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1. INTRODUCTION

1.1 Statement of the Problem

Network densification has, until recently, been the only way
of making the positions of surveyed points both technically and econom-
ically accessible to the users. It is a prerequisite for establish-
ing an integrated survey system [Brown, 1976; Blachut et al., 1979].
The requirements imposed on points of the integrated survey system
by the wide range of users include various position information
and point locations, monumentation and spacing. Accuracy requirements
include the stringent 5 cm and 1 cm (with 400 m spacing or less)
for 1:500 large scale mapping and relocation surveys in urban areas,
respectively, and the much lower 5-10 m requirement for medium scale
mapping at 1:50000 scale [Lebedev, 1974; Blachut et al., 1979].
Network densification provides these requirements in several stages.
The major concern is that at each stage in the heirarchy, the densifi-
cation network can be improperly defined within the existing networtk.
The prime purpose of this research is therefore to study the various
techniques of adjusting 2D densification networks rigorously in the
coordinate system of the existing network. However , since several
techniques exist which lead to rigorous solutions this research will
examine the techniques and the rigour of the solution in-context

of practicality and economy. The work reported here shall embrace three



main areas: (a) Analysis of rigorous densification schemes including
post-adjustment correction considerations, (b) statistical testing

of densification networks as solitary networks and in conjunction with
the existing networks and (c) possibility of strain analysis applica-

tions to quality control of densification networks.

1.2 Rigorous Densification in Perspective

Densification in surveying and geodesy is the addition to
the quantity of network points and hence to their density per unit

area by designing, observing and adjusting a densification network,

82 = {xj,xn} in the coordinate system of the existing network
S1 = {xe,xj}. The result of densification is a densified network
S = {xe,xj,xn} consisting of the existing non-junction points Xgo

the junction points Xj and the new points X - In the sequel the
subscripts e, j and n shall be used to refer to the existing non-
junction, the junction and the new points, respectively.

The positioms of the points are estimated from the obser-

vation vectors 11 and %, procurred in the networks S1 and 82 using

the method of least-squares. A subnetwork of junction points

S, = {xj} can be estimated from both the L) and 7, observations. It

establishes a link between S1 and S, which would otherwise be dis-

slﬂ s, 1.1

An example of the geometrical connectivity within the densified

jointed, 1i.e.,

S

-
S

m

network is shown in Figure 1.1.

A number of ways exists through which the positions of the



Existing points (non-junction)

Junction points

New points

Figure 1.1: A Densified Horizontal Geodetic Network.



densified network can be modelled and estimated to provide a minimum
norm least-squares solution [Bomford, 1971; Mikhail, 1976; Vanicek
and Krakiwsky, 1982]. Rigorous densification examines one of the ways.
The adjective rigorous is defined in Funk and Wagnalls New Standard
Dictionary of the English Language [Funk and Wagnalls, 1963] as
"logically accurate; exact; strict". A densification shall be
regarded rigorous 1if the positions ot the points in S2 are as accur-
atcly determined from any conccivable mathematical models as they
are when Sl and S2 are adjusted together using minimal constraints
while incorporating all a priori position information available.

The densification shall be known as non-rigorous if the position and
error estimates of the points of Sj otherwise adjusted are different
from their estimates obtained from a combined adjustment of S1

and 52.

Depending on the mathematical models, rigorous solutions

X )
n

(;i,C*‘) and (gl,C; ) can be obtained from S2 using the 22 observations
i

alone IPapo, 1973; Blaha, 1974; Mikhail, 1976]. The logic and

exactness in this case, should be sought in the mathematical,

statistical and gecometrical formulations that lead to:

a) the propagation of the effect of the existing network into the
densification network,

b) minimization of the effect of the random errors of the observables
on the estimated positions, and

c) an assessment of the densification results, and testing of their
statistical significance.

Although the approach focusses on S,, it is a reversible one.



Mathematically speaking S] can be treated as a densification of S,.

The positions X and X, can be estimated within the coordinate system
of S,. Practically, such a process is necessary if the existing

points X, are to be updated after the rigorous densification.

The gencral functional relationship between the observables,
with weight matrices P1 and Pz, and the point positions when the
combined adjustment of S and S, is contemplated is:

F{x_,x.,x ,¢ £7) = 0 : I‘I,P2 1.2
The same relationship is established when merging 815 {xe,xj}

= {x ,x.} to S = {x ,x.,x_} .
SR e ]

with S, = {x,,x } or extending S n

2 ] 1

Similar to the mathematical formulation (1.2), network extension and
merger do not include the point density requirement. Densification,
extension and merger of networks are mathematically equivalent
operations [Vanicek and Krakiwsky, 1982]. Therefore, the rigour

in merging or extending two networks must also be defined within

the context of a simultancous adjustment of Sl and S,.

1.3 Selecting the Approach to Rigorous Densification

1.5.1 Direct and indirect approaches

The selection of the combined (simultaneous) adjustment
as the logical technique against which the rigour of the densification
solution is to be judged is supported by basic principles of least-
squares adjustment of overdetermined systems. We seek to estimate
the positions ;j and ;n by minimizing the quadratic sum of the

residuals i1n a sclected, for the adjustment, coordinate system using

all available observations. liven in the absence of systematic
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errors, the solution (xi,C§ ) from the independent networks Sl and
. 4

S, will be different in each case and different from that obtained
from the combined adjustment [Mikhail, 1976; Haymov, 1980]. This 1is
due to difference in redundancy [Hamilton, 1964] and geometry of the

junction subnetwork in S and S,.

1
The independent adjustment of the densification network,

can be improved to incorporate the effect of the 1. observations

S 1

o4

on the junction points and subsequent propagation into the new points
by introducing an auxilliary mathematical model to be used together
with the main mathematical model. The analytical expressions for the
least-squares solution of densification networks using the weighted
position constraint adjustment or the Px-adjustment were first derived
by Papo [1973]. The expressions lead to the same solution for the
junction and new points as would the combined adjustment. Empirical
results from comparing the two approaches given in Nickerson and
Knight [1983] show that the equivalence of the two methods depends
on the Px-matrix. The weight matrix, Px, must be the inverse of the
covariance matrix of the junction points obtained by adjusting S1
independently.

Rigorous densification can also be achiceved indirectly,
by correcting a non-rigorous densification solution. The method

requires the computation of a correction V&' that can be added to the

non-rigorous estimate X' to give the rigorous solution x. Choosing
between this approach and the direct methods, 1.c., comblincd and
weighted position constraints adjustments, will depend on two factors.

First, the a priori vectors and matrices nccessary to mune the method

feasible must have been preserved (sece Table 1.1). These include



Vectors and Matrices Involved in Various Rigorous

Table 1.1:

Densification Schemes.

A - Minimal Constraint Adjustment

B - Over-Constrained Adjustment

| [ 1 |
| ' | !

| l [~ ) P 1 P23 1 ! - - “ ! !
! [ [N 1

l 1 = [

1 1 ' 1

t 1 = 1

| l o 1 |

| t o 1

| [ B
' [ (ST [

1 [ [OJ] [

| ' o |

' = - ]

| o | QO | < i >~ | > 1 > = ~ | | !
! - (G '

i S| | |

| [ | |

t (S | |

] - )

| G |..._||||_ |||||||||||||||||||||||||||||||||||||||||||||||||
1 o 1

! no IS

| oo oot

| o | (ORI

) = =

' 1 b FEE

| S [ (720 1 ~ ' - e = 1 | | | -~
| o | =

1 ! — 1

1 = o]

' o ! < 1

1 o~ !

1 PO 1

1 (ORI '

[ bR | .

l ' 2ttt
) | |

| ) t

] 1 2 ]

[ | ~ vl

1 | ) [SI

' ! = = )

1 | | ) 1

' ! fa) wo . ~ ~ - ' [ ' 1 [ < P
1 | = = 1

| ' [e) —_ 1

[ | (&5} =

[ 1 < |

! | 1

' | [

[ !

| et gt
| 1

1 - '

| = |

! e} I

] - " | ——

' ) %2} [T [ ~ —_
i — —~ (S [&5) - b o o
[ — o) -t — ) — O ey - [ oL~ o
| »} - —~ o < < (oW o <« A 1] <« (D] < A ~
i = O o

t ) ) < “

[ - = o



. 1 . . . . .
the solution xj of the junction points obtained from the adjustment

. . . o -1 . .
of Sl’ 1ts covariance matrix Cxl = Px 7, the difference APx in
o
weight matrices used in rigorous Px and non-rigorous Px' adjustments,

~

the non-rigorous solution x' and the covariance matrix, C;'. Second,

the method must prove economical over the alternatives.

1.3.2 The ecconomics of 2D densification

The cost of adjusting a network is the sum of resource
investment in digitizing the obscrvations whenever necessary and the
cost of running the software on the computer when it is available.
Additional costs of software development and even development of
mathematical models must be considered in some instances. The cost
of digitization and running the software is determined by the
dimensions of both observation and parameter vectors. Selection of an
appropriate densification scheme on the basis of cost criterion is
heavily biased against the combined adjustment of S1 and SZ’

The choice between the Px-adjustment and the correction of
non-rigorous densification solutions depends largely on whether or
not a non-rigorous densification has been completed, and whether
or not the non-rigorous solution (;‘,C;') has been preserved. Under
these circumstances, a comparison of the least-squares expressions
is made to determinc the total number of operations and storage
requirements necessary to achieve a solution. In the absence of a
non-rigorous solution and with the availability of the solution
(;;,C;l), the weighted position constraint adjustment method is the

3
most economical one. TFor example, in an adjustment of 1.3 million



observations and 40,887 stations of the Land Registration and Inform-
ation Service (LRIS) Maritime nctwork with 267 weighted constraint
stations [Nickerson, 1981], only 5% of the 5800 Canadian primary
netvork points [McLellan, 1978] were used. This reduced the dimensions
of the normal equations matrix by 12.64% with significant computer-
time savings.

The drawbacks of the !'x-adjustment compared with the combined
(simultaneous) adjustment liec in the necessity to have the solution

(x],C; ) and S1 stored 1n  a retrievable form, in order that the

1
complete Px-matrix can be extracted. This factor cannot be over-
emphasized. There cannot be a substitute for the rigorous Px-matrix.
A network adjustment with a diagonal Px-matrix carried out by Thomson
[1976] showed that the adjustment results when the covariances are
neglected are statistically compatible with adjustment results
without weighted position constraints. It is therefore imperative
that the Px-matrix be the fully populated inverse C;i . The cost of

J

storage must be considered to be part and parcel of the cost of the

Px-adjustment.

1.4 Effect of Inconsistent Obscervations in 2D Networks

1.4.1 Random crrors

Geodetic observations are alwavs inconsistent with the
mathematical model. The inconsistency A7 has traditionally been
decomposed into random and systematic components, Aﬂr and AQS; res-
pectively, and studied indepenﬂuntly of cach other [Moritz, 1980;

Vanicek and Krakiwsky, 1982]. 7The cffect of inconsistencies in
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observations on the estimated positions can be minimized by minimizing
both components.

The cffect of random error propagation can be considerably
reduced by improving the statistical strength of the network at the
design stage. The classical approach of using controlling baselines
and Laplace azimuths have always been measures of improving the
statistical strength of the network. Other post-adjustment techniques
are given in Dare [1982] and Welsch [1982]. The use of Doppler points
in terrestrial networks is credited with improving reliability
[Thomson, 1976] and improving accuracy by up to 3 times the original
accuracy [Pinch, 1974; Moose_and Henriksen, 1976; Salih, 1984].
Doppler points strengthen the network both statisticallv and gcomet-
rically [Burford, 1980].

The effect of random errors on the estimated positions ;
is fully described by the covariance matrix, C;. The covariance
matrix of estimated positions, however, is meaningful only in the
absence of systematic errors. It is for this reason that the assess-

ment of adjustment results can only be made objective when the effect

of systematic errors on the results is negligible.

1.4.2 Syvstematic errors

Systematic errors in terrestrial networks can be classified
as observation errors and projection errors. Observation svstematic
errors include: errors in horizontal angles due to lateral refraction.
In first order networks this is in the order of 2 arc scconds

[Bomford, 1971]. Systematic error in electro-magnetic distance
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measurements (EDM), due to inadequate modelling of meteorological
data (pressure, humidity, temperature), account for 4 ppm of the
derived distance [Deumlich, 1967; Jones, 1974; Lebedev, 1974;
Laurila, 1976]. Timing errors in astronomical observations are in
the order of 1.5 arc seconds {Kuznetsov, 1966; Merry, 1975; Mueller,
1977]. Errors in star positions in the star catalogue are estimated
at 0.4 arc seconds [Ibid.]. vAll of the above are in addition to the
random errors after the observations have been screened by various
techniques such as trend analysis [Blais, 1976; Vanicek and
Krakiwsky, 1982]. Furthermore, the analvsis of systematic errors,
which were not modelled before network adjustment, can be done within
the adjustment procedure [Zimovnov, 1960; Sunter, 1967; Markuze,
1974]. Claim on total modelling and removal of systematic errors
from the observations has not been made in geodetic literature. It
no doubt remains the single most important problem in improving the
accuracy of positions in geodetic networks. Systematic errors in
observations often affect all similar observables in the same way.
Such errors are difficult to unveil and are a major cause of distor-
tions in estimated positions in networks.

Projection errors affect all networks computed on a refer-
ence ellipsoid. Projecting observations onto the ellipsoid requires
a knowledge of the orthometric height H, the geoidal height N and
the astrogeodetic deflections of the vertical ¢ and ng at each
point of the network [Clark, 1961; Zakatov, 1974; Thomson, 1976;

Vanicek and Krakiwsky, 1982]. These quantities are normally not

available for every point and can only be estimated. The surface



fitting technique [Merry and Vanicek, 1973] used to compute N at
points not observed gives an error of up to 2 m [Merry, 1975].
A Doppler derived geoid or a combination of gravity data with either
GEMLIO or GEMIOB [Lachapelle, 1978] gives relative accuracy in Canada
for N at better than 1.0 m. This gencrally depends on how recliable
the gravity data are. Network distortions due to uncertaintics
in geoidal heights in, for example, the Labrador chain of the Canadian
primary network are estimated by Thomson et al. [1974]. There,
rigorous reduction of the single available distance in the network
is reported to change the scale of the network by -1.7 ppm. Rigorous
reduction of the directions to the ellipsoid changed both the scale
and rotation by -1.2 ppm and -0.065 arc seconds, respectively.

The adjustment of networks by adjusting the observations
in a height-controlled spatial system of coordinates, usually in a
local astronomical system, without reducing them to the ellipsoid
[Vincenty and Bowring, 1978], bypasses the procedure that is account-
able for the projection errors. The direction of gravity must be
known, however, at every point of the network in the form of astron-
omical coordinates. The accuracy of this technique therefore rests
with the accuracy with which astronomical positions (observed or
interpolated) are determined. Canadian primary networks in the 1983
adjustment of the North American Geodetic Networks (NADS83) will be
partly adjusted in a height, controlled spatial svstem [Steeves,
19847].

Svstematic errors in networks established by satellite
techni&ucs (Doppler and NAVSTAR/GPS) have a different character from

those alrecady described. The crrors can be classified into three



groups: satellite crrors, propagation errors and receiver errors
[Hittel and Kouba, 1971; Wells ct al., 1981]. Satellite errors are
errors due to the ephemerides and satellite clock. Propagation errors
are crrors due to unmodelled ionospheric and tropospheric refraction.
Receiver errors include measurement noise, truncation and computation

errors.

1.4.3 Error analyvsis

Rigorous densification does not imply, in any way, that
the rigorous solution will be free of the effects of random and
systematic errors. The two sets of position estimates of the points
of the junction subnetwork S3 offer a tool for further investigation
of these errors. Thomson [19706], Beattie et al. [1978], Cooper and
Leadhy [1978] and McLellan [1978] have investigated terrestrial
networks using more accurate Doppler Networks and were able to
separate the misfit in the positions into two main components:
errors in the terrestrial observables and errors due to difference
in adjustment schemes. Thomson found, for example, that some of the
observations in the terrestrial network were statistically incom-
patible with the rigorous weighted position constraint adjustment
results ot the same network. Six observations were flagged for
rejection when the terrestrial and Doppler networks were combined.
In the light of these investigations the junction subnetwork in
rigorous densification offers the rare opportunity to compare the
'old' and 'new' observations, 11 and 22, every time a densification

is made. In so doing, the correlation between the existing and the
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densification network must be established. The covariance matrix
of the position differences must be derived unambiguously and a
testing procedure must be established to check whether or not the

existing and densification networks are statistically compatible.

1.4.4 Strain analysis

A novel approach to study distortions in geodetic net-
works is the strain analysis technique described in Vanicek et al.
{1981] and Dare and Vanicek [1982]. The technique can be used to
investigate causes of a non-zero displacement vector. In the absence
of physical motion of the monuments, the displacement vector of the
junction subnetwork point positions is caused by inconsistency between
the observations 21 and 22. The inconsistency is related linearly
to the strain vector. Transforming this inconsistency into strain
gives a unique view of the kind of distortion experienced by each
point - in rotation, extension or compression and shear. On the
other hand, given the strain parameters, it is possible to formulate
an inverse strain analysis problem to study the poss}bility of
recovering the inconsistency responsible for a particular strain.
An ambiguity to be resolved is whether the inconsistency is to be
connected with 21 or ﬂz observations. The strain analysis technique
can be applied in conjunction with statistical methods. The hierarchy
of the techniques should be as follows: statistical testing based
on residuals in both adjustments, compatibility testing to show

whether or not the networks are statisticallyv compatible, and strain

analysis to give an insight into the causes of the incompatibility



1f it exists. Thus, strain analysis 1s onlv required when the two
scts of points of the junction point vectors or subvectors thercof

are statistically incompatible at a desired confidence level.

1.5 Transit, GPS, Tnertial and Photogrammetric Densification

of 2D Networks

Horizontal networksvfor mapping, engineering, land and
resource management surveys have traditionally been established using
the methods of triangulation, trilateration and traversing. Under-
lying these methods is the principle of working from the whole to the
part [Clark, 1961], i.e., a sparse network is densified by a less
accurate network until the required density of points is attained.
This concept of positioning through densification using classical
methods is tantamount to a step-wise increase in the density of
points accompanied by loss in positioning accuracy at each step.

All classical methods require visibility between adjacent network
points during the observation campaign. Intervisibility limits

the station separation usually to less than 50 km, determines to
some extent the network geometry and increases the time and cost of
the campaign [Langley et al., 1982; Vanicek et al., 1983].

The modern positioning techniques of Doppler, GP'S, inertial
and photogrammetric surveys are not limited by intervisibility.

They offer the possibility of establishing a dense network of points
in one or two steps. Their accuracy capabilities (see Figure 1.2)
are much higher than is possible with the classical techniques.

These techniques are therefore more cost effective than the classical
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methods ([Brown, 1976; O'Brien, 1979; Langley et al., 1982]. Densifi-
cation with techniques yielding higher positioning accuracy than the
existing network is now a reality.

The transit system is capable of providing a network of
uniform accuracy points (with approximately 100 km spacing) in 3D
[EMR, 1978; Wells, 1980]. Such a network can be established using
multistation multipass data and the precise ephemerides with 30 cm
position repeatability [Wells, 1980]. The GPS system has the capa-
bility of providing a network of points at 10 kilometre spacing with
accuracy of 1-3 ppm of baseline length [Counselman and Steinbrecher,
1982; Beutler et al., 1984; Bock et al., 1984]. The system has a
potential of better than 1 ppm in accuracy of baseline length
[Goad and Remondi, 1984]}. Both the Doppler and GPS 2D networks
defined by projecting the 3D coordinates onto a selected geocentric
reference ellipsoid provide a horizontal framework for other survey
systems, classical or modern [Vanicek and Krakiwsky, 1982].

Inertial Survey Systems (ISS) have a wider range of applic-
ation compared to classical techniques but are generally less accur-
ate (see Tigure 1.2). Inertial positioning is versatile for rapid
densification of surveys over large areas as shown by Doxey, Jr.
[1977)} and Mueller [1981]. Densification using the inertial survey
system requires that an existing network be of 80-100 km spacing or less
[Schwarz and Gauthier, 1981]. This technique has proved to be twice
as productive as EDM traversing in areas of normal terrain [O'Brien,
1979]. The dependency of the inertial positioning technique on the
existing network must also be viewed in light of the rigorous densi-

fication described earlier. As was stated in section 1.2, the
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covariance matrix of existing points must be used rigorously. One
way to improve the ISS system may be to incorporate the Px-matrix
in the onboard computer software.

Positioning by aerial triangulation gives the same advantages
of the ISS in areal coverage and productivity but with higher density
at comparable accuracies. The state-of-the-art method of adjustment
is the bundle adjustment with self-calibration described by Brown
[1976] as follows:

"The adjustment involves the simultaneous,

least-squares triangulation of all bundles

of rays from all exposure stations to all

measured ground points in a process which

also (a) recovers the elements of orient-

ation of all participating exposures, (b)

adjusts the control survey (in accordance

with its postulated accuracyy and

(c) estimates coefficients of error models

that describe the residual systematic errors
affecting the plate coordinates."

The bundle adjustment with self-calibration to obtain
photogrammetrically determined ground coordinates is a rigorous one
according to the definition in section 1.2. However, the method used
to transform photo-coordinates into geodetic coordinates is not.
Consequently, transformation using a least-squares fit as used in
aerial triangulétion [Ackermann, 1981; Forstner, 198la, 1981b] does
not yield the same results as, for example, the Px-adjustment. This
comparison is also made in section 4.3.5. The accuracy achievable
in photogrammetric densification depends largely on the accuracy of
the existing control. Densification of a GPS network by aerial
triangulation can therefore provide advantages in accuracy and
productivity which is unprecedented by any other two-step densifi-

cation procedure.
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1.6 Special Requirements and Rigorous Densification

Rigorous densification as defined earlier will yield
rigorous results which may not agree with what some groups of users
would like to obtain. The possibility of changes in junction point
positions, their covariance matrices (or both) is indeed very likely
in rigorous densification. Engincering concerns, for example, focus
on obtaining as high relative accuracy between points as a special
purpose network can give. Cadastral survevors are concerned when
significant changes in the land data files are contemplated.

Rigorous and“non—rigorous densification have one common
drawback for engineering and cadastral surveys - dual position inform-
ation on the junction points. Dual positions defeat the basics of
precise and reliable location and identification of property boundar-
ies and in some cases the discrepancy may not meet cadastral standards
for parcel identification. Dual positions can necessitate constant
updating of land information data which is not only an expensive
undertaking but also prone to confuse the user. It is a desirable
condition that the geodetic framework and hence coordinates on
which a cadastre is based remain unchanged and of adequate accuracy
and precision to permit svstem operation at the parcel level. The
same 1s required for base maps compiled over an epoch of time
[Chatterton and McLaughlin, 1975; National Research Council, US,
1983].

[n Engineering networks, when the main concern 1is on
the internal consistency, special purpose networks are established.

This is particularly true in deformation surveys [Chen, 1982], in
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construction surveyvs [Lugoe, 1978; Teskey, 1979] and in municipal
and utility surveys [Blachut et al., 1980]. When it becomes neccessary
for the networks to be tied to a higher order network, necessary
design precautions are taken to minimize the effect of the higher
order network on the enginecering survey network. Proposals have been
made to reformulate design standards of hierarchial municipal net-
works in such a way that higher order networks will have only marginal
effects on subsequent cityv survevs [Lebedev, 1973, 1974; Adler et al.,
1979; Blachut et al., 1980].

These cadastral and engineering concerns, coupled with
data base management requlrements described earlier for the rigorous
weighted position constraint adjustment, have traditionally been a
source of skepticism about the usefulness of a rigorous densification
as performed in this research. A band-aid alternative has been to
use the overconstrained schemes of adjustment. One such scheme
particularly appealing, tor example, to cadastral concerns is the
Blaha algorithm (Blaha, 1974; Chamberlain, 1977]. The adjustment
suppresses a second set of positions of junction points from being
estimated, while i1mproving the uncertainty of the existing positions
to equal the would be hypothetical rigorous positions. Over-
constrained solutions often result in scemingly more accurate results
[Cooper and Leahy, 1978]. However, such results are not realistic
because they are based on false pretenses. If absolute constraints
were imposed on all points for example, the covariance matrix of
estimated positions would be a null matrix which implies a perfect

solution. Such a solution is wrong because paramcter estimates from



non-deterministic observations must have a certain degree of uncer-

tainty.

Special interest user concerns are regarded here to be

secondary to rigour and will not be discussed further.

1.7 Goals and Contributions

The goals of this rescarch can be stated as follows:

1) To derive the least-squares expressions which make the Px-adjustment

3)

4)

solution equivalent with the combined adjustment solution for the
densificatlion network and to state clearly the limitations within
which the equivalent solutions are guarantced.

To formulate non-rigorous densification schemes similar to the
Px-adjustment by giving a meaningful interpretation of a fixed-
point in network adjustment. To derive simple, economical and
practical expressions required to correct non-rigorous densifi-
cation solutions.

To investigate the use of compatibility testing in densification
networks using the two sets of solutions of the juncfion points.
To derive the weight matrix of the position differences of the

two junction solutions required in the test for compatibility and

~to examine the merits and demerits of such a test.

To attempt, using the novel strain analysis technique in densifi-
cation networks, to study gross-errors in the observations. To
investigate the sensitivity of the strain technique to unveil

the presence of gross-errors in conjunction with the statistical
compatibility test. To give, if possible, the mathematical

formulation of an inverse strain analysis problem which, if



5)

4)

5)

0)

solved, uncovers the inconsistencies in the observations responsible
for the strain in a given network.

To derive expressions which can be used to correct a densification
solution for minor changes in the matrices and vectors involved

~(0)

and vectors L, and x

in the adjustment. The matrices Px, Pz

will all be considered.

The contributions made in this work are as follows:
Derivation of the least-squares expressions of both the combined
adjustment and the Px-adjustment by considering a priori inform-
ation on the existing and new points.

Proof of the equivalence of the combined adjustment with the
Px-adiustment solutions and derivation of the Px-adjustment from
the combined adjustment algorithms.

Application of the concept of stochastic Taylor points to densifi-
cation networks and derivation of covariance matrices using a
finite covariance matrix of existing positions.

Formulation of non-rigorous densification models using weighted
position constraints. The limiting cases of the diagonal elements
of the weight matrix, Px has been applied.

Derivation of expressions required to economically transform
non-rigorous into rigorous solutions (for the improper use of

the Px-matrix). The Px-adjustment solution has been compared

with the fixed-point, overconstrained and fixed-point with trans-
formation solutions.

Practical applications of the statistical compatibility test to

check the compatibility of the existing and densification solutions.
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A computer program CTEST has been developed to perform any test
for compatibility of two network solutions.

7) The cross-covariance matrix between the existing and densification
solutions has been derived and the weight matrix of position
differences of the junction points has been confirmed.

8) The novel strain analysis technique has been introduced to densi-
fication networks.

9) The strain analysis technique has been used to study strain effects
of the existing network and the strain effect of gross-errors on
the densification network.

10) A mathematical formulation of the inverse strain analysis problem
has been made.

11) Expressions have been derived to effect changes in the rigorous
densification solution for minor changes in input data (Px and
P2 matrices, % and ;(O) vectors) cost effectively.

This study presents a systematic study of the problem of
rigour in the densification of horizontal networks. The most
comprehensive way to incorporate new points in an ex{sting network
rigorously is by simultaneous adjustment of the existing (old) and
new observations. The formulation of mathematical models and estim-
ation of positions and corresponding covariance matrices (using a
priori information) is the essence of chapter 2. Themost elegant
way of adjusting densification networks rigorously is by weighted
position constraints - the Px-adjustment. The mathematical models
for this type of adjustment and solution for the position and error
estimates of the densification network is the subject matter of

chapter 3. Chapter 4 discusses various algorithms with which



non-rigorous densifications can be corrected to rigorous ones. A
comparison of non-rigorous solutions with the rigorous solutions of

a simulated network 1is also made. Chapter 5 illuminates the question
of statistical testing of densification networks. The possibility

of formulating and testing hypotheses on the residuals and the posi-
tions is the essence of this chapter. The merits of compatibility
testing in densification networks are discussed with aid of simula-
tion studies. The strain analysis of inconsistent observations as
applied to densification networks is discussed in chapter 6 in which,
the inverse strain analysis problem is also formulated. Simulation
studies are also carried out to investigate the strain effect of
gross-errors in densification networks. Chapter 7 examines algorithms
required to correct for the effect of various blunders in the adjust-
ment process such as blunders in data entry for the initial positions,
the Px-matrix, observations and observation weights. Algorithms to
correct for the reobserved elements of 22 are also given in the same

chapter. Chapter 8 concludes this study.



2.0 RIGOROUS NETWORK DENSIFICATION BY A SIMULTANEOUS

ADJUSTMENT OF TWO NETWORKS

2.1 The Scope of the Problem

Any two horizontal geodetic networks can be adjusted
simultaneously (i.e., together) if the networks are designed in
such a way that:

a) observations linking the two networks are procured, or

b) a set of common junction points cxists, or

c) both a) and b) are considered.

The system of equations in each of the networks will be dependent
upon the other in all three cases.

The design of densification networks 52 = {xj,xn} always

includes a subnetwork of junction points S._ = {xi} which also
»)

belongs to the existing network Sl = {xc,xj}. The networks S1

and S, with observation vectors 21 and %, respectively can therefore

be adjusted simultancously. The simultancous adjustment of the
S1 and S, involves the formulation and solution of normal equations

jointly. The mathematical models may be separate for each of the
networks.

Linearization of the mathematical models requires some
knowledge of the positions of the points in the model - the parameters.

(0)

Such initial positions x , obtained by approximate methods, can



have a finite covariance matrix C (0) associated with them. A
X
third mathematical model will therefore be formulated. The points
in the network shall be constrained through this model using the
. . -1
weight matrix, C
(0)
X
The observations in each set can be assumed to be uncor-

rclated leading to diagonal weight matrices Pl of Ql and P, of o,.

Correlation between 11 and 12 6hscrvation5 procured at different
time epochs with probably no overlapping observations may exist
through the observation media, instrumentation and observation
methodology. This correlation can, with careful design precautions,
be reduced to a minimum and is of necessity, neglected in practice.
It shall be assumed henceforth that the weight matrix P of the

observations for the simultaneous adjustment has the following

structure;

Besides the position parameters, nuisance parameters are
normally introduced into the mathematical model. For simplicity
these parameters will not be considered here. Reference 1s made to
Krakiwsky [1968], Krakiwsky and Thomson [1978] and Nickerson [1980]

for detailed treatment of the subject.

2.2 Mathematical Models

The functional relationship between the observations and

the positions are established as;
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o < N =§ D 2.2
ll(xe,xj) 4 .l1
Fz(xj,xn) = Qz :P2 2.3
The constraint model that introduces a priori information C (0) into
X
the adjustment 1is;
F.(x,2) =0 ¢l 2.4
3V x ()
X
where,
X = {xe,xj,xn}
ﬁ‘ are pscudo-observations with covariance matrix C 0)
’ X
The mathematical models (2.2) - (2.4) can be linearized by Taylor
series expansion into;
/ AS. - = P 2.5
\e(Se + \JLJ I‘1 o) 0 ll 5
Ajdj + Anén T T, ws F 0 :P2 2.6
-1 -
5 - W = :C 2.7
§ rotw, 0 0)
X
where,
3F1
A = — 2.8
¢ 9X X = x(O)
e e e
aFl
A, = — 2.9
] dX. |x. = x(o)
] ] ]
2.10
“nT T (0) ‘
JX X_ = X
n n n
§ z {6 ,6.,8 }
e’ 3’ 'n
=1 - ,
T Y ‘N 2.11
r, = 22 - 22 2.12
§ =X <0 2.13
e e e
§. = X ‘\,go) 2.14



s = x - <0 2.15
n n n
(0)
) = 9 - 9 2.
Wy 1 91 16
Wy = 2&0) - 12 2,17
w = 2O 2.18
X X X
2‘ 1s a vector of pseudo-observations;
ii for i e{e,j,n} are expected position vectors;
ngJ are initial position vectors;
0 . . 0 o
lfo),tg ) are observation vectors computed using x£ ) positions.

The design matrices Ai which transform the correction vectors Si
into a linear model space are assuned to be of full rank, 1i.c.,
rank (Ai) = dim (xi)

and dim (x) < dim (R)
The auxilliary model (2.4) is introduced, as stated, to take care
of a priori information in the adjustment. In this case the linear
models (2.5) - (2.7) are formulated in a differential neighbourhood
of the expected estimates. A one iteration solution will be contem-
plated which in turn means that w = 0. In the event that more than
one solution exist for the points to be adjusted (e.g., lLoppler,
GPS, ISS, Photogrammetric coordinates) then only one of the solutions
shall be selected for the linearization of the mathematical models.
This, of course, implies that the coordinate system of the selected
solution will be adopted as the coordinate system of the combined
adjustment. The other solutions can rigorously Dbe merged with the

combined adjustment solution in a separatc step.



2.3 Derivation of Normal Equations

The observation vectors Qx’ 21 and 22 are to be cstimated

from Qx’ 21 and 22 respectively such that the estimated vectors

are consistent with the models (2.5) and 2.6) besides satisfying the
least-squares criterion;
min (rT

.
1717

This criterion expresses an extremal problem which shall be formulated

as;
Min{(A 6 +A.6.+0.) P (A 6 +A. 8. 4w )+(A.6.+A S +w.) P.(A.8.+A S +w.)
ec'e j ] 1 1ee 31 i’ ‘nn "2 2Y37) "nn 72

1

(O)(6+wxﬂ 2.19

T -
+((5+wx) C
X

Differentiating (2.19) with respect to the unknown parameters

8

S, R

s

§. and én and setting the result to zero leads to the

following system of normal equations;

T . .

AP (A8, + A58, ¢ w) = 0
r . .

APLIAS, + ASSs + w)) =0

AP (A6, + AS + w) =0
32373 nn 2

AP (AS, v AS +w) =0
n2vjj nn 2

cl 6w -
x(O) X

which can be combined into the following two hypermatrix equations,

-1 -1 -1
, C and C
MOUMMBNG (0

e j n

assuming the inverses C exist.
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AP A AP oA,
ele e 13
T T T X
AP AP+ AR, N
T
0 AP
2.20
ind
( N () )
¢! 0 0 5 c !
(0 e L(0)x
X X
) 0 Ty 0 >< &.>+<C_10m>'—‘0 2.21
-1 - 1
0 0 C (0) 6n C (O)wx
X X
R N

-

Equation (2.20) is obtained from the models (2.2) and (2.53).
Cquation (2.21) is obtained entirely from the auxilliary model (2.4).

An obvious question is how and when should (2.20) and (2.21) be

used.

The existing solution and therefore the pseudo-observables

2‘ are uncorrelated with either 21 or £,. The observation vector

g = {Ql,£7,£\} contains more information compared to il and 2,

alone. Intuitively, we expect better results from 2 than from zl

and %,. A combined hypermatrix equation of normal equations for

the three models (2.5) - (2.7) is the sum of (2.20) and (2.21).
Recalling that for a one step solution we T 0, the system of normal
equation can be simplified. Let us introduce the following
notations:

-1
| - D
hee AellAe ¥ CY(O)

e
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X
J
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n
N . = Nr = AiP AL
ej je e 1
N, o= atpa
an i 2n
T
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— ) 1‘}')
u. = :j 2(1)2
T
Lln = .‘\npzwz
the result is;
N N . 0
ee ej
N. (N + N. N. +
je 1] 1] jn
0 N N
nj nim

~N

N~
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ro
0

Equation (2.32) may be dccomposed into a summation equation of the

normal equations

of S1 and 82, i.e.,

-N N . 0 ) u 0
ee ej e e

N. N, . 0 6} + u% +1 0
je 1] 1 J
0 0 0 0 0 0




[
=]

As this equation shows, the solution of normal equations for one
network is dependent on the other. The same dependency exists

between the existing and densification networks.

2.4 The Least-Squares Solution

2.4.1 The combined solution

Let the normal equations (2.32) be written as;

N N . 0 0 0 u 0
ee ej e
N N o<l o P VR IO IO
je 1) 7]
0 0 0 0 N . 0 u
nj n

or in short;

o
w1
i

(Nl + N2)5 + (u1 + u?) =0

The subscripts 1, 2 refer to the networks S, and S, respectively.

1

The solution of (2.34) is derived directly as;

§ = - N_l(u1 + uz)

ro
(93}
v

o

where, N =N, + N .36

1 2

2.4.2 The densification network solution

The normal equations of the densitication network can be

derived by eliminating 6e from (2.32) using the block-elimination

method [Ashkenazi, 1967] as;

(N2+Qe)62 + (u2+ux) =0 2.37
where,
N N.n
N, = 1) ] 2.38
N N
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2.39

o

.40
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.41
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.42

The matrix Qe is the normal equations matrix of the junction sub-

network S_ in the existing network and u_ is the corresponding
D X

constant vector (Appendix I). Qe and v constitute the effect of

the existing network on the normal equations matrix and constant

vector respectively of the densification network.

~

squares solution for &, in equation (2.37) 1is;

~

_ -1
Sy 7 m(Nyr Q) (uyru)

2.4.35 The partitioned solution

Let us introduce the identity;

3] jn

nj nn

The least-

which is substituted, together with (2.39) and (2.40), into (2.43)

to wvive the partitioned solution
§. = -H..(u.+u -N. N "u

] J} 3 x Jnnn

§ = - fu -N_ _(N..+Q

n nm-n nj-ij ‘e

as;

)

n

RCRRY

2.45

2.46

The relationship between the submatrices in (2.44) has been proved

[Fadeev and Fadeeva, 1963} to be;

.
’
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-1 -1
H.. = (N..+Q -N. N . 2.47
JJ ( J) Qe jn nn nJ)
. ) -1 -1 )
Hoo= [Nnn Nnj(ij+Qe) Njn] 2.48
Hoo=Hb = NN 2.49
nj jn nn nj j)
NN OH. = N (N, LeQ )] 2.50
nn nj jj nn nj jj ‘e

Equations (2.45) and (2.46) can also be phased with respect to the

observations. Factorization of the RHS gives;

5. = st . H..(u.-N, N ) 2.51
3 3 3JJ77) innnTn
5 = s H [u -N_.(N,.+Q )'Iu.] 2.52
n n nn-"n nj- ji ‘e i
where,
é(l) = -H..u
J Jjix
s - Iy (D
n nn nj j

Equations (2.51) and (2.52) show that it is possible to adjust the

densification network without incorporating the 21 observations.

The mathematical model must, in such a case, be linearized about

(0) (0)
n

(x§o)+6§1)) and (x£0)+6§1)) instead of x. and x respectively.

J
A problem emerges however, of how to obtain, a priori, the vectors

6§1) and dil) which depend upon the matrices An and P2 of S,. Such

~ %
a problem can be overcome by using 61 of the independent existing

solution (Appendix I) of S1 and weight matrix Pxi = Qe for the
junction points linking the two networks together. This approach
to rigorous densification is the essence of the weighted position

constraint adjustment to be addressed in Chapter 3.

2.4.4 The existing non-junction points solution

Let us recall the first equation in the hypermatrix equation
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The least-squares estimate Ge can then be cxpressed through 6j as;

R N R 2.53
e ec'e ce ejj

which depends on Gn also. The effect of the vector Sn is embedded

~

in §., the correction vector for the junction points. The adjustment

problem presented by the normal equations (2.32) is symmetrical

about the junction points. The equations valid for dn will be
equally valid for ée when the indices are interchanged and the
networks S1 and 82 becoming the densification and existing networks
respectively. The normal equation can be purtitionéd to include éj

in S1 or 5,. Thus the vector 6j can be solved for together with

6n as performed in section 2.4.3 or togecther with Se. In the latter

case 6n will be expressed as;

s = N re - nInos,
n nn n nn nj j

The effect of the existing correction vector 6e is now embeded in

the vector dj.

2.5 The Covariance Matrices of Correction \ectors

2.5.1 The covariance matrix, Cé

2

The covariance matrix C; of the correction vector to
8]
g

initial positions in the densification network is derived by applying
the covariance law [Hamilton, 1964] to equation (2.43). The result

is;

. -1 -
C67 _(N2+Qe) CU?+LL(N2+QG)
X

! 2.54

To evaluate the cross-covariance matrix C u e recall equations

2

(2.40) and (2.41) and present them in the following forms:



T
u, = AP, 2.55
T
. 2.5
u MAL D0y 2.56
where,
A
A, = 2.57
A
n
A= (A A yr 2.58
A A 2
0 0
Moo= . 2.59
-N. N I
1e ec

We have assumed, at the beginning of the chapter, that the observ-

ations 11 and 1, are uncorrelated. Therefore, the matrix CU ‘u
2 27X
2 X

must be equal to the sum of the covariance matrices C and C
u, u
which are evaluated from equations (2.55) and (2.56) respectively.

C = ATP C P.A +MATP C P.A MT 2.60
u?+uY 2 27w, 22 11 wl 11

Equation (2.60) can further be evaluated by evaluating the matrices

C and Cw from equations (2.16) and (2.17). We consider two

&)

2 1
factors here: First, the stochasticity of the initial positions

used to linearize the mathematical models is considered by using
the covariance matrix C (0) in the derivations of the covariance
X
matrix of the misclosures. Second, we stick to our definition of the
problem that whenever more than one set of a priori information

(solution) exists for a set of points only one set of information is

considered. With regard to the second factor, the junction points

have two sets of a priori information, i.e., C 0) and Qe' In
X1
this case the a prioril information C (0) will not be used in the
&

derivation of C . Consequently,
W
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C =P 2.61
w 1
1
1 T
= p .
cw7 + ALC 0" 2.62
Z X
2
where ,
Q! 0
C = e 2.63
(0)
X 0 C 0)
X
n

When equations (2.61) and (2.62 are substituted into (2.60) we

obtain;

. _ T pol, T T
Lu7+u‘ = AP, (P +AC (0) 2)P , * MAPLAM 2.64

Equation (2.64) is substltuted into (2.54) while considering (2.63)

to give;
N -1 -1, T -1 -1
= !
c67 (N,+C (0)) P, (P (0) )P A (N +C” (0))
- 2 )
-1 -1
+(N +C MN M N +C 2.65
where,
N2 = AZPZAZ 2.66
* “T. -
N1 = AlplAl 2.67
Gecl o neq 2.68
2 (0) 2 e
)
The matrix identity [cf. Liebelt, 1967]
(3 ep+a) 8T = ate e tepa gy ! 2.69
-1 -1, T .
is introduced and applied to (N +C (0)) AZP’ The result 1s;
2
-1 -1 T T S
(h +C (O)) 2P C (O) (P C (O)Az) 2.70
X
2 2
Substituting (2.70) into (2.65) we obtain;
C (N N ) LR+ ) 1MN M (N +C ) -1
5 (0) (0 27 (0) (o)
2 L

2.71
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The term MNIHl in (2.71) is ecvaluated from equations (2.58) and

(2.59) as;
. T
MY M= Q 2.72
which is substituted into (2.71) to give;
c (R, y he@oect Yl ee 7t 2.73
6? (0) 2 (O) 2 ‘(0) e 2 X(O)

[t can be shown that;
-1 -1 -1

N = 2.74
(0)’ 2 (N (0)) C oy - W€ (0)) ‘
2 2
Proof:
Multiply both sides of equation (2.74) by the matrix
(N +C to)) The result 1is;
N = N
CX(O)A2 C_(O)N q.e.d.
5 X

The covariance matrix (2.73) 1is then written using equation (2.74)

as;
-1 -1 S NS BRI B |
C; =C . -(N+CT o ) "+ (N+C™ . ) 7'Q (N,+C™; ) 2.75
5, ng) 2 X50) 27 (0) e2 " (0)

The matrices Nz and N2 are related as in equation (2.68). Equation

(2.75) can also be given as;
-1

~ N -1 -1 o
C(SZ =C (O) (r\2+Qe) +(N2+Qe) Qe(N2+Qe) 2.76
X
But (c.f. Appendix II, equation II.8);
(N,+20) 7 = (N, ) Th - Q) Tl (v
2 e 2 e 2 e e 2 “e
which when substituted into (2.76) gives;
-1
= - 2
CG C (0) (N2+ng) 2.77
2 X5

Equation (2.77) is the expression of the covariance matrix of the
corrcction vector of the densification network estimated in a simul-

. It includes the

tancous adjustment ot the networks S1 and S
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known uncertainty in existing positions. In the event that the a

priort information C (0) is missing then equation (2.75) will be;
X
N -1,T - -1 - -1 - -1
- = { I‘ ‘ I
C, = (rQ) AP (00 ) v (FyrQ ) 70, (1,00,

or

C: = (N,+Q )‘l 2.78

8, T2 e -

Equation (2.78) is the well known expression for C, when the role
U,-)

of the Tavlor Points does not go bevond that of linearizing the
Mathematical Models. Stochastic Taylor points are also used in

Grafarend et al. [1983]. Blaha [1976] points out that in an
~(0)

adjustment the a priori estimated x looses the nature of known

constants and assume the role of quasi-observations with a weight

matrix C_éO) . Equation (2.77) therefore considers the a priori

b3 .
positions as observations.

2.5.2 The covariance matrices Cé and Cé
j n N
The covariance matrices of the correction vectors 6j

and én can be obtained either by partitioning equation (2.77) or

by applying the covariance law to equations (2.45) and (2.46)
respectively. Both approaches have been tried and the results are
the same. From equation (2.68) the partitioning technique 1s applied

in accordance with (2.44), and (2.63) to give;

~ " - -1
Cs.5.  Cs.s QW 0 Mg B 5% 5 M55%0n
J ] ] n
= +
Cc: = cs = 0 C H . H H .QH.,. H .QH.
6n61 6n5n ‘(0 nj nn nj-e jj nj e jn
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which leads to;

Cy = - H.. + H..Q H.. 2.79
5 % jj 3% 5
and
. _ ! ] 5
C C (o) o uanenjn M.SQ
n X
n
As 1in the unpartitioned case absence of the C information would

L(0)

require that equation (2.78) and not (2.76) be used. The results

will be therefore;

C: =H.. 2.81
§.
j )]
and
- = 2 2
C6 Hnn 2.82
n

It can be seen by comparing equations (2.79) with (2.81) or (2.80)

with (2.82) that the covariance matrix of the correction vector has
a smaller trace when the a priori information is used than when it

1S not.

~

2.5.3 The covariance matrix, C

$
e
The derivation of Cg is sought by applying the covariance
e
law to equation (2.53) which can be written using (2.28) as;
. 1T B . )
§ = -N 1/\‘1’ w, - N lz .S, 2.85
e ee ¢ 171 ec ej j

Assuming that Cé exists, we obtain;

J
o = fatp e opoa Nl iy .C: N, N1
6e ece e 1 Wy e eec ee ej §. je ee
e pa v v e o aTee opoant
ce c 1 Wy 173 31 jeee ceej ij 1 W, 1 e ee
N e poa iy noon. NPT N N'IAT

; . N . SN - H. N, AP C P AN
ece e 1 w, 1 eec el jj jeee eec) J) jeeeel Wy l'ee
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Equation (2.45) has been used for 6j. In addition, the cross-

covariances between 0y and w, are, as in (2.1) taken to be equal

to zero. Further simplification using equation (2.60) gives;

¢ =N PN e N, NEen I il v, Nt
Ge ee ee ej Gj je ee ee ej jj je ee
I on N vy H.oN. NPT omL N, N lee
ee ej j) Je ee ee e] ]) je ee ee e] ) Je ee X(O)
!
+C N .H..N. N'1+c N .H..N. N’l-c N H..N. N}
(0) 'ej jj jeee " _(0)'ej jj je ee ~ (0) ej jj je ee
X X X
1 1 1
-1
-C N .H..N. N
x(0) ej Jj Je ee
1
or
cr = NrantIN o NI sc 2.84
S ee ee ej §. je ee (0)
e ] Xa

which is the covariance matrix of existing non-junction points.

An alternative expression can be derived by exploiting the symmetry

of the densification problem with respect to S4= { xj} subnetwork.

If e is made to replace n in equation (2.80) we obtain;

C(Se = Cx(o) - Hee +-HeanHje 2.85
e

The subscripts are interchanged in the expressions for Hnn’ Hnj

and Qe' It is much more convenient to use equation (2.84) when

Cg has been computed. The compilation of the matrices Hee’ Hei and

]
Qn is avoided in this case.

2.6 The Covariance Matrices of Adjusted Positions

The least-squares process converges to the same solution

whether or not the initial positions are estimated quantities. Let



us assume, for simplicity that deterministic initial values are used.

The solution for the network S2 will then be (using equation (2.37));

;2 - xgo) SN+ Qe)—lnx - Qe)‘lu 2.86

(X

which can also be written as;

X, = xgo) - (N, Qe)'lu7 . 2.87

The covariance matrix of the estimated positions x, can be obtained

by applving the covariance law to either (2.86) or (2.87). It is

a straight forward derivation when C° 1is derived from equation
X
5

(2.86) than (2.87). This is becausc the cross-correlation between

0 . . )
xg ) and the other two terms in (2.86) is known to be equal to

~(0)

zero. The computation of the cross-correlation between x, and

(N7+Qe)—lu2 in (2.87) is much more involved and will not be attempted

here. Applying the covariance law to (2.86) we obtain;

-1 -1 o1 -1
~ = J h b _ N i
Cx7 (h2+Qe) [Nij+N2+NjeNeeNej “Njexeekej] (N2+Qe)
= Q) Th N+ ) (e )T
2 e 2 e 2 e
c o= (no+Q )t 2.88
C 2 e

Xy

Equation (2.88) is the covariance matrix of the adjusted positions
of S, in a simultaneous adjustment of S] and 5,. It is equal to
the covariance matrix of the corvection vector (2.73) when the

a priorl covariance matrix C is disregarded.

L (0)
2

The covariance matrices of the partitioned solution are
obtained directly by partitioning equation (2.88). The partitioned

. . -1 . . . . -
inverse (N7+Qe) 1s given in ecquation (2.44). Therefore;
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cr o= .. 2.89
X ji

and
C” =H 2.90
X

nn
n

We again recall the symmetry of the normal equations matrix of
S = {81,32} in order that we may evaluate the covariance matrix
C; . Interchanging subscripts n for e in the expression (2.47)

e
of H we obtain
nn

~ = - . . - . 2'9
Cxe [Nee NeJ(Nlj +Qn) Je} !
where,
Q =N.. -N. NN
n il jn nn nj

An alternative expression to (2.91) can be obtained using the

covariance law on 6e since C; = Cé as shown earlier in this chapter
- e e
§ obtained without C . Disregarding C in (2.84) we
CIR X(O)) g g L(0) (2.84)
obtain; € ¢
o o=N eI eow, nd 2.92
e ee ee €] 6j je ee

Equation (2.92) is more convenient to use than (2.91) since Cg
. J
already exists from the adjustment of S, .



3.0 WEIGHTED POSITION CONSTRAINT ADJUSTMENT

3.1 The Scope of the Problem

The system of normal equations in the simultaneous
adjustment of the existing and densification networks is shown in
equation (2.34) as a summation of two terms, each of which, is in
itself, a separate system of normal equations. The second term is the
would be system of normal equations if the densification network
were adjusted separately and independently of the existing network.

We now seek to adjust the densification network S2 separate
from the existing network S1 (without using the Ql observations)
while rigorously propagating the effect of S1 into 82 at the same
time. The propagation is made through the junction subnetwork
S3 = 81[7 52; the points of which have been previously adjusted
(1) C.

and the solution (x.
( ] Ne

S, and any other points détermined as unbiased estimates are stoch-

))'exists. The coordinates, x§1), of

astic quantities and hence have a finite covariance matrix. The
linearization of the mathematical model about stochastic coordinate
values is therefore contemplated [c.f., Grafarend et al., 1983],

using the position X ) of Sg, and corresponding covariance matrix,

. )
X.

J
same way when determined independentiv of the observation vector

P Initial positions of the new points can be treated in the

£, as discussed in scction 2.2. This approach must be vigorous
2 ¢

equivalent to the simultancous adjustment. We shall assume the

44



equivalence of the two approaches and derive least-squares expressions
of the weighted position constraint solution required to give a

solution equivalent to that obtained from a combined adjustment.

3.2 Mathematical Models

The functional relationship between the expected observ-

ation vector i,, positions (ii, i‘) in the densification network
Z 1

S,, and corresponding constraint model is given, assuming for

generality sake that in are independently determined too, as;

F(X.,x ) =1 2P 3.1
( J’Xn) 2 2
F(x.,x ,L) =0 Px. 3.2
]17'n’ x J
Linearization of (3.1) and (3.2) using Tavlor series expansion 1s
. s o (1) 1 L0 ; - .
made about initial position Aj and N for the junction and new

points respectively. The result is a system of linear equatlons;

’jéj + Anén ST, wy = 0 :P2 3.3
AS +A S, -1 +w =0 :Px. 3.4
nn i N X ]
where,
Px. 0
Px = ! 3.5
0 Px
n
Px. = C_l 3.6
SRR
1
-1 —
P}\n = C (0) 3.7
X
n
-1
P, =C
2 Q7

ro 1s the residual vector to the pscudo-observables dj and én.

~(1 . o - . . . —
xg ) estimated positions of junction points from the existing

solution of SI'
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The tilde () has been used in (3.3) and (3.4) to distinguish the
design matrices and correction vectors from those of the simultaneous

adjustment described in equations (2.9) - (2.15).

3.3 Derivation of Normal Equations

Two approaches of rigorous densification are equivalent
if the final solutions are equal. To derive the expressions that
give the same results when the Px-adjustment is used as the combined
adjustment we shall assume the equality of the solutions. The initial
positions in the Px-adjustment are different from those of the combined
adjustment which means that the estimated correction vectors in both
approaches will be different. We recall the system of normal
equations for the combined adjustment given in equation (2.37).
This system may be regarded as a sum of two systems of normal
equations. Substituting (2.38) - (2.42) into (2.37) we obtain the
partitioned form of the normal equations. This system presented

as a summation equation is;

N.. N. S . u. Q 0 §.7 ° fu
J) jn ] ] e J X
+ + + =0
N . N § u 0 0 § 0
nj nn n n n -
5.8
where, Qe is given in equation (2.42),
- . z
§. =6, + &, 3.9
] ] ]

§. 1is the correction vector of the Px-solution,

~ Kk
§. is the correction vector from the independent adjustment

of S1 (Appendix I).

Equation (3.9) assumes the equality between the correction vector

of the simultaneous adjustment Gj and the sum of the correction
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vectors of the existing and Px-adjustment solutions which is possible

when the initial positions xgo) in the existing and combined adjust-

ments are the same. On substituting for 6j from equation (3.9)

into the second normal equations system in (3.8) we obtain;

~ ~ ~ %

N.. N. §. u. Q. 077[S. Q  07fs. u
JJ] jn J ] e J ¢ ] X
R + + . + + =0
N . N § u 0 0 §Ls 0 o0o4Lo 0
nj nn n n n
3.10
A%
Qeéj +u_ = 0 is the normal equations for the existing
network (Appendix I). Therefore, equation (3.10) transforms into;
N.. N, 5. u. Q0 5.
3] jn J J 1 € J
. + + =0 3.11
. N § u 0 0 8
nj nn n n n

The first system of normal equations in (53.11) corresponds to the
(0)
mathematical model (3.3) which is linearized about xj

(0
n
The second system corresponds to the mathematical model (3.4) linear-
ized about x; and when w = 0. We require that both mathematical

models be consistent by linearizing them about the existing solution

whenever possible. The correction vector dj will be changed by a
~ z
value §. and transformed to 51. The design matrices formed using

the existing solution will have a tilde (~) to distinguish them from

those defined at other values. The matrices N, N.., N. | N .,
nn )] jn nj

u. andu_will be transformed to N, N.., N. u. and u
n nn’ 337 ) n

n’
respectively. Adopting uniform notation for 6n’ too, equation (3.11)

53

njl J

transforms intog R
N.. +Q N, 5. u,
RE e n ~J + ] =0
N . N 8 u

nj nn n n
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The matrix Q_ 1is, by definition, the wecight matrix of the pseudo-
e

observations, i.e.,

Px. = N.. - N. N In 3.12
B 1j je ee ¢

The normal equations for the Px-adjustment is therefore given as;

N..+Px. . . .
J1 J jn J ]

>
+
i
[
(92}
—
(2]

nj nn n n
The same expression can be derived by minimizing the quadratic
T T . C L .
norm (r7P2r2+ r‘Px r() and differentiating with respect to r, and

T . In so doing, the mathematical models (3.1) and (3.2) must be

linearized about the existing solution in which case, since W= 0,

it must be assumed that the linearization is made in a differential
neighbourhood of the final solution. Only one iteration is contem-
plated in the adjustment process. Whenever more than one existing
solutions are available, only one of them shall be chosen and used

to linearize the model. This means that a one-step solution is
considered. The other solutions can later be merged rigorously

with the densification solution. It is necessary that all solutions
to be merged with the rigorous densification solution must first

be transformed to the coordinate system of the densification solution.

In the unpartitioned form equation (3.13) 1is;

N2 62 + U2 =0 5.14
where, N +Px &‘

~ JJ jn

N2 = i ) 5.15
N . N
nj nn
§ .

- J

6, =\ ° 3.16
§
n



The matrix ij in equation (3.14) is embeded in the matrix &2.
The non-null submatrix of ij, whenever the constrained points are
less than the total number of stations, is of the size of the con-
strained points. If the new points have a priori information as
discussed in section 2.2 then the structure of the Px-matrix is;
Px. 0
J

0 Px
n

3.4 The Least-Squares Solution

3.4.1 The correction vectors

The expression of the least-squares solution for the
correction vector in both partitioned and unpartitioned forms can

be obtained from section 2.4.2 by applying the tilde (~) where

appropriate and setting Qe= Px. and u,o o= 0. The expressions are;

N J 2
z ~_1~ )
8§, = -NyTu, ‘ 3.19
- iy NN <
§. = -H..(u.-N. N "u) 3.20
J JJ7 3 Jnnnn
- y -z N -1- 2

= -H [u_-N .(N..+Px} u. ] 3.21
n nn-n nj jj j

3.4.2 The covariance matrix, C<S

5

When the covariance law is applied to equation (3.19)

1

we obtain the covariance matrix Cé of the correction vector §, as;
) 2



N TU Y TN 3.22
C67 N2 AZIZL 7[2A2N2 5.22
where, -
~ Aj
A2 =1
A
n
N2 = Ag >N + Px 3.23
and assuming the stochasticity of initial positions (see secction 2.5.
cwq = P;l + Azl’x—1A£ 3.24
The covariance matrix Cw is obtained in the same way as eqguation (2.
o)
Substituting (3.23) and (3.24) into (3.22) gives;
z T N -1°T -1 -1 c T, S -1 -
c(37 (AP, AL +PX) TTAGP (PO 4ALPXTTA) PUAL (AP A, +PX) 3.25
The identity (2.69) is applied to the inverse of (3.23) to give;
(AP, A,+Px) Tapo= Pl st oty 3.26
similarly;
N -1 -1 7 -17 -1 -
(A7P2A7+Px) = ( 5 +A P A ) AZPx 3.27
Substituting (3.26) into (3.25) leads to;
2z -1 -1 =
C: = Px "N,(N,+Px) 5.28
8 242
2
where,
z ~r - i
Nz = I\_PZA2 3.29
Substituting (3.29) into (3.25) leads to;
c: = (:J +Px) 1& px ! 3.30
6 ) 2 .

2

The identity of equations (3.28) and (3.30) is easily established

by multiplying one by the inverse of the other. The result is of

P

course an lidentity matrix. Equation (3.28) and (3.30) give the

expression for the covariance matrix of the correction vector Cg

9

when all the points in the network arc constrained and weighted b

Y

1)
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the inverse of the covariance matrix of initial positions according
to the model (3.4). A word of caution is in order. If only some of
the points are taken into the auxilliary model (3.4) the normal
equation (3.12) will be valid for the constrained points only. If
only the junction points, for example, are included in the model
(3.4), the Px-l in equation (3.28) and (3.30) for Cé will be singular.
2

. . . + - .
A unique inverse, the Moore-Penrose inverse Px can be taken instead.

For a Px of the structure;

Px. 0
Px = J
0 0

the Moore-Penrose inverse is [Rao and Mitra, 1971];
1

Px. 0 * Px. 0
] _ ]
0 0 0 0

which is then used in equations (3.28) and (3.30). The matrix ij

.31

w

.32

(93]

is a submatrix of Px. Using equation (3.32) instead of Px_l and
(3.31) instead of Px in these expressions is compatible with the
current practice of constraining only those points which have been
estimated in the existing adjustment - the junction points. It
has been shown in section 2.5.1 that equation (3.28) and hence

(3.30) is a difference of two inverses, 1i.e.,

1 -1

PxTIN e T = et (NP 3.33
Therefore,

C: o= Py o(NLepx) ] 3.34

s = Px -(N2+ x) 3.3

2

The covariance matrix of the correction vector in a Px-adjustment

. . . -1
of S, equals to the difference between the covariance matrices Px

and (&7+Px)-1. ‘Equation (3.34) can be derived directly from



w
1o

equation (2.71). The second term in {(2.71) ecquals to zero when w = 0.
Cquation (2.77) will then be equal to (2.74) and transformed to

(3.34) when the tilde (7) is introduced.

3.4.3 The covariance matrices C; and C&

n
The covariance matrices of the partitioned solution are

. . . o - . -1, .
caslily obtainable from equation (3.34). The matrix Px in parti-

tioned form is the inverse of equation (3.18) while the inverse

(E\~‘7+Px)-l is obtained analogous to (2.44). The partitioned Cé

2
is;
c: - c: - P! 0 Y I
§.6. §.§ N 13 )
i85 i%n ] i jn
= - 3.35
2z S -1 N N
C Cc: * 0 Px H I
Gnsj non n nj nn
The expressions for H.., M., , H . and H_ _ are given in equations
i3 in’ o nj nn
2. - L19) w N =N X = Px, ¢ a ti 7)o
(2.17) (2.19) when o \nn+l\n, Qe P\J and a tilde (7) 1is
put on the other matrices involved. In equation (3.35) Cg & and
N . - i
Cg 5 are respectively C; and C; which lead to;
nn " “n
z -1 - .
C = Px.” - H 3.36
. j il
]
and
‘2 -1 N I
C: = Px -1 3.57
8 n nn

The covariance matrices of the partitioned densification solutions

are cqual to the differences between the respective covariance matrices
of the existing positions and the respective submatrices of the

inverse of the normal equations matrix of the rigorous densification

solution. All matrices in (3.36) and (3.37) are positive definite
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(2]

matrices. The diagonal elements of the covariance matrices and of the

. N y NS -
matrices H.. and H cannot be less than that of Px. and Px

i nn j n

respectively. The equations therefore make sense and provide an
improvement in uncertainty to that of the existing solutions.
Similar to the unpartitioned case the expressions (3.36) and (3.37)
can be derived directly from similar expressions of the combined
adjustment.

5.4.4 The covariance matrix of estimated positions

The positions of S, adjusted using the Px-adjustment are

derived in a similar way to those of the simultaneous adjustment,

i.e.,
B “(1 - -
,\‘2=x()+62 3.38

. C . (1) . .

The initial positions X in equation (3.38) are least-squares

. .. . . . -1 . c.
derived positions with a covariance matrix Px ~. These positions
can be expressed in terms of the adjustment of the (existing)
independent adjustment as;

ue! 0 o*

S NN (DR
which when substituted into (3.38) gives;

SR €0 B

X, = X + 8§ o+ 62
or using equation (3.9} while ommitting the j for the sake of
generality we obtain;

) 0 , ¢ 5

X, = X + 5.39

2 %

. C L (0) . - . N O 5 I } o

fhe initial positions x in (3.39), unlike x are constants uscd

to linearize the mathematical models in the existing adjustment.

The covariance matrix of adjusted positions X, can, with ease, be

derived from (3.39) than from (3.38) since the cross-correlation
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C 0) - is known to be zero. Applying the covariance law to (3.39)
X $
2

we obtain;

cr = Cé 3.40

XZ 2
The covariance matrix Cé is the one given by equation (2.78).
2

For Qe = Px and A, = A, (since final solutions are equal)

Co o= (N, + px) ! 3.41

~ ~

The covariance matrices of xj and X, can now be derived by partition-

ing (3.41). The results are;
C; = ”'1 3.42
X5 3]
C~ =H 5.43
4 nn

n
Equations (3.42) and (3.43) are respectively the covariance matrices
of the junction and new point positions in a Px-adjustment. For all

practical purposes, the equality of the final solutions means that

the covariance matrices are also equal, which make Hjj z Hjj and

H = Hnn in the final iteration of the adjustment process.

3.4.5 The cross-covariance matrix, CA(l)Z
X 62
The cross-covariance matrix Cﬁ(l)j can now be evaluated
X §
in a very simple way. [f C7 was obtained by applying the covarianc

Xy

law to ecquation (3.38) we would obtain the following expression;

~

ct = C. + C. + 2C. Z 3.44
oo W e iy
Substituting equations (5.34) and (3.45) into (5.44) gives;
= (ery Tyt 3.45

C. z
x(1)57 -



or

C. o= -C; 3.46
x(l)67 52

Equations (3.45) and (3.46) state that the cross-covariance matrix
between the existing and the densification solutions equal to

the covariance matrix of the correction vector in a Px-adjustment
with opposite sign. We have proved that this is infact true by

- . . . 0 °T
deriving the matrix directly as the expectation t(x(l)éq).



4.0 RIGOROUS DENSIFICATION BY CORRECTING

NON-RIGOROUS SOLUTIONS

4.1 Application of Non-Rigorous Densification Schemes

The direct method of rigorous densification have been
dealt with in Chapters 2 and 3. This chapter discusses an indirect
approach based on correcting non-rigorous densification solutions.
It will be seen, from examining applicable non-rigorous schemes,
that the indirect approach is computationally more economical when
non-rigorous solutions had been already obtained.

Non-rigorous schemes are here understood to be'such

schemes in which the effect of S, is not rigorously propagated

1

into Sz, whether or not the covariance matrix of initial positions
is considered. Such schemes, often used in practice include the
over-constrained (i.e., fixed junction points) adjus%ment and two
of the commonly used minimum constraint adjustments - the fixed
point adjustment and»the free adjustment.

The use of non-rigorous adjustment schemes is especially
popular when there is reason to suspect the existence of distortions
in the existing network. Such distortions would naturally be
propagated into the densification network by the rigorous densifi-

cation [Chrzanowski and Canellopoulos, 1974; Blaha, 1982a,b].

The conventional wisdom of selecting a suitable point that 1is
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unaffected by distortions to provide the anchor for the densification
network is contrary to the rigorous densification adjustment already
discussed. Although not wholly attributable to the adjustment

scheme [c.f., Thomson et al., 1974], distortions revealed in the
North Americal primary networks [Baker, 1974; Mcllelan, 1974; and
Villasana, 1974] and in subsequent densifications [Fila and Chamber-
lain, 1978; Lachapelle and Mainville, 1981] indicate that non-
rigorous adjustment not only perpetuates but magnifies distortions.

Free network adjustment has useful applications in analyz-
ing the residuals in a preliminary coordinate system [Blaha, 1982a,b].
After the analysis the positions are computed by supplying known
coordinates for at least one point and orientation unknowns. The
coordinate system chosen often coincides with that of the existing
network. The results are therefore the same as results from a
fixed-point adjustment up to a translation and rotation of the
points of the densification network [Meissl, 1982]. In other words,
the difference between solutions of various minimal constraint
adjustment schemes can be removed by a translation and rotation of
the networks.

Position accuraéy estimates of a minimal constraint solution
can be improved by a least-squares fit to the existing network (such
as a Doppler network). Accuracy improvement of 1-3 ppm in distances
have been reported by Moose and Henriksen [1976], Thomson [1976],
Burford [1984] and Salih [1984] to this effect. Such fitting really
models the transformation parameters needed to transform one coordi-

nate system to the other. The transformation of a network weak
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in scale to a stronger network results in scale improvement.
The positions of the two nctworks are then defined in a common

coordinate system.

4.2 Mathematical Models and General Assumptions in

Nen-Rigorous Schemes

The mathematical models for the free and overconstrained
non-rigorous adjustment schemes can be written in a form similar
to that of the rigorous weighted position constraint adjustment,

i.e.,

where,
Px' is the weight matrix of the initial positions used
in a non-rigorous adjustment.

Now, however, we must assume that the junction points have either
null or an infinite weight matrix Px' in order to model the non-
. . . . ‘-1 .
rigorous schemes. If this was true then its inverse Px ~, which

ey

is the covariance matrix of x would be undefined or null respect-
ively. The junction points, having been estimated previously are

(c.f., Chapter 3) known to possess a finite covariance matrix

) _1 . . . A
Lﬂ(l) = pxi and therefore a finite weight matrix, pxi.
X ' ’ .

In the discussions that follow in the remaining sections
of this chapter the weight matrix of the junction points in non-
rigorous densification schemes shall be assumed to be non-zero or

finite and the weight matrix shall be defined as follows:
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Definition
1) The weight matrix ij in a fixed-point adjustment is one in
which the diagonal elements of the fixed point will be considered

very large while the other elements equal to zero, i.e.,

w 0
0
' oo
Pxi = 0 4.3
) 0 0

1
2) The weight matrix ij in an overconstrained adjustment (over-

constrained points are fixed points) is such that the diagonal
eclements are all considered to be very large, i.e.,

© 0

3) The welght matrix ij in a free adjustment (i.e., free of
constraints) is a null matrix, i.e.,

Px. =0 4.5

In all three cases the weilght matrix Pxn is finite leading
to the normal equations

. T,

N = A 1‘,_):/\ + Px

nn n2n n
The elements of the covariance matrices will therefore be close to
zero (very small) but not equal to zero (i.e., 1/=*0). The limiting
cases ot the clements of the welght matrices (and covariance matrices)
are considered. This gives us the possibility to treat all cases
of Px and C‘ uniformly and hence formulate the expressions of the

non-rigorous schemes in a similar wav to rigorous schemes by

replacing Px with Px'.
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4.3 The Least-Squares Solutions

4.3.1 The general expressions

Besides the improper weight matrix Px' the non-rigorous
schemes use, like the weighted position constraint adjustment, only
the % observations. The two thercfore makc a much closer comparison

the different Px matrices being the only difference. We shall

0 . .
henceforth regard the vector x( ), in non-rigorous schemes to be
.. (D S L
sufficiently close to x: and the 1initial positions of the new
J
. 0 . L
points xﬁ ) to be the same in both cases. In addition, we shall

assume a strong network such that a slight change in the junction
positions do not significantly affect the design matrices. Tor all
intents and purposes therefore, any difference in design matrices
which the tilde (™) is meant to exomplify can be ignored. The
expressions of the rigorous weighted position constraint adjustment
can be thus used without the tilde. As a result the expressions
will become non-rigorous when the weight matrices (4.3) - (4.5)

are used to replace the weight matrix of the weighted position
constraint adjustment.

The difference in weight matrices between rigorous and
non-rigorous adjustment schemes obviously does not change the
structure of the normal cquations (3.15). The expressions of the
correction vectors (3.20) and (3.21), their covariance matrices
(3.37) and (3.38) and the covariance matrices of the adjusted positions
(3.43) and (3.44) remain unchanged. However, their values change.
These expressions can be written directly by substituting the non-

rigorous Px'-matrix for Px in the respective expressions and we
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repeat them here for convenience:

o ) ) )
§. = —(N,.+Px'-N. NTIN ) 1(u.-N. N ) 1.6
] JJ jn nn nj j Jjnnnn
- ' - -
co,o=pxr Tl epxoon, NTIn oy 7E 4.7
6j J 3] J Jn nn nj
A - -1 -1 .
Co, = (N, +Px'-N, N 'N_) 1.8
xj J) jn nn nj
and,
51 = -[N - N .(N..+Px')‘1N. ]-l[u N (N, P ')'1u.J
n nn n) - jj n n nj Jl X 1
1.9
cz, = px ! SN - (N..+Px')'1N ]'1 1.10
Gn n nn ' n ] jn
cr = oy -1 -1
.= [N =N .(N..+Px'") 'N. ] 4.11
Xn nn nj- jl jn

The symbol (') used on the correction vector and covariance matrices
is in conformity with the same symbol on the weight matrix to distin-

guish non-rigorous solutions from the rigorous solution.

4.3.2 The over-constrained solution

The weight matrix Px' for the overconstrained adjustment
scheme is defined by the expressions (4.4). The inverse of (4.4)

. U :
states that each of the diagonal elements of Px is close to zero,

which when applied to equations (4.6) - (4.11) gives;
At
5.=0 4.12
]
C(g' =0 4.15
]
cr =0 4.14
X,
]
1 R
§ = =N Ty 4.15
n nn n
covo= el 1.16
§ n nn
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covo= Nt 4.17
X” nn

These expressions show the obvious, that positions of fixed points
in this least-squares adjustment arc not estimated. The obtained

expression for the correction vector, 6n is standard [c.f., Mikhail,

1976].

4.3.3 Comparison of overconstrained and rigorous. solutions

The Simulations

This comparison between results of a rigorous, Px-adjustment,
and the non-rigorous, ovérconstrained, adjustment 1is based on a
simulation of triangulation networks shown in Figures 4-1 and 4-2.
The networks and observations werc simulated following the 1978
Specifications and Recommendations of the Surveys and Mapping Branch
of the Department of Energy, Mines and Resources (EMR), Ottawa.

Figure 4-1 is a simulated first-order network. It consists
of 14 points, 29 distances, 55 angles, 2 azimuths and 26 unknowns.
Ten of the 14 points were designed as junction points is a sub-
sequent densification (Figure 4.3).

The simulation of observations was done in two stages:
First, the deterministic observations (error-less) were computed
manually one triangle at a time. By assuming some of the observations
(distances and angles) the other observations were computed using
trigonometric formula. The deterministic observations were run
through an adjustment program to check on the computation errors.
Non-zero residuals were revealed. The adjusted observations were then

\

taken to be the deterministic obscrvations. Second, the deterministic
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observations were randomized. A random number generating program
RANDOM (Appendix V-5) was used to generate random noisc using
different variances at each network point. The variances were in
conformity with the specifications [EMR, 1978].

Adjustment of the first order network was performed using
program GEOPAN [Steeves, 1978]. Station 35 was held fixed in this
adjustment. Statistical testing of the adjustment results was
performed by the adjustment program. The results passed the
tau-max test on the residuals, the Xz—test on the variance factor

2
and the x"-goodness of fit test. None of the simulated observations
was therefore flagged for rejection by the program. The confidence
in the adjusted positions i1s expressed by the error ellipses (at
95% confidence level) shown in Figure 4-4.

Figure 4-2 shows the densification network. It consists
of 39 stations, 86 distances, 177 angles, 1 azimuth, 9 known positions
and 78 unknowns. The number of degrees of freedom is 204.

The simulation of observations for Figure 4-2 was performed
in a similar way as that of Figure 4-1. The adjustment was also
performed using the same program. First, the Px-adjustment was
done for the densification network by using the existing solution
from the higher order network rigorously as described in Chapter 3.
The results were also tested as above and none of the observations
were flagged for rejection by the statistical tests. The error
ellipses of the adiusted positions of the densification network (at
95% confidence level) are shown in Figure 4-5. Second, the over-
constrained adjustment was performed by holding fixed all points

which were weighted in the Px-adjustment. The results of the adjust-
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ment were also tested statistically. None of the observations was
flagged for rejection. The error ellipses of the adjusted positions

from this adjustment are shown in Figure 4-6 also at 95% confidence

level.

The Comparison

A comparison of the rigorous and the overconstrained
adjustments was made by computing position differences, their mean
and standard deviations (Table 4.1). Position differences were also
plotted as vectorial sums of the coordinate differences (Figure 4-7).
The differences between the two solutions range between 1.1 cms and
9.1 cms with a mean of 5.4 cms and standard deviation of 1.87 cms.
The differences in adjusted distances do not exceed 5 ppm a require-

ment that satisfies first order networks [EMR, 1978].

4.3.4 The one-point-fixed solution

We recall the expression (4.3) defining the weight matrix

of junction points in a fixed point adjustment, and use it in

~f
~r - 1
equations (4.6) - (4.11). We obtain for §. = <Sj and Px. = Px?f;
] “nf J J
§.
]
df =0 4.18
J
C, =0 4.19
51
J
Cﬂnf =0 4.20
X.
]

! =1, -1 . -1
.= -(N..-N. N 'N .-N. N .2
63 ( J] 1 ) (UJ Jll\nnun) 4.21
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Position Differences Betwecen the Overconstrained
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The superscripts f and nf respectively stand for tixed and non-fixed
points.

As 1n the overconstrained case the one fixed point 1s not
estimated. Equations (4.23) and (4.24) are again the standard
expressions of a fixed point adjustment in a partitioned form

{cf., Wells and Krakiwsky, 1971; Meissl, 1982].

4.3.5 Comparison of fixed-point and rigorous results

(a) The fixed point vs rigorous solutions

The same simulations werc used as in section 4.5.3. The
densification network was first adjusted in a rigorous way, then by
holding station 48 fixed at the position given by the first order
adjustment.

Figure 4.8 presents the 'absolute' 95% confidence ellipses.
The major axis of the furthest points are about 10 times larger than
those in the immediate vicinity of station 48. Table 1.2 gives the
position and coordinate differences between the fived-point and

rigorous adjustment results. The position differences range between



13
17
25
4

g -
& |

44

Figure 4-8:

% 45 . 47
\
/

Absolute error ellipses in the fixed-point

adjustment at 95% confidence level.

36

///

24



Position Differences between Fixed-Point and Px-

Adjustment Estimates (in cms).
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9.1 cms and 113.4 cms with a mean of 66.6 cms and a standard deviation
of 29.94 cms. The differences plotted in Figure 4-9 are the equiva-
lent of 90 ppm of the mean distances in the network. The difference

in adjusted distances is of the order of 1-2 ppm. These results

show that the fixed-point adjustment solution is internally consistent.
However it is probably translated and rotated with respect to the

rigorous solution.

(b) The transformed fixed-point compared to the rigorous solution

A comparison of the transformed fixed-point solution and
the rigorous solution was performed by transforming the fixed point
results to the coordinate system of the rigorous results and
computing the position differences. The parameters to transform
the '"fixed-point' adjusted coordinates were computed from the two
sets of coordinates of the junction points using the programs SMTRA
(Appendix V-6). SMTRA applies the least-squares fit to compute
the translation parameters, rotation and scale factor. The trans-
formation was performed using program SIMIRA (Appendix V-7).

The coordinate and position differences between the
transformed solution and the rigorous solution is given in Table 4.3.
The position differences lie between 1.9 cms and 20.7 cms with a
mean of 9.4 cms and a standard deviation of 10.53 cms. These posi-
tion shifts are of the same order as the differences in the adjusted
distances of the fixed-point in Figure 4-10. The existence of these
differences show therefore that even a minimal constraint solution
with transformation cannot replace the rigorous adjustment in

network densification.
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Position Differences Between Transformed Fixed-Point

Table 4.3:

Adjustment Solutions (in cms).
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4.4 Correcting the Overconstrained Solution

In the remaining part of this chapter we scek to correct
the overconstrained and fixed-point position and error estimates.
These estimates are made rigorous by adding a correction vector

v8' which, in a partitioned form, is equal to;

n n
All final expressions of corrected vectors and covarlance matrices
shall, for practicality, be expressed using vectors and matrices

obtained from the non-rigorous adjustments.

4.1.1 The junction points

The positions of the junction points are, as seen in
section 4.3.1, not estimated in an overconstrained adjustment.

Substituting equation (4.12) into (4.27) gives;

-1
jn nn n

' -

V6, = 68. = -H..(u.-N ) 4.28
] ] 1))

Consequently, the covariance matrix (4.28) 1is;

Cos. = Cs.
j j

Equations (4.28) and (4.29) show that a rigorous adjustment of
the 53 subnetwork of S, is necessary when an improvement of the

overconstrained solution is contemplated.

4.4.2 The new points

D}
<

and I are obtained

<

The appropriate expressions for EN

respectively from ecquations (53.21) and (4.15). substituted into
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the second equation of (4.27) they give,

' -1 -1

U6 = -H u -1 N N Tu + N u
n nn n nn nj jij nn n
or
1 _1 -
v§ = (N -l Ju + N 14 A u,
n nn  nn°n nmnj jjj

Lets us introduce the following identity [Liebelt, 1967];

cc-p'atpy 7 = ol T eacee ity et

When the matrix Hnn (equation (2.48)) is expressed using (4.31)

we obtain;

L= n e on v w7t
nn nn nn nj jj jn nn
Then,
R T e T T
nn o nn nn nj jj jn nn

where, Hjj is defined in equation (2.47).

Equation (4.32) can be substituted into (4.30) and rearranged to

give;

A - -
Ve = NN M. [u.-N. NTRu g
n nn'nj jj-j jin nn n

Equation (3.20) is then substituted into (4.33). The result

(neglecting "7'") 1is;
1 _1 ~
VS = -N_'N _.§.
n nn nji j

The rigorous solution for the new points is finally obtained by

substituting (4.34) into (4.27) and evaluating 6n as;

s =5 -NIN s

n n o nnonj j
then,
.~ . .
X = x_ - N lN 6.
n n nn njj

Equation (4.28) and (4.34) can be expressed jointly as;

4.:

4.3

.30

w
™

i
o

(&2
(2]



82

T I
i
= 5. 4.37
j
1 -
s NI
n nmn nj

The improvement becomes computationally advantageous, using the
expression (4.36), when the normal equations inverse N;n is preserved.
The matrix Nnj is assembled while computing éj'

Using the existing N;i instead of formulating and invert-
ing (N2+Px) as required by the rigorous adjustment saves computer
storage and time. The savings can be roughly estimated by comparing
the number of multiplications required to obtain (N2+Px)_1 and Hjj'
If say, the row dimension of Hjj is half that of (N2+Px)—l, i.e.,
50% of the points in 52 were overconstrained (in the non-rigorous
adjustment) then it is estimated (in a similar way to Appendix II)
that only 37.5% of the total number of multiplications required to
obtain (N2+Px)-1 will be required to obtain Hjj' For a relatively

smaller H.., as often encountered in practice, the savings are

higher.

4.4.3 Correcting the covariance matrix, C;'
“n
The covariance matrix obtained by correcting the non-

rigorous positions must be equal to that obtained in the rigorous
adjustment. Consequently, the covariance matrix of the corrected
positions can be obtained from equation (3.44) if the final positions

are computed as;
~ ] ]

= x(o) + (8§ + V& )

n n n n



A practical expression tor the corrected covariance matrix
must be expressed in terms of the already formed non-rigorous
covariance matrix C;'. Equation (3.44) 1is expressed using (4.32)

“n
as;
- -1 -1 -1 -

CC =H__ =N 1+N N .H..N. N 4.38

X, nn nn o nn nj jj jn nn
We recall equation (4.17) which then transforms (4.38) into the
form;

Co =C" + C2" N _H. N COY 4.39
X X X nj jjin’x
n : n

Equations (4.36) and (4.39) require the rigorous solution of the
subnetwork of junction points to be known. Rigorous adjustment
of the S. subnetwork of 82 is therefore the first important step
towards improving the overconstrained solution. Computationally,
the adjustment still constitutes an advantage over a readjustment

of the whole network as discussed in section 4.2.

4.5 Correcting the Fixed-Point Solution

In this section the vector required to correct the (non-
rigorous) fixed-point solution to a rigorous one 1s computed as
in (4.27). The rigorous expressions are obtained from the weighted
position constraint adjustment. The non-rigorous expressions are

derived in section 4.3.4.

1.5.1 The junction points

(a) The correction vector

the junction point held fixed in the fixed-point adjust-

ment is not estimated. It follows therefore from section 4.4.1
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that this point must be estimated prior to performing the correction
of the non-rigorous solution. A network must be triple partitioned
as in Appendix IV. Estimation of the correction vector then uses
equation IV.40. It is assumed here that the matrix of normal
equations is fully populated and is the same as in the rigorous
case when the Px-matrix is omitted in both cases, i.e., the
di fference between the two adjustments lies in the use of the
Px-matrix only.

The first equation in (4.27) is recalled and appropriate

~ A~
expressions for Gj and dj obtained from equations (3.20) and (4.21)

to give;
-1 ! -1
V6. = -H..u.+H..N. N "u +H..u.-H..N. N "u 4.40
J JJJ Jjjnpnnn o jjJ Jjjnnnn
where,
1 | - -
He. = (N..-N, N In 7t
1] JJ Jn nn nj
1 ]
N.. = N..+Px.
1] 1] J
Equation (4.40) can be written as;
1 ' ! -1
V8. = (H..-H..)u.-(H..-H..)N. u . 4.41
] JJ 1)) Jj 337 Jnnnn
Let us introduce a matrix identity [cf., Mickhail, 1976];
(asB) Lz AT la gyt a.42

Let us then apply this identity to the terms within the brackets

in (4.41). We obtain;

] - L - _
.. -H. )7 = n hapx i et
JJ ) ]) ) o))
where,
-] '
H.. -H = Px.-Px. = APx.
JJ ]

the inverse becomes;



’ [
. .-, . = -H..48Px 1, .
] J J o1

Substituting (4.43) into (4.41) while considering the expression

(4.21) for G?E we obtain;

vs. =11 .apx.snf 444
j i3 i

. R .
. nf . . A .
when Véj is added to 6j we obtain the rigorous oj, i.e.,

- .ont
§. = (I-1..4Px.)8§.
j ( i A

4.45

LLet us recall again the Hii given in cquation {2.47) and express
H.. in the following form;
1 ! 1

H.. = (N..-N. N N .
] jJ jnnnnj

1
)+Px.+APx. 4.46

J J
The 1nverse Hjj to be used in equation (4.45) is obtained as the
RHS of (4.46) which 1is;

r_ -
H,. = (020« apx.) 7t 4.47
1) J] J
or (cf., Appendix II),
1

1 1
H.. =H.. - H..APx_.H,.
3] JJ JJ J 1]

Equation (4.47) is much more advantageous to be used in expression
(4.45) than (2.47) because both matrices under the square bracket
already exist from the non-rigorous adjustment. The use of (4.47)
makes 1t possible to avoid compilation of the matrix Njn' This
matrix and N;i are taken directly from the non-rigorous adjust-

ment.

(b) The estimated positions

The correct positions of the junction points can be

1
obtained by adding Véi to the non-rigorous position estimates, 1.e.,
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~ -~

. = x. -u..oprx. o0t 1.48
j i iic

The matrix ”jj being compiled only in a rigorous adjustment can be
1
substituted by an expression in terms of already compiled H.j

matrix of the non-rigorous adjustment, i.e., for

S S |

H.. = H.. " + APx. 4.49
JJ J] J
where,
]
APx. = Px.-Px.
] J ]
wWe use,
t - -
H.. = (H..1+APx.) ! 4.50
JJ 1] ]

applying the identity (4.42) to (4.50) gives;

1 ] - - —
Hooo= .. +apxc ) lapx ! 4.51
ij i il j j

Substituting (4.51) into (4.48) gives;
-1:nf

~

R . _
X, = x, - H..(H.. + APx.l) $ 4.52
J J JJo 13 J J
[ ~ _ ' _ LI - ' _
But, (H..+apx )7L = 7h Cou thapkin 7l 4.53
J] 1 JJ JJ] J )
which when substituted in equation (4.52) gives
R “ R
. = x. - (1 - apx tuThyenf 4.54
J J J J

Fquation (4.54) is convenient to correct the non-rigorous xi.

. . . . . -1 .
Inversion of matrices 1s not required since Hjj already exists.

4.5.2 The new points

(a) The correction vector

The vector required to transform the fixed-point solution
of the new points to rigorous position estimates 1s the second
equation in (4.27) wusing proper expressions from the fixed-point

adjustment, i.e. ,



or

'
where, ij is used in the definition of N{j and Hnn

- - 1 -
"N1+’1\’ H 1

H =} N N I, N. N 4.56
nn nn nnonj jj ojn nn
noo= Tl o wE 4.57
nn nmoonn nj ji jn nn
the difference between (4.56) and (4.57) becomes;
' Sl ' -1 -
= N N (ML= )NL N 1.58

- = N N (I N
nnoonn nnonjocoi1l o j1ooan nn

The expression for the difference of the submatrices of the inverse

: A\l
of normal equations for the junction points Hjj-H.. is derived

1]
in equation (4.43), which on substitution into (4.58) gives;
1 -1 1 -1
H -1 = -N N .H..APx.H..N. N 4.59
nn - nn nn nj jj j jj jn nn

We recall equation (2.50) and write (4.55) as;
1 1 -1 1

V6 = (H_-H Ju_ - NN _.(H..-H..)u. 4.60
n nn nn’ n nn nj- jj 3j°j

Substituting (4.58) into (4.60) gives;

vs = NI (H..-H..)[u.-N. N
n J 1) J )

N . u_] 4.61
nn nj‘ j n nn n

t
The expression for the matrix difference (Hji-Hjj) is derived in
equation (4.43) which on substituting into (4.61) gives;
1 - ' -
1N 1

v§ = -N M. aPx . H.  [u.-N. N "u ] 4.62
n nnonj jj JJ) J jnnnn

but from equation (4.42),

T '
(H..-H..) = H..APx H. . 4.63
JJ 1) JJ 1 ]3]
which on substituting into (4.61) gives;
1 — 1 -
V6 = -NTIN ML .APx.H. . [u.-N. N lu ] 4.64
n nn nj jj i j3Y7j jnnnn

On the other hand, using (4.50) and (4.53) in (4.62) gives;

vs = NI (reapxchn ThystE
n nn o nj ioJi i



Then;

e .
N S Sy PO P 4.66
n n  nnnj iodi

Equation (4.65) is more suited to correcting the non-rigorous
solution due to the availability of all matrices, and the correction

nf . - .
vector dj from the non-rigorous adjustment.

(b) The estimated positions

The corrected positions are obtained by adding (4.65)
. ~
to the non-rigorous positions xn, i.e.,
! -1 1, '-1,:nf

¢ = x_ +N N (I-aPx. H..7)é. 4.07
n n nn nj i3] i

~

Equations (4.54) and (4.67) can be combined into one equation as,

] J oy e
= N (1-apx tH. Thysht 1.68
) . . i3
X X +N "N .
n n nn' nj

Equation (4.68) is the correction expression for both junction,

and new points positions of the fixed-point adjustment.

4.5.3 Correcting the covariance matrices C;' and C7'
X. X
] n

Covariance matrices of a corrected solution are evaluatcd

below using a modified form of the expressions (3.43) and (3.44).
The modification is necessary so that matrices derived in the non-
rigorous adjustment can be used directly. Thus, substituting (4.50)

into (3.43) gives;

'_ -
o=l e apx )] 1.69
X JJ] ]
but (ct., equation I1.8 of Appendix II),
[ ' T '
1 L .. 1.70

(H.." +« aPx.) ~ = H.. - H..APx.H
7 J ] DI B
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then

] 1
C* = H.. - H..0Px H, .
X, i AR B

On the other hand, substituting (4.50) into (4.57) gives;

- - LI - -
¢ = nThen T sarx )y I, N7 D
X, nn  nn nj- jj j jn nn

Substituting (4.70) into (4.72) we write;

1 - - 1 _
cr =coren N oHLN. N Doow Wl st N, D
X x, - annj jj jnnn nnnj jjc 7j ji jnnn

4.71

4.72

All the matrices used in (4.73) are, as expected, obtained from the

non-rigorous adjustment. Equations (4.71) and (4.73) are respect-

ively the expressions for correcting the covariance matrices of the

non-fixed junction points and the new points of the fixed-point

adjustment.



5.0 STATISTICAL TESTING OF DENSIFICATION NETWORKS

5.1 Testing Considerations

Statistical tests of geodetic networks are designed as
quality control on the observations and estimated parameters. The
role of statistical tests in densification networks is broadened
by the existence of a second set of positions for the junction points
which leads to compatibility testing - a subjecct that has yet to
be appropriately addressed. On the other hand, quality control of
observations and estimated parameters 1s quite well covered in
standard literature such as Hamilton [1967], Hogg and Craig [1970],
Wells and Krakiwsky [1971], Mikhail [1976], Vanicek and Krakiwsky
[1982] and Chen [1983].

Testing can be done on the observations alone or in
conjunction with their fit to the formulated mathematical model.
This chapter will review the latter which is particularly affected
by the strain imposed on the new observations by the auxilliary
model (3.4). The fit shall be discussed first in light of a postu-
lated probability distribution function (P.D.F.), ¢, and second in
search for outliers.

Quality control of a network can also be examined in light
of its compatibility with an independent determination. Rigorous

densification gives ihe possibility of estimating a second set of

90



positions for the junction points. The statistical compatibility
of the junction point solutions from the existing and densification
networks, using an appropriately derived weight matrix of the posi-

tion differences, shall be addressed.

5.2 Testing the Postulated P.D.F.

As a result of the least-squares adjustment process, a

vector of estimated observations £ is derived which is consistent

with the mathematical model. The misfit of £ to the model is

~

expressed by the vector of estimated residuals, r. In rigorous

~ ~

densification the vectors ¢ and r are (see section 3.1);

re
>

>

r
X

A multivariate normal P.D.F. for the residuals r can be written

[cf., Hogg and Craig, 1970] as;

. 1 1.°T.-17 -
L= F exp |- 3(r Cr r)] 5.1
0 2
where, T = (2" (det c;)l/“ 5.2
c- c: -
r2 rzrx
Cr = 5.3
Gi G
X2 1x

dim(x)

=
"



The two matrices C; and C; in equation (5.3) are singular which
2

<

make the P.D.F. (5.1) meaningless. Often the weight matrices PZ and

P are used respectively. The P.D.F. for the adjusted observations
i

is then;
R 1 “T.C
oy = T—exp[- —(r Pr)] - 5.4
“T,C T~ ° . N :
where, r Pr = T, P 5T T, P eI assuming C ;O 0, are the sum of
X oo, <
the squares of the weighted residuals T, and T Let
h sz Pr =k 5.5
T2 2T N Ty T 2

Equation (5.5) represents a family of ellipses. Each ellipse
represents a confidence region at a prescribed probability level.
One ellipse can be specified by specifying a value Kz for k2
[Mikhail, 1976]. Since the quadratic sum (5.5) is Chi-square dis-
tributed, the value of K2 can be taken to be the percentile of the
Xz-distribution function (when og is known) or F-distribution

(when oi is unknown) at a specified confidence level, 1-z. Equation

(5.5) gives the test on the quadratic form of r as;

~ ~ -~

T T 2
r2P2r7+r\p)\rx S 5-6

2
Equation (5.6) when devided by o; and the number of degrees of

freedom, df, gives;

"2
[¢]
o 1 2 < -
) 7 X </
2 - 2 n,l-
a -df siTR
o %

The expression (5.7) 1s the xz—test on the variance factor [Wells

and Krakiwsky, 1971; Neimeier, 1979; Kok, 1977, 1980]. The test
2

is designed to test the correctness of o;

Individual elements of r, and r  can also be tested

(in their standardized forms) as to whether or not they satisfy the
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postulated P.D.F. (5.4). Such a test - the Chi-square goodness of
fit test is described in Hogg and Craig [1970], Wells and Krakiwsky

[1982]. The test statistic is;

L DY
K

2
< 5.8
—-Xn,l—a °
i -
The standard deviation o of the i-th observation with a residual

Q »

r, is extracted from the covariance matrix Ci.

2

5.3 Searching for Outliers

Surveyors and geodesists pay great attention to the problem
of identifying outliers in the observations when their presence 1is

suspected. If the observations % of the mathematical model
"

AS+w=r are partitioned into observations with gross-errors ¢ and

A}

those without gross errors & , the model itself can also be

partitioned as;

1 ] '

'
A 0 8 w r
+ = 5.9
" 1" " 1"
A 1 § W r

where,
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Statistical tests in search for outliers seek to reveal the residual
~t ~1t

vector r and hence indirectly, the parameter vector § affected by

"

the outliers 2 . The null hypothesis is formulated as [Farstner,
1979; Chen, 1983] Hozé"=o. In practice it is assumed that Q"=0
during the adjustment. Then to test the presence or absence of
outliers it is first hypothesized that ;” equals to some '"boundary
Valud'voﬁi.

A number of techniques have been devised to test the above
hypothesis by assessing each element of the vector ; against a
statistic formulated for each technique. The widely acclaimed
testing techniques are data snooping [Baarda, 1968], t-test [Pope,
1976] and t-test [Heck, 1981]. A comprehensive review of these
techniques is given in Van Mierlo [1981], Kavouras [1982] and Chen
[1983]. The last author's ''generalized method'" derives a general
statistic of which all the above are special cases.

The performance of the above tests for outliers depends
on the geometrical strength of the network as characterized by the
redundancy numbers, qii [Baarda, 1968; Fsrstner, 1979; Ackerman,
1981]. The average redundancy (average value of the redundancy
numbers) in a particular network type 1s fairly constant at 0.5
for triangulation and 0.33 for levelling [Pope, 1976]. This means
that the marginally detectable gross-errors are also likely to be
constant for a given network type. Using, for example, data
snooping marginally detectable gross-errors of 6.201 at 80 = 92%
[Ackerman, 1981] and d.ZoQ at BO = 80% [Kavouras, 1982] are

reported for triangulation. The observi:tions containing gross-
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o

errors smaller than the quoted values arc not regarded, by thesc
techniques, to be outliers. In fact much larger errors than the
marginal values quoted above are not deteccted by the above techniques,

as 1s explained below.

5.4 Redundancy Numbers and Network Distortions

The residuals r upon which the statistical tests are
based constitute only one component of the observation errors A2
~
[Pope, 1976]. The other component r 1s left unexamined. It is

possible to write for one observation error Aﬂi that ([Forstner, 1979;

Kavouras, 1982];

~ ~
AL, = r. + r. 5.11
1 1 1
where,

. = e 2
I'l qllé\kl 5.12

~1

= L. = -q.. )AL, 5.

SRR T LTI C R L >.13

It is clear from equations (5.12) that when qii=0 any error Aﬁi
will not be transformed into residual and cannot be detected. In
general, outliers are more difficult to unveil when a;; is small.

Example; A point C in Figure 5.1 is fixed from two known points

A and B by observing the angles Bl and 8.
C

Figure 5.1: Intersection of Point C.
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In this problem C_ = 0. Therefore q.. and hence q..A2. = 0. Any
T i1 11771

errors in Bl and B, cannot be evaluated. Such errors will affect

the position of C.

Definitions;

The redundancy numbers q;; are by definition the diagonal elements

of the matrix product C;P [Baarda, 1968; Forstner, 1979], i.e.,

q..:

PHR G I 1
The elements m in equation (5.13) are the diagonal elements of
a matrix M. The expression of the matrix M can now be developed.
We recall the expression of the covariance matrix of the residuals

C; to be [Vanicek and Krakiwsky, 1982];

C* = C - AC°AT
T X

2
where,
C; is the covariance matrix of adjusted positions
-1
CQ =P
then,
N T
C’P=1-ACAP 5.15
T X

The expression for C; given in equation (3.41) is substituted into
(5.15) to give (for N=N);

CP=1-M 5.16

T
where (see also Appendix III),
-1, T

M = A(N+Px) AP 5.17

Considering one element in (5.16) we obtain;

.= 1 - m. 5.
944 ! ™ 18
which when multiplied by AQi on both sides gives equation (5.11).

The elements m., are therefore the diagonal elements of the matrix

expressed in equation (5.17).
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Gross-Errors in an Adjusted Network

We now consider a gross-error Vli in the i-th observation. In
the adjustment process Vli is decomposed into fi = q..VL., the
effect of the gross-error on the i-th residual and %; = miivai,
the effect of Vzi on the adjusted observation ii' Then similar to
(5.11);

Vﬁi = qiiV!L.l + m.linL.l 5.19

If a given test for outliers passes the whole Vli, and not only

q..Y%2., is disregarded by such a test. Judging the sensitivity of a
11 1

statistical test on the basis of ;i is therefore misleading.
Equation (5.19) says, in fact, that ;i < VQi [cf., De Heus, 1982].

A word on the search for outliers in the rigorous
vis-a-vis non-rigorous adjustment is in order. The auxilliary
model (3.4) introduces additional information in the form of pseudo-
observations, Ex, which is absent in the models for the non-rigorous
densification (Chapter 4). Addition of pseudo-observations increases
the number of degrees of freedom and improves the reliability of
the network. Statistically speaking it becomes easiér‘for a test
to reject outlying observations. The use of Doppler points as
weighted position constraints in an adjustment of a part of the
Maritime Primary network by Thomson [1976] increased the number of

rejected outliers from two to six. Similar results are reported

by Dracup [1975].
The effect of Vﬁi on the adjusted observations (miiVQi)

is transformed into poisition errors [Forstner, 1979, 1981; Ackerman,

1980, 1981; \Vin Mierlo, 1981; De Heus, 1982]. Therefore, if we
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are to assess the effect of the gross-error Vﬂi on the adjustment
results, it 1s necessary to assess the effect of miiV&’,i as well.

If the atffected positions are also known from an independent deter-
mination, a test for statistical compatibility becomes the next
logical step. Junction points of the densification network provide

a possibility for such a test to be made.

5.5 Compatibility Testing

5.5.1 The test statistic

To assess whether or not the densification solution
(x7,C; } 1s statistically compatible with the existing solution
- el

~ -

(x.,C,
17 7°x
1

hypothesis for this test sets the position differences to zero,

)} we hypothesize on the position differences, Ax. The null

i.e., I :Ax=0.
o
In testing the hypothesis, we shall characterize the uncer-
talnty in positions through a probability, a. If the P.D.F. in

each determination is a multivariate normal function, the function

T
[Ap)

LN will also be multivariate normal [Hamilton, 1964]. The function
(5.4) 1s recalled in which (r,P) is replaced by (Ax,Cgi). The
result 1s;

5.20

R
-
It
g
@)
3
<
|
to]
=3
o
@)
>
.
N~

where,

u/2

T (2 1/2

det (CAX)

u = dim (Ax)

CA\ - the covariance matrix of position differences.
-1

i S . T,.
I'he probability statement for the quadratic sum, AX LAxAx at



O
O

l1-a confidence level is;

vl~ - 1 2
p ¢ C - 7Y = 1- 2
r(Ax C xAx < K7) l-a 5.21

The term in brackets defines a confidence region at l-a confidence
level for the quadratic sum. The test of the quadratic sum is madec
analogous to (5.6) as;

T 2
quC le < K~ 5.
AX

(8]
o

2. . . . . .
K™ is the percentile of the xz»dlstrlhutlon at l-a confidence level

and v, the degrees of freedom.

5.5.2 The covariance matrix, CA(

The mathematical model for rigorous densification by

welghted position constraints have been formulated in a differential

neighbourhood of the existing solution Xy - As such, the vector of
position differences for the junction points equals to the correction

vector of the same points, Gj’ i.e.,

Consequently,

= -~ . K
CAx Cé‘ 5.24
J ~
The expression for CE is given in equation (3.45). We note that
_ J
Px.l = C> and H.. = C” . FEquation (5.24) can then be expressed as;
] .\1 1) X5
c..=0¢ -cC 5.25
AX Rl X5

Equation (5.25) was derived by Steeves [1983] by considering Ax
as the residual vector of the pseudo-obscrvations 61 in a weighted
position constraint adjustment. The equation is in agreement with

that of Blaha [1976] and Grafarend et al., [1983]. This equation
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underscores the fact that the rigorous densification solution
is an improvement over the existing solution, i.e., the least-
squares norm of CA‘ satisfies the inequality;

[l ¢ 5.26

axl |

The matrix CAx is non-negative definite.

5.5.3 The outcome of the compatibility test

The densification network is statistically compatible with
the existing network at l-a confidence level when the incquality
(5.22) is satisfied and incompatible otherwise. The result reflects
the effect of the gross-errors on the densification solution. This
statement is somewhat misleading however, because the effect of
gross-errors in the existing network on the junction points is also
assessed by the same test.

A statement of the type given in (5.19) for more than one
observation must consider the correlation imposed on the residual
vector by the mathematical model. Fgrstner [1979] orthogonolized
one of the two terms with respect to the other. In either case,
the correlations make it impossible to pinpoint the offensive
observations. One of the ways one can get to individual outliers is
through compatibility testing of subvectors of Ax or even individual

elements of Ax whenever possible.

5.5.4 Compatibility testing for subvectors of Ax

Generally, the probability of any member Axi of Ax to

be in a given confidence region is higher than that of all the
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m-members simultaneously. The probability statement for a sub-
vector ij of Ax is;
T -
Pr{ax.C ! Ax, < KZ] > 1-u 5.29
] ij 11—
The inequality (5.27) expands the individual confidence region
of the subvector ij to keep the test of each subvector in-context
of that of Ax. The probability statement (5.21) can be used for
the subvectors ij if the significance level of the test a 1is
changed, 1.e.,
T.-1 .2
Priax.C,  ax. <K"] = 1-a' 5.28
ij J
The significance level «' is suggested to be equal to [Thompson,
1938; Pope, 1976];

a' = L a 5.29
1

Equation (5.29) restricts the significance level o'. In turn
it restricts the number of subvectors ij to be tested in context
of Ax. Such a restriction does not exist when ij is tested

out-of-context of AX.

5.6 Simulation Study

Simulation studies werc conducted to test the statistical
compatibility of a densification network with the existing network
when both networks had been found statistically acceptable as
solitary networks., The same obsecrvations (excluding distances)
were simulated for the networks given in Figures 4.1 and 4.2 as
described in scction 4.3.3. The adiustment and statistical testing

of individual networks was performed using program GEOPAN [Steeves,

2 . 2
1978}. The tests included the y~ goodness of fit test, the x -test
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on the variance and the tau-max test (the routines of which are built
in the program) all of which passed.

The adjustment and testing of the densification network
was repeated after one angle at each of the stations 22, 24, 27, 35,
38, 42, 45, 50 and 52 were burdened with additional errors of Z.Soi.
As in the first case, the network passed the prescribed tests.
Clearly, the additional Z.Soi‘crrors in the nine selected observations
were statistically acceptable to the testing techniques used, i.c.,
gross-errors were regarded as non-existent.

The study proceeded to test the statistical compatibility
of the densification and existing solutions as described in section
5.5. First, the original densification solution (without the Z.SOi
errors) was tested using program CTEST (Appendix V) at 95% con-
fidence level. Second, the solution with the additional observation
errors was tested, also using the samc program and level of
confidence as in the first case.

The first test passed for all the junction points together
and all the individual points respectively. The second test passed
when all junction points were tested simultaneously. llowever, an
out-of-context test of individual points of the whole junction vector
when additional errors were simulated, failed the test on 40% of
all junction points. The points which failed the test were directly
connected to the points at which the 2.50i error was injected.
Unlike the tests in the solitary networks therefore, the out-of-
context compatibility test was sensitive to the additional errors as

expected from the discussion in section 5.3. The 2.50, errors are
i
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regarded by this test to be gross-errors and the observations in
which the errors were injected are regarded as outliers.

An additional test was performed to check the validity
of the results given in the previous paragraph. This test was to
assess the statistical compatibility of the two densification
solutions and show whether or not the same conclusions as above
could be reached. The networks were found to be compatible when
all the 39 points were tested simultaneously. Testing subvectors
of 13 and 5 points out-of-context of the 39 point vector showed
that some of the subvectors were not compatible. If more than 20%
of the subnetwork consisted of, or were connected to, the points
burdened with the 2.50i errors then such a subvector failed the
test.

It is interesting to note that the position differences
in the densification network caused by the 2.50.1 errors in the nine
observations were equivalent to 100 ppm of adjusted distances. The
maximum anticipated error in adjusted distances accepted in the
second order network by the Surveys and Mapping Branch, Ottawa, 1s
50 ppm [EMR, 1978]. In the above simulations the testing of the
solitary networks proved to have no power towards achieving the
acceptable quality for second order network. Compatibility testing
has not only questioned the quality of the network, it has localized
the source of gross-errors to the subnethrk level.

It must also be pointed out that network distortions are
best characterized by the amount of deformation experienced by the
network rather than position errors. Such deformation can be

presented in the form of strain [Thapa, 1980; Vanicek et al., 1981;
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Vanicek and Krakiwsky, 1982]. The next logical analysis is to per-
form a strain analysis of the subnetworks which fail the compatibility

test. This subject is addressed in the next chapter.



6.0 APPLICATION OF STRAIN FOR THE DETECTION OF

GROSS-ERRORS IN DENSIFICATION NETWORKS

In this chapter wé shall describe analytically, the dis-
placement and strain fields in densification networks. The strain
field which shall be computed in a series of simulation studies and
presented by various strain patterns (strain ellipses and rotation
arcs) 1s that of inconsistencies in observations. We shall proceed
to formulate the inverse strain analysis probleﬁ. Solution of the
inverse problem which includes the computation and interpretation

of inconsistencies from given strain shall not be attempted.

6.1 The Feasibility of the Novel Strain Analysis Technique

From the time it was introduced into geodesy, about 55
vears ago, the strain analysis technique has been mostly applied
in connection with deformation and geodynamic problems. Strain
accumulation in a physically deformed part of the earth can be
evaluated from geodetic observations procured at different cpochs.
[t can also be evaluated from position differences of displaced
geodetic monuments. In both approaches a physical motion is quanti-
fied, resolved into components (parallel to given coordinate axcs)
and finally transformed into strain. All methods ot transforming

discrete position displacement field into continuous strain ficld

105
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and ultimate computation of mecaningful strain parameters (such as
total strain, shear, rotation, dilatation) are described in Pope
[1966], Schneider [1982] and Chen [1983].

Recently, strain analysis of gecodetic networks (in the
absence of physical motion) has been successfully attempted by
Thapa [1981] and Darc [1982]. Both authors generated displacement
fields from assumed inconsistencies in the observations. An incon-
sistency in an observation linking two points directly affect the two
points. In these attempts, the strain field is regarded to be
continuous within local bounds of the affected stations.

The type of strain to be expected in a network can be
predicted from the types of observations in the network. Empirical
investigations by Dare and Vanicek [1982] have shown, for example,
that rotations are to be expected when azimuths are observed in a
network. Total strain and shear are sensitive respectively to distance
and angle observations. Thesec analysis are substantiated by deriva-
tions in Grafarend et al. [1979, p. 342] in which an attempt to link
strain parameters and observations is made. Geodetic observation
equations expressed in terms of the elements of the strain matrix,
¢, have two distinctive characteristics. First, observation equations
for distances and angles are free of any rotations. Secondly,
rotations are inherent in observation equations for both directions
and azimuths. Strain analysis of any network in which scale and

orientation 1is resolved shall inevitably produce differential rotations,

total strain, shear and dilatation [cf., TFrank, 1966].
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Strain analysis of the junction subnetwork, S3 of the
densification network (in the absence of phyvsical motion) is possible
whenever a non-zero displacement vector is obtained. The analysis
can be extended to other points of the network when another deter-
mination of their positions is made by using a different adjustment
scheme or changing observations {e.g., rcobserving) significantly

to give non-zero displacements.

6.2 The Displacement Field of the Junction Subnetwork

The displacement ij at a point pj has two components
(uj,vj) parallel to the coordinate axes (x,v). These components
can be expressed as a continuous function of the coordinates. It
has been shown [Vanicek et al., 1982] that for the strain analysis
of inconsistent observations (in the absence of physical motion)
the displacement components can satisfactorily be expressed as a

linear function of local coordinates as first proposed by Terada

and Mivabe [1929], i.e.,

1(Xx,¥) =e x +e Vv + u(x ,v 6.1
u(x,y) X ) (x 5¥,)

X,y) =¢ X + ¢ vV o+ v 5.2
v(x,y) ot . vix sy ) 6.2

where, (x,y) local coordinates with origin at pj;

¢ ,C are partial derivatives of displacement

,.)e ,)e, .
XXTTvy Xy’ VX

2z

components along the local coordinate axes;
u(xo,yo),v(xo,yo) are displacement components at a polnt P,
with coordinates (xo,yo).

The coordinates (x,y) in (6.1) and (6.2) are known. Therefore the

unknown parameters in equations (6.1} and (6.2) arc the partial



derivatives c¢__,e

> e and e . The displacement components at p
NXTovyT Xy ¥X o

are not important to the analysis. They constitute a set of nuisance
parameters that must be eliminated in the computation procedure. If
pi is connected by observations to (k-1) points, then k pairs of
cquations must be compiled. The equations can uniquely be solved
i1f k = 5. The least-squares method may be used when k > 3.

Equations (6.1) and (6.2) can be combined into the

following observation equation

u e e X u(x _,vy
XX XY ( o"o)
= + 6.3
v e Sy y vx,,y,)
or,
ax = [B F] C 6.4
e

where the structure and dimensions of the matrices and vectors

(for k points) are as follows;

ru
2k x 1 L v
r I 0
B = ]
2k x 2 L O I

2k x 4 L O 0 X y
u(x ,v )
2 x 1 v(xo,yo)
C = [e G e ¢ ]T
XX XV VX Vv
1ox - : o
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The vector C is eliminated by block partitioning during the adjustment
process. In a network of n junction points, n separate systems of
equations (6.4) will be required for strain analysis of inconsistent
observations to be performed in the whole junction subnetwork, 83.

The displacement vector on the junction points equals to
the correction vector gj‘ The components of the displacement vector
are hence the components of the correction vector which is analytic-
ally derived in equation (3.20) as;

-1,.,T -1

-1
X. = -(N,.+Px-N. N 'N . A-N. N A )P
A\] (IJJ+ X l]ﬂ nnInJ) (\] Njn nn\n) 2¥2

It is this equation that is to be transformed into a hypervector of

strain vectors ei(i=l, ..., n) for further analysis.

6.3 The Strain Field of the Junction Subnetwork

We shall assume that each point for which strain is to be
computed is connected by observations to more than two points (i.ec.,

k > 3). A least-squares solution for the strain vector can be obtained

from (6.4). First, we obtain the solution as;
T.-1 T.-1_ 1 -1 T.-1
C B CAXB B CAXI B CAXAA
= - 6.6
T.-1 To-1 T -1,
e r CAxB i CAXI I CAxux
where, CA‘ is a submatrix of the covariance matrix of displacements

of junction points derived in cquation (5.25);
the cap (") on estimated vectors has deliberately been
left out.
Second, the technique of block partitioning is used to eliminate

the nuisance parameter vector, C. The strain vector 1s then estimatcu
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as;
1

~J

e = G[FTcgiB(BTc;iB)' BT—FT]-C;iAx 6.

dim(G) = (4,4)
where,

G = [FTCAiF-FTCAiB(BTCAiB)_1BTCAiF]_1
The covariance matrix Ce of the strain vector is derived by applying
the covariance law to equation (6.7). Derivations in Chapters 2 and
3 show that Ce is the appropriate submatrix of the normal equations
inverse in (6.6), i.e.,

C =G 6.8
The size of the Ce for each point is of the size of the matrix G
(i.e., 4x4) and provides the uncertainty in the determination of the
four elements of the strain vector.

The strain vector, e can be presented as a strain matrix,

E, used in equation (6.3) as;

' XX Cxy

E = Y 6.9
e
yX Yy
which is a square matrix. It is well known from matrix algebra
[Thompson, 1969] that a square matrix E can be written as a sum of a
. . 1 T . . .

symmetric matrix € = 5(E+E") and a skew-symmetric matrix

1 T .
w =5 (E-E7), i.e.,

E=¢+w 6.10

where,

1
[ ®xx 7{exy+eyx)



0 -w
w = [ ] 6.12
W 0
1 -
w = 7(cxy-eyx) 6.13

w 15 the average differential rotation.
The types of strain relevant to the analysis of inconsistencies in
observation can, as in other cases, be deduced from (6.11) and (6.12)

[Nye, 1960; Timoshenko and Goodier, 1970; Dare, 1982].

1
a) Pure shear t = 5(e__-c )
2VTxx vy

. 1
b) Simple shear v = 7(exx+eyy)

(T2+v2)1/2

¢) Total shear y
d) Total strain X = (az+b2)l/2

The parameters a and b are the major and minor semi-axes of the strain
ellipse computed as eigenvalues of the matrix ¢ (equation (6.11)).
The strain field described by the elements of the str;in vector € can
therefore be transformed into physically meaningful parameters
(t,v,Y,» or w) describing the local state of strain at various points
of the network. The transformation of inconsistencies into strain can
be made directly without first computing the displacements [Dare and

Vanicek, 1982]. The transformation for densification networks 1is

described below in detail.

6.4 The Strain Response to Inconsistencies in the Observations

The strain vector ¢ g¢iven in cquation (6.7) can be written

s8]
Ui

e = Q ij 6.14



112

where, dim(Q) =(4,2k)
T -1 T -1 .-1.7T T, -1
Q = G[F CAxB(B CAxB) B -F ]LAX
The matrix Q transforms the displacements (or position errors) into
a vector of strain components. The expression for displacement vectors
given in equation (6.5) can be substituted into (6.14) to give;
. -1 -1..T -1, 7T (0)
= -Q(N..+Px-N. N "N . NN AP (-0
¢ Q(NJJ+P\ r\_m‘nn nj) (A] th nn n)lZ( 2 2)
where, we have substituted (ﬁgo)-Q7) for W,

We can also write;

e =QT.% - C. 6.15
QJZ j
where,
T. = (N..+Px-N. NN .)_I(AT-N_ N'lAT)P 6.16
j 3] jn nn nj j jnnnn’ 2
. L (0) .
C. = QT. % 6.17
) QJZ

Equation (6.15) is a transformation of the observation vector 97

procured in the densification network to a strain vector e. Ti

is the least-squares operator for the junction points. Cj 1s a
constant.

The change in the elements of the strain vector due to
tinite changes 622 in Q7 can be evaluated by differentiating equation

(6.15). The result is;

Se= QTjSEZ 6.18
or

§e= R, 8, 6.19
where,

R. = QT. 6.20
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Except for the subscripts, the matrix R., as is Tj’ is used to make
J

the notation consistent with that in Dare and Vanicek [1982]. Rj

is the strain response matrix to the finite changes &%  (inconsis-

tencies) in the observation vector % A change 697 can be taken

2"

to mean a change or an error in any single element, group or entire

vector of observations 17.

Strain analysis of inconsistent observations has so far
been performed for a known vector ¢i, computed from repetitively
simulating measurements in the same network. The scepario differs
from that of densification nctworks in two aspects: TFirst, the design
of the junction subnetwork, S;, in the existing and densification
networks 1s different. Second, the ultimate object of strain analysis

in densification networks is to investigate the vector &% which
&~

leads directly to an inverse problem to(6.18).

6.5 The Inverse Strain Analysis Problem

The inverse strain analysis problem states: Given the
strain vector de derive a vector of associated observation incon-
sistencies £%4. If D is the inverse of Rj’ then the inverse strain
problem is formulated as;

84 = Dée 6.21
The strain responsc matrix Rj In equation (6.20) for (k-1) obser-

vations linking n given points to other points of the network is a
n

(4nx¥2k-2) matrix. Rj 1s then a singular (for k > 3k) matrix of
1 .

rank 4n, i.e.,
rank(Rj) = 4dn

Although Rj has full rank it has a number of possible inverses, D,
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onc of which is appropriate to the problem at hand. Onc such inverse
is the Moore-Penrose inverse R;. It is herc selected to be equal

to D. This selection of the Moore-Penrose inverse is made to be
consistent with the inverse of the normal cquations matrix embedded
in the matrix Rj. Therefore,

+

b = R, 6.
J

Substitution of (6.22) into (6.21) gives the desired form ot the

ro
29]

inverse strain problem as;

3% = R Se 6.23
A (4nxl) strain vector changes 1s transformed into observation
differences (inconsistencies) by equation (6.23). As in the direét
problem, only those columns of Rj corresponding to the observations

linking the points under investigation to other network points are

considered [Dare, 1982].

6.6 Simulation Studies and Results

Solution of the inverse strain problem where possible
will add to the advantages of the compatibility test in two respects:
First, it will be possible to compute the component of the gross-
error (miiAQi) given in equation (5.13) which 1s otherwise not
possible to obtain. The compatibility test can only tell us whether
or not this component is significant at a given level of confidence.
Second, strain analysis provides a 2D view of the effect of errors
in observations, i.e., whether the errors deform the network by
rotating, expanding and/or contracting it. Judging from the strain
patterns 1t 1s possible to compute the errors responsible or contribu-

ting to a deformation or distortion of a certain type. The effect of
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obscrvation crrors on the state of strain of densification networks
can also be investigated graphically. The purpose of these investi-
gations 1s to establish the sensitivity of the strain technique to

inconsistencics in observations.

6.6.1 Sensitivity analysis 1

The tirst-order network described in section 4.3.3 was
used in this analvsis. The angle 35-32-25 was selected for the
analvsis as an observation at a point situated close to the centroid
of the network. The observation was perturbed by an error equal to
a multiple of its standard deviation (o = 0960) thirteen times.
The change in strain was computed and examined for the thirteen
perturbations in the observation in the range -4.0c to 5.00 .
Strain for the perturbations out of the given range were not computed
as the observation was flagged for rejection by the tau-max test at
95% probability. Computation of strain and subsequent plotting was
made possible by programs STRAIN1, PASTEL and NETPLOT1 (Appendix
V-2 to V-4 ). The programs are modifications of STRAIN, EVALUE and
NETPLOT [Thapa, 1980] respectively. Solid lines in the plots show
local extension and positive rotation while dashed lines and arcs
refer to contraction and negative rotation at each point.

Figures 6.2, 6.3 and 6.4 show the strain patterns (ellipses
and arcs) for the -4.00 , 0 and 50 perturbations respectively.
The ellipses and arcs seem to differ in scale and sign only. Negative
perturbations induce the same, for the same perturbations, strains
with opposite effevt. This relationship best depicted by the changes

in the semi-major axes of the strain ellipses (Table 6.1) and as



Variation in the major semi-axis of strain ellipses when the error

Table 6.1:

in one observation (25-32-35) at station 32 is changed.
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Figure 6,2 Strain Patterns of 4 _
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portrayed graphically in Iligurce 6.1 for station 066 1s a reflection

of equation (6.19). As the graph shows, any small change in the
observation can be sensed by the network. There is therefore no
limit as to the magnitude of observation errors for which the strain
analysis technique can be useful, as long as such errors can produce
a non-zero displacement of the network points. The importance of
this outcome cannot be over-emphasized. The technique enables us

to investigate errors in observations smaller than those investigated
by statistical tests. The inverse of this statement 1s also true.

We shall use this versatile tool therefore to investigate strain

patterns in rigorously densified networks.

6.6.2 Sensitivity analysis 2

The effect that the distorted points of the existing
network can have on the densification network can be investigated.
The first order network used in section 6.6.1 was simulated with
additional errors of 2.50 in angles (38-66-77), (43-35-48), (25-12-32)
and (25-28-99). As the previous simulation (section 6.6.1) shows,
cach of the errors will displace the network points appreciably as
to induce strain in all points of the network. With the ecxception of
stations 66, 77, 88 and 99, all stations have also been included in
the design of the densification network as described in section 4.3.3.
We shall compute the strain induced in the densification network.
We shall use the solutions of the first-order network (i.e., before
and after the perturbations) as a priori position in two separate
Px-adjustments of the densification network. Computation of strain

and subscquent plotting shall be done as described in the previous



section.

The strain patterns plotted as a result of this simulation
are displayed in Figures 6.5 and 6.6. Figure 6.5 gives the strain
patterns of the junction subnetwork only. Stations 28 and 48 seem
to have been strained the most. All points of the densification
network are strained by the distortions in the junction points as the
strain patterns 1in Figure 6.6 reveal. An obvious question is whether
or not the densification network i1s strained differently by a distorted
junction subnetwork when the new observations are contaminated with
gross-error.”

To answer this question, eight angles in the densification
network were corrupted with additional errors of 2.50 . The corrupted
angles were; (29-38-30), (33-42-44), (25-24-30), (41-50-S1), (43-45-52),
(19-27-28) and (43-35-45). The least-squares adjustment process,
strain computation and plotting procedures were repeated as described
in the last two paragraphs. The strain patterns plotted in Figure 6.7
are identical to those in Figure 6.6. The reason for this behaviour
1s vet to be ecstablished. Tt is suspected to be due to the local
nature ot the strain. The identity of the strain patterns in
these two figures shows the effect of the gross errors in the existing
network on the densification network to be invariant with respect to
gross-crrors in the new observations. This does not by any means
imply that gross-errors in the new observations do not strain the
densification networks. However, whether or not this is the case

can be seen in the simulation study that follows hercafter.
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6.6.3 Sensitivity analysis 3

Results of two determinations of the densification network
for which the compatibility test was performed in section 5.6 were
also subjected to the strain analysis. The existing solution and
weilght matrix Px being the same in both adjustment means that the
differences on positions were a result of the additional errors in
the observations. The strain patterns in Figure 6.8 present the
strain in the densification network using the undistorted solution
of the existing network and corresponding covariance matrix for the
two densification adjustments. The strain patterns in Figure 6.9
describe the strain patterns using the distorted solution of the
existing network and its covariance matrix. As shown in the previous
section, the two figures arec also identical. Similar to the results
in the last section,we find the strain in densification network due
to gross-errors in the new observations in these figures are invariant
with respect to the distortions in existing network.

Figures 6.8 and 6.9 show also that the strain can be more
conspicuous at some points than others even though the same gross-
errors were simulated at all selected stations. It was discussed
in section 5.3 that the component of the observation error which
is transformed into position errors by the adjustment process, 1s a
function of the geometrical strength of the network. The variability
of the strain response portraved here is therefore not surprising.
Also not surprising is the fact that of the stations simulated with
the 2.50 error the largest strain ellipse and the smallest of the

ta}

largest residuals at a station arc at the same station (station 50).
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Figure 6.8: Strain induced in rigorous densification by 2.5%% bias in 7 observations
(junction points undistorted). Scale of strain ellipse axes: 1 cm =
7 ustrains. Scale of w,l:1.
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The largest of the largest residuals at a station is at station 35
which as the strain ellipses show is not much different from those
at stations with uncorrupted observations.

The strain technique here reveals that it is capable of
unveiling gross-errors which are less than half the marginally detect-
able error by data snooping as computed by Ackermann [1981] and
Kavouras [1982]. It also confirms the idea that hypothesis testing
on both reisduals and positions whenever possible improves the
threshold of gross-error detection in observations. Stations with
conspicuous strain ellipses (i.e., 21, 45, 50, S1, 52) are included
in the subnetworks that failed the out-of-context compatibility test

at 95% confidence level.



7.0  POST-ADJUSTMENT CHANGES IN THE RIGOROUS SOLUTION

The expressions developed in Chapters 2-4 and the checks
described in Chapter S and 6 ére necessary to ensure rigorous
densification results. Yet to be addressed is the question of
blunders which can be discovered by, for example, compatibility
testing or strain analysis after the adjustment has been completed.
This Chapter will give analytical expressions required to apply
corrections to the least-squares solution of a rigorously adjusted
densification network for minor changes in observations, observation
welghts, Pz, the Px-matrix and the initial coordinates ;§1). Assump-
tion is made that the affected submatrices of Px and PZ are limited

to a few stations and observations respectively. This Chapter does

not discuss changes in more than one matrix and vector.

7.1 The Px-Matrix
We assume that because of punching or other mechanical
errors a matrix le was entered into the adjustment instead of

the correct matrix Px. The difference between them is APXx such

that;
APx = Px - le 7.1
and 0 0 0
APx = 0 0 ADPX 7.2
0 0 0
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The matrix APx is embeded in a null matrix, and

dim(4Px) << dim(Px).

The Approximate Correction

We recall the correction vector § from equation (3.19)

and present it in the form;

§ = - (nepx) MaTpy 7.5

The expression of the correction vector when le has been used is;

6t = - (N+Px1)'1AIPw 7.4

The difference between the correction vectors 6 and &' is;
ASY = & - §°

- [(N+P.‘<)_1

: (N+Px1)‘1]ATPw 7.5
We introduce an identity similar to (4.42) as;
(A-B)'1 z -A'I(A'l - B'l)‘IB'1

for A = (N+Px)_1 and B = (N+Px1)_1 we obtain;

[(N+Px)'1-(N+le)'1]“1 - (N+Px)(Px-Px1)‘1(N+pxl)

the inverse of which is;
S | -1 e PR |

(N+PX) —(N+Px1) = - (N+Px) APx(N+Px1) 7.6
where,

APx = Px - le
which on substitution into (7.5) gives;

pst = (N+Px)'lAPx(N+le)’1ATPw 7.7

. . -1 -1 . . . . .
he matrices A and B in the identity given above can be inter-
changed without changing the left hand side of the expression, which

in turn leads to;

[}

ASt = (N+Px1)'lAPx(N+Px)'1A[Pw 7.



Substitution of (7.3) and (7.4) into (7.8) and (7.7) respectively
we obtain;

Y

- (N+Px1)‘1APx6 7.9
and

A8 = - (N+Px)’1APx5' ) 7.10

Equations (7.9) and (7.10) suggest that in order to correct §'

for APx 1t is necessary, as pointed out in Chapter 4, to complle
the rigorous normal equations matrix and obtain its inverse. This
task 1s equivalent to adjusting the network all over again. Let

us assume that the norm of Px and that of Px, are much smaller than

1

that of N, i.e.,

FIpx|| << |[N]] 7.11
and

Hex << [N 7.12
Then fc.f., Fox, 1964 and Appendix II]

(N+Px)‘1 SRR Rl N 7.153
and

(N+Px1)‘1 = N_I—N_IPXlN-l 7.14

The rigorous form of (7.13) and (7.14) 1is obtained in Appendix II
*

1 respectively. The star indicates

*
by replacing Px, le by Px and Px
a matrix computed similar to equation II.4 (Appendix IT). The dif-

ference between (7.13) and (7.14) 1is;

1 1

(N+Px) L - (N+Px1)'1 c o N lapanT 7.15
Comparing equations (7.6) and (7.15) we can say that under the

conditions stipulated by the inequalities (7.11) and (7.12) the

inversces (N+Px)-l and (N+Px1)—1 can be assumed to be equal, i.e.,



1

(NePx) T (N+Px)) 7.16

The correction for the blunder in le can be computed from equation
(7.10) using the normal equations inverse with the weight matrix

Px i.e.,

1)

A8' = - (N+Px1)'1apx5' 7.17

However, because of (7.16) the covariance matrix of the corrected

ositions x = x' + AS6' will remain unchanged, within the approxi-
g

mation in equation (7.15). The covariance matrix pertaining to

|
Véj and to the points to which the matrix Px refers can be improved

by adding the correction N laran ! o Cityie.,

c-=0C ' - N'IAPxN‘l
X X

7.18
Equation (7.18) is similar to (4.71). The latter is however confined
to the junction points only. Both equations (7.17) and (7.18)

make use of matrices and the vector §' formed in the non-rigorous
adjustment. The savings in computer storage and time obtained as

a result of the approximation are tremendous. These savings equal
to the cost of storage and time required for the computer to perform
n3 multiplication when n 1s the row dimension of the matrix inverse.
These savings are however worth considering only in the event that
the approximate correction is not significantly different from the
rigorous solution. This differcnce has been investigated.

The approximate correction equations (7.17) and (7.18)
have been tested by using the data provided in section 4.2.1 of
Nickerson and Knight [1983]. The approximate correction vector and
the rigorous corrcction vector are identical up to the third place

of decimal. All vectors and mat..ces in (7.17) are known.



The Rigorous Correction

Let Px be assumed to refer to the junction points only,
i.e., Px = ij. LLet the matrix le used 1n the this chapter be
. Ce C L1
the Px' in Chapter 4. By partitioning the matrix inverse, (N+Px) °,

as performed in equation (2.44) we obtain for equation (7.10);

A31 = -H,.APX.8!
i jit it

where, 1 refers to the junction points.

Equation (7.19) is the same as equation (4.44) for improv-
ing non-rigorous densification schemes, at least in mathematical
form if not in philosophy. le differs however from Px' in
Chapter 4 by the fact that the latter is connected with all non-

fixed junction points. The larger submatrix thereof tends to zero

as equation (4.3) shows.

The expression for the correction to the correction vector

of the new points is obtained analogous to (7.19) as;
LI 1 -
a8} HnjAijéj 7.20

which is equivalent to the expression (4.62) for correcting the
non-rigorous solution of new points in a fixed-point adjustment.
The matrices H.. and Hn. contain the correct ij matrix which
implies that for a rigorous Adj and Aén the matrix Hjj must be
computed.

Equation (7.17) is an approximation while (7.19) and (7.20)

are accurate expressions. These cxpressions were tested also using



the same data used for the approximate expression (7.17). The results
of the corrected positions showed to be identical with those obtained
from the Px-adjustment. When using the corrected expression it is
suggested that the set of points for which (7.19) applies must be
points for which APx # 0. The remaining points are grouped together
with the new points. Rigorous correction of the covariance matrices
is discussed in section 4.5.3.

“(D

7.2 The Initial Coordinates, xj__

The weighted positions in a Px-adjustment are known to
assume the role of observations (pseudo-observations) as well as that
of initial positions. Any changes in these observations are blunders
which may be unveiled by statistical testing on the residuals. These
changes distort the set-up of the Px-adjustment and may require more
than one iteration for the adjustment process to converge. The CAx
matrix will not be given by equation (5.25) and is non-meaningful
for compatibility testing. Using network simulations, we have shown
ey

]

that these claims are indeed true. Changes in x must, therefore,

be treated as the changes in f_.

7.3 The Observation Welghts

Changing observation weights may he necessary when parts
of a network have been, for some reason, reobserved and a new solution
1s sought. The observation weights can be perceived as having changed
the weight matrix PZ before reobservation to [P2+AP) after reobserv-

ation. We shall assume for a moment that the change in observation
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weights is a result of blunder committed in compiling the input data

to an adjustment program and that the observations were not in any

way affected (i.e., no change in the misclosure vector, wz). The

normal equations matrix N will also be affected and will change

from N to (N+ANP). The correction vector changes from 5 to

(&+A£) which, with the necessary changes in equation (7.3), reads;
5+ 88 = - (N+ANP)_1AT(P+AP)m 7.21

Substituting (7.13) into (7.21) while bearing in mind that N in

(7.21) is the same as (N+Px) in (7.3) we obtain;

§ + AS = - (N’l-N'lANpN’l)AT(P+AP)w 7.22
= - v talpy N‘lﬂNpN‘lATPw - v taTaps
« N Ean n AT apy 7-23
P

or by ignoring second order terms;

As = N'lANps'- N aTapg 7.24
where,

§ = - N 1aTpy

Equation (7.24) is the expression for the change in the positions
when a change in the weight matrix, P, occurs. This equation has
been obtained and used by Vanicek [1984]. The expression uses the
. -1 . . .
already computed inverse N and offers time and storage savings 1n
computation as discussed in section 4.4.2 and Appendix II.
The new covarlance matrix is obtained as the inverse

(N+ANP)— This inverse can also be computed cost effectively using

wherc



The matrices AP and ANp in equations (7.24) and (7.25)
are structured such that the dimensions of the non-null submatrices

are very small compared to the full matrices.

7.4 The Observations

The observation vector used in the adjustment often con-
tains gross-errors V& which can only be revealed after the adjustment
has been completed through statistical testing. Is it always
necessary to repeat the adjustment when gross-errors in the observations
are unveiled? We shall attempt to answer this question. We shall
assume that the new observation used to replace the one with gross-
errors has the same observation weight. Let us write an observation

with a gross-error as £, + V&L. The misclosure vector defined, for

2
example, in equation (2.17) becomes;
_ (0 ' 2
wé = 52.2 - 22 - v 7.26
or
Wy T wy - 2 7.27
where,

0

w) includes the gross-errors, V2.

The correction vector (7.3) in the presence of gross-errors 1s

therefore;

st = - (vepx) Tatpas

~l
o
w

Assume that the correction vector with the gross-error equals to;

§' = 8§ + A6

where, A8 1is due to the gross errors V2, then by substituting (7.27)

into (7.28) we obtain;



8 = - (N+Px) TATpug 7.29
Equation (7.29) suggests that a network need not be re-adjusted when
the inverse (N+Px)-l is preserved. Only an appropriate submatrix

T < . . L.
of AP that multiplies with V2 nced be compiled. The remaining

procedure boils down to a multiplication of matrices.

7.5 The Covariance Matrix, Ci

The covariance matrix can be derived by applying the
covariance law to equation (7.28). In this case the covariance matrix
of the misclosure vector (7.26) need to be known, i.e.,

+ C + C + 2C 7.30

Cor = C () 2 o %99
9“')

]
Ws

2 2
The vector Ve is vector of changes of some of the observations

(in the vector 22) without changing the observation weights of

those observations. Their error characteristics and hence the vectors
22 and (Q2+VQ) are indistinguishable from the second statistical

moment's point of view. If V2 were blunders, for example, it would

correspond to a change in the mean (the first moment) without change

in dispersion. In both cases it means that;
LO = L2+V2 7.351
and
) = T T0
Cop™ Cy aevy s

which is possible if the covariance matrix CVQ is a null matrix, 1l.e.,

(93]
ol

CVQ = CQZVQ =0 7.3

Cquation (7.30) can therefore be presented in the form identical

with C y i.C.,
(L),)
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C =C 7.34

which in fact, lcads to the identity between the covariance matrices
of the adjusted positions before and after the observations are
corrected for the errors, 9%. This conclusion says also that if

the adjustment is to be corrected for blunders in observations, the
covariance matrix of adjusted positions should not be changed. It

is important to check or establish equality (7.31) and (7.32) before

~
~

7.34) is accepted. The a posteriori variance factor may however

be different leading to different covariance matrices when scaled

by ¢ .
o}



8.0 CONCLUSIONS AND RECOMMENDATIONS

We set out to lay down a mathematical foundation and
derive least-squares expressions necessary to rigorously adjust a
2D densification network. The ideas expounded here can, as well,
be applied to 3D networks. The term '"rigorous densification"
was clearly defined, thus setting the boundaries within which the
theory of rigorous densification would be applied. It was found
ncceessary to triple partition a densified network and examine each
subnetwork 1n context of the rest of the network. The junction
points have been found to propagate the information from the exist-
ing network into the densification network and vice versa. The dual
position information that can be obtained on the junction points and
its covariance matrix can be used to extend statistical testing of
the residuals into compatibility testing of two network solutions.
The dual positions offer a possibility to perform strain analysis
in densification networks hence cxpanding the error analysis problem
into the strailn space.

“The objectives of this study have been achieved. In the
course of the research it was found necessary to address a number
of other problems related to rigorous densification. A broader
view of statistical testing in scarch of outliers, correcting
of non-rigorvous solutions to rigorous and post-adjustment changes

in the solution, for blunders or observations rejected by statistical

140
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testing, have been addressed and the merits of the solutions discussed.
Below is a summary, followed by conclusions and recommendations,

made as a result of this work.

8.1 Summary and Contributions

Network densification is a procedure of adding information
into the existing network and integrating the new information with
the existing information. The integration can be done correctly
or incorrectly. The correct way of densification described in this
dissertation starts with the formulation of the mathematical models.
When formulating the models all points which have been estimated
prior to the densification (hence have a finite covariance matrix)
must be taken to be pseudo-observations. An auxilliary mathematical
model 1s formulated for all such points. Thi% model is then used
in conjunction with the main mathematical model (or models).

One main mathematical model is formulated when the Px-
adjustment is contemplated. It establishes the functional relation-
ship between all the positions of the densification network 52 and
the observation vector ¢,. The linearization of the model is made
using the existing solution. In so doing, it 1is assumed that the
model 1s linearized in a differential neighbourhood of the final
solution, ;2. The misclosure vector O in the auxilliary model
will then be equal to zero. Defining the problem in a differential
neighbourhood of ;2 also means that the least-squares process will
converge in one iteration. The expressions developed for the Px-

adjustment cannot be guaranteed to work bevond the prescribed

conditions.



Two main mathematical models are formulated when a combined
adjustment of the existing, S1 and the densification networks 1is
to be performed. The mathematical models establish the functional
relationships between the positions and the observations in the two
networks separately. The junction points are therefore related to
both the Ql and 22 observations. These points establish the correl-
ation between the two networks S1 and 82. Linearization of the

mathematical models is made at initial values x(O) which may or may
not be deterministic quantities. If x(o) are estimated quantities
then they are taken to be pseudo-observations and treated like the
junction point positions of the existing network in the Px-adjustment.
The possibility of multiple determinations of the network points
(possibly using different techniques) exists. However, only one
determination may be used to linearize the models. Other determin-
ations are considered separate from the densification problem -

more appropriately as a merger problem.

This dissertation has assumed the equality of the Px-
adjustment with the combined adjustment results. The least-squares
expressions for the Px-adjustment were derived, as a result of this
assumption, from the expressions of the combined adjustment. Thus,
the expressions in the Px-adjustment are those that would give the
same position and error estimates as the combined adjustment.

It is also possible to obtain rigorous solutions indirectly
from the non-rigorous solutions. Correction vectors to the non-

rigorous solutions (for improper use of the weight matrix Px) are

expressed in terms of the already computed vectors and matrices
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of the non-rigorous adjustment. It is estimated, for example, that
for a Px matrix which is 10% the size of the normal equations matrix
N, the inverse (N+Px)_1 can be computed in at least 87.8% less
multiplications for a given N-l. The alternative, of course, would
be to re-adjust the network.

All the tests performed in search of outliers in a solitary
network (data snooping, t-test, etc.) are quality control measures
on the model made through the residuals. Residuals are however one
of two components of observation errors. The other component can
be investigated only through the estimated positions whenever
possible. Quality control in densification networks can be taken a
step further by testing the statistical compatibility of the existing
and densification solutions on the junction points. Compatibility
testing is a test on the significance of observation errors on the
estimated positions. It must always be performed whenever two
solutions are given. The weight matrix of the position differences
of the junction points is the difference in covariance matrix inverses
of the solutions. The weight matrix of position differences.must
always be established prior to the test. Strain analysis can be
performed for all points which fail the compatibility test. Strain
patterns portray the local deformations and rotations experienced
by the network as a result of the inconsistency 1in observations.
Unfortunately all results shown by simulations cannot easily be
realized in a practical network analysis. The future of strain
analysis is bright and méy solve our quality control problems at

a new level.
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We have earlier encountered corrections to adjustment
results to correct for the improper use of the matrix, Px. Other
corrections of relatively minor nature include making post-adjustment

changes in the solution due to minor changes in the P_-matrix,

Px-matrix, Qz—vector or x(o)—vector. Such changes may be necessit-
ated only after the adjustment process is completed. Formulations

which lead to more cost-effective computations than readjusting the
network have proved to be realistic when used in practice.
The contributions made in this work are;

1) The concept of stochastic Taylor points has been applied to
densification networks. A priori information has been assumed
for all points old and new. The covariance matrices of the mis-
closufes and correction vectors have been derived. These matrices
are not equal to those of the observations and estimated positions
respectively as the case is when a priori information 1s not
considered.

2) The equivalence of the combined adjustment and the Px-adjustment
has been proved by transforming the expressions of the combined
adjustment into the Px-adjustment. It has also been proved that
for the two solutions to be ecqual the mathematical models of the
Px-adjustment must be linearized in a differential neighbourhood
of the final solution using the existing solution.

3) A comparison of the rigorous Px-adjustment with the fixed-point,
overconstrained and fixed-point with transformation has been made.
Expressions have been derived for correcting non-rigorous densifi-
cation solutions at significant savings in computer time and

storage.



4)

5)

6)

7)

8)

Statistical compatibility of the solutions obtained on junction
points after rigorous densification has been performed. A
special program CTEST has been written, tested and used for this
purpose.

The cross-covariance matrix between the existing and the rigorous
densification solutions has been derived. The weight matrix of
position differences has been confirmed to be the difference of
the covariance matrix of the solutions.

The mathematical models and subsequent least-squares expressions
of the non-rigorous adjustment schemes have been formulated
analogous to those of the Px-adjustment. A uniform treatment of
the limiting cases of the matrices Px and Cx as well as arbitrary
finite representations thereof has been made with regard to
weighted position constraints.

Strain analysis has been introduced to densification networks

and used to study the strain effect of the existing network on
the densification network and the strain effect of gross-errors
on the densification network. The inverse strain analysis problem
has been formulated.

Expressions have been developed to correct the rigorous solution
when a few observations are changed or changes in the solution
for minor changes in the PQ and Px matrices and 2 and ;(0)

vectors are contemplated without attempting to readjust the

network.
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8.2 Concluding Remarks with Recommendations

1) Point positions computed in a weighted position constraint
adjustment of horizontal gcodetic networks using the expressions
given in Chapter 3 are identical to thosec obtained by adjusting
the existing and densification networks simultaneously and are
therefore rigorous. Two conditions must however be satisfied.
a) The initial coordinates for the linearization of the main

mathematical model must be equal to the least-squares
estimated positions of the junction points derived in the
existing network, and suitable initial position coordinates
for the new points.
b) The weight matrix of the initial junction point positions
1s equal to the appropriate submatrix of the normal equations
inverse from the adjustment of the existing network.
In general therefore, the initial point positions in the weighted
constraint adjustment are stochastic variables with a finite
covariance matrix.

2} The mathematical models and normal equations of the simultaneous
adjustment are symmetrically formulated with respect to the new
and existing non-junction points. The existing network affects
the densification network and vice versa. The extent of the
effect of the new network on the existing network requires more
study. Such a study could, for example establish some '"rule-of-
thumb'" that stipulates the region of significant influence of
the densification network on the existing network. The same

expressions developed for the new points can be used for the
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existing points by interchanging the subscripts n and e.

3) It is possible and cost effective to correct the non-rigorous
fixed-point and overconstrained adjustment results to rigorous
ones, when the covariance matrix (normal equations inverse) of
the non-rigorous solution has been preserved. The correction
algorithms require however that a rigorous solution be obtained
for the fixed-points of theijunction subnetwork by rigorous
adjustment of these points.

4) Correcting the rigorously adjusted results for blunders committed
while assembling the input data for an adjustment program is also
possible and cost effective without a complete readjustment of
the network. Algorithms to correct for such blunders require
the normal equations inverse and the corrupted matrices and/or
vectors to be preserved.

S) It is mathematically wrong to assign zero weights to initial
positions in a weighted position constraint adjustment. Zero
weights assume the covariance matrix to be undefined and our trust
in their values to be zero. The effect of the existing network
cannot be propagated into the densification network under such
an assumption. Elements of weight matrix corresponding to fixed
positions can be considered to be large with very small reciprocal
values which are close to zero.

6) The marginally detectable errors in observations depend on the
geometrical strength of the network as the redundancy numbers
show. It has been established in this study that a densification

network can be found to be incompatible with <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>