from different distances is
about 0"015 (Table 4.4). In hilly area, maximum difference
reaches about 1"2 (Table 4.5). In this case, it may be

necessary that the the least-squares approximation be used
to find a trend for the terrain slope.
In order to determine a trend for the terrain slope,

the terrain slope tanﬁ1 can be represented by an algebraic

polynomial of ¢

. 2 i
tan'B(r) = Z a .r , (4.53)
1 i=o i
where a, are some coefficients. The coefficients <can be
determined using the least-squares approximation. When the
distance r approaches to zero, the coefficient a is the

estimated value for the +terrzin slope at the point of
computation (Fig.4.6).

For the determination of the coefficients and
covariance matrix of the coefficients see Appendix I. The

2
variance of tanIB1 is equal to Oh . The determination of the

o



Terrain

profile contributions

TABLE 4.4

distances r

in

a flat area.

referred to different

N —S component E — W component
distance
r terrain curvature terrain curvature
slope effect slope effect
L] L]
25 m 0.009 — 0.044 — 0.004 0.022
50 m 0.010 — 0.049 — 0.004 0.022
75 m 0.008 — 0.040 — 0.003 0.016
100 m 0.008 — 0.040 — 0.002 0.012
125 m 0.007 — 0.035 — 0.004 0.022
150 m 0.008 — 0.040 — 0.005 0.024
175 m 0.007 — 0.035 — 0.004 0.022
200 m 0.007 — 0.035 — 0.004 0.022
225 m 0.007 — 0.035 — 0.004 0.022
250 m 0.006 — 0.031 — 0.003 0.016
TABLE 4.5

Terrain profile contributions

referred to different

distances r in a hilly area.
N — S component E — W component
distance
r terrain curvature terrain curvature
slope effect slope effect
" "
25 m 0.323 1.403 0.408 1.774
S50 m 0.251 1.092 0.213 0.927
75 m 0.236 1.026 0.274 1.192
100 m 0.229 0.993 0.305 1.324
125 m 0.219 0.953 0.226 0.980
150 m 0.213 0.927 0.173 0.750
176 m 0.198 0.860 0.170 0.738
200 m 0.187 0.811 0.168 0.728
225 m 0.186 0.809 0.148 0.632
250 m 0.186 0.809 0.128 0.556
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Figure 4.6: A trend for the terrain slope.
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east-west terrain inclination follows the same computational

procedures as that of the north-south.

It has been already stated in Section 4.1 that the

value of AG disapears very rapidly with distance because of

the fast growing denominator in the subintegral function.
Thus, the integration does not have to be carried out very
far.

In order to determine zone boundary for the

contribution of AG (regional terrain and gravity effect) the
variation of the geographic rectangle ranges from 15%15 to
be;fOSC in 10 increments. Computing the contributions of
the values AG to the curvature effect and their RMS and
taking the values of 105x105 as standard, the differences in

the curvature effects and the RMS from the standards are

shown in Fig.4.7. The tested area is chosen in a hilly area
whose heights range from 15m to 480m. From the figure, a
conspicuous change in the differences occurs at 25%25  on
this graph: it appears that the contribution of AG to the
curvature effect of the plumb Iine converges at this size of
the zone. The contribution coming from the value AG may be

regarded as the regional terrain and gravity effect on the
curvature of the plumb |ine, Consequently, it «can be

concluded that topography and gravity outside the above zone

make no effect.
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Figure 4.7: Zone boundary for the contribution of AG.
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4.7 ESTIMATES OF ACCURACY

In order to examine the reliability of the results,
the accuracy of the curvature effect of the plumb line has
to be estimated. The uncertainties of the plumb line

curvature effect are propagated from the errors of the
gravity anomalies and the heights. The gravity anomalies
are correlated with each other as a function of distance
(Heiskanen and Moritz, 1967). The representation of this

correlation can be carried out empirically (Lachapelle and

Schwarz, 1980). The mean gravity anomalies are also
correlated with each other. In this thesis, for the
accuracy estimation of the curvature effect, the mean
gravity anomalies are assumed to be uncorrelated. On the

basis of this assumption, from equations (4.4), the standard

deviations of the components of the curvature effect are

determined from:
2 2 2
Oue = o Oy, + Oa_+ O )

2 2 2
% = (O, < Ok, Oip )

and the variances of the «curvature components of the

(4.54)

innermost zone are obtained from:

2 2 2
Oy = Oug + 0,
A§1 2§1J ZELZ

2 (4.55)
= O +
CZﬂz A ” A¥G,2
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The terms in (4.54) and (4.55) are determined from
the following expressions (cf. (4.5), (4.31), (4.40), and

(4.43) ):

2
Orp, * e o, O
[ 0.}
Oh§12= QKXQ 2 {(snnd-51nd )In(s /s ) AG
1 n2  dS(V¥) : 2
= : -cosX-cosP- ) X’C%
0A52 Qnﬁ(m»\/?:;{ 0 * cosp AP AGj}
g 0 ) G0 ) )
= — tanp - + .
OA§3 Ym ﬁ1 Ag Ag’ ‘b:-.\np1 (4 55)
Oy = - ZM: {sinct-C-O* }2
AVH 27U V=1 i 465
1 m 2
Ok?:2= 2K¥;‘ ;;% {(cosd(-cosdz)ln(sz/s1)(%G|}
) 1 n2 ds(¥) 2
O‘AV 27[¥ JZ { Y ~sino(.-cos¢"Aq>-A)\-0AG.}
2 m =1 J J J
2
Oupy = J{ (vanp, O ) + (4§ mﬁ) b
3 2

where n1 is the number of the 1xl km blocks used,
m 1is the number of compartments within the
circular rings used,and
n2 is the number of the 5%5 blocks used.
The other symbols have been described in the preceding

sections.
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By westimating all of the standard deviations in
(4.56), we obtained the values shown in Table 4.6. The
error budget for the values is based on the assumptions that
the standard deviations of the 1x1 km block mean gravity
anomalies and mean heights are 2 mgals and 5 metres for flat
areas and 5 mgals and 15 metres for hilly areas, and that
the standard deviations of the 5x5 mean gravity anomalies
and mean heights are 10 mgals and 25 metres for both flat
and hilly areas. From Table 4.6, depending on the accuracy

required, some of the values can be neglected.

TABLE 4.6

Error budget for all of the values in (4.56).

070001 < O 0‘7 < 0"005

ono01 < O

. OZV ¢ 0"05

0"001 < 17,




CHAPTER 5

COMPUTATIONAL RESULTS AND COMPARISONS

5.1  COMPUTATIONAL RESULTS

Six test stations located in the province of New
Brunswick (Fig.5.1) have been selected for this thesis.
Their geodetic <coordinates and elevations are shown in
Tables 5.1 through 5.6. Two of them, stations 2 and 3, lie
in mountainous areas, the rest in flat areas.

In Tables 5.1 through 5.6, the results are shown from

the technique based on the combination of Stokes’s and

Molodenskij’s approaches. The data used have been described
above. For convenience, the curvature effect of the plumb
line obtained from the Stokes-Molodenskij formula is here

called the Stokes-Molodenski] curvature effect, abbreviated

by S-M. In +the Tables, the first two rows show +the
contributions of AG of the innermost and inner zones. Row 3
shows the terrain profile contributions. The meanings of
the rest of the rows can be easily interpreted from the
Tables.

The <contributions of AG are larger in mountainous
areas than in flat areas. The maximum value for the

contributions is 0"l in all of the tested points. Among the

contributions, the terrain profile <contributions along the
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TABLE 5.1

The Stokes-Molodenskij curvature effect at station 1.

86

Latitude = 45-57-42.85
Station # 1 Longitude = 293-21-42.32
Height = 10.8 M
Unit: arcseconds
N - S Standard E - W Standard
comp . deviation comp. deviation
Inner— C
most 0 — 0.01 0.01 0.01 0.01
zone N
T
Inner R 0.00 0.00 0.00 0.00
zone I
B
Point U — 0.05 0.00 0.02 0.00
T
N I
AB 0 0.00
N
Curvature
effect — 0.06 0.01 0.03 0.01




TABLE 5.2

The Stokes-Molodenskij curvature effect at station 2.
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Station # 2

Latitude
Longitude

i nn

47-52-55.29
293-06-48.78

483.1 M
Unit: arcseconds
N - S Standard E - W Standard
comp. deviation comp. deviation
Inner— C
most 0 — 0.01 0.01 0.02 0.00
zone N
T
Inner R 0.00 0.00 — 0.03 0.00
zone I
B
Point U 1.44 0.11 1.71 0.27
T
N I
AB 0 — 0.08
N
Curvature
effect 1.35 0.11 1.70 0.27




TABLE 5.3

The Stokes-Molodenskij curvature effect at station 3.
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Latitude = 45-44-21.18
Station # 3 Longitude = 294-51-05.51
Height = 381.4 M
Unit: arcseconds
N S Standard E - W Standard
comp. deviation comp. deviation
Inner— C
most 0 0.11 0.02 — 0.02 0.02
zone N
T
Inner R — 0.01 0.00 0.01 0.00
zone I
B
Point U 1.06 0.10 0.19 0.04
T
N I
A8 o — 0.06
N
Curvature
effect 1.10 0.10 0.18 0.04




TABLE 5.4

The Stokes-Molodenskij curvature effect at station 4.
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Latitude = 46-26-59.54
Station # 4 Longitude = 293-28-33.69
Height = 235.2 M
Unit: arcseconds
N - S Standard E - W Standard
comp . deviation comp. deviation
Inner— C
most 0 0.00 0.00 0.00 0.00
zone N
LT
Inner R 0.00 0.00 0.00 0.00
zone I
B
Point u 0.04 0.05 0.04 0.01
T
N I
AB 0 0.04
N
Curvature
effect 0.08 0.05 0.04 0.01




TABLE 5.5

The Stokes-Molodenskij curvature effect at station 5.
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Latitude = 46-43-55.46
Station # 5 Longitude = 294-34-22.97
Height = 93.6 M
Unit: arcseconds
N - S Standard E - W Standard
comp. deviation comp. deviation
Inner— C
most 0 0.00 0.00 0.00 0.00
zone N
T .
Inner R 0.00 0.00 0.00 0.00
zone I
B
Point u 0.01 0.00 - 0.01 0.00
T
N I
A8 0 0.02
N
Curvature
effect 0.03 0.00 - 0.01 0.00
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TABLE 5.6

The Stokes-Molodenskij curvature effect at station 6.

Latitude = 47-37-15.39
Station # 6 Longitude = 294-20-44.91
Height = 9.1 M
Unit: arcseconds
N - S Standard E - W Standard
comp. deviation comp . deviation
Inner— C
most 0 0.01 0.01 0.00 0.01
zone N
T
Inner R 0.00 0.00 0.02 0.00
zone I
B .
Point U 0.07 0.04 — 0.05 0.01
T
N I
AB 0 0.00
N
Curvature
effect 0.08 0.04 — 0.03 0.01
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north-south and the east-west directions are a lot larger
than the others. The east-west terrain profile contribution
to the plumb line <curvature effect reaches about 1"7 (at
station 2).

5.2 COMPARISONS BETWEEN THE STOKES-MOLODENSKIJ AND THE

Equation (8.27) indicates that if the geoidal and the

surface deflections (or astro-geodetic deflection) are
known, then the curvature effect of the plumb Iline can be
determined. For convenience, the <curvature effect of the
plumb line obtained from the difference between the geoidal

deflection and the surface deflection is here called the
astro-gravimetric curvature effect, abbreviated by A-G.

Both the surface and geoidal deflections are
available for the tested points. The geoidal deflections
are predicted by program GDOVE, written by Lachapelle (Table

5.7); the surface deflections (Canadian Astro-geodetic

deflections, 1981) are available from Geodetic Survey of
Canada. If the surface deflections and the geoidal
deflections are referred to different ellipsoids, this two

kinds of deflections must be brought into the same system.
That must be done before determining the curvature effect.

The surface deflections refer to a geocentric
ellipsoid with parameters (F.Faucher, personal
communication, 1984):

6378135 metres

1/f 298.257
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TABLE 5.7

The geoidal deflections predicted by program GDOVE.

station N - S stand. E - W stand.
# comp. deviat. comp. deviat.
L] " " "
1 -3.10 1.42 -3.89 1.35
2 2.20 1.42 -5.73 1.37
3 2.06 1.41 -3.41 1.35
4 -2.41 ‘1.38 -2.99 1.36
5 -1.06 1.38 -1.74 1.37
6 -1.64 1.47 -2.05 1.35
All of the gravity anomalies are referred to the Geodetic
Reference System 1967. These two ellipsoids are supposedly
properly aligned; the +transformation of the surface
deflections are, thus, given by (Vanfgek and Krakiwsky,
1982):
z) . (& 0 -sin2o da
v i 1o 0 | af
-sindcosif/a -sindsini/a cosd/a dX,
+ . dY,
-sini/a cosA/a 0 dZ,

(5.1)

1] 1
where % ,77 are the surface deflections refered to the

original ellipsoid ( 2a=6378135 m ,1/f=298.257),
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da, df are the differences in the size and shape of
the ellipsoids (The parameters of GRS67 minus
those of the original ellipsoid), and
dX,, dY, , and dZ, are the differences of the coordinates
of the ellipsoid center with respect to the center
of mass of the earth (The coordinates of GRS67
minus those of the original). Here dX, =dY, =dZ_ =0.
In estimating the accuracy of the astro-gravimetric
curvature effect, there are two different kinds of errors
distinguished:
(1) error in the geoidal deflection.
(2) error in the surface deflection.
The error in the geoidal deflection has been already shown
in Table 5.7.
The error in the surface deflection stems from the

errors of the astronomic <coordinates and the geodetic

coordinates. Considering the astronomic coordinates, the
inherent errors have been estimated at 0"S5 in latitude and
0"6 in longitude (Rice, 1962). The systematic differences

between the star catalogues used are not expected to affect
the astronomic positions by more than 0"3 (Vanféek and
Merry, personal communication with G.Corcoran in 1972) While
the neglected reduction of the <coordinates to the mean pole
of 1900-1905 (Conventional International Origin) never
affects more than 0"4 in latitude (Mueller, 1969). The

effect on longitude can reach larger values. The distance
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between the instantaneous pole and the mean pole of
1900-1905 is typically 0"2. For points in Northern Canada (P
>66), the correction could be of the order of 0"S5 to 1"0
(Vanféek and Merry, 1973).

Considering the geodetic coordinates, the errors are

caused by three major effects: the ©propagation of the
observational errors from the initial point of the geodetic
network, the non-rigorous method of adjustment initially
used in the geodetic networks, and the incomplete reduction

of the observations used in the original adjustment.
An approximate formula for estimating the propagation
of the observational errors from the geodetic network has

been suggested by Simmons(1950):

. R VA
Proportional accuracy = M /20000 , (5.2)
where M is the distance in miles from the origin of the
network. An estimate for the standard deviation in
arcseconds is (Merry, 1975):
-5 2/3
Pm = 1"89x10 K (5.3)

where K is the distance in Kilometres from the origin of the

network.

Due to the initially wused non-rigorous adjustment
technique, the misclosures of up to 36m in Canada
(approximately 1") have been reported (Dept. of Energy,

Mines and Resources, 1972). 1In addition, due solely to the

adjustment constraints in New Brunswick, the relative errors
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of 0"2 in the horizontal position have been found (Krakiwsky
and Konecny, 1971).

The effect of the incomplete reduction of the
observations (without considering the horizontal angles) has
been estimated and does not exceed O"5 in Canada (Merry and
Vanicek, 1973).

On the basis of the above analysis of accuracy, the
errors of the astro-gravimetric <curvature effect can be

estimated by:

2 2 2 2 2 2 2
Oy =J(0+0+0+0+o+0+0)
AG g 0 s p m n r : )
2 2 2 2 2 2 2 5.4
OA? =,\/(0 + D+ 2+ 0+ 0) .
o6 g 0 s P m n r

where 05 is the error of the geoidal deflection, 06 is the
observational error - 0O"5 in latitude and O"6 in longitude,
OE is the error due to the star catalogues - assumed to be
OPB,OBis the error due to the polar motion - 0"2 for latitude
and O0"2tand for longitude, 0% is given by equation (5.3),
OBis the error due to the non-rigorous adjustment, and 0} is
the error due to the incomplete reduction to the ellipsoid.
The total errors of 0} and Gz are here assumed to amount to
o"s. The astro-gravimetric curvatures and their standard
deviations for the six NB points are shown in Table 4.8.
Comparisons between the astro-gravimetric (A-G) and
the Stokes-Molodenskij (S-M) curvature effects are presented
in Table 5.9. The standard deviations of the differences,

also shown in Table 5.9, are given by:



97
TABLE 5.8

The astro-gravimetric curvature effect (the difference
between the geoidal deflection and the surface deflection)

north-south comp. east-west comp.
St.
. _ id. ) - %
# geoid. surf. A-G 0k43 geoid surf A-G A-G
" " L] L " " " "
1 -3.10 -1.53 -1.57 1.67 -3.89 -4.02 0.13 1.65
2 2.20 0.27 1.983 1.67 -5.73 -8.38 2.65 1.66
3 2.06 0.91 1.15 1.63 -3.41 -4.16 0.75 1.65
4 -2.41 -2.50 0.09 1.67 -2.99 -3.09 0.10 1.65
5 -1.06 -0.74 -0.32 1.64 -1.74 -2.24 0.50 1.66
6 -1.64 -2.42 0.78 1.71 -2.05 -1.30 -0.75 1.64
2 2
A-G S-M 5
Osap = «/( Oy + Oap )
A-G S-M
As can be seen from the results presented in Tables 5.1
through 5.8, the <curvature effects of the plumb line

determined by the Stokes-Molodenskij formula are much more
accurate than those by the astro-gravimetric model. The
standard deviations of the differences between A-G and S-M
are, therefore, almost wequal to those of A-G. The only
value affected by Oé*ﬂis the standard deviation of the east-
west component at station 2. The differences between S-M

and A-G are smaller than the standard deviations of the
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TABLE 5.9

Comparisons between the astro-gravimetric (A-G) and the
Stokes-Molodenskij (S-M) curvature effects.

north-south comp. east-west comp.
* A-G S-m  diff. Oy¢ A-G s-M  diff. Oup
" " " " " " " "
1 -1.57 -0.06 -1.51 1.67 0.13 0.03 0.10 1.65
2 1.93 1.35 0.58 1.67 2.65 1.70 0.95 1.69
3 1.15 1.10 0.05 1.63 0.75 0.18 0.57 1.65
4 0.09 -0.08 0.17 1.67 0.10 0.04 0.06 1.65
5 -0.32 -0.03 -0.29 1.64 0.50 -0.01 0.51 1.66
6 0.78 0.08 0.70 1.71 -0.75 -0.03 -0.72 1.64
astro-gravimetric curvature effect. The results indicate

that the Stokes-Molodenskij curvature effects are consistent
with the astro-gravimetric curvature effects. In addition,
the astro-gravimetric model is uneconomical and time-

consuming.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Due to the uneven density distribution of the earth,
the plumb Ilines are bent and twisted. The ~curvature and
torsion are different from point to point and are very
localized. The effects are larger in mountainous areas than
in flat areas.

Some approaches for estimeting the curvature effect
of the plumb line have been formulated and tested. If we
use the method based on the gravity field model, then the
density distribution has to be well-known. If we use the
method based on the relation between the <curvature effect

and the orthometric height correction, +then a dense gravity

net around the computation point is needed. The need for
accurate knowledge of the crustal densties is self-evident
in using the method based on density modelling. Thus good
accuracies for the <curvature effect of the plumb line from
those methods cannot be expected (Ndyetabula, 1974). If we
utilize Vening Meinesz’s and Molodenskij’s formulae, it
becomes laborious and time-consuming to calculate the

geoidal and Molodenskij’s deflections separately in order to

determine the plumb line curvature effect.
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The objectives of the work undertaken for this thesis

were to practically test another approach for the evaluation
of the plumb line curvature effect. The method, developed
by Vanicek and Krakiwsky (1982), is based on the combination
of Stokes’s and Molodenskij’s approaches. From the results

shown in the last chapter, +the Stokes-Molodenskij curvature

effects are consistent with the astro—gravimetr?cally
determined curvature effects, but our method gives a much
higher accuracy. In addition, it is easy to apply. The
determination of the <curvature effect of the plumb line is

no longer a difficult work.
The analyses in Chapter 4 show that the contribution

of the difference between the free-air anomalies on the

geoid and those on the earth’s surface is very small. It
can be neglected without loss of accuracy. The curvature of
the plumb Iline is mainly affected by +the surrounding
topography to a spherical distance of < about 13’

(approximately 24 km).

The Tables in last chapter demonstrate that the
terrain profile effects (point effects) along the north-
south and east-west directions are usually more significant
than the regional terrain and gravity effects. In other
words, the local terrain contributions dominate the
phenomenon. Therefore, the slopes of the terrain have to be

accounted for very carefully.
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In this work, the method based on the combination of

Stokes’s and Molodenskij’s approaches is first tested to

determine the curvature effect of the plumb line. A formula
which combines the geoidal and Molodenskij’s deflections of
the vertical is called the Stokes-Molodenskij formula. A

contribution is also made in the development of an algorithm
for numerical evaluation of the Stokes-Molodenskij formula.
Another contribution is made by formulating an algorithm for
terrain slope evaluation.

Since the curvature effect of the plumb line is
position-dependent and since the variation from point to
point is large in mountainous areas, it is difficult to
predict the plumb line curvature effect from the point plumb
line curvatures already known. Tables 5.1 through 5.6 show

that the <contribution of the regional terrain and gravity

effect is at most about O"1 in New Brunswick and seems
smooth. For further studies, it is recommended that the
curvature effect of the plumb line may be computed for other
points in Canada. If +the contributions of the regional
terrain and gravity effect are smooth, then it is also
recommended that the prediction of the plumb line curvature
effect may be done in two steps. First, use available data
for the contribution of the regional terrain and gravity
effect to predict the contribution of wunknown point.

Secondly, determine from the topographic maps or field works

the local terrain contribution.



Appendix I

THE LEAST-SQUARES APPROXIMATION

The problem of approximation can be defined as
follows: given a function F, find another function of a
prescribed general form to represent the given function F in
a specified way (Vanféek and Wells, 1972). The given

function can be represented by 2 generalized polynomial:

n
P(t) = 2 =2-Q (t) , (1.1)
i=1 i i
where a, are the coefficients of the polynomial,
n is the number of coefficients, and
Qi(t) are the prescribed functions: they may be

functions of one, two or m variables.

Provided that the ©prescribed functions are linearly
independent of one another, they are called base functions.
If and only if (:.1.=_{Q1 .QZ.....,Qn} is a base, the least-
squares determination of the coefficients of the polynomial
is unique.

Let f be the given function (The functional values f
are the Bouguer anomalies in section 4.2, and the tangents
of the terrain inclination in section 4.6 respectively).
After the base functions are selected, the coefficients are
determined from the least-squares procedure (ibid., p.21):

- 102 -
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> <@, Qa>a =<f, Q> , j=l.,2,..., (1.2)

pol

where the scalar products <Q ,Q > and <f, Q@ > are defined by:

ik j
n |
@, a>=2> w-a (¢)a (¢)
j k i=1 i k
(1.3)
m
F oAy =2 w-f(e)a (vy)
J i=1 i ]

and m is the number of data points (functional values of
f ) used,
Wi is the weight function, and
f(ti) is the i-th functional value.

Equation (I.2) can be written as a matrix form:
G.a = L . (1.4)

Then, the coefficients of the polynomial are determined from:

-1
a =G -L, (1.5)
where G exists if and only if Q is a base function. After
the coefficients are obtained, residuals can be computed

from the observed data f; and the estimated P(t;), given by
(1.1):

Vi = f; - P(tg) i=1,2,....,m (1.6)

2
The variance factor 0; is then determined from:

0" .7 (1.7)
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and the covariance matrix of the coefficients is:

2 _
¢ = gt (1.8)
~aq o =
According to the law of propagation of covariance, the

variance of the predicted value P(t) at any point t computed

from (I.1) is given by:

S
n

1o

160

(1.9)

1o



Appendix II
DERIVATION OF EXPRESSION FOR MEAN GRAVITY
ANOMALY

The mean gravity anomaly Ag is given by:

Ag = EJAAg-dA. (11.1)

A

In a local cartesian coordinate system whose origin is at an
arbitrary point, if the coordinates of the midpoint of the
i-th block are (Xi'Yi)' and those of the'four corners of the
block are (Xi+r,Yi+s), (Xi—r,Yi+s), (Xi+r,Yi—s), and (Xi—r,Y‘

i
-s), then

Xi+r Yi+s

1
Ag = I J Ag - dX-dY (11.2)

4rs

Xi—r Yi-s

where r,s are halves of the north-south and the east-west

extents, repectively. The anomaly Ag is approximate by AE:
- 2 J ok
ag(X.Y) = > a X .Y . (11.3)
j.k=o Jk

Hence, in its fully expanded form, (II.2) may be written as:

- 105 -
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Xj+r Yj+s

—_ 2 2
A9 / f (aOO + 8, Y+ 205 Y + 3 X+ 2., XY+ a12

Xi-r Y;-s

+a X+ a -X“Y+ azfxz-Yz)dX-dY . (11.4)

20 21

Evaluating each of the integrals in (II.4) yields

1 a a a 2 a 2 2
(a,, XY+ 2O xy2, 102y 3, T10Cy, 1 4y

2 3 2 4

20 2.3 3y 3 8y 3 2
s 2Oy Ay, ATy

6 3 6

X: +r

i Y, +S

a
. 224343

9

(11.5)

X=Xi -r Y=Y -s

and the mean gravity anomaly Ag is given by:

2 52

A—g=a +a-Y-+a.(Y

00 01 i 02 )+ a

Xj+ a, X,

11 lYl

10

2 i
20'(Xi + )+ 32,'(Xi'Yi+ - )

2 2 Xj-s Yij-r r-s
+ a22-()(‘~in+ A + + ) . (11.6)

or, it may be written as:

Ag = Ag(xi 'Yi) + aoj ; "
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If the origin (XQ'Y,) is selected to coincide with (Xi'Yi)'
then equation (II.7) becomes:

g= a _+ a _--— + a -— + a

(11.8)



Appendix III

DERIVATION OF THE CENTRAL BLOCK CONTRIBUTION

The contribution of the central block is:

1 coso
A = jf AG - -ds - dox
51,2 270 n /4, s
' (111.1)
1 s | nX
A = [[ AG - ‘ds - dot
Y]1,2 2T(Km A, s
and
1 H-H
AG = ——JJ ———Z—E ~A§~ds~do< s (III.Q)
2 24A, s

where A, is the area of the central block and 4A; is the the
area of the circular ring compartment.

If the values of A’g and H are replaced by the mean
values of Ag and H for the compartment, equations (III.1)

and (III.2) become

1 m %S cos«
AT - : [f Ag ‘ds-dot
1.2 QTEYm i=1 i s
%y Sy
(111.3)
1 m %5 sind
A = v : fj AG ‘ds - dxX
1,2 2T 8m 1=1 'S, i s
and
1 %25 H-H
i 27 x.'s s i

[N
-
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where m is the number of the compartments used,
0(1' azare the boundaries of the compartment for azimuth,
s,, s,are the boundaries for distance,

H.. is the mean height of the compartment, and

E‘_ is the mean free-air anomaly.

Integrating (III.1) and (III.2) over s, we obtain

1 m_ %2
A = ZjAG-costX'ln(s [s,) dox
gyz 2mthn TSI/ 2
1 (111.5)
1 m_ oy
A = rAG-sino(‘ln(s /s, ) dox
Y?LZ 27 fm =1l 20
and
1 72 1 1
AG = — r(H_H ). &5 - (=== ) dot . (111.6)
e Lo i s, s,

Performing the integration over &, the contribution of the

central block is given by:

1 m
Ag =27[gm E AGi'(sino(2~sino<1)~In(sz/s1)
(111.7)
1 m
AV =27(2(m .Z=:1 AGi-(cosa<1— cosdz)'ln(sz/s1)
20 1 _ 1 1
AG = ——‘(og—x1)-(n - H )ag (—--) . (111.8)
i 2T i p i s s

1 2
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