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ABSTRACT

Noisy two-dimensional data series are a common occurrence
in the geodetic field. As a result of this, numerous
algorithms have been formulated to separate the systematic
components from the noise within the observed data series.
These algorithms, however, are not applicable to all types
of data series. In this thesis, the performance of the
piecewise cubic function, as a means of smoothing such data
series, is investigated.

Cubic splines have, in the past, been used as smoothing
algorithms. However, they proved ineffective in  dealing
with two-dimensional data series as they were developed with
a weighting scheme for only one of the two variables. Hence
they cannot Kaccept a fully populated. covariance mwmatrix
associated with each observed data point. The spline
algorithm developed in this thesis uses both parameterized
cubic splines and the method of least-squares to formulate a
weighting scheme which allows the 1incorporation of +the
two-dimensional covariance matrices of the observations.

The resulting spline approximation technique is then used
to smooth the navigation data sets of the three ice camps of
the Lomonosov Ridge Experiment (LOREX) in the vicinity of

the North Pole in 1979. The Navy Navigation Satellite
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System (Transit) was used as the primary posifioning system.
Error models evaluating the accuracy of the position fixes
using Transit satellites at high latitudes are developed.
Smoothed positions and velocities for the ﬁhree ice camps at
one hour intervals are computed for the duration of the
expedition.

To evaluate the performance of the spline algorithm, the
smoothed data series produced by the spline algorithm
(DSPLIN) and the real-time smoothing technique (SMOBS) used
during LOREX are compared with those generated by the
precise dynamic package (GEODOP), i.e. DSPLIN versus GEODOP
and SMOBS versus GEODOP. The smoothed data series produced
by the precise dynamic technique (GEODOP) are hence used as
a reference standard. In the comparisons Dbetween the
smoothed data series of positions and velocities for the
three ice camps, a reduction of about 56 and 47 percent in
the root mean square of the differences in position and
velocity respectively, is achieved by DSPLIN over SMOBS. 1In
the same comparisons, the maximum discrepancy between
individual smoothed positions is reduced by about one-half
(i.e. from 3758 m to 1564 m ). The computed standardised
position differences between the smoothed positions produced
by the spline alogrithm and the precise dynamic technique
shows that the precision estimates computed by the spline
algorithm are consistent with accuracy only over certain

periods of time in the LOREX data spans.
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NOTATION

HE equal by definition
€ := Dbelongs to
C := subset
n := intersection
s(x) := polynomial function
s := n th derivative of function s
<a,b> := closed interval: a < x < b
Sk := Spline Space of degree k
Pk := Polynomial Space of degree k
Cn<a;b> := OSpace of n th differentially continﬁous
functions
SYMBOLS
«¢— := data point
Q@ := knot point
éé;? := confidence ellipse
~— := spline

In general
1. Matrices and vectors are underlined (e.g. A and 5).
2. Matrices are denoted by upper case letters (e.g. A).

3. Vectors are denoted by in lower case letters (e.g. x).
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Chapter 1
INTRODUCTION

The purpose of +this investigation 1is %o develop a
smoothing algorithm applicable to noisy two-dimensional data
series. The resulting algorithm incorporates the full
covariance matrix depicting the accuracy of the data in its
smoothing process.

Such data sets are a common occurrence in the geodetic
field. They can be found in marine navigation; for example,
the +time series of position determinations wusing modern
electronic devices to monitor the motion of a ship at: sea.
A specific example, which 1is 1later wused: to test the
smoothing algorithm, 1is +the Lomonosov Ridge Expgriment
(code~named LOREX) station navigation Doppler data set. The
positioning of the LOREX ice stations in the vicinity of the
North Pole was achieved using the Navy Navigation Satellite
System (NNSS). Due to proximity to the pole, position deter-
minations were greatly influenced by poor geometry and
inadequate modelling of the ice motion. It was felt that an
algorithm which 1is able to utilize all the information
contained in the position fixes will greatly increase the
accuracy of the predicted 1locations of the observing

stations between position determinations.
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A recomputation of all position fixes wusing Dbetter
station velocity estimates will remove the errors caused by
inadequate modelling of +the ice motion. In this thesis,
error models are used to account for these errors in the
LOREX position fixes. A recomputation of all position fixes
with better velocity estimates is outside the scope of this

research.

1 MAIN CONTRIBUTIONS

The following are the main contributions of this thesis:

1. The development of a two-dimensional least-squares
cubic spline approximation algorithm.

2. The evaluation of the performance of the spline algo-
rithm using simulated and actual data sets.

5. The application of the spline algorithm to the
navigation data sets of the three LOREX ice camps.

4. The modelling of positioning errors, caused by
satellite orbital, station velocity and station
height errors, through the a priori covariance matrix

of the position computations.



1.2 OUTLINE OF THESIS

This thesis is divided into the following chapters.

Chapter 2 contains a brief description of the LOREX-79
expedition, the navigation equipment used and the accuracy
of position determinations. This information provides a
background for the discussion and assessment of the results
from the processing of the navigation data sets using the
developed smoothing algorithm.

Chapter 3 presents a brief overview of the scope of the
investigation and details several of the options that were
considered when designing the smoothing algorithm.

Chapter 4 gives a basic review of the concept of a spline
and its similarities with the mechanical spline.

Chapters 5 and 6 are devoted to the formulation of the
working equations of the 1least-squares parametric cubic
spline approximation.

Chapter 7 discusses the various possible methods of
adjustment; the merits and implication of each in relation
to the spline algorithm.

Chapter 8 deals with the aspect of precision estimation
of the 1least-squares estimates, the covariance 1law and
computational accuracy.

Chapter 9 gives an overview into the various tests done
to assess the performance of the spline algorithm with

regard to the simulated and LOREX test data sets.
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Chapter 10 discusses and evaluates the LOREX Doppler data
sets and the application of the spline algorithm to the
complete navigation data series of the three ice stations on
LOREX. Various error models, based on the.formal covariance
matrix of the position determinations, are used to develop a
weighting scheme suitable for high latitude positioning by
NNSS. The real-time application of the spline algorithm is
also addressed. |
Finally, in Chapter 11 a summary of the discussions are

given, conclusions drawn and recommendations made.



Chapter 2

DESCRIPTION OF LOREX-79 NAVIGATION DOPPLER DATA
SET

In this chapter, a bpief description of the LOREX-79
expedition together with the navigation equipment used, and
the characteristics of the collected Doppler data are given.
The on-site and post-processing of the data series are

discussed and inadequacies notzd.

2.1 . LOREX DATA CHARACTERISTICS

In the spring of 1979, the Earth Physics Branch of the
Federal Department of Energy, Mines "and Resources in
conjunction with the Polar Continental Shelf Project
organised an expedition to the geographical North Pole. The
Lomonosov Ridge Experiment was designed to explore the
nature and origin of the major submarine mountain ridge
running across +the Arctic Ocean Dbetween Greenland and
Siberia.

During the expedition, three camps were established on
the Arctic ice. Main Camp (SO), Snowsnake (S1) and
Iceman (S2) were laid out in an approximate 1isosceles
triangle with sides of about 60 kilometres long and a base

of about 100 kilometres.
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Canadian Marconi 722B Transit receivers were deployed for
positioning the camps. The receiver at the Main Camp was
interfaced to a HP 2100 minicomputer, under the RTE II
operating system with a HP 7900A Megabyte disc drive,
T-track magnetic tape, plotter and two terminal peripherals.
In the off-line mode, it was linked to a CMA 749 magnetic
tape cassette unit which allowed the recording of Doppler
counts to a resolution of 0.01 of a Doppler count. This,
due to the inherent characteristics of the navigation
system, is two orders of magnitude better that the on-line
tracking mode. Receivers 2t Snowsnake and Iceman operated
unattended, in the automatic data acquisition mode. Gaps,
which were later found in the collected data at these two
stations, were attributed to failure of the operator to
change the data cassettes when full, and signal loss at
point of closest approach of the satellite because of the
tracking anteﬁna's gain pattern [Popelar et al. 1981].

The monitoring of Arctic ice drift using polar orbiting
NNSS satellites has several drawbacks. Firstly, due to the
high latitudes, there are many more passes than at southern
latitudes and with an omni-directional antenna, severe
interference problems arise. The effect of interference
results in acquisition of fewer passes with the complete set
of Doppler information unless the receiver is programmed to
reject some passes in favour of others. Programmed response

was not even possible at the Main Camp due to hardware
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restrictions [Wells and Popelar 1979] and the 20 percent
higher tracking efficiency at the Main Camp was attributed
to manual intervention [Popelar et al. 1981].

Secondly, with polar orbiting satellites, passes at high
latitudes tend +to be nearly overhead. Overhead passes
produce geometrically poorer cross track position fixes than
non-overhead passes. Position determinations using high
elevation satellites hence have very elongated error
ellipses. The semi-major axis of the error ellipses are in
the cross track direction of the passing satellite.

Theset inherent system difficulties are further
complicated by the erratic behaviour of the motion of the
ice platform. The ice motion changes both speed and
direction, depending on the combined effects of the wingd,
temperature, and sea currents.

The amassed Doppler data from +the thre¢ stations were
processed on;site and later reprocessed in Ottawa [Popelar
et al. 1981].

The satellite fix software package BIONAV [Wells and
Grant 1981] was deployed on LOREX to provide position fixes
for the ice stations in real time. The positions were
computed in the Stereographic Coordinate System and on the
International Ellipsoid. An arbitrary rejection criterion,
as opposed to a statistical one, of 1000 metres on the
formal standard deviations of the position determinations
was used. Accepted passes were computed and stored for

further processing.



2.2 LOREX DATA POST-PROCESSING

The LOREX data has Dbeen post-processed wusing four
different methods, one of which 1is the subject of +this
thesis. The first two techniques mentioned below were used
on-site at LOREX to smooth the raw fixes.

A one-dimensional 1least-squares cubic spline approxi-
mation (program SMOBS), using the inverse of the trace of
the formal covariance matrix derived from the fix
computation as weights (equation 4.3), was performed on
moving sets of fixes over time periods depending on the
character of +the station's motion and the number of
satellite fixes available. The weighting scheme used is
further discussed in Section 4.2. Of a moving set of 70
passes, 50 smoothed central position fixes were accepted.
The Lagrange polynomial interpolant was then used to predict
the position of the station between smoothed fixes [Wells
and Popelar 1979] asr SMOBS does not compute +the cubic
coefficients needed for interpolation. The velocities and
associated standard deviations of the 1ice stations were
computed from six preceeding one-hour smoothed coordinate
differences. A list of positions and velocities produced by
SMOBS can be found in Appendix A of Popelar et al. [1981].

In addition to the on-site cubic spline smoothing, a
Kalman filter routine using covariance matrices to model
measurement errors and perturbations in the ice motion, was
used to sequentially process the Doppler data [Wells and

Popelar 1979].
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The two on-site smoothing techniques that were used had
their disadvantages. The cubic spline approximation
technique used weighted both coordinates equally and totally
ignored the correlation between errors in the coordinates
(which was above 0.9 for 80 percent of the passes). The
Kalman filter algorithm could be successfully applied only
if the filter could be tuned in accordance to the ice motion
noise [Wells and Popelar 1979].

In an effort to improve position determinations in the
post-processing of the data, a precise geodetic positioning
software package (GEODOP) was extensively modified to
accommodate sequential simultaneous positioning of slowly
moving stations with constant velocity vectors over a
three-hour time period. It uses both higher order modelling
of environmental and instrumental effects to reflect the
time and space correlation of model parameters during
simultaneous satellite tracking from several stations and
post-fitted precise satellite orbits. The mean station
positions were obtained from a series of satellite position
fixes, weighted by their formal covariance matrix, within
the three-hour time interval. Station velocities were
derived from consecutive mean positions [Popelar et al.
1981].

In this thesis, the acronym "GEODOP" will henceforth be
used to denote the modified precise dynamic positioning

software package. Of the four post-processing techniques,
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GEODOP is the only one which does a recomputation of the
individual satellite position fixes wusing better station
velocity estimates.

Unlike the spline algorithm used on LOREX, the spline
algorithm developed in this thesis (program DSPLIN) is
capable of using the full covariance matrix associated with
each position fix. This technique is hence able to extract
all the information contained in the ©position determina-
tions. In order to assess the performance of DSPLIN, the
LOREX navigation daya sets are used and the GEODOP solution
adopted as reference standard. The agreement between DSPLIN
and GEODOP smoothed values is evaluated and is shown to be

better than the agreement between SMOBS and GEODOP.



Chapter 3
CONSIDERED ALTERNATIVE ALGORITHMS

In this chapter, the characteristics of a noisy data set
are outlined, the area of investigation given, the alterna-
tives discussed and the reasons for using the spline
approach stated. The discussions of the considered possible
alternatives for the design of the new smoothing algorithm
are a minor digression from the main theme of this thesis.
However, they are given here to indicate the scope and area
of 1investigation from which +the new smoothing spline
algorithm evolved.

The approximating function to be developed must be able
to smooth data series with the following characteristics:

1. Unequal data intervals.

The data points within the given data series are
unequally spaced in either time or space.

2. Non-predictive (or non-analytic) data series.

The external factors governing or generating the
data series cannot be effectively modelled or are
rapidly changing in time or space.

3. TFully populated data covariance matrices.

Bach data point within the data series has an
agssociated covariance matrix depicting the two-

dimensional accuracy of the observed data point.

- 11 -
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In addition to the above, the technique must be able to

provide a data series of smoothed data ©points with
reliability estimates.

Research into the new smoothing algorithm centered around

the concept of extracting existing ideas in the physical

world and trying to relate or apply them as smoothing

algorithms. The following were examined in this thesis.

3.1 TWO-DIMENSIONAL LEAST-SQUARES CUBIC SPLINE

The mathematical spline which "imitates" the mechanical
spline has sevsral properties conducive %o its use as a
smoothing device. Current development [Spath 1974; Boor
1978], of the cubic spline only allows the cubic spline to
smooth data along one axis at a time and totally ignores any
correlation between variables.

However, by incorporating the 1least-squares principle,
the covariance 1law, and by simultaneously solving two
parametric cubic splines, the new spline algorithm is able
to satisfy all the stated requirements mentioned above. This
concept 1is developed in greater detail, together with a

short review of splines, in Chapter 4.
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5.2  HAMILTONIAN PRINCIPLE OF LEAST ACTION

The proposed concept here is the utilization of the
Lagrangian equations of motion with .the Hamiltonian
Principle of Least Action [Landau and Lifshitz 1976] to
solve for the motion of a particle moving in a non-symmetric
cluster of finite particles. Disregarding the mass of the
sensing particle, the attracted particle moves according to
the sum of all forces generated by the other forcing
particles in that cluster [Vanicek 1973]. The interrela-
tionship between the lawyof gravitational attraction and the
conservation of momentum 1leads to the fact +that both
velocity and displacement of the ©particle are smooth
funcﬁions of +time. Under the kinematic approach, the
generated force field can be thought of as a non-symmetric
potential field and by maintaining a closed system with
non-time vafying elements of potential, é stationary or
conservative potential or force field is said to exist.

By portraying the data series as that of the motion of
the particle and the observed data points as gravity-
generating mass bodies, a smooth path depicting the data
series can hence be generated. By solving the equations of
motion of the massless particle, the velocity and position
of the particle can be obtained at any time provided that
the velocity and position vectors of the particle at the

beginning of the trajectory are defined.
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In celestial mechanics, this is termed as the solution of

a restricted n-body problem; restricted in that all
attracting mass bodies are rigidly fixed and held motionless
in Eculidean two-space. Further, the use of "relativistic
directional masses" as the mass bodies allows the incorpo-

ration of error ellipses.

3.3 HEISENBERG PRINCIPLE OF UNCERTAINTY

The concepts of velocity and energy which stem from
simple observations of common objects have been applied to
certain fundamental experiments in atomic physics.

The position of an electron is known only to a certain
degree of accuracy and at any time can be visualized as a
wave packet in the proper position with an approximate
extension.

The term "wave packet" -[Heisenberg 1930] is wused to
denote a wave-like disturbance whose amplitude differs
appreciably from gzero only 1in a bounded region. This
region, in general, 1is in motion and changes in shape and
size. The laws of optics and that of the conservation of
momentum, can be used to obtain a relationship between the
uncertainty in velocity and position; the product is bounded
by a certainA(Planck's) constant.

This fact bears a striking resemblance to the position of

a data point within a data series. The uncertainity of the
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data point can only be represented by a covariance matrix,
much 1like the wave packet. The probability of the wave
packet grows larger from the last observed data point until
the next observation.

Using such a representation, the motion of the data point
can be represented and reliability estimates obtained for

predicted points.

3.4 INTERLACING WIRE AND SLOT REPRESENTATION

A time series of two-dimensional data can be thought of
as points in a geometric space defined by three orthogonal
vectors. In relation to navigational data, two of the
vectors represent the two-dimensional coordinate system of
the position while the third is the time axis.

A sequence of time-tagged positions, for example, appears
as a series of spatially suspended dots within that space.
If the motion is circular, all the dots will lie on the path
of a helix.

By interlaéing the points with a wire of variable
stiffness, points between observations can be predicted.
Error ellipses are introduced by replacing the dots or holes
with variable size slots. A wire so chosen in its natural
state, tries %o achieve minimum strain or stress within

itself.
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For the transformation of the wire to a mathematical tool

Frenet formulae and curves are used.

3.5 SELECTION OF TECHNIQUE ADOPTED

An examination of these four proposed smoothing
algorithms, revealed that the spline representation seems to
be the most promising, easiest +to implement, has few
variables to contend with®(so as not to introduce complex
smoothing parameters) and from a practical application point
of view satisfies all the requirements of +the desired

smoothing algorithm.



Chapter 4
BRIEF REVIEW OF SPLINES IN GENERAL

In +this chapter, an introduction to the concept of
splines is given. The transition from the mechanical spline
to 1its mathematical form 1is outlined. The topic of
smoothing splines contained in the present 1literature 1is
addressed and differences between those and the smoothing

spline algorithm used in this thesis mentioned.

4.1 INTRODUCTION

Polynomials have always ©played a central role in
approximation +theory and numerical analysis. Piecewise
polynomials, however, had a very limited application due to
the existance of discontinuities between polynomial func-
tions. During the past twenty years, piecewise polynomial
functions experienced tremendous theoretical advances (e.g.
Boor [1978], Shumaker [1981] and Prenter [1975]). Poirer
[1973] in his attempt +to apply spline functions to
econometric data mentions the large gap between theoretical

development and practical applications of spline functions.

- 17 -
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Currentiy, spline functions are being appiied to smooth
noisy geodetic data sets. Their use, however, has been
limited to the swoothing of raw data series without
obtaining accuracy estimates of either the smoothed data
points or the predicted values. A brief exposé on the
origin of splines allows better comprehension of the
so-called spline functions ..
Scheonberg [Shumaker 1981] in 1946 introduced the 1label
spline" when he observed similarities between piecewise
polynomial interpolation and a certain mechanical device
called the "spline".
A "spline" is a +thin beam of some elastic material
equipped with a groove and a set of weights (called either
ducks or rats), with attached arms designed to fit into the

grooves (see Figure 4-1).

spline

knot

é— weight (rat)

spline — éﬁzz:?i:::::::::y €— dead weight

FIGURE 4-1 The Mechanical Spline
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These devices are used by architects to draw smooth
curves through a set of prescribed points (called in the
context of this thesis, data points). To accomplish this,
the flexible "spline"™ 1is bent in such a manner that it
passes through all the points and 1is held in place by
strategically located ducks. Back in the mid-1700's, Euler

and the Bernoulli brothers [Shumaker 1981] discovered that

the centre-line of +the ‘"spline" approximates a given
mathematical function (s) which has the following
properties:

1. The function (s) 1is a series of piecewise cubic
polynomials between the first and last junction point
or knot (knots being analogous to the position of the
ducks on the mechanical "spline").

2. The function (s) is linear before the first and after
the last knot.

3. The function (s) has continuous first and second
derivatives everywhere.

4. The function (s) takes on the value of the data
points (i.e. the mechanical spline is an 1interpo-

lation device).

Given the 1location of the knots and the data points,
these properties define a unique function (s). No assump-
tion, at this stage, is made with regard to the location of

the knots amongst the data points. However it should be
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noted that the knots may or may not be coincident with the
position of the data points. This simple but effective
analogue of the mathematical spline underlies the fundamen-

tal concept of splines in general.

4.2 THE MATHEMATICAL SPLINE

In this section, the properties of the mathematical
spline are stated. Reasons for using the piecewise cubic
function, along with the current limitations of splines are
given. An extension of the use of splines from the current
literature is made.

The mathematical spline (s) of degree k is an element of
the Spline Space (S) which on a closed interval <a,b> can be

written as:

s, €85, C [Pk nc" <a,b>] - (4.1)
where Pk = Polynomial Space containing k th degree poly-
nomials; a subspace of the total Polynomial
Space,
Cn<a,b> = Space of n th differentially continuous func-

tions on the closed interval <a,b>,

and n <k - 1.

Any function (s) so defined on a set of points (uj,% ),

j=1,...,m will hence have the following properties:

,u_ and

1. It is continuous at u,,u n

RRE
with s(u. = V.
(J) v;
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2. The first k-1 derivatives of the spline functions,
(i.e. s'(u),s"(u),...,s™(u)) exist and are continuous
within the closed interval <a,b> on which the spline

function is defined.

It becomes apparent that the mathematical spline defined

in Section 4.1 is of the forn:

2
53 € Ss'tc [ps’t n c <a’b>] - (4‘2)

with tj, j=1,...,m being the knot sequence.

Cubic splines as in (4.2) are the most popular splines
for two reasons. The first is that +the human eye has
increasing difficulty in detecting jumps in the derivatives
of a function as the order of the derivative increases.
Discontinuities in the first and second derivatives can be
detected, but the eye has great difficulty in detecting
jumps in derivatives of order greater than two. Hence a
function with only second order derivative continuity will
appear smooth fo the human eye. The second reason is that
there exist distinct disadvantages in using higher degree
polynomial functions. The higher the degree, the greater is
the evaluation cost of the parameters defining the spline.
In addition, individual oscillations of the polynomials
generally increase with the degree. Hence the cubic spline
combines the advantages of smaller oscillations, modest

evaluation cost and second derivative continuity.
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The simple one-dimensional interpolating cubic spline, in
the context of this research, has several major defects:

1. At least one of the variables has to increase mono-

tonically.

2. It is confined to point estimation between knots or

data points.

3. It does not allow for the incorporation of differ-

ently weighted data points.

4. No precision estimation of predicted points between

da?a points is possible.

To overcome the first problem, the spline is computed
against a third variable (t) which has the property of being
always monotonically increasing. For a given set of points
(x,y), the parametric spline [Spath 1974] is computed on
data sets (x,t) and (y,t); with t monotonically increasing
and is related functionally or otherwise to the data points
(x,y). A diséussion of possible types of variable (t) can be
found in Spath [1974]: page 60.

No assumptions have yet been made about the number of
knots with respect to a given set of data points. When the
number of knots is equal to the number of data points, the
spline interpolates between the data points. The transition
(which is further discussed in Chapter ©5) from an
interpolating to an approximating spline is through the
incorporation of additional data points in the solution of

the parameters defining the spline function. However,



23
additional information is required if a unique approximating
spline function is to exist. This additional information
takesthe form of a weighting scheme amongst the data points;
some of which are of an arbitrary nature (e.g. Spath [1974]:
page 106) whilst others, ©being more rigorous (e.g.
Boor [1978]: page 235) rely on the minimisation of a speci-
fied variational function.

Wells and Popelar [1979] on +the ©LOREX expedition
utilized, 1in near real-time, parametric cubic splines
minimising the differences Dbetween smoothed and observed
positions to smooth the satellite positioning data (x,y).
The cubic spline, mentioned earlier in Section 2.2, was
computed first in x against time and then in y against time,
using the inverse of the trace of the formal covariance
matrix obtained from the satellite fix computations, as

weights for both splines, i.e.

W, = 1/(0? + oé)li - (4.3)
where 1 := computed fix number,

w := designated weight for the i th computed
coordinates,

diagonal elements of the formal covariance
matrix associated with the i th computed
position.

Q
o
=
o
Q
I

The formal covariance matrix associated with each fix is of

the form
02 ag
1 12
ag 02
12 2
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and it vportrays the two-dimensional precision of +the

computed coordinates. The variances of the individual coor-

dinates are denoted by of and og

covariance) between the two determined coordinates by o

, and the correlation (or

12 °

The weighting scheme used on LOREX was rather arbitrary
as an operator-specified "coefficient of roughness" was
used to scale the assigned weights computed via equation
(4.3) to achieve differenﬁ degrees of smoothness. The high
correlation between the two position coordinates was totally
“ignored. In addition no precision estimates for the
individual predicted points between observed positions?were
available.

The spline algorithm developed in this thesis has been
primarily designed to overcome these deficiencies of
previous smoothing splines. The full covariance matrices of
the data points are utilized in the simultaneous computation
of two parametric cubic splines against a third variable,
time. Through the method of least squares, it is possible to
obtain least-squares estimates and an associated covariance
matrix for the parameters defining the spline. The
covariance law 1is also used to derive precision estimates

for the predicted data points.



Chapter 5
DEVELOPMENT OF THE PARAMETRIC CUBIC SPLINE

In this chapter, the aspect of base functions for the
spline is addressed, the .transition from the simple cubic
spline to the parametric cubic spline is described and the
working equations are given.

Using the .concepts embodied in Chapter 4, the cubic
spline (s) is hence defined on a set of points (xi,yi;ti),
i=1,...,m for which sx(ti) = X5 and sy(ti) =y; » 2nd
is a composite function with 2(m-1) cubic polynomials.

Further, the function (s) 1is twice differentiable with

respect to the variable (t), for t ¢ <ty oty >

5.1 DEFINITION OF BASE FUNCTIONS

The precise definition of the base functions ¢2 ’

£ =1,...,4 in the piecewise polynomial function
4

s(t) := I o, ¢, (t)
g=1 2R

of the cubic spline has yet to be mentioned. In actuality,
there are numerous possible definitions and alternatives.

The so-called "generalised cubic splines" [Spath 1974: page

- 25 -
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124] utilizes complicated base functions. The two condi-
tions [Spath 1974: page 58] that the base functions of the
cubic spline have to satisfy are:

1. The resulting polynomial is a cubic function.

2. The transformation between coefficients and knot
vectors must exist (i.e. the equations in Section 5.2
can be formulated).

The wuse of more complex bases than those given Dbelow
complicates the formulation and 1increases computational
cost. This is in addition to the fact that smoother splines
are obtained from the wusual cubic spline than other more
complex cubic splines without constraints [Spath 19747.
Hence in fhis research, a simple set of base functions are
used (i.e. 1, 8%, (At)° and (8%t)° : At being the time

interval between knots).

5.2 PARAMETRIC CUBIC SPLINE

j,tj), j=1,...,!11 thejth

piecewise cubic polynomial is thus defined:

On a given set of knots (xj,y

4 .
2-1
ij (t) := ajl + 152 ajl (t-tj)
4
-1
s .(t) :=b._ + I b. (t-t.

i (t.) = x.
with st(J) X

and s_.(t.) =y



27

Note that ajl and bjg are the elements of the coefficient

vectors (gj ’Ej ) of the two cubic polynomials of the
spline.

The functional relationship between the given knots and

the cubic coefficients, i.e. the boundary values, can be

expressed as follows:

X. = s . (t. = a. - (5.2a
3 XJ( J) i1 ( )
(f) b (5.2b)
=S . - = - .
Y5 Yit’j il

4 2-1
. =s .(t.+1) =a., + L .o (t -t. - (5.2c
i+l XJ( j ) it D, 332( i+l J) ( ] )
y = s .(t. ) =b. + ; b.,(t. R hat - (5.24d)

i+l yj© i+l by, 3G+l )
x. = s'.(t. = a. - (5.2¢)
j XJ( J) j2 (

! = s'. (t. =b - (5.2f
Y; ),J( J) 32 ( )
x! = s'.(t ) = a., + g (-L)a. (t. —t.)l-2 - (5.2g)

j+1 xj i+l 32 43 AL A2 N
y! o i=s'. (t. . ) =b. + g (2- Db, (t. -t.)’l‘2 - (5.2h)

i+l yi©w i+l iz s 3773+ )
xj 1= sxj = 2aj3 - (5.21)
"= ogh, = 2b, - (5.2j
Y§ v3 i3 (5.23)
1" .« = " = - - .2
Xj+1 : sxj 2333 6a_]4(t3+1 tj) (5.2k)
' t= s, = 2b._ + 6b. (t. . -t. - (5.21
Vi1 Y3 i3 ja(t5e17t5) (5.21)
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There is a choice of expressions with regard to the
explicit form of the coefficient vectors a and b. They can
be expressed either in terms of their functional values
(i.e. equations 5.2a to 5.2d) and their first derivatives
(i.e. equations 5.2e to 5.2h) or their functional values
(i.e. equations 5.2a to 5.2d) and their second derivatives
(i.e. equations 5.2e to 5.21) [Spath 1974; Boor 1978].
Parameters of functional values and first derivatives are
used here to represent the knots on the assumption that the
positions and ve}ocities, taking navigational data as an
example, are easier to visualize than positions and acceler-

ations.

Inverting equations 5.2a to 5.2h,

1 7% - (5.3a)
aJ.2 = xj - {(5.3b)
aJ.3 = 3(xj+1-xj)/At§ - (2x§ + x5+1)/Atj - (5.3¢)
agy = [-20x, mx)/8t v xt v xy )/ 6t - (5.3d)
bi1 T Y - (5.3€)
by = Y - (5.36)
by = 30y, v)/0t) - @yl eyl ) 6e - (5.30)
big = [20yyy-yy)/ot, + ys + yJ!ﬂ]/AtJ‘? - (5.3h)
with Atj t= tj+1_t3
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Hence there exist a total of eight elements, four in each
of the +two coefficient vectors, a; and Bj , for each

interval <tj , t > defining the cubics.

j+1

To ensure that adjacent piecewise cubics are continuous,
constraint relationships are enforced. Considering the
junction point between the j th and (j+1) th interval,
second derivative continuity is achieved by the following

equations:

From equations 5.2i to 5.21,

6aj4 Atj + Zaj3 = Zaj+1,3

and 6bj4 Atj + 2bj3 = 2bj+1’3
- (5.4)
Substituting +the respective coefficients for their

functional values and derivatives, the following relation-

ships are obtained [Spath 1974: page 46]:

(1/at)x) + 201/8t

1 '
+ l/AtJ.)xj+1 + (l/Atj+1)xj+2

_ 2 2
= 3(xj+1-xj)/Atj + S(xj+2-xj+1)/Atj+l

and similarly,

] L} 1]
(l/Atj)yj + 2(1/Atj+1 + I/Atj)yj+1 + (l/Atj+1)yj+2
= 3y, -y /02 B(y. -y, )/At>
| 41775070t 542775410 /850

- (5.5)
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The working equations developed up to the present chapter
are the usual parametric cubic spline equations and they can
be used as an interpolating function for any given set of
data points.

For m points, there are 2(m-1) equations with 2 m first
derivative unknowns. Further information are required to
make the set of equations non-singular. These take the form
of "boundary" (or "end") conditions. They specify the form
which the outer knots will take with respect to themselves
or other inner knots.

The choice and type of end conditions affects the
performance of the gpline. The effeét, however, diminishes
towards the centre of the data span. For a relatively large
data . series, a 1large proportion of +the spline remains
invariant to the type of boundary conditions chosen.

The transition from the parametric interpolating cubic
spline to an approximating spline is discussed in the

following chapter.



Chapter 6

LEAST-SQUARES CUBIC SPLINE APPROXIMATION

In this chapter, the cubic spline is transformed to an
approximation tool by the incorporation of additional data
points between knots. The equations representing an addi-
tional point are developed.

Consider an "extra" data point (xo ,yo ) at time t°
within the j th piecewise cubic interval. Since the point

lies on the cubic,

4
(o} o o] -1
X =5 t = a., + a. (t -t.
(8 = a5 152 5 (8 °t5)
o o 4 0 -1
and =s .(t =b., + T b., (t -t.)
y yi (8D = by + T by (£72))
. o - (6.1)
with tj <t ~__tj+1

By substituting the explicit values of the coefficients
in terms of the position of the knots (equations 5.3) and

first derivatives, the equations (6.1) are transformed to

1+ chzﬁ-s)]xj . At°(1-E)2x'j

2.7 071 ATy ot
- At (ZAt-S)xj+1 - At At(l-At)xj+1

- 31 -



52

and (1 + EZ(ZA_{—S)])'J. R At°(1-E)2st

—2 — o— — \
- AtT(28t-3)y ) - At At(l-At)yj+1

-y =0 - (6.2)
with At := Ato/Atj
at® := t%-t.
J
At. = t. _-t.
and j j+17%

Using equatious (6.2) (which are termed as observation
equations) and those enforcing second derivative continuity
(equations 5.4 - termed as constraint equations), the
parameters of the least-squares spline can now be determin-
ed.

In +the transformation from an interpolating to an
approximating spline, the value of the knots themselves are
treated as .unknowns and instead of 2 m first derivative
unknowns, the solution vector is expanded %o include the
functional value of the knots, making a total of 4 m
unknowns; m being the number of knots.

There exist several methods of solving this type of
least-squares problem with added constraints. The merits of
each of the three techniques will be discussed in the

following chapter.



Chapter 7

LEAST-SQUARES ADJUSTMENT

In +this chapter, three methods of 9vperforming a
least-squares ad justment  with added constraints are
evaluated. These are the unified approach, 1least-squares
ad justment through the elimination of constraints, and the
method of least squares with constraints. The explicit
equations of the latter technique are given.

A least-squares adjustment is verformed %o derive the
best estimates for the unknown parameters. The development
of the least-squares method of solution is via the Lagrange
method with the covariance law being applied +to obtain
precision estimates of the computed parameters [Wells and
Krakiwsky 1971].

Let the unknown parameters be represented by the vector
X, and the observed data points by the vector 1. The two
mathematical models that have to be simultaneously satisfied
are:

1. The observation (or primary) model (equations 6.1),

£,(x,1) = 0.
2. The constraint (or secondary) model (equations 5.4),

£,0x) =0

-. 3% —
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There exist several approaches to solving combined models

of this nature; the unified approach, the solution via the
elimination of constraints, and the functionally constrained

least-squares technique.

T.1 UNIFIED APPROACH

With the unified approach [Mikhail 1976), the unknown
parameters are also regarded as "observations" or
pseudo-observations and- the solution here is by the
summation of normal equations from the two models above.
The constraint pseudo-observables are differently weighted
against the observations. By varying the weights for the
constraint pseudo-observables, various degrees of
satisfaction of the constraint equations are achieved. This
seemingly easy treatment has several severe pitfalls [Lawscn
and Hanson 1974: page 149].

To ensure that the constraint equations are adequately
satisfied, heavier weights (i.e. heavier 1in relation to
those of the observations) are placed on the constraint
pseudo-observables. However, the constraint equations are,
by themselves, singular and the implementation of 1large
weights causes the combined set of normal equations to be
ill-conditioned.

Ill-conditioned solutions are undesirable as a loss in

precision occurs when computing the inverse and later the
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solution vector. One of the prerequisites of the smoothing
algorithm is the ability to provide reliability estimates
for the estimated parameters (Chapter 3). The assignment of
arbitrarily large weights on the constraint pseudo-
observables affects the a posteriori covariance matrix for
the parameters. The "correct" ratios between the input
covariances linked together by a common a priori variance
factor presents a difficulfy-to any one using this method as
there exists no physical or geometrical criteria for
selecting these ratios.

This technique was used here to verify the feasibility of
the new spline algorithm. However it was later discarded as
it could not meet the requirements of providing precision
estimates for the parameters and hence predicted points (as

specified in Chapter 3).

7.2 SOLUTION VIA THE ELIMINATION OF CONSTRAINTS

The constraint equations can be used to solve for,
functionally, as many parameters as there are constraints
[Mikhail 1976: page 217]. These parameters are then elimi-
nated from the observation model. Hence the total number of
unknown parameters is reduced. The remaining parameters are
solved for ‘directly by least-squares adjustment. The
eliminated parameters are later computed by back

substitution.
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As this 1is a rigorous technique, formal covariance
matrices are derived for all estimated ©parameters. A
development of +this method of solution 1is included in
Appendix I.
The two primary advantages of this method are:
1. a reduced set of unknown parameters are present in

the least-squares solution, and

N

the constraint equations are removed from the
least-squares solution.

However to successfully applvy this method of least-
squares estimation, the constraint equations have to be made
non-singular; as shown 1in Appendix I. As mentioned 1in
Chapter 5, the constraint equations can be made non-singular
by specifying the end conditions of +the spline. The
question of developing an algorithm to select the
independent parameters, a difficulty expressed by
Mikhail [1976]: page 217, does not exist as it will always
be the first derivatives that are eliminated.

The predefinition of the end conditions poses as a minor
drawback in the use of this technique. The merits of such a
step is questionable in light of the fact that, for large
data series, it will be required to "join pieces" of splines
together. This is due to the length of the data span used
for each spline computation being limited by the user's
computer memory capacity. The capability of vassing on the

junction (or knot) vector values is hence desirable if the



37
data series is to be continuous at the joints. However,
with this method of least squares, the end conditions have
to be predefined within the algorithm and remain unaltered.
To generate a continuous smoothed data series, an overlap of
data points between adjacent splines within a data series is
required. This uses the property that the effect of the end
knot condition diminishes towards the centre of the spline

(Section 5.2).

7.3 METHOD OF LEAST SQUARES WITﬁ CONSTRAINTS

Finally, there is a method of least squares with added
constraints between unknown parameters [Wells and Krakiwsky
1971: page 142].

The constraints are imbedded 1into the wvariational
function and strictly (or absolutely) enforced. Primary
drawbacks are of a computational nature. For m knots there
are two matrices of sizes 4 m and 2(m-2) to be inverted. In
addition, the observation model rather than the constraint
model must be non-singular (the reverse of that required by
the technique described in Section 7.2). In practical
terms, this means that there will be a lower limit on the
number of data points that must be contained in each cubic
interval.

As the spline algorithm is used here as an approximation

tool, adequate redundancy to meet this lower limit will be
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the usual case. This condition can hence be easily adhered
to or algorithmically checked and enforced (e.g. by

subroutine CHECK in Appendix VII).

T7.3.1 Derivation of the Functionally Constrained Model

In this section, a brief development of the wmethod of
least squares used in the algorithm is described and the
working equations are given.

There are, as mentioned earlier in this chapter, two
wathematical models present in the adjustment:

the observétion model,

f (x,1) = 0

o R = hd
and the constraint model,

£, (x) = 0

- (7.1)

with X vector representing the value and first deriva-
tive unknowns of the knots,
1 vector containing the observed data points,
and X = 5? + 8
1 =10 + v

The observation vector, lo, has a full weight matrix,
2 . C . . .
o 1° (2_10 being the a priori covariance matrix of

P 1= 0
the observations).
Using Taylor's expansion, equations (7.1) are expanded about

the initial approximation, 50 and the observed values, ;?,



i.e.
o .0 af1
£, = £(x7,17) + $
ax o .0
x5l
and
- o afz
fo(x) = £, (x7) + § = 0
ity B St = hdl =
ax xo

where fl(gé,}?)

Rewriting,

Wy o+ A+ By =0
Wy +AS =0
where w., := f (xo,lo)
(o]
wy 1= £,(x7)
and the design matrices,
o) of
h = Ay e
ax o .0 X o]
- xl - X
In hyper-matrix notation,
vy A B
+ s +
L) A, 9
(Equation (7.4)
design matrix A, and the misclosure

direct least;squares model of A8 + Bv + w =

(=

jo

39

- (7.2)

and 22(50) are the wisclosure vectors.

- (7.3)
31_ 5?,10
=0
- (7.4)

is equivalent to the partitioning of the

vector w, in the

0).
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The least-squares solution is then derived by minimising

the variational function # , where

B o= VPV 3K (W) + A8+ BY) + 2Ky (w, + ALD)

- (7.5)

-

with EI and 52 being the estimates for the Lagrange

multipliers. (The '"' symbol denotes least-squares
estimates of their true values).

3y of
For mwminima, — = — = 0.
av 36

or Pv + ETEI =

.

k=]

- -
and Ak v Ak

]
=]

- (7.6)

Combining equations (7.4) and (7.6), the set of normal

equations is thus formulated.

[, 11 [

P B o 0 v 0

B o Ay O K, . w, o
T T - =2

0 Ay 0 Al ]S o

0 4 A, O k, ¥,

L Ju L

- (7.7)
By the process of elimination of variables, followed by
back substitution of functionally solved parameters, the

following explicit exvressions are derived.



41

P T,1, -1, T T, -1
§ =- (é_lﬂ i\-l) (Azkz + é.lﬂ il)
oo T,-1, .-1,T -1 T -1, ,-1,T -1
R -1 -
-1 _tii. (é.lisfil)
v = - PlBk
S
0 =V Bv/y
where M = f_sg'lgT
and y = degrees of freedom. - (7.8)

The compatibility between +the spline model and the
observed data points can be evaluated through +the Chi-
squared ( X2 ) statistical test on the a posteriori variance
factor ( ;z ). The a priori variance factor (Oz ) of the
spline model is set to unity (i.e. the weight matrix
P := L ). The validity of the hypothesis that both
variance factors are compatible with each other can be

tested using the knowledge that the statistic
y oi= v 82/02 (with y degrees of freedom)

has a X2 ( £:vy ) probablity density distribution [Vanicek
and Krakiwsky 1982]. Incompatibility exists between the

. . . 2 . . .
a posteriori variance factor (co ) and a priori variance

factor ( og ) (i.e. the Chi-squared test fails) when the
assumed model for the observations is incorrect or when the
a priori covariance matrix of the observations is in error

[Vanicek and Krakiwsky 1982: page 237].
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T7.%3.2 Simplification of Functionally Constrained Model

Two basic facts regarding the spline model (equation 7.1)
that can be taken advantage of are:

1. the model is linear, and

2. the model is parametric (i.e. B = -I, with I being

the identity matrix).

As the model is linear, no iterations are required. The
iﬁcorporation of an a priori solution vector (subroutine
APRORI in Appendix VII) is seen as just a method of
increasing the numerical accuracy of the solution vector.

By being a parametric model, the equations (7.8) given

for the general case are thus reduced to

8§ = - (APAD ATk, + APw)

Ky = [ PAD )T ey - A A TP )
v - - (A_1§ )

o = vPY/Y

- (7.9)



Chapter 8

PRECISION ESTIMATION

In this chapter, the covariance law is described, an
expression for the covariance matrix for the least-squares
estimates is given and the computational accuracy of the
algorithm is addressed.

Precision es?imation of the least-squares estimates and
all other subsequently derived quantities are obtained by

using the covariance law.

8.1 COVARIANCE LAW

The covariance law, which 1is also called the law of
covariances and propagation of <covariances [Wells and

Krakiwsky 1971: page 20}, is stated as follows:

Given a variate y linearly related to another variate x by
the equation

¥y = Gx , G being the transformation
matrix from x to y

and with Ely]

E[Gx]
GE{x], E being the expectation
operator.

- (8.1)

- 43 -
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The covariance wmatrix of y (i.e. gy ), given the covariance

matrix of x (i.e. I ), is hence derived as follows:
Bl(y - ElyD(y - BlgD) ]
E[(Gx - GE[x])(6x - GE[x]) ]
Blc(x - B[x](x - E[x]) & ]
GE[(x - E[x])(x - E[x]) ]G
G

z
A

=Gz
- X
- (8.2)
The propagation of variances and covariances with linear
functions is independent of the density functions and is
valid for any probability distribution [Mikhail 1976: page

78].

Incidentally, the G matrix essentially represents the

Jacobian of y with respect to x, i.e.

r =J L Jt
Y XX X 7YX
- (8.3)
Bx _
with J := —
XX 5x



45
8.2 PRECISION OF LEAST-SQUARES ESTIMATES

Using the above covariance 1law (equation 8.3) and
equations (7.9), the a posteriori covariance matrix of the

unknown solution vector( E ) is of the form:

n _ -1 T -1 -1
Ip = Nl - AMTANTD - (8.4)
h N = ATPA
where N SRS
- -1, T
and M' QA..QN. .‘5_‘.2

8.3 PRECISION OF COMPUTATIONS

The spline algorithm approaches instability under either
of the following conditions:
1. the number of data points in the knot intervals is
insufficient to define the spline (Section 7.3), or
2. the observed data points within an interval have

large variances (or very low weights).

Computational accuracy 1is degraded when either of the
above occurs. Both conditions cause the normal equation
matrix N, of the observation model £1 to be ill-conditioned.
If the violations are severe enough, the matrix becomes
singular. Between singularity and a well-conditioned

matrix, there lies many shades of ill-conditioning, some of
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which are not detected in the Acalculatiéns, but give
apparently good results through round-off.

In an effort to detect such "in-betweens" the program
DSPLIN utilizes two different techniques. Firstly,
condition numbers (via subroutine COND in Appendix VII) are
computed for all inverses computed in DSPLIN and secondly, a
check on the internal computational accuracy is performed
(in subroutine LS in Appendix VII). Equations (II-4 and
I1-2) used by routines COND and LS in Appendix VII are
described in Appendix IT.

As a preventive measure, a count (by subroutine CHECK) of
the number of data points in each knot interval is made
prior to computations and superfluous knots dropped 1if
necessary.

The aspect of numerical computational accuracy and the
detection of precision loss in computing the least-squares

estimates is further addressed in Appendix II.



Chapter 9

DISCUSSION AND EVALUATION OF THE SPLINE
ALGORITHM

In this chapter, the various areas of investigation into
the performance of +the spline algorithm are discussed.
Selected results of the processing of the simulated and

LOREX data sets are presented.
The following are the areas investigated:

a) Diétribution of data voints within a data series.
b) Selection of knots.

c) Completeness of spline model.

d) Boundary (outer) knots.

e) Joining two separate adjacent splines.

9.1 DISTRIBUTION OF DATA POINTS

The simulated data set (Appendix IV), is created, amongst
other reasons, to evaluate the spline algorithm under the
following distributions of data points within a data series:

1. Equal distribution of points along a curve.

2. Dense distribution of points along a straight line.

- 47 -
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3. Irregular distribution of points along a straight
line.
4. Sparse distribution of points along straight line.

5. No data points along a curve.

The simulated data points were generated at equal *time
intervals by equation IV-1. Of the 50 simulated data
points, 21 were chosen as the simulated data set. The
selection of the points is such +that all the above
distributions appeared in subsets of the simulated data
series.

From the multitude of tests +that were carried out
(Table 9-1 forms but a small sample), no detrimental
effects on the spline were observed with any of the above

mentioned data point distributions.

9.2 SELECTION OF KNOTS

In +this section, the topic of knot selection is
addressed. The design constraints of the curve fitting al-
gorithm are given. Performance of the various possible knot
selection schemes are discussed and conclusions drawn.

The computation of the spline, given the location of the
knots (e.g. through the specification of the third variable
time, in navigation data sets), has been discussed in the

Chapters 5 and 6. The number and location of the knots



TABLE 9-1a  Results from the DSPLIN Program Using Simulated VData
TEST KNOT SELECTION RUN | NO, R.M.S, VARIANGE | CitI. Q. ADDITIONAL INFORMATION (SEE BELOW)
No. SCHEME USED NO. g:ors restouaLs | FACTOR TEST® Knot Timesl Curve Fitting Options? REMARKS
1| Equal interval 1 3 30.07 24.24 FAIL ‘Two of the knots
2 5 7.94 1.69 PASS have been dropped
3 10t 5.57 1.00 PASS by QUECK routine.
i.e. only 8 knots
2| visual inspection 1 3 20.42 10,57 FAIL 0,38,98 vere used.
2 S 6.03 0.96 PASS. 0,8,43,78,98
{Parameter No.)
(1 2 3 4567
I|Curve fitting routine 1 7 $.89 1.00 PASS 0,17,27,39,56,45,98 |6 100 10 2100 a = 50%
(with residual error 2 7 $.66 0.96 PASS 0,17,27,39,63,80.5,98 ¢ 100 10 20 a = SOV
bar tests at o \ level 3 6 5.20 0.76 PASS 0,22,34,56,71,98 6 100 10 210 a = 90%
as the rejection criteria
(Parameter No.)
(1 2 3 4 567
4|Curve fitting routine 1 4 7.04 1.29 PASS 0,47,72.5,98 6 1 10 10 201 e = 99%
(with the apos. variance 2 S 7.21 1.39 PASS 0,25,47,80,98 6 1 10 10 210 o = SOV
factor at a V confidence 3 6 5.46 0.84 PASS 0,22,29,47,84,5,98 6 1 10 10 211 a = 38
level as the rejection
criteria).

* at the 99\ confidence level

(1] Xnot Timcs = These are the times of the knots chosen to represent the simulated data series. A complete 1isting of the

times and location of the input positions of the data points is given in Appendix 1v.

(2} Curve Fitting

Options = These are the paramcters used with the curve fitting algorithm (Subroutine FIT i{n Appendix VI1). A condensed

description of the set of parameters (or options) is given in the following Table 9-1b.

6%
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TABLE 9-1b

DESCRIPTION OF THE PARAMETERS (OR OPTIONS) OF THE
CURVE FITTING ALGORITHM (FIT)

Parameter Description
Number
1 : Minimum number of data points contained in the

The

first cubic polynomial.

2 : Location of the designated knot times:
1 ¢ mnidway between two data point times.
O : coincident with the data point time.
3 : Number of points, 1in terms of a percentage of

the current interval, to be placed in +the
extended interval (see Figure 9-1).

4 : Weighting factor(X) for the former slope vector

based on the estimateq covariance matrix,
i.e. (weight matrix)” :=formal covariance
matrix * (10/X)

<1 : unweighted, i.e. X=0.
10 : formal covariance matrix, i.e. X=1.
10> : formal covariance matrix to Dbe
divided by (10/X).

5 : Minimum number of data points per interval.

6 : Inclusion of data ©points in the extended
interval in the rejection tests.

7 ¢ Minimum number of data points in the extended
interval.

last three parameters deal with the 1level of output
desired from the subroutine FIT.

8 : All information requested, e.g; current knot
vector, residuals, a posteriori wvariance
factor and status of curve fitting.

9 : Print computed knot vectors only.

10 : Print formal or estimated covariance matrix of
computed knot vector.

Note: Generally, '1' denotes 'yes' and 'O' denotes 'no’
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influence the resulting splined (smoothed) values. At one
extreme, a lower number of knots decreases the computational
load and heavily smooths the data set. At the other
extreme, the spline approaches the interpolation of all the
data points; including the noise in them.

This difficulty is present in all smoothing algorithms.
The desired degree of smoothness of the resulting curve must
Se determined by external evidence; this is more of an art
than a science.

Four approaches to the problem of knot selection are
incorporated (through subroutine SELKNT in Appendix VII) in
the spline algorithm.

They are:

1.. equal time intervals (i.e. equal time span per cubic

interval),

2. equal point intervals (i.e. equal number of points

per cﬁbic interval),

3. knots chosen by visual inspection, and

4. knots chosen via a "trend evaluating" algorithm.

The first and second knot selection schemes are easy to
implement and the spline model can be considered as "single
number criterion" type of smoothing algorithm (i.e.
different degrees of smoothing are achieved by varying only
one parameter).

With unequally spaced or irregular data sets, a reduction

in the number of knots is achieved by strategically locating
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each knot within the data span. This can be done either by
visual inspection or through some predefined trend
evaluating (or curve fitting) algorithm.

Basically, what is needed is a process to determine the
length of time within a data span in which the data series
can be aptly represented by a cubic curve.

With reference %o the LOREX navigation data sets, the
choice of the minimum timé interval between knots can be
obtained by evaluating the length of the response time of
the ice platform to the maximum possible force that can act
on the ice sheet. Unfortunatel;, due to the complexity of
she ice sheet, wind stress effects or that of undercurrents,
a single figure cannot be easily obtained. In addition, if
the ice is subjected to a force less than the maximum, it
may be more appropriate to smooth over a longer time span.

A plausible alternative 1is the implementation of an
algorithm désigned specifically to automatically select
"optimum" knot locations based on some predefined criteria.
For the design of the trend evaluating routine, numerous
papers (e.g. Ellis and McLain [1977], Ichida and Kiyono
[1977] and Chung [1980]) on curve fitting have been drawn
upon to create the "weighted one pass (left to right) 1local
cubic polynomial" curve fitting algorithm (subroutine FIT in
Appendix VII).

Several considerations must be taken into account in

designing such an algorithm. Firstly, the spline function
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cannot be computed solely using local data, i.e. it is of a
global nature [Ellis and McLain 1977]. An alternative has
to be found which still uses the attractive properties of
both piecewise cubics and the least-squares norm as the
basis for the curve fitting approximation.

Ichida and Kiyono [1977] +through eigenvalue analysis
(based on simple assumptions) and Chung [1980] wusing more
complex error techniques, demonstrated that the 02
functions, (i.e. space containing all polynomials with
second derivative continuity), cannot be wused as they
exhibit inherent instabilities. The authors, Ichida and
Kiyono, and Chung, mentioned above, used C1 functions and
the extended 1interval concept %o resolve the numerical
instabilities in the curve fitting procedure.

The "extended interval"™ concept (Figure 9-1) entails

extending the current interval, a4t , of the j th piecewise
function by 64t to incorporate additional observed data
points in the computation of the right end knot vector (i.e.
the (j+1) th knot vector in Figure 9-1). The position and
slope of the right end knot is hence adjusted to allow for
the next curve segment [Chung 1980]. Very briefly, the
non-inclusion of future data through the extended interval
concept results in instabilities because of the amplifica-
tion of propagation and truncation errors [Chung 1980].

A curve fitting algorithm with variable controlling

parameters (or options - Table 9-1b) has been developed
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(j)th knot

) s.(t)
(j+1)th knot I

FIGURE 9-1 Extended Interval Concept in Curve Fitting

(subroutine FIT in Appendix VII). It utilizes both weighted
knot and slope information from the previous interval +to
simultaneously compute two least-squares cubic polynomials,
x against t and y against t (see Section 5.2, equation 5.3),
in the current and extended intervals, and iteratively
extends both intervals until the chosen error tolerances are
exceeded.

Hence for the Atj interval, the two least-squares cubic
polynomial cbefficients are computed using data points from
the interval Atj + 6Atj. The extension, GAtj, is taken as a
fixed percentage of the interval Atj. Both intervals are
increased until the chosen error tolerances are exceeded or
when the end of the data series is reached. These error
tolerances can be either simple error bar tests on the
residuals (i.e. the distance between smoothed and observed
data points) or the Chi-squared statistical test on the

a posteriori variance factor of each subsequent fit (Section

7.3.1).
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The performance of the four knot selection schemes were
evaluated using both the simulated and LOREX data sets. Due
to the different characteristics of the simulated and LOREX

test data sets, each is discussed in turn.

9.2.1 Knot Selection Algorithm Using Simulated Data

The following are the general conclusions for the

simulated data set: |

1. All knot selection schemes, with an adequate density
of knots, are apolicable (see Table 9-1).

2. Equal interval knot schemes, as a rule, do not always
give the best distribution of knots. However, with a
sufficient density of knots, the underlying motion or
curve can be aptly fitted (see Table 9-1, Test
No. 2).

3. Visual knot selection, which at times do 1lead to
bettef knot distributions (Table 9-1, Test No. 2)
than equal interval knot schemes, are difficﬁlt to
implement.

4. The curve fitting algorithm (Table 9-1, Test No. 3
and Test No. 4) gives the best results; best in tefms
of 1lowest number of knots and with an equivalent
variance factor (i.e. compare results of Test No. 3,
Run No. 3 with that of Test No. 4, Run No. 2 or Run

No. 3).
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5. The use of the Chi-squared statistical test on the
a posteriori variance factor in each of the
subsequently fitted curves by the curve fitting
routine (FIT) as the rejection criterion seems
remarkably better than the siwple error bar residual
(or outlier) tests (i.e. result of Table 9-1, Test

No. 3 is better than Test No. 4).
6. The interplay betweén the 10 option parameters (Table
9-1b) on the curve fitting routine requires further
investigation and at this point no guidelines to the

use of the curve fitting algorithm can be given.

9.2.2 Knot Selection Algorithm using LOREX Test Data Sets

Different knot selection schemes are used for the LOREX
data sets (Table 9-2, Tests Nos. 2, 3 and 4). The curve
fitting algorithm could not optimally locate the knots in
the LOREX dafa sets. The two possible reasons for this are:

1. incorrect interplay between the parameters on the

fitting routine, or

2. vresence of outliers (i.e. badly determined data

points) in the observed data sets.

Different combinations of the parameters of the curve
fitting routine were attempted and results indicated the
second reason to be the most probable cause.

Although visual inspection of Figures V-1 to V-9 in

Appendix V of the LOREX test data sets suggest the presence
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of outliers, examination of the statistics of the recorded
passes revealed no apparent reason for the discrepancies in
the computed positions. In an effort to detect outliers, a
linear filter routine was devised (subroutine PFILTER in
Appendix VII). The routine fits a straight 1line, via the
method of of least-squares, to a subset of the data series
and shifting the location of the subset in increments until
the total data series is éequenced. Interpretation of the
results which take the form of a time series of ratios of
the residuals to 1its 1input standard deviations proved
difficult. It%s use wa; later discontinued.

Due to the great variability in terms of noise on the
test data sets, the visual knot selection scheme was not
used. For the two remaining knot selection schemes, no
significant differences between them were detected. Equal
points per interval knots (Table 9-2, Test No. 4) performed
just as weli as equal time interval knots (Table 9-2, Test
No. 2 and Test No. 3).

For the purposes of investigating the completeness of the
spline model and the inadequacies of the formal covariance
matrices of the position fixes, the equal time span per
cubic interval knot selection scheme was used. For each of
the three test data sets, the knot time intervals were
chosen at one-third, one-fifth, one-tenth and one-twentieth
of the total time span of the test data series used (e.g. if

the test data time span was 72 hours, then the knot time



TARBLE 9.2

the 3 LOREX test data sets under diffcrent conditions.

Results of the various test runs by DSPLIN on

TEST| RN | nO. OF R.H.S, ERKOR (m) VARIANCE FACTOR Ci1-5Q. TEST 0.0, F. COM\ENTS
NO. | NO. | xNOTS TEST DATA SET NO, TEST DATA SET NO. TEST SET NO. TEST SET NO. CONDITIONS OF RUN
1 2 3 1 2 3 1 2 1 2 3
1 1 3 429,70 1,008.31 908.82 1,819.91 $,290,20 110.87 F F F 194 194 194 Formal covariance matrices
2 S 387.85 692.63 909.5% 482.69 389,73 97,44 F F F | 190 190 190 from position fixes are
3 10 385.30 $79.32 912,82 289.55 89.39 64.64 F F F | 180 180 180 used as weights,
4 20 402.70 S88.47 911.61 155.44 49,10 $5.27 F F F | 160 160 160
2 1 3 411.10 1,039.88 821.15% $.29 78.65 2.39 F F F 194 194 192 Minimum semi-mlinor axis (B)
2 S 380,38 657,13 819.10 1.70 $.51 .17 F F F | 190 190 188 of 35 m enforced. Altitude
3 10 381.42 $84.23 121.00 1.24 2.32 1.9 | P F F | 180 180 178 | and velocity errors modelled.
4 20 385.92 588.89 820.66 1.03 1.3 1.61 P F F | 160 160 158
3 1 8 386.19 817.29 1.3% 1.82 F £ | 190 188 | Minimum B » 33 m. Alt and
b4 8 379.60 818.11 1.26 1.61 P F | 184 182 velocity errors modelled.
3 4 658.09 10.69 [3 F 192 Knot times at 1/2 day (12 hrs)
4 7 618,32 3.9 F 186 and 1/4 day intervals,
4 i 3 409,89 1,083.64 821,17 4,12 92.78 2.40 F F F | 194 194 192 Equal no. of point intervals,
2 S 381.30 704,38 819.67 1.4 0.64 .17 F F F | 190 190 188 | Minimum 8 s 35 m, Alt and
3 10 383.96 s81.77 821.00 1.0% 2.12 1.50 P F F 180 180 178 veloclty errors modelled.
4 b 386.88 $84.16 817.42 0.93 1.%6 1.64 r F F 158 158 156 fts per interval « [50,25,11,5)

pts.

8¢



TABLE 9.2 (Continued)

TEST RUN NO. OF R.M.S. ERROR (m) VARIANCE FACTOR Q11-5Q. TEST 0.0, F. COMMENTS AND
NO. NO. | KNOTS TEST DATA SET NO. TEST DATA SET NO. TEST SET NO. TEST SET NO. CONDITIONS OF RUN
1 2 3 1 2 b} 1 2 3 1 2 3
5 1 3 416,55 1,094.30 911.52 $7.31 1,472, 4 35,41 F F F 194 194 194 A minimum of 30 m std deviation
N H 380.15 662.83 910.28 22.50 111,34 27.17 F F F 190 190 190 is Imposed on all formal error
3 10 387,48 581.60 911.40 12.28 30.37 16,25 F F f 180 180 180 ellipses of position fixes.
4 20 386,77 586.81 918.19 9.25 19,34 14,95 F f F 160 160 160
6 1 3 820,49 33.67 F 192 Investigating the effect of the
2 S 818.46 27.17 F 188 deletion of pt. 37 (bad pt.)
3 10 820.67 16,13 F 176 in Test Data Set 3. All para-
4 20 823.81 14,84 F 158 meters are as in Test No, 5,

65
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intervals would be set at 24, 14.4, 7.2 and 3.6 hours
respectively). Three knots represent the absolute minimum
number of knots one can apply to any data set. The
resulting data set is heavily smoothed. Twenty knots, on
the other hand, ensures a sufficient density of knots to
aptly portray any of the LOREX test data sets regardless of

knot placements.

9.3 COMPLETENESS OF THE SPLINE MODEL

The completeness of the spline model relates directly to
the choice of the number of knots for each data span. The
results, in Table 9-1 and Table 9-2, show that the root mean
square error (rms) and the a posteriori variance factor are
effective in determining whether a sufficient number of
knots have been used. When the model has an inadequate knot
density, an increase in the number of knots significantly
reduces the value of the root mean square of the differences
between smoothed and observed positions. This improvement
in the rms diminishes as the number of knots continue +to
rise (Table 9-1, Test No. 1). The failure of the Chi-
squared statistical test (Section 7.3.1) on the variance
factor can be attributed to either:

1. an incorrect or incomplete model, or

2. an 1incorrect a priori covariance matrix for the

observed data set [Vanicek and Krakiwsky 1982: page
237].
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Under a "steady state" in the rms (i.e. no appreciable
change in rms follows any increase in the‘number of knots,
e.g. Table 9-2, Test No. 1, test data set No. 3, Run nos.
1 to 3) the latter reason is given for its failure to pass
the statistical Chi-squared test.

Deletion of a badly determined position fix (e.g. point
37 in test data set three was computed using severely
-nbalanced Dopplers about the point of closest approach)
affects the rms more than the variance factor (see
Table 9-2, Test Nos. 5 and 6). This suggests that the
"erroneous" fix is correctly weighted within the data span.

It should be noted that the Chi-squared statistical test
is only a global indication of knot sufficiency (Section
7.3.1). Knot selection at the local levels can be evaluated
through the analysis of a time series of standardised
residuals (i;e. r. and r ). The standardised residuals are"

defined as follows:

r.oi= ( Ep— ES)/olSp

and ry i= Np— NS)/oPVIP

where p - subscript denoting observed position coordinates
(E for eastings and N for northings),

o - formal standard deviations associated with each
observed position coordinate,

and s - subscript denoting smoothed position coordinates
produced by the spline (E for eastings and
N for northings).
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9.4 BOUNDARY (OR OUTER) KNOTS

Two boundary knot vectors, along with their a priori
covariance matrices, are read together with the observed
data points, into the least-squares process. TFor a single
separate spline computation, the outer data points are
usually chosen as knots.

Weighting the end knot positions as heavily as the outer
data points is found to bias the final location of the outer
knots; wmore so when the extreme points have small formal
covariance smatrices and are unrepresentative of the +true
precision of the points. In light of this, low weights are
recommended in the absence of information about the end knot

vectors.

9.5 SPLICING SPLINES

The primary purpose of the 1inclusion of outer knot
vectors into the program is to facilitate the joining of
splines from separate adjacent data spans. This 1is
desirable when dealing with very large data series. The
minimum data point overlap between adjacent splines 1is
investigated by comparing two separate but adjacent splines
computed under different conditions against a continuous

spline over the whole period.
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The experiments are conducted only with LOREX test data

set one (Appendix V). Test data set one (which consist of

position fixes for station SO from day 113 hr 14 to day 116

hr 19) is subdivided into two periods. Period one is from

day 113 hr 14 to day 115 hr 12 and period two is from

day 115 hr 12 to day 116 hr 19.

The following are the splines computed using DSPLIN:

1.

A continuous spline over the whole period (i.e. from
day 113 hr 14 to day 116 hr 19). In Figure 9-2, the
continuous spline is represented by the straight bold
line.

Separate and unspliced splines for period one (i.e.
from day 113 hr 14 to day 115 hr 12) and period two
(i.e. from day 115 hr 12 to day 116 hr 19). These
splines are represented by curved unbroken lines in
Figure 9-2.

Second spline 1in vperiod two computed with the
estimated end knot vector and its covariance matrix,
from the first spline in period one, as its beginning
knot vector. This is represented by the long dashed
lines in Figure 9-2.

Second spline 1is computed using the second last
estimated knot vector from the first spline together
with a common overlap of data points (i.e. the spline
is computed using data points from the period day 115

hr O to day 116 hr 19; with day 115 hr O being the



FIGURE 9-2 Comparisons between separate and continuous splines.
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location of the second last knot vectdr of the first
spline). This is portrayed in Figure 9-2 by the
short dashed lines.

Refering to Figure 9-2, the use of the end knot vector
(and its a posteriori covariance matrix) of the first spline
as the beginning knot vector of the second spline, allows
the latter spline to 'settle down' faster. The discrepancy
between the second spline and the continuous spline, in the
first knot interval, diminishes further when, instead of the
last knot vector, the second last knot vector of the former
spline, along with a common overlap of data points, is used.

Apparently the second spline, with a weighted outer knot
vector, demands a one knot interval overlap to damp out the
oscillations in its front segment. In light of this, all ad-
jacent splines should contain at least two common knot in-
tervals and points, with the first splined‘values read up to
the second lést knot and the second set of values starting

from the second knot (illustrated in Figure 9-3).

! Second Spline — 4 ___4

Knot
1 2 3 4,,,n
O--=ee.. Q—’(%W——O--—o
——— Common Overlap —
Knot
1,,,(n=3) (n-2) (n-1) (n)
|--==----l——— First Spline 1

FIGURE 9-3 Minimum Overlap Between Splines






Chapter 10
DISCUSSION, EVALUATION AND APPLICATION OF THE
SPLINE ALGORITHM TO THE LOREX DATA SETS

In this chapter, the orbital separation between the NNSS
satellites during the pefiod of the expedition are given,
the processing sequence of the LOREX data sets are outlined,
the error models used to modify the formal covariance matrix
of the position fixes are developed, the real-time applica-
tion of the spline algorithm is discussed, results of the
comparisons between DSPLIN and GEODOP, and SMOBS and GEODOP
are given, and the results from the processing of the three
LOREX data sets from the ice stations are given and the dif-
ficulties investigated.

The general outline of the processing of the three LOREX

data sets is given in Figure 10-1.

10.1 SEPARATION BETWEEN TRANSIT SATELLITE ORBITS

The three LOREX test data sets (Appendix V) were visually
examined prior to the processing to determine if there
exists any periodic degradation, as indicated by a larger
scatter of position fixes about the mean, within the data

series. Visual inspection of the plots of the test data
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sets reveals an apparent periodic degradation at 12 hour
intervals, i.e. at O and 1200 hours each day (see Figures
V-1 to V-9). This could have been caused by the orbital
configuration of the Transit satellites during the period of
the expedition. Figure 10-2, drawn from» the orbit
parameters of the operating satellites published by USNO
[1979), shows the orbit of the satellites to be within a 90
degree quadrant. The closeness of the orbital planes and
direction of motion of the satellites may have contributed

to the observed periodic degradation.

10.2 STATION VELOCITY ESTIMATES

For each of the three test data sets there exist three
sets of velocity vectors:
1. Real-time predicted speeds and azimuths.

These are the speeds and azimuths used in the

real-time computation of the position fixes.
2. Pre-processed splined speeds and azimuths.

The spline algorithm is used to generate a set of
smoothed velocities and azimuths for the stations. To
extract the long term trends in the motion of the
station, the spline is computed using one day knot

intervals over the full data series.
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5. Final splined velocities and azimuths.
These are the final set of speeds and azimuths
produced by program DSPLIN incorporating all the

modifications described in this chapter.

The error in the estimated velocity of the receiver, as
will be described in Section 10.3.2, is the difference
between final splined velocities and real-time predicted
values. An approximate velocity error is the difference
between the pre-vrocessed splined values and the real-time
predicted velocities. In this thesis, however, the real-time
predicted velocity estimates are assumed to be nonexistant
and the receiver velocity error is that computed by the
pre-processing spline. The real-time predicted velocity
estimates could not be easily extracted from the existing

Doppler data.

10.3 A PRIORI COVARIANCE MATRICES

The spline algorithm requires that the a priori
covariance matrix adequately reflect the accuracy of the
position determinations. The formal covariance matrices
obtained from the fix computations appears incorrect from
the results of the Chi-squared statistical tests (Table 9-2,
Test No. 1). In this section, a description and

justification of the procedures used to modify the formal
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covariances of the computed position fixes are given. The
results of each modification to the a priori covariances are
evaluated.

Hoar [1982] and Stansell [1978] stated that a single pass
point positioning accuracy for a stationary receiver is in
the vicinity of 37 metres (at one sigma level) and between
27 to 37 wmetres rms respectively. The imposition of a
minimum of 20 metres (Table 10-1, Test No. 1 and Figure
V-1a) or 30 metres (Table 9-5, Test No. 5) on the standard
deviations of the passes (i.e. all fixes with a standard
deviation of less than the minimum are scaled up equally in
eastings and northings) results in a dramatic drop in the
magnitude of the variance factor. This further supports the
hypothesis that the a priori covariance matrices, resulting
from the fix computation (based on the residuals of the
Doppler observations) are unrepresentative of the accuracy
of the position determinations. The effect of errors in the
satellite coordinates and those due to receiver velocity
errors are not represented in these formal covariance

matrices.

10.3.1 Modelling Orbital Errors

Wells [1974] mentioned +that +the broadcast predicted
satellite orbits have, approximately, 26, 11 and 5 metres
standard deviations in the along, radial and cross track

components respectively. The uncertainity in the computed
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positions can be no smaller than the uncertainities in the
position of the satellite. A value of 30 metres, based on
the approximate precision of the along track position of the
satellite, was chosen as the mimimum allbwable semi-minor
axis for the error ellipse of the fixes. 1In order to assess
the impact of setting this constraint on +the formal
covariance matrices of the position fixes, this figure was
increased to 35 metres and the test runs (done under the 30
metres minimum semi-minor axis) repeated. Formal error
ellipses which had semi-minor axes of less than the minimum
were scaled up accordingly. The scale factors thus range
from 1 to 30 (or 35). The imposition of a minimum of one
metre on the semi-minor axis of the formal error ellipse
prior to scaling limits the applied scale factor to within
the said range. The scaled error ellipses are then
translated via equations (VI-5) developed in Appendix VI to
their equivalent standard deviations and covariances
(subroutine ELLSIG in Appendix VII).

Test No. 2 and Test No. 6 (Table 10-1) performed under
the above mentioned conditions show an improvement in the
variance factor; with test data set one passing the
statistical Chi-squared test. Test data sets two and three,
however, still fail to pass the Chi-squared test even with
+he maximum number of knots. This suggests the presence of

yet unmodelled errors (Section 9.3).



TABLE 10-1 Results of the various test runs by DSPLIN on the 3 LOREX
Test Data Sets under different conditions.

TUST| RWN NO. OFl R.M.S. CRROR ( meTRES) VARIANCE FACTOR CHI-SQ.TEST 0.0, F. COMMENTS AND
NO. | NO. KNOTS TEST DATA SET NO. TEST DATA SET NO. TEST SET NO. TEST SET NO. CONDITIONS OF RWN
1 2 3 1 2 3 12 3 1 2 3

t 1 3 415.30 408.227 911.64 103,65 2,204.77 48,21 f F f 194 194 194 A minimum of 20 m std.deviation is
2 S 379.79 668.01 910.60 40.73 147.29 38,73 F F F 190 190 190 imposed on all formal errors of
3 10 387,38 582,28 914.76 21.06 43.65 23.13 F F F 180 180 180 position fixes.
] 20 385.90 $87.24 918.17 15.08 25.11 20.64 F F F 160 160 160

2 1 3 409.47 1,016,33 821.55 5.51 138.92 3.12 F F F 194 194 192 A minlaum semi-nminor axls (8) of
2 H 379.87 647.99 819.21 2.09 9.69 2.82 F F F 190 190 188 30 m i3 enforced on all formal
3 10 383.05 582,44 820.96 1.56 3.69 2,08 F F F 180 180 178 error ellipses,
4 20 386.49 $85.40 820.77 1.21 2.40 2.06 F F F 160 160 158

3 i 3 409.49 1,015.70 821.15 4,08 102,84 .39 F F f 194 194 192 A minimum semi-minor axis (!)_ of
2 S 379.88 648,21 819.11 1.54 7.21 .17 F F F 190 190 188 3$ m is enforced on all formal
3 10 383.06 5$82.34 821,00 1.18 2,74 1.59 F F F 180 180 178 error ellipses.
4 20 386.45 $85.52 820.67 0.89 1.79 1.61 P F F 160 160 158

4 1 3 409,42 1,050.31 821.25 5.50 96,12 3.12 f F F 194 194 192 A minimum B of 30 m is enforced;
2 H 379.84 658,64 819.21 2.09 6.77 2.82 F F f 190 190 188 with altitude, X-track and along
3 10 383.08 584.67 820,96 1.5$ 2.83 2,05 F F F 180 180 178 track velocity errors modelled.
4 20 386.50 $89.42 820.76 1.21 1.67 2.06 F F F 160 160 158

€L




TABLE 101  (Continued)
TEST RUN | NO, OF R.M.S, ERROR (m) VARIANCE FACTOR O11-5Q.TEST 0.0, F, COMMENTS AND
TEST DATA SET NO. TEST OATA SET NO. TEST SET NO. TEST SET NO. CONDITIONS OF RUN
NO, NO. | KNOTS 1 2 3 1 2 3 1 2 3 1 2 3
S 1 3 410.26 1,050,32 821.43 6.06 95.97 2.39 F F F 194 194 192 Minlsun B = 30 a. Alt and velocity
2 H 380.08 658.73 819.43 .17 6.69 2.08 F F f 190 190 188 errors modelled. If satellite
3 10 383.37 $84.86 821.43 1.87 2,76 1.24 F F P 180 180 178 elev. > 88%, semi-najor axis (A) i3
4 20 386,54 $89.88 822.14 1.19 1.59 1.17 F F P 160 160 158 set to 3 ka.
6 1 3 410.77 1,039.94 821,38 4,88 78,53 1.80 F F F 194 194 192 As in the above but with ainimua
2 S 380.21 657,25 819.34 1.61 $.4S 0,57 F F F 190 190 188 B+ 35w,
3 10 383.46 584,44 821.49 1.16 .17 0.98 | 4 F P 180 180 178
4 20 386.60 589,33 822.11 0.87 1.30 0.89 P P P 160 160 158

vL
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10.3.2 Modelling Station Velocity Errors

Stansell [1978] gives the two possible components of a
Transit fix error as being the inherent system errors (e.g.
orbit and propagation errors) and errors caused by unknown
receiver velocity during a satellite pass. The effect of
such a velocity error remains as a complex function of
satellite pass geometry and the structure of the error in
velocity. The magnitude of velocity-caused errors |is
portrayed graphically in Figures 10-3 and 10-4. Under
normal Transit use, the maximum satellite elevation
acceptable for a fix computation is limited by this error.

However, in the vicinity of the North Pole, almost all
passes have high elevation angles and unknown velocity-
caused errors have hence to be contended with and accounted
for in the a priori covariance matrix of +the computed
positions. The procedure used in an attempt to better model
the influence of velocity errors, by modifying the a priori
covariance matrix, is described below.

It is assumed that all Transit satellites have a 90
degree orbit inclination. This introduces a small error into
the computed elevation angle. Using USNO [1979] data (April
and July 1979), it can be shown that the maximum error
caused by this assumption is within one to three degrees for
all satellites except Satellite No. 30140. TFor Satellite
No. 30140, due to its much larger departure from a 90 degree
orbital plane inclination, the maximum possible error on the

computed elevation angle is about five degrees.
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The elevation angle for each fix is computed using the
algorithm described in Appendix TIII. The direction of
motion of the satellite at the time of closest approach
(correct to within a few degrees) is derived from the formal
error ellipse of the computed position. The semi-minor axis
of the error ellipse lies in the along track direction of
the passing satellite because the position fix 1is more
precisely determined in the along track direction of the
satellite than in the cross track direction.

The position fixes used in the test runs were computed on
LOREX in real-time using predicted velocity vectors. Errors
in the values of the predicted velocity vector (Figures 10-3
and 10-4) vropagate into the computed position determina-
tions.

At this point, the analytical expression underlying the
curves in Figures 10-3 and 10-4 could be derived and used.
However a simpler procedure is adopted here. The curves
shown in PFigures 10-3 and 10-4 are approximated by step
functions and extrapolated towards the 90 degree elevation
angle (as described in Table 10-2). The fact that the
extrapolated figures wight ©prove inadequate cannot be
ignored. However, can a reliable estimate of the cross track
vposition be estimated with satellites having elevation
angles of greater than 88 degrees (termed here as "high
elevation” satellites) ? A move towards answering this

question 1is made by treating all passes with a maximum
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TABLE 10-2
STEP FUNCTIONS APPROXIMATING THE FIX ERROR DUE TO
VELOCITY AND HEIGHT ERRORS.
The following are the step functions used in approximating

the PFigures 10-3, 10-4 and 10-5, divided into cross track
and along track directions of the observed satellite.

I) Cross Track Error Components

Satellite elevation Fix error
angle (e in degrees) in metres

a) Errors due to an estimated velocity north error (Vn)

e < 75 0.45%Vn
75 < e < 80 0.56%Vn
80 < e < 84 0.62%Vn
84 < e < 85 1.00%Vn
85 < e X 88 1.20%Vn
e > 88 1.50%Vn

b) Errors due to an estimated velocity east error (Ve)

e < 80 0.03%*Ve
80 < e < 85 0.05%*Ve
85 < e < 87 0.09*Ve
e > 87 0.12%Ve

c) EBrrors due to an estimated height error (H)

e < 75 3.30*H
75 < e < 80 4.20%H
80 < e < 83 5.60%H
83 < e < 85 7.20%H
85 < e < 86 10.00%H
e > 86 15.00%H
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I1) Along Track Error Components

Satellite elevation FTix error
angle (e in degrees) in metres

a) Errors due to an estimated velocity north error (Vn)

e < 75 0.03%Vn

75 < e < 80 0.04%Vn
80 < e < 83 0.08%Vn
83 < e < 85 0.09%Vn
35 < e < 87 0.10%Vn
T e > 87 0.13%*Vn

b) ®rrors due to an estimate velocity east error (Ve)

e < 80 0.02*Ve
80 < e < 85 0.15%Ve
e > 85 0.10*Ve

¢) Errors dues to an estimate height error (H)

e < 75 0.25%H
75 < e < 80 0.35%H
80 < e < 85 0.50%H
85 < e < 87 0.75*H

T e > 87 1.00*H

The root sum square (rss) fix errors, in both cross: track
and along track directions, are defined as being the square
root of the sum of squares of the computed fix errors from
the three error sources described above. For example,

rss(cross track) : = /2% + v° 4 c°

where a, b and c are the estimated fix errors computed using
the step functions Ia, Ib and Ic respectively.

[Reference: Stansell 1978: pages 72, 73 and 68]
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satellite elevation angle of greater than 88 degrees as
line fixes (or position fixes with very elongated ellipses).
The term "line fix" is used to denote a computed position
with a formal error ellipse having a sémi-major axis of

greater than 3000 metres.

10.3.3 Modelling Height Errors

Also considered are the errors in the computed position
due to an error in the assumed station height. When using
high elevation satellites (as defined in Section 10.3.2),
height errors, as shown 1in Figure 10-5, <can cause a
substantial error in the computed position. Popelar et al.
[1981] in their post-processing of the LOREX navigation data
sets arrived at an average figure of around eight metres for
the station ellipsoidal heights.

This is different from the assumed height of the stations

used in the fix computations on LOREX by 12 metres.

10.3.4 Combined Effects on the Formal Covariance Matrix

Using the above information, the contribution from each
of the error sources, described in Section 10.3.1, 10.3.2
and 10.3%.3, are evaluated. The resulting root sum square
error (rss) (obtained from the position errors due to
velocity and height errors - Table 10-2), divided into along
and cross track components, replaced the semi-minor and

semi-major axes of the formal error ellipse from the fix
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computation (subroutine ERRORS in Appendix VII) whenever
these were below the rss figures. Test No. 4 of Table 10-1
used this modification to achieve a further improvement in
the variance factor. The maximum effect, as expected, is
shown by the test data set describing the fastest motion of
station (i.e. test data set two).

To evaluate the efféct of treating position fixes
computed from high elevation satellites as 1line fixes
(defined in 10.3%.2), all position fixes computed with high
elevation satellites had the semi-major axis of their error
ellipses set to 3000 metres. The outcome of this experiment
(Table 10-1, Test Runs Nos. 5 and 6) agrees with the notion
that +the cross track position determinations using high
elevation satellites are extremely poor. The improvement in .
the variance factor increases as the station get nearer to
the pole. This can be expected as test data set three has
more positidn fixes with high elevation satellites (55
percent of test data points) than test data set two (14
percent) or test data set one (7 percent). In addition, the
examination of the vpredicted covariance matrices for the
smoothed points (in test data set three) revealed an average
drop around 22 percent in the variances of the position
coordinates (the actual figures range from -14 percent to 25
percent).

Since the spline model for all the three test data sets

passes the Chi-squared tests when +the revised a priori
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covariance matrices is used (Table 10-1, Test No. 6), these
revised wmatrices can be assumed to aptly reflect the
accuracy of the observed position fixes. For the spline
algorithm and indeed any weighted smoothing technique, this
condition must be fulfilled.

The time series of predicted positions for each of the
three test data sets (Table 10-1, Test No.6) are given in

Figures 10-6 to 10-14.

10.4 REAL-TIME APPLICATION

The near real-time application of the algorithm developed
in this thesis would involve the processing of the observed
data series 1in consecutive data spans. As described in
Section 9.5, a minimum overlap of two knot intervals 1is
required to 'ensure continuity. The estimated second last
knot vector of the former spline, along with its covariance
matrix, is used as the weighted a priori beginning knot
vector for the latter spline.

The processing of the Doppler data from the three ice
camps on the LOREX-79 expedition proceeded in a manner
similiar to that described above. Real-time position
determinations wusing +the Transit satellite system over
variable time spans (depending on the motion of the station
and the resulting number of knots) are used by DSPLIN +to

produce smoothed estimated paths of the drifting ice
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FIGURE 10-8
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FIGURE 10-9 SMOOTHED THREE HOUR POSITIONS WITH ESTIMATED ERROR
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FIGURE 10-10 SMOOTHED AND OBSERVED POSITIONS OF TEST DATA SET TWO
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FIGURE 10-11 SMOOTHED AND OBSERVED POSITIONS OF TEST DATA SET TWO
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FIGURE 10-12 SMOOTHED THREE HOUR POSITIONS WITH ESTIMATED ERROR

ELLIPSES AT THE 99 % CONFIDENCE LEVEL
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FIGURE 10-13 SMOOTHED AND OBSERVED POSITIONS OF TEST DATA SET THREE
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FIGURE 10-14 SMOOTHED AND OBSERVED POSITIONS OF TEST DATA SET THREE
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stations. The length of the data series of positions used
in the computation of each spline is devendent upon the
maximum number of knots that the computer program can handle
at any one time. Implications of increasing the upper limit

of the number of kXnots is discussed in Section 10.5.

10.5 PROCESSING OF LOREX-79 DOPPLER POSITIONING DATA

In this section, the complete processing of the
positioning data series from the three camps on the LOREX
expedition using DSPLIN is described and discussed.

The series of computed real-time position determinations,
using the Transit system, for the camvps are used as input to
the spline algorithm (Figure 10-1) to generate smooth paths
for the stations during the period of the expedition {Figure
10-15). The smoothed velocity vectors of the three stations
are extracted from the estimated knot vectors of the spline
(Figures 10-16 to 10-19). Fach of the station's navigation
data series is divided into several subsets as there exists
a limit to the number of knots the computer program can
handle for any given series. Currently, DSPLIN (Appendix
VII) has an upper limit of 32 knots. Increasing the maximum
number of knots within the program is not desirable as it
increases both the random access memory array storage
requirements of the program and the execution time in

computing the much larger inverses.
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The LOREX Doppler positioning data sets for ice camps SO,

31 and 852 were divided into 9, 8 and 7 subsets respectively.

10.5.1 Problem Data Spans

A1l subsequent splined subsets, with the exception of
two, have a vosteriori variance factors which pass the Chi-
squared statistical test (Section 7.3.1). The exceptions
occur in the LOREX data series from station SO and station
S1, and are both around the same time veriod (i.e. between
day 129 to day 131). This phemonenon is absent in the data
series from station 82, possibly due to the much lower
sampling period of position fixes at station 32.

One of the subsets, as identified above, a data span in
the data series from station 350, was subjected to a number
of tests in an effort to determine the reason for the
failure of the spline model (computed from the data
contained in the subset of the data series) to pass the
Chi-squared test. The following were investigated:

1. ZError in the value of the minimum semi-minor axis of
the error ellipses adopted. The selected value of 35
metres (see Section 10.3.1) was gradually increased
and the subset model passed the test when a value of
80 metres was reached. The value of S0 metres as the
minimum value for the semi-minor axis of the error
ellipses greatly reduces the assigned accuracy of all
position determinations; including good ©position

fixes.
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2. Brror in either the value of the cutoff angle for the
elevation (i.e. 88 degrees - Table 10-1) of the
satellite in the treatment of the position fix as
that of a line fix (as defined in Section 10.3.2) or
the assigned value of the semi-major axis of the
elongated error ellipse constituting a 1line fix.
Results show that éhanges in the value of the cutoff
elevation angle (from 88 to 85 degrees) or the
assigned cross ftrack error (increased from 3000 m %o
5000 m) did not make any significant change in the

a posteriori variance factor.

From the results above, the following are the conclusions
drawn about the inability of +the a posteriori variance
factor of the two data subsets to pass the Chi-squared
statistical test.

Firstly, the sawmpling period, the average time between
position fixes, may be inadequate to define the motion of
the ice platform during periods of rapid ice movements.
Secondly, the fact that here, the effect of velocity-caused
errors in %the computed positions are modelled simply by
expanding the a priori covariance matrix. This may have two
defects: inadequacy of the error models to expand the
covariance matrices, and the problem that the velocity-
caused errors (which are essentially position biases) are

modelled as a random effect. The observation period for
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each satellite pass 1is about 18 minutes. During this
period, any variation in speed and direction of the motion
of the receiver will affect the observed Doppler counts and
the resulting position computations. The effect of short
term variations 1in speed and direction on the position
determinations have not been investigated and can be safely
neglected because changes in the velocity vector of the
receivers on LOREX, due to the inertia of the ice sheet,
would be negligible over the short 18 minute interval.

Predicted speeds and directions, constant over a certain
period of time, were used in computing the position fixes.
Figure 10-20, which compares the real-time ©predicted
velocity vectors with the final smoothed values from DSPLIN,
highlights the errors that can exist in the estimated
real-time velocity vectors used in the fix computation. A
reduction of these errors would have been possible through a
pre-processing algorithm which produces Dbetter velocity
vector estimates (as illustrated in Figure 10-1 with the
spline being used as the pre-processing algorithm) for the
recomputation of the position fixes.

The final smoothed path of the three ice stations are
portrayed in Figure 10-15. Figures 10-16 to 10-19 give the
smoothed velocity vectors of the three ice stations for the
duration of the expedition. The differences between the
smoothed positions, velocities and directions produced by
the spline algorithm and those obtained using GEODOP (see

Section 2.2) are given in the following section.
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10.6 COMPARISON WITH OTHER TECHNIQUES

In this section, the six-hour smoothed positions and
velocities for the three ice camps produced by DSPLIN, SMOBS
and GEODOP are compared. A brief description of SMOBS and
GEODOP can be found in Section 2.2. The procedure followed
for LOREX data processing by DSPLIN is given in Figure 10-1.

The position and velocity information produced by GEODOP,
computed from better orbital and environmental models and
recomputed position fixes based on precise satellite orbits
in the multi-station three-dimensional adjustment mode (see
Section 2.2), are taken as the reference standard for the
comparisons. The comparsion between DSPLIN and GEODOP was
made to determine the following:

1. Accuracy of the recovered positions and velocities.

2. Consistency of recovered positions and velocities

with time.

3. Consistency of estimated precision of position and

velocity estimates with accuracy.

Differences between SMOBS and GEODOP are also evaluated
and compared with DSPLIN versus GEODOP differences. The
following are computed in the comparison Ybetween the

technique and the adopted reference (GEODOP).
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1. Position deviations (i.e. Ari).

AT,
i

R 2 R 2.4
- (10-1)

2. Velocity deviations (i.e. Avi).

AV,
1

R 2 R 2.5

(g = i) ¢ (g~ Vgg) )

- (10-2)

geodetic latitude and longitudeE,
velocity north and velocity east,
data point number,
reference standard.

3. Standard deviations of position (OAT.) and velocity@%v' )

1 1

differences computed using the covariance law

(Section 8.1), i.e.

a
Ari

AV

where

A9,
Gg,
0@)\
vN’
GVN’

VNE

[A¢§(0;i + cgi) + 2A¢iAki(c + g

a2y

2.2 R2 2
+ Axi(oA‘ to, )1/br

[Avi (o

1

2

R2 R
vNi + OvNi) + 20 v, ( + g )

vE. YN, “YNE, VNE .
1 1 1 1

- (10-3)

differences in latitude and longitude,
std. deviations of position coordinates,
covariance between coordinates,

differences in velocity north and east,
std. deviations of velocity north and east,
covariance between velocity components.
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4. Standardised deviations of positions and velocities.

>
=
1}

Axi/oAr.
i

. - (10-4)
: Avi/OAvi

>
<
u

Ideally, all the above parameters (defined by equations
10-1 to 10-4) should be computed and plotted against time to
evaluate their consistency in time. However, as shown in
Table 10-3, much of the required data is absent. This is
vartly due to the technique itself (e.g. SMOBS does not
have individual precision estimates for mean positions), and
partly by the omission of information in the program outputs
(e.g. the correlation coefficients in GEODOP positions are
not printed).

The following comparisons were those that could be readily
done with the available information.

1. Computation of absolute position and velocity differ-

ences.

These differences are computed in both compari-
sons, 1i.e. DSPLIN versus GEODOP and SMOBS versus
GEODOP. The set of differences (or deviations) are
plotted against time (Figures 10-21 and 10-22). The
cunulative distributions, obtained from reordering
the position and velocity deviations (equations 10.1

and 10.2), are also plotted (Figure 10-23).
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SUMMARY OF POSITION AND VELOCITY INFORMATION
PRODUCED BY GEODOP, SMOBS AND DSPLIN

I) Position Estimates

Program Latitude
Name or
Northing
GEODOP Both
SMOBS Northing
DSPLIN Northing

II) Velocity Estimates

Program Speed
Name

GEODOP Yes
SMOBS Yes
DSPLIN Yes

Longitude

or
Basting
Both

Easting

Easting

Direction

Yes
Yes

Yes

where ve - Velocity East
and vn - Velocity North

Standard Deviations
and covariances

1 2 12
“lat 0Iong No
No No No
N 9 ONE

Standard Deviations
and covariances

o) 92 %12
No No No
Ove 0'V'['l NO
g ag o

ve vn ven
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2. Computation of standardised position déviations.

This is only possible in the comparison between
DSPLIN and GEODOP, and even so, the assumption that
the coordinates produced by GEODOP are uncorrelated
(Table 10-3) had to be made (Figure 10-24).

520 positions and velocities from SO, S1 and S2, common
to the smoothed LOREX data series produced by GEODOP, SMOBS
and DSPLIN, were chosen for the comparisons. The resulting
root mean square of the position and velocity differences
are 194 metres and 70 metres per hour, respectively from the
DSPLIN versus GEODOP comparison, and 437 metres and 144
metres per hour, respectively from the SMOBS versus GEODOP
comparison. Hence DSPLIN position and velocity estimates
are 56 and 47 percent better than SMOBS. The time series
plots of position and velocity deviations (Figure 10-21 and
10-22) show the improvement for station SO graphically.
This improveﬁent in position and velocity estimation 1is
again demonstrated by the cumulative distribution plots of
the position and velocity deviations (Figure 10-23). The
coincidence in the peaks of position and velocity deviations
in FPigure 10-21 and 10-22 can be explained by the fact that
both DSPLIN and BSMOBS use the same computed position data
series and hence were influenced by the same "bad" data
points. The effect of an erroneous data point however, is
more pronounced with SMOBS. As demonstrated in Figure 10-21

and 10-22, smoothed position errors propagate into smoothed
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velocity errors. A larger discrepancy between positions
produced by SMOBS or DSPLIN against GEODOP is observed to
occur between day 100 and day 105. The reason for this
discrepancy is not apparent. One plausible cause could be
oscillator instabilities in the satellite receivers as they
were all cold started upon arrival on LOREX.

As to the assessment of the consistency of the precision
estimates, the ratio of the deviation to its propagated
standard deviation is ideally equal to one. The plots of
the time series of position deviations (equation 10-1),
propagated standard deviations (equation 10-3) and
standardised position deviations (equation 10-4) for station

SO are given in Figure 10-24. Examination of Figure 10-24

reveals that the precision estimates (accepting GEODOP as .

being true) are not consistent in time with the accuracy.
Generally, the position deviations are correlated with the
propagated étandard deviations. There are several places
where they are different. The larger discrepancies between
day 100 to day 105 are not adequately accounted for by the
standard deviations. Consistency in the precision estimates
occurs only between day 120 to day 130. The motion of the
station during this ©period 1is characterized by high
velocities and larger velocity changes (Figure 10-17). The
highest absolute velocities reached by the three stations
are recorded in this time period. Maximum velocity east
(Figure 10-18) and velocity north (Figure 10-19) of the

three stations also occur during this time period.
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The inconsistencies are caused by the covariance matrix
associated with each ©position Dbeing optimistic. This
optimism may exist in either GEODOP or DSPLIN values. The
contribution of the neglected correlation between GEODOP
smoothed coordinates to the periods of inconsistency cannot
be evaluated.

The overall conclusion that can be drawn is that DSPLIN
(with GEODOP as reference standard) produces more accurate
position and velocity estimates which are consistent with
time than SMOBS and that +the precision estimates are

inconsistent in time with the derived measures of accuracy.



Chapter 11

CONCLUSIONS AND RECOMMENDATIONS

In this chapter, the contributions of this thesis are
summarized. Conclusions and recommendations are made on
smoothing with the developed spline algorithm, apvlication
of the spline algorithm to the LOREX navigation data sets
and the treatment of high latitude position fixes using

NNSS.

111 TWO-DIMENSIONAL LEAST-SQUARES CUBIC SPLINE ALGORITHM

An algorithm %o smooth two-dimensional data series has
been successfully developed (Chapters 5 and 6) and proven
feasible with the LOREX positioning data (Chapters 9 and
10). From the numerous studies done for this thesis, the

following are the conclusions and recommendations.

1.1 Number and Placements of Knots

The spline algorithm requires a sufficient density of
knots to aptly portray the underlying nature of the data
series in question. As discussed 1in Section 9.2, an
indication of the adequacy of the number of knots can be

arrived at through the evaluation of the root mean square of

- 114 -
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the residuals and the a posteriori varianceAfactor of the
subsequently fitted spline curve (equation 7.8).

This, however, remains only a global indication of knot
sufficiency. Knot selection at local intervals can be
obtained through +the analysis of the time series of
standardised residuals of the observed data points (Section
9.3). Where the knot intervals can be 1linked to some
physical evidence pertaining to the data series, the knot
selection process is very simple. This is the minimum data
period in which the process can be aptly portrayed as being
cubic.

The simplistic nature of selecting the desired degree of
smoothness within the data series (i.e. through defining the

knot intervals) is a unique feature of this technique.

11.1.2 Joining Splines

The aspect of joining splines within a data series has
been successfully explored (Section 9.5) and a minimum of

two common knot intervals is recommended.

11.1.3 Predicted Data Points

The developed program (Appendix VII) computes, on
request, the smoothed data points and first derivatives at
any time within the data series. Estimated covariance
matrices are derived for these quantities using the

covariance law (Section 8.1). For a complete model, i.e.
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with a sufficient density of knots, the estimated covariance
matrix reflects the accuracy of the predicted data points
(Section 9.3). Covariance matrices can be derived for all
subsequently computed quantities using the covariance 1law

outlined in Chapter 8.

11.1.4 The DSPLIN Program

A  computer ©program (DSPLIN), Dbased on the spline
algorithm developed in this thesis, has been created
(Appendix VII). All computations involving the spline
algorithm are done with the DSPLIN Program. Various
optimising procedures aid in the handling of large matrices
and inverses. These, along with a short description of the
64 subroutines in DSPLIN, are given in Appendix VII: Table
VII-1. Currently, DSPLIN can handle up to 32 knots and a
maximum of 500 data points in a data span. The progran
requires about 512 kilobytes of memory to run. The
programming language wused 1is TPFortran IV. All software
development was done using the Fortran H Extended Compiler

on the IBM 3032 computer at the University of New Brunswick.

11.1.5 Comparison with SMOBS and GEODOP

The DSPLIN program smoothed values are compared with
SMOBS's (Section 2.2) using GEODOP as the reference standard
(Section 10.6). In the comparisons of position and velocity

differences (equations 10-1 and 10-2) of DSPLIN versus
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GEODOP and SMOBS versus GEODOP, the root mean square of the
differences computed from DSPLIN versus GEODOP are about 50
percent smaller than those of SMOBS versus GEODOP. Figures
10-21 to 10-23 portray the improvement of DSPLIN over SMOBS
as time series plots of differences and cumulative
distributions of differences. The standardised ©position
differences in the DSPLIN and GEODOP comparison shows that
the precision estimates produced by DSPLIN are not
consistent in time with the accuracy. There exist however,

short periods where they are consistent.

11.2 LOREX NAVIGATION DATA SETS

The following conclusions and recommendations are arrived
at from the analysis and processing of the LOREX navigation
data sets (Chapter 10). Conclusions drawn are applicable to
high latitude navigation using the NNSS system.

The final smoothed positions of the LOREX three ice
stations are given in Figure 10-15. Plots of the time series
of coordinates, 1input positions and their formal error
ellipses, and the final smoothed positions of the subsets of
the three data sets from stations SO, S1 and S2 can be found
in Quek [1983]. 1In the processing of the LOREX navigation
data sets, the effects of real-time predicted velocity
errors (Section 10.3.2) with high elevation satellites had

to be taken into account. Their +treatment involved the
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modification of the a priori covariance matrix of the

position fixes (Section 10.3%.4).

11.2.1 A Priori Covariance Matrix of Observed Data Points

For a correct interpretation of the results of the
Chi-squared test (Section 7.3.1) on the a posteriori
variance factor of the computed spline curve, a reliable
a priori covariance matrix has to be assigned to the
observations (Section 10.3). With the LOREX data sets,
extensive modifications to the formal error ellipses are
made to account for errors affecting position determina-
tions using the Transit system at high latitudes. These
include the modelling of predicted velocity (Section 10.3%.2)
and assumed height errors (Section 10.3.3), and the accuracy
of the satellite broadcast ephemerides (Section 10.3.1). An
algorithm for determining the elevation_ angle of the
observed satéllite from the formal error ellipses has been
developed (Appendix III: equation III-3). The conservative
formal error ellipses recorded, primarily result from the
small sample size of the Doppler counts used in computing

the fixes.

11.2.2 Unbalanced Doppler Counts

A great majority of the computed satellite passes were
observed to have Doppler counts that are severely unbalanced

about the point of closest approach. As the NNSS system was
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used in its weakest single pass point positioning mode, the
computed positions are displaced in the along +track
direction of the satellite. Outright rejection of such
passes is not being recommended as they do contain some
useful information. Unbalanced Doppler counts within a fix
computation, as mentioned above, propagate as a bias in the
position of the receiver in the along track direction of the
satellite. By using known accuracy estimates of the Transit
position determinations and modelling all other possible
errors (Section 10.3) useful information from these

observations can be drawn.

11.2.3 Station Motion

The computation of position determinations with the NNSS
system requires the monitoring of the motion of the receiver
during the satellite pass. Any errors in the assumed
velocity veétor reduces the accuracy of +the computed
position. This degradation is especially severe with high
elevation satellites. In order to minimise this phemonenon,
an on-site reprocessing of the position determinations using
iteratively improved velocity vectors is recommended
(Section 10.5.1). The improved velocity vectors can be
obtained from, for example, the spline algorithm developed
in this thesis (Figure 10-1).

Computed velocity vectors of +this nature, however,

represent the long term variations in the motion of the
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receiver. Under short term velocity vector changes, the
position fixes should be computed with zero velocity vectors
unless the rapid changes in velocity and direction are
determined by other external means.  The presence of the
predicted velocity vector, when in error, will only

downgrade the precision of the computed positions.

11.2.4 High Elevation Satellites

From the limited experiments made to study the behaviour
of high elevation satellite passes with the spline algorithm
(Section 10.3.4), it is concluded that for a non-stationary
observer, the position coordinate in the cross satellite
track is extremely poor. The current +treatment of those
fixes as line fixes (defined in Section 10.3.2) has met with

Some success.

1.3 SUGGESTIONS FOR FUTURE WORK

The following areas are recommended for  further

investigation:

For the spline algorithm:
1. The evaluation of the performance of the curve
fitting routine with less noisy data.
2. The effect of different base functions for the cubic

spline (e.g. those given by Spath [1974]: page 58).
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Extension of the spline algorithm, developed here, to
smooth multi-dimensional data series.

The technique, as described in this thesis, can be
easily extended to smooth a multi-dimensional data
series. Here, more than two parametric cubic splines
are simultaneously solved wusing the method of

least-squares.

For the computer program:

4.

The incorporation of a banded inverse routine which
operates on a banded normal matrix and produces only
a banded a posteriori covariance matrix.

The vprocessing time in computing the inverses can
be reduced by a factor of b2/n2; with n being the
order of the matrix and b being the bandwidth
(Appendix VII).

Additions to the program to allow the processing of a
full data series without any manual intervention.

Currently, the subsets of a data series are
individﬁally splined and the technique of splicing
splines (described in Section 9.5) used to achieve
continuity. The proposed modifications here involve
automating data management of the data series, which

currently is done manually through interactive files.
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For the LOREX navigation data series:

6.

Further investigation into the effect of velocity-
caused errors on position fixes with high elevation
satellites.

Reprocessing of the position fixes, using velocities
derived from the Spline-smoothed trajectories, and
reprocessing using the spline algorithm on these
improved position fixes.

Real-time implementation of the spline algorithm.

The real-time application of the spline algorithm
is described in Section 10.3. The DSPLIN program
with minor alterations, easily done due to its
modular structure, and a new driver routine, can be
adapted to operate in real-time mode. It has to be
used together with a satellite fix computation
routiﬁé and in the pre-processing mode supply better
velocity estimates for a recomputation of the

position fixes.
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Appendix I

LEAST-SQUARES ADJUSTMENT VIA PARAMETER
ELIMINATION

In this appendix, the least-squares adjustment with
constraints through the elimination of constraint equations
is presented. The working equations are derived and the
compatibility of implementing these equations in the current
algorithm discussed.

The basic models, primary and secondary, were given in
Chapter 7. Reference should be made to that chapter for
clarification of wodel definitions and variable names used
in this appendix.

Constraint equations relate only the functional relation-
ship betweeﬁ parameters (or unknowns). The functional
dependence of the parameters leads to the fact that there
are as many dependent parameters as there are constraint
equations. In the spline algorithm developed in Chapter 5,
the constraint equations functionally relate the first
derivative (or slope) at the current knot with the first
derivatives and positions of fore and aft knots (equations
5.4).

Using the method of parameter elimination [Mikhail 1976:
page 217], the constraint equations are used to functionally

solve for as many parameters as there are constraints.
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With Taylor's expansion and Lagrange nultipliers using

the

constrained minima technique,

the following sets

equations can be obtained (as in Section 7.3).

b
+
Y2
where w, 7
Wy 7
Ay iE
E =
and with P :=
(z, is the
Now,

eliminated

let the subvector §.

§ = {8 i 8

B0

>

|©

(k=)
|©

of

- (I-1)

-1
oog_l
covariance matrix of observables, 1 )
contain the

parameters to

2

8,1

Similarly, by partitioning the design matrices,

and A

be
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equation (I-1) is transformed to

&
(C D] *Bv+w =0
%
L] - (1-2)
Fgl.
(G H] * W, =0
%
L - - (1-3)
Solving equation (I-3),
5. = - H '(w, + G5)
-2 - =2 —1
- (1-4)

Note that the 5-1 matrix must exist for this technique to be
feasible. A discussion relating this "constraint" to the

spline algorithm was presented under Section 7.2.

Eliminating 3§, 1in equation (1-2),

cs. - bt

=1 (.‘12 + §§_1) + Bv + Wi 7 o - (I-5)

Rearranging equation (I-5),

[C - 7618, + [w, - DH '] + Bv = 0 - (1-6)
By letting

K= [c - Dil6]
and woi= [w, - Qﬂ-lw ]

-1 —2
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and with the assumption that the model is of a parametric

nature, the direct least-squares treatment of equation (I-6)

yields:
5, = - @D AP = - NORPW
- (1-7)
Through back substitution,
8, = - Hlw, - GAPD) T A P - (1-8)

Using the covariance law (see Section 8.1), the covariance

of the subvectors of the least-squares estimates are as

follows:
26
o= geg Ll
2] = oW
— 1= e -1
- @A) £, CAR ) - (1-9)
Simplifying,
R o= -1
o= N
1 - (I-10)

-l -1,-1 T
%i = (H GN “(H 0
2
a A - -1..-1.T
and Iis. = N (H G)
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Finally, in summary,

§=1[8, i 8

1
~ ‘ ~
)
[
'

and

- - (I-11)

Hence for the spline algorithm, the parameter solution
through the elimination of constraints is possible only if
§_1 matrix exists (equation I-4).

Three routines (LS2, TRNSFM and PERM) have been
formulated and 1listed in Appendix VII. Subroutine TRNSFM
reformats the primary and secondary design matrices 1into
their various submatrices. Subroutine LS2 performs the
least-squares adjustment using the method described above.
Finally subroutine PERM unscrambles the least-squares
estimates and covariances to conform to the rest of the
DSPLIN program. This has to be done because the DSPLIN
program expects the solution vector and the covariance
matrix to be of +the form produced by the functionally

constrained least-squares method.






Appendix II
COMPUTATIONAL ACCURACY

In this appendix, the aspect of computational accuracy is
discussed. Primarily there are two possible conditions
which «can 1lead to a degradation in the computational
precision of the solution vector in the linear system of
equations, N x = b, that is, the use of floating-point
arithmetic and the presence of an unstable algorithm.

The accuracy of floating-point arithmetic [Forsythe et
al. 1977: page 13] can be characterized at run time by the
so-called '"machine epsilon"; the smallest floating point

number € such that

- (I1-1)

Round-off error, through a phenomenon called
"catastrophic cancellation" [Forsythe et al. 1977: page 15]
in badly conceived computation sequences can result in a
near total 1loss of significant digits. Although it 1is
possible to carry more digits to avoid this phenomenon, it
is always more costly in terms of execution time and storage
space. A better approach is to keep 2 good track of the
arithmetic process and the expected sizes of the numbers
involved in the computations.
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An estimate of the internal computational accuracy can be
arrived at through the manipulation of the results such that

a2 null vector is formulated. In the direct least-squares

treatment of the system of equations, N x = b, where
N = (ATEA) and b = ‘(ﬂTEE)v the null vector, e can be
expressed as e = ﬁT P(Ax + E)° FPor the functionally

constrained least—squareé model, the vector e takes the

form:

- (I1-2)
with Ex and A matrices as defined in Section 8.2.
Theore;;cally, the vector e is a null vector. However, with
the wuse of finite 9©precision arithmetic, the maximum
'e |, (e ¢ g) so obtained, gives a good estimate of the
computational accuracy of the algorithm.

For certain problems, good answers cannot be obtained no
matter how wéll the algorithm is conceived. This aspect of
numerical analysis 1is 1independent of the <floating-point
number system or the algorithm used. |

When small errors in the right hand side of a systém of

linear equations causes a large effect on the solution

vector, the problem is termed "ill-conditioned", i.e. it is

very sensitive to the values on the right-hand side. I1l-
conditioning occurs when the transformation (or coefficient)
matrix N is nearly singular. An example of such an effect

is illustrated in Westlake [1968]: page 89. If N is a
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singular matrix, then for some b's a solution of x does not
exist. If N is nearly singular, then small changes in b
would result in disproportionally large changes in Xx.

To have a more precise and comprehenéible measure of
nearness to singularity, there exist the "condition
numbers". Determinants of unnormalised transformation
matrices are ineffective as a yardstick for conditioning as
the equations can be premultiplied by any constant to obtain
any value of det(N).

Considering the system of equations N x = b, introducing
an error of Ab in b results in a change of Ax in x. The
condition number of N is then defined as the ratio between
the relative change in the right-hand side and the relative

error. caused by this change [Forsythe et al. 1977: page 43],

i.e.
conatwy > ezl /1]
2]l 7 |
I - (1I-3)
where denotes the norm of a vector. ’ ,

The condition number, as mentioned earlier, is a wmeasure
of the nearness to singularity and can be thought of as the
reciprocal of the relative distance of the matrix to a set
of singular matrices [Forsythe et al. 1977: page 43]. If
cond(N) is large, then N is close to being singular.

The actual couputation of cond(N) involves knowing the
inverse of N. If n and n' are the column vectors of N

B j
and §—1 respectively, then in terms of the Euclidean vector

norm ( ”x “2 = jgl x? ).
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n'

cond(N) = max
J

n,

max
J

- (11-4)

Other norms, like the sum of absolute values can be used
as an alternative to the expensive-to-evaluate Euclidean
norm.

This definition represénts but only one of the family of
possible condition numbers; Turing's m-condition number, Von
Neuman and Goldstine's P-condition number, are but a few
[(Westlake 1968: page 90].

In +the realm of computational accuracy estimates in
performing the inverse, the power of the condition number is
an approximate estimate as to the number of significant
digité lost during the inversion process.

A third method which assesses the cumulative loss in
significant figures due to round-off and conditioning of the
transformation matrix, is the multiplication of the inverse
with the wuninverted matrix, i.e. H_1E = [I]. The
technique requires a massive amount of array space when
large inverses are contemplated. Hence it is seldom used.

In relation to the program DSPLIN, both the condition
numbers (computed via equation II-4) and the internal
computational accuracy estimates (computed via equation
II-2) are evaluated to assess the conditioning of the
inverses and the computational accuracy of the least-squares

estimates (in equations 7.9).



Appendix ITI

ALGORITHM FOR COMPUTING MAXIMUM SATELLITE
ELEVATION

The waximum elevation of the Transit satellite can be
evaluated solely from geometrical considerations given the
position of observer and the velocity vector of the
satellite at point of closest approach (obtained from the
formal error ellipse associated with each : position
determination - see Section 10.2.2).

Consider Figure III-1, we have

(y + Re)/Rs = cos Y
- (I11-1)
Rearranging
y = Rs cos vy - Re
and
x = Rs siny
- (I11-2)
with Rs = radius of the satellite at the center of the
earth
and Re = radius of the observer at the center of the
earth

Now, the elevation angle of the satellite (E) can be

expressed as

E = tan”' [ y/x ]
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SATELLITE(s)

OBSERVER'
POSITION(o)

EARTH'S CENTRE (EC)

FIGURE III-1 Plane defined by the Earth's centre, the observer's
position and the point of closest approach of the
satellite.

NORTH POLE NORTH POLE

OBSERVER'

POSITION (0) OBSERVER'S

POSITION

Figure III-3 North Pole view in FIGURE III-2 Spherical triangle

the Polar Stereo- defined by the observer's
graphic Coordinate position, point of closest
System. approach of the satellite

and the North Pole.
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Substituting for x and y,

- (I11-3)

Assuming that all satellites pass directly over the North
Pole, the angle y can be expressed as being (see Figure

I111-2):

sin vy = cos ¢0 sin AX

- (I11-4)

1}

where go observer's latitude,

and AX difference in longitude between observer and

satellite orbital plane.

However, the difference in longitude (i.e. A)) between .
the observer .and the ground track of the satellite is thé,
difference between the direction vector from the observer to
the pole ( aop ) and the velocity vector of the satellite at
point of closest approach ( o ) (Figure III-3).

Hence given the position of the observer and the velocity
vector of the satellite at the point of closest approach,
the maximum elevation of the satellite can be computed (i.e.

via equation IIT-3).

[Reference : Wells 1974: page 131]






Appendix IV

FORMULATION OF SIMULATED DATA SET

In this appendix, the explicit equations used to generate
the simulated data points are given along with the data
points chosen as being the simulated data set. There are no
specific reasons behind chosing this form to portray the
simulated data set. The data set need only be smooth, not
necessarily periodic, and with some superimposed "noise".

The following are the formulas used:

(x,y) := ( a sin( th o0 )+ R,
b sin (wyt + ¢y )+ 3% + 250 + Ry )
with a = 1400 m - (1IV-1)
b = 250 m
w 1= 2% 1 /440
X
w := 2% /70
Yy
.- 20
g 2
t= 40°
g)’
Rx 1= 5 sin (2*¥ nt/1.5)
Ry 1= -5 sin (2*¥ v t/1.5 = n )
and  t :=0,2,4,...,100
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Basically, the x component has only a periodic term and a
phase offset, whereas the y component 1incorporates, in
addition, a 1linear +trend. Both coordinates have a high
frequency term (i.e. Rx and Ry ) which acts as noise on the

simulated data set.



Time

10
14
20
24
26
28
30
32

Note

Easting
(x)

48.
124.
243.
330.
445.
516.
577.
585
625.
665.

859
325
151
073
395
200
431
321
670
509

SIMULATED DATA SET

TABLE

Northing
(v)

410.
475.
525.
528.
465.
393.
359.
312.
278.

246.

697
412
592
126
281
303
702
231
311
374

Iv-1

Time

Easting
(x)

550
.070
. 734
.400
.651
122
.588
437
.93%2
.522

317

140

Northing
(y)

180.
133.
203.
380.

531

616.
658.
693.
643.
598.
530.

All points are assigned a variance of 25

square metres in x and y, and a covariance of

0.0001

square metres.

The

selection

of the

points constituting the simulated data set is

described in Section 9.1.

783
425
142
462

.156

366
309
19
273
973
892
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FIGURE IV-1 Location of the simulated data points chosen to test the spline
algorithm



Appendix V
DESCRIPTION OF LOREX-79 TEST DATA SETS

In this appendix, a brief description and nature of the
selected three disjointed'stretches of the LOREX Main Camp
positioning data used in evaluating the performance of the
spline algorithm are given.

To aptly sample the LOREX Doppler data, three seperate
segments of the satellite fix data series were chosen. This
is done to allow the evaluation of the algorithm (see
Chapter 9) under a variety of different conditions at the

time of the observation of the Transit satellites.

V.1 LOREX TEST DATA SET ONE

Period : Froi day 113 hr 19 min 38
to day 116 hr 19 min 44
Number of points : 100
Receiver's motion : Fairly constant; velocity northwards
was about 100 metres per hour and velo-
city eastwards was about 120 metres per
hour.

Data Plots : Figures V-1 (or V-1a), V-2 and V-3
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V.2 LOREX TEST DATA SET TWO

Period : From day 120 hr 2 min 18
to day 123 hr 3 min 2

Number of points : 100

Receiver's motion : Accelerating; velocity north changes
from +50 +to -50 metres per hour and
velocity east changes from -110 to
-620 and finally to -300 metres per
hour.

Data Plots : Pigures V-4, V-5 and V-6

V.3 LOREX TEST DATA SET THREE

Period : From day 130 hr 2 min 30
to day 139 hr 8 min 30
Number of points : 100
Receiver's métion : Decelerating; 1ice platform slows down
from 90 metres per hour, stops and moves
off in a new direction at 140 metres per
hour.

Data Plots : Figures V-7, V-8 and V-9

Note : All plotted ellipses are drawn using the formal
covariance matrix of the satellite fixes at the 99

percent confidence level.



FIGURE V-1 OBSERVED POSITION FIXES OF TEST DATA SET ONE. ALL
ERROR ELLIPSES ARE AT THE 99 % CONFIDENCE LEVEL
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FIGURE V-la OBSERVED POSITION FIXES OF TEST DATA SET ONE. ALL ERROR
ELLIPSES WITH STD DEV. OF LESS THAN 20 m HAVE BEEN

SCALED UP EQUALLY IN EASTINGS AND NORTHINGS
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FIGURE V-2

OBSERVED POSITIONS OF TEST DATA SET ONE PORTRAYED IN THE TIME DOMAIN
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FIGURE V-3 OBSERVED POSITIONS OF TEST DATA SET ONE PQRTRAYED IN THE TIME DOMAIN
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FIGURE V-4 OBSERVED POSITION FIXES OF TEST DATA SET TWO
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FIGURE V-5 OBSERVED POSITIONS OF TEST DATA SET TWO PORTRAYED IN THE TIME DOMAIN
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FIGURE V-6 OBSERVED POSITIONS OF TEST DATA SET TWO PORTRAYED IN THE TIME DOMAIN
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FIGURE V-7 OBSERVED POSITION FIXES OF TEST DATA SET THREE

LOREX(SO - 136:02:32 to 133:08:30
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FIGURE V-8 OBSERVED POSITIONS OF TEST DATA SET THREE PORTRAYED IN THE TIME DOMAIN

EASTINGS (+ 1968.100 km)
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FIGURE V-9 OBSERVED POSITIONS OF TEST DATA SET THREE PQRTRAYED IN THE TIME DOMAIN

LOREX(SO) NORTHINGS vs TIME 4
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APPENDIX VI
TRANSFORMATION FROM ERROR ELLIPSES TO

STANDARD DEVIATIONS

In this appendix, the algorithm used to transform the parameters

of an error ellipse to its corresponding standard deviation is described.

The following are the assumed knownsand unknowns (Figure VI-1)

Known
a - semi-major axis of the error ellipse
b - semi-minor axis of the error ellipse

Y - direction of semi-major axis of error ellipse with
respect to the x-axis ( or 9(P- O ; with O being the

azimuth of the semi-major axis of the error ellipse).

Unknown
o, - standard deviation along the x - axis
Oy - standard deviation along the y - axis
oxy - covariance between coordinates.
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FIGURE VI-1 Relationship Between Error Ellipse and
Covariance Matrix.

The transformation from the error ellipse (i.é. a, b and y) to the
covariance matrix (i.e. o Oy and oxy) is achieved using rotation

matrices, i.e.

X X
= R(-Y)
- (VI-1
y y' ( )
where ) cos Y -sin Y
R(-y) =
sin Yy cos Y

is the negative rotation matrix for the coordinate axes. -

Now, the covariance matrix in the x' y' coordinate system can be

written as:

Therefore, using the covariance law (as outlined in Chapter 8):

T
ny R(-Y) Cx'y' R(~Y)

]

R(—Y) Cx'yv R(Y) - (VI"Z)
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or
2 o co -sin a2 0 cos sin
o, xy sy sin ¥y Y Y
2 = 2
o] o] sin cos 0 b -sin cos
Xy y Y Y Y Y
- (VI-3)
In terms of 6, we have
o
C = R(B-90)C . . R(90°-8)
xy y - (VI-4)
Rearranging equations (VI-3),
2 2 L
= 1
g, [5(a” + b° + 20, cot 2v) ]
2 2 L
a = L(a” + b - 20 cot 2y)
v ( Xy Y)]
and oxy = %(a2 - bz) sin 2y - (VI-5)

(Note: If the azimuth (8) is given instead of Yy, replace Y by .
(900—®)in equations (VI-5) ).



Appendix VII

ALGORITHM DESIGN, IMPLEMENTATION AND COMPUTER
LISTINGS

In this appendix, the general flow of +the algorithm,
together with any special considerations made are mentioned.
The basic structure of the program is given in Figure
VII-1. The routines are classified into "levels"; with the

following definitions:

Level I - routines called only once to perform a specific
task.
Level II - routines called mwmore than once, but of a

specialised nature.

Level III - routines called extensively by other routines.

DisplayedAin Figure VII-1 are all level I subroutines
called during the processing of a data set and with the
order of execution being from the left to right. A complete
description of the function of each routine, along with the
input and output parameters and external routines called,
are given in their computer 1listings. The 1list of 64
subroutines developed for this thesis, together with a short
description and external routines called are given in Table

VII-1.
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TABLE VII-1

List and Description of Subroutines

I) Level I subroutines

Nane

ANALYS

APRORI

BUILD

CHECK

COEF

CONSTR

DESIGN

ERRATR

Description and external routines called

Plots the different components of the 1least-

squares residuals and printing of smoothed

data series at equal time intervals.

Calls - CTIME,DSHLNS,DSQRT,ELIPSE,ENDPLT,
NOWPLT, PCOPY, PLOT, POINT, PRNTCH, SCMULT,
SIGDIS,SIMULA, SMOOTH, VSMOTH,

Reads or generates an a priori solution vector
for the least-squares adjustment.
Calls - none

Transforms position and velocity knot vectors
into cubic coefficients. Driver routine for
COEF.

Calls - COEF,DPRINT, PCOPY

Checks the number of data points per cubic knot
interval and drops superfluous knots.
Calls - INTERV

‘Transforms a set of adjacent knot vectors into
cubic coefficients defining the interval bet-
ween the two knots.

Calls - DMULT

Generate the coefficients of a constraint
equation.
Calls - none

Display of knots, data points and smoothed

points at time series plots, individually or

overlayed in the Polar Stereographic Coordinate

system.

Calls - CIRCLE,DSHLNS,DSQRT,ELIPSE,ELLIPS,
ENDPLT,NMBR, NOWPLT, PLOT, POINT, PRNTCH,
RADD, SPSYMB

Computes along track fix error due to estimated
receiver motion and height errors.
Calls - DSQRT



ERRXTR

ERRORS

FILTER

FIT

LS

LS2

O0BS

OPTION

OUT

PREM
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TABLE VII-t - cont'd

Computes cross track fix error due to estimated
receiver motion and height errors.
Calls - DSQRT ’

Modify input formal covariance matrices based

on computed fix errors in the along and cross

track directions of the passing satellite.

Calls - DCOS,DSIN,ELIPSE,ELLSIG,ERRATR,ERRXTR,
SATELV

Linear filter routine for detection of outliers.
Calls - DSQRT,DABS, SOLV

Cubic curve fitting using weighted beginning
position and slope vectors.
Calls - CHOLD,OBS,REJECT

Least-squares adjustment of the functionally
constrained least-squares model.
Calls - COND,DABS,SPIN

Least-squares adjustment using the method of

elimination of constraints.

Calls - CHOLD,COND,DINV,DMAG,DMULT,DPRINT,
PCOPY, SCMULT

Generate the coefficients of an observation
equation.

.Calls - none

Allow user changes to any or all of the default
options, parameters or constants.
Calls - ELSFAC

Print banded observation or constraint design
matrix, formal covariance matrices of data
points, banded weight matrix, knot times and
knot time intervals.

Calls - DPRINT

Permutation of the a posteriori covariance
matrix computed using LS2 to as if it 1is pro-
duced by LS.
Calls - none
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TABLE VII-1 - cont'd

PREPAR : Formulate design matrices and misclosure vec-
tors for the functionally constrained 1least-

squares model. _
Calls - APRORI,CONSTR,DCLEAR,INTERV,OBS

RDATA : Read input data points and end knot vectors.
Constructs the banded weight matrix. Driver
routine for READ.

Calls - CHOLD,READ

READ : Read 1in one line of input data. Modify formal
covariances if requested.
Calls - DABS,ERRORS,UPSTD

REJECT : Perform tests on the estimated residuals based
on selected curve fitting rejecting criteria.
Calls - CHITES

RESID : Compute the residual vector in 1least-squares
ad justment with banded design matrix.
Calls - none

REMAIN : Compute observation and constraint residuals of
the functionally constrained least-squares model.
Calls - DMAG

SATELV : Compute maximum satellite elevation.
.Calls - DATAN2,DCOS,DSIN,RTOP -

SELKNT : Selection of knot generation scheme and prints
number of data points in each knot interval.
Calls - CHECK,SKNOT

SIGDIS : Evalute if the input data point falls to the
right or left of the smoothed series of posi-
tions.

Calls - DATAN2,DSQRT, POINT

SIMULA : Generate simulated data series (without any
superimposed noise).
Calls - DSIN

SKNOT : Driver routine for FIT.
Calls - PIT

SMOOTH : Computes smoothed positions and precision
estimates from the cubic coefficients and its

covariance matrix.
Calls - ELIPSE,DSQRT,POINT,RADD



SPIN

SOLV

TIMSC :

TRNSFM :

UPSTD

VARFAC

VELO

VSMOTH

X

II) Level II

Name

CHITES

CHOLD
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TABLE VII-1 - cont'd

Positive-definate symmetrical matrix inversion
Calls - DABS,DLOG10

Least-squares adjustment with a Dbanded design

matrix.
Calls - BMULT1!,CHOLD,COND,DMAG,RESID,SCMULT

Scaling of data point and knot times.
Calls - SCMULT

Rearrangment of design matrices produced for
the functionally constrained least-squares
technique to the least-squares method using the
elimination of constraints model.

Calls - DCLEAR

Scaling of a formal covariance matrix accord-
ing to the minimum allowable semi-minor axis of
error ellipse.

Calls - ELIPSE,ELLSIG

Compute and performs the Chi-squared test on
the a posteriori variance factor of the func-
tionally constrained least-squares model.

Calls - DABS,CHITES,BMULT1

Compute the smoothed velocity and associated
covariance matrix from the cubic coefficients.

‘Calls - DABS,DATAN2,DMULT,DSQRT, INTERV

Compute a data series of smoothed velocities
at input data times. Driver routine for VELO.
Calls - RADD,VELO

subroutines

Description and external routines called

Perform the Chi-squared statistical test on

the a posteriori variance factor.
Calls - MDCHI

Matrix inversion using the Choleski alogrithm.
Calls - DABS,DSQRT,TRAPS



COND

CTIME

DINV

ELIPSE

ELLSIG

ELSFAC

FORM

INTERV

PLOT

POINT

PRNKNT
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TABLE VII-1 - cont'd

Compute the condition number of a matrix.
Calls - none

Convert time in days and decimals of a day %o
days, hours and minutes.
Calls - none

Inversion routine for a square non-symmetric
matrix. _
Calls - DBLE

Compute the parameters of an error ellipse
from its covariance matrix.
Calls - DSQRT,DATAN2

Compute the covariance matrix from the error
ellipse.
Calls - DTAN,DSQRT

Compute the scale <factor for non-standard
error ellipses.
Calls - MDCHI

Formulate the transformation matrix to convert
cubic coefficients to smoothed positions.
Calls - none

Locate the interval in which a data point lies

-within the knot structure.

Calls - DABS

Set up plot specifications, draw axes and
titles.
Calls - AREA,AXS,CHRPRT,RECT

Compute smoothed position and associated co-
variance matrix at any given tinme.
Calls - FORM, INTERV,DMULT, TRAPS

Print the position and slope vectors, and co-
variance matrix for any specified knot time.
Calls - DSQRT



RADD

RTOP
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TABLE VII-1 - cont'd

Convert radians to degrees.
Calls - none

Convert differences in plane coordinates %o
polar coordinates.

III) Level III subroutines

Name

BMULT1

DADD

DCLEAR

DCOPY

DMAG

DMULT

DPRINT

DSUBT

DTRAN

PCOPY

SPACE

Description and external routines called

Multiply a banded matrix with a full matrix.
Calls - none

Add two matrices.
Calls - none

Set all elements in a matrix to zero.
Calls - none

Copy a matrix.
Calls - none

Seek the largest or smallest element in a mat-
rix.
Calls - DABS

Multiply two matrices.
Calls - none

Print the elements of a matrix with a user
specified title.
Calls - SPACE

Subtract two matrices.
Calls - none.

Transpose a matrix.
Calls - none

Copy one part of a matrix into another part of
a matrix.
Calls - none

Create blank lines.
Calls - none



166

TABLE VII-1 - cont'd

IV) Other library routines used.

Name

Description of routines

A) FORTRAN library with plotting routines

AREA
AXS
CHRPRT
CIRCLE
DABS
DATAN2

DBLE
DCOS
DLOG10
DSIN
DSQRT
DTAN
ELLIPS
ENDPLT
NMBR

. NOMPLT
PRNTCH

RECT
TRAPS

[Reference

Physical plot area specification.

Draw plot axes.

Draw a sequence of characters.

Draw a circle.

Absolute value of a variable.

Arc tangent of an angle based on sides
of a right-angle traingle.

Conversion from single to double precision.
Cosine of an angle.

Logarithm to the base 10.

Sine of an angle.

Square root.

Tangent of an angle.

Draw an ellipse.

Terminate plotting.

Draw numbers on plot.

Plotter pen movement commands.

Line printer character to be used for plot-
ting.

Draw a rectangle.

Error trap routine.

Gujar, U.G. 1981 and IBM 1974]

B) IMSL library routines

MDCHI

[Reference

Inverse Chi-squared ©probability density
function.

IMSL 1975]
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The program is designed to be as modular as possible.
This allows modifications to any of the routines to be done
with relative ease. Certain routines are incorporated into
the algorithm to take advantage of the uniqueness of the
computations. They fall mainly into the catagory of
reducing the enormous array storage requirements of the
technique.

The design and weight matrices are kept as banded
matrices. The design matrices (ﬁlrand .52 - see Section
7.3.1) are stored using variable profile banding techniques.
A further reduction is obtained (i.e. only one-half of the
total rows of the design matrices are actually kept) by
exploiting the similarities in the coefficients between
adjacent rows. The weight matrix, on the other hand, uses a
fixed bandwidth scheme to optimise storage. The extensive
use of pointers reduces the computational cost (i.e.
removing all multiplications outside the bandwidth) and
allows the location of the desired elements in a matrix.

DSPLIN uses the SPIN routine for matrix inversion in the
functionally constrained least-squares algorithm. This is a
full matrix inversion routine. The use of a banded wmatrix
inversion routine cuts down the processing time used in
computing the inverses by a factor of b2/n2 ; where n is the
order of the matrix and b is the bandwidth [Steeves 1974].
More studies are needed before a banded matrix inversion

routine can be wused. Unlike the normal least-squares
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ad justment, the functionally constrained 1least-squares
algorithm requires +the 1inversion of +two matrices. The
interrelationship between these inverses and the solution
vector has to be investigated before a banded inverison
routine can be used.

Figure VII-2 shows the vprocessing time of DSPLIN against
the number of knots used in the data span. The processing

time, however, varies with the options for a particular run.
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FIGURE VII-2 Processing Times of DSPLIN

Finally, given below, 1is the general outline of the
processing sequence within the algorithm (see Figure VII-1).
1. BSelection of options.
(Routine: OPTION)
2. Input and pre-processing of data for smoothing.

(Routines: RDATA, TIMSC and FILTER)
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3. Selection of knot scheme.

(Routine: SELKNT)

4. Formulation and printing of design matrices and
misclosure vectors |
(Routines: PREPAR and OUT)

5. Computation of 1least-squares estimates wusing the
functionally constrained least-squares model.
(Routines: LS, REMAIN and VARFAC)

6. Generation of time-tagged coefficients and associated
covariance matrices for each knot interval.

(Routine: BUILD)

7. Generation of smoothed points, velocities, plotting

0of smoothed and raw data points or the analysis of

residuals.

(Routines: DESIGN and ANALYS)

The displéys of raw and smoothed data boints are made
possible by several plot routines. A complete description of
the possible options is included in the computer 1listings
(i.e. in routines ANALYS and DESIGN).

Input to the program is described in the program listings

and free format is used to read all variables.
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MARY) OESIGN MATRIOSPLIN

MAIN
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VARTABLE PROFILE BANDWIDTH CONSTRAINT (SECONDARY)DESIGN MATRIOSPLIN

OSPLIN
OSPLIN
DSPLIN
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DSPLIN
DSPLIN
DSPL IN
DSPLIN
DSPLIN
DSPLIN
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ODSPLIN
OSPLIN
DSPLIN
OSPLIN
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ACON : WORK ARRAY OF SUBR CONSTR DSPLIN
ALPH : LEVEL OF SIGNIFICANCE TCSTS - SEE SUBR FILTER OSPLIN
ANBS : WORK ARRAY OF SUBR (CBS OSPLIN
DINC : INTERVAL INCREMENT - SEE SUBR FILTER DSPLIN
DINT H INTERVAL WIOTH - SEE SUOR FILTER DSPLIN
DRAW : SPLINE DRAING - SEE SUBR DESIGN OSPLIN
£CHO H INPUT ECHO OPTION DSPLIN
FESC : SCALE FACTOR RELATED TO VARIABLE ALPH DSPLIN
GINT : INTERVAL BETWEEN SMOOTHEDO PARAMETERS - SEE SUBR ANALYS OSPLIN
1COoL . FUNCTION - COLUMN POINTCRS FOR Al AND A2 MATRICES ODSPLIN
[DAl : FCw OIM DEC OF Al MATRIX OSPLIN
[DA2 : RO4 DOIM DEC OF A2 MATRIX OSPLIN
ICTK : CIM DCGC FOR TK VECTOR DSPLIN
[DOTX : NIM DEC FQOR Tx VECTOR OSPLIN
[ODVX : OIM DEC FOR VX MATRIX DSPLIN
I0v2 : CIMm DEC FOR V2 VECTOR DSPLIN
10wl : CI¥ DEC FOR W1 VECTOR ODSPLIN
IDw2 : CIM DEC FGR W2 VECTOR DSPLIN
10x0 : CIM DEC FOR XC VECTOR OSPLIN
[FLT : CALL CODE FOR FILTER ROUTINE - SEE SUBR OPTION OSPLIN
IRCw : FUNCTION — RCW POINTERS FOR Al AND A2 MATRICES OSPLIN
1sCT : CALL COOE FOR TIME SCALING - SEE SUBR QOPTION DSPLIN
LC8s : VECTOR CONTAINING ALL OBSERVABLES OSPLIN
PRTK : PRINT CODE FCR TK VECTOR OSPLIN
PRTX : PRINT CODE FOR TX VECTOR OSPLIN
TKRD : CODE ON KNCT TYPE DSPLIN
vCOoF : COVARIANCE MATRIX FCR CCEFFICIENTS (CCF) DSPLIN
vVTwv : QUACRATIC NORM OF RESIDUALS DSPLIN
XINT : PLOTTING SPLINEC IN XINT INCFREMENTS - SEE SU3R DESIGN DSPLIN
ADDAL : ADDRESS SEQUENCE FCR Al MATRIX OSPL IN
ACDAZ2 : ADDRESS SEQUENCE FCR A2 MATRIX CSPLIN
ALPHA : PERCENTAGE CONFIDENCE LEVEL OF DRAWN ELLIPSES DSPLIN
DEGOF : OEGREES QOF FREZOOM IN CURRENT NMODEL DSPL IN
GDATEC : SUBR - GETS DATE FCR RUN ( FORTRAN LIBRARY ) OSPLIN
1appRt : CALL CCDE ON 'SUBR APRORI- SEE suffl APKIORI DSPLIN
[OCOF : ROw DIM DOCC FCR CGF MATRI X DSPL IN
100TK : OIM DEC: FOR DTK VECTOR DsPLIN
10V AR : RCw DIM DEC FOR VAR MATRIX OSPLIN
IPLOT : PLOTTING CPTIGN CODE - SEE SUBR QPTICN CSPLIN
IREAD : READ FORMATYT CODCE - SEE SUBRK READ OSPLIN
[RJET : TOTAL NO OF FAILURES B4 REJECTION - SEE SUBR REJECT DSPLIN
[TYPE : PRINTER PLCT CR. GRAPHIC PLCT ODSPL IN
NINTY : G0 DEG IN RADIANS . CSPLIN
PRCOV : PRINT - CQODE FOR INPUT COVARIANCES 0OF DATA POINTS DSPLIN 1T
PRDTK : PRINT CQODE FOR KNOT INTERVAL TIMES - DSPLIN w~
PRGEN : PRINT CODE FGCR 3MOOTHZED POINTS USED IN DRAWING SPLINC OSPLIN
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C PRKNT H SCLECTIVE PRINTING OF KNOT INFORMATION DSPLIN
C PRPTS H PLOTTING CCDE CN DATA PQOINTS DSPLIN
C SPLIN H CALL CCDE CN SUBR DESIGN DSPLIN
C ALPKNT LEVEL OF SIGNIFICANCE TO BE USED IN REJECT RQUTINE DSPLIN
C CALPHA PERCENTAGE LEVEL OF SIGNIFICANCE TO BE USED IN SUDR VARFAC DSPLIN
C CHANGE OIFFERENT DATA SETS - SEE SUBR CPTION DSPLIN
C FORF IV 3 45 DEGREES IN RADIANS ODSPL IN
C GSTART TIME TO BEGIN GENERATION OF SMOOTH PARAMETERS - SUSBFR ANALYSDSPLIN
C I ANLYS @ CALL CODE FGCR ANALYS SUBROUTINE DSPLIN
C ICANYS ¢ OPTION VECTCR CF CCDES FOR ANALYS RCUT INE DSPL IN
C TCHECK ¢ CODE FOR CHECK ROUTINE - SEE CHECK SUBROUTINE ODSPLIN
C [CKNOT ¢ CPTION CODE ON KMNOT GENERATION ROUTINE - SEE SKNOT ROUTINE ODOSPLIN
C ICOUNT : NUMBER OF PRQOCESSED DATA SETS OSPLIN
C IOKNOT 2 MAXTIMUM NUMBER OF KNCTS THE PROGRAM CAN HANOLE DSPLIN
C [oLoss OIM DEC FCR LCES VECTOR DSPLIN
C I10VCOF : ROw DIM DEC FCR VCOF MATRIX DSPL IN
C IELIPS ¢ COCE ON PLOTTED ELLIPSES - SEE OPTION SUBR DSPLIN
C ICBSNO MAX NUMBER OF OQOBSERVED SATA POINTS THE PROGRAM CAN MANAGE DSPLIN
C [TOTAL @ TOTAL NUMBER CQF DATA SETS TQO BE PROCESSED DSPL IN
C PRAMAT PRINT CODE FOR Al ANO A2 MATRICES DSPLIN
C PRCOFF ¢ PRINT CODE FOR COQEFFICIENTS OF SPLINE DSPLIN
C PRCOFV ¢ PRINT CCOE FOR COVARIANCES CF CCEFFICIENTS DSPLIN
C PRKNQT ¢ PLCTTIG CODE ON KNQOTS - SEE DESIGN SUBR DSPLIN
C PRLQOEBS = PRINT CCDE CN LCBS ROUTINE DSPLIN
C PRPMAT @ PRINT CCDE CN WEIGHT MATRIX DSPL IN
C PRRESC : PRITN CODE ON RESIDUALS DSPL IN
C PRVARX ¢ PRINT CCDE ON COVARIANCE OF LS ESTIMATES OSPUIN
C PRXMAT PRINT CCDE ON LS ESTIMATES - X VECTCR DSPLIN
C SCTIME : SCALE FACTOR ON TIME DOMAIN DSPL IN
C XSTART 3 TIME TO BEGIN DRAWING SPLINE,CO OR SPD - SUBR DESIGN/ANALYSOSPLIN
C DSPL IN
C CALLS - GDATE,CPUTIM (EXTERNAL ROUTINES) OSPL IN
C QPT IONsDCLEAR,RCATATIMSC.FILTER,SELKNT,PREPAR,OQUT, DSPLIN
C LS.VARFAC.SCMULT-DAD0.0PFINT.PRNKNT.BUILO.DES[GN.ANALYS OSPLIN
C . : OSPLIN
C DSPLIN
C*PROGRAM DEGINS ' DSPLIN
C*x COMMON BLK CONTAINING DECLARED MATRIX DIMENSIONS CSPLIN
COMMON /DIM1/10BSNO,ICAL1,IDW]1,IDT X, 10P,IDPV,IOLOBS.IDVAR,ICV OSPLIN
COMMON /DIM2/IDKNGT +IDA2, IDTK, IDDTK . IDX s IDVX s IOW2,I0V2, I0XC, DSPLIN

) IDCOF ,IDVCQF OSPLIN

C*x DIMENSION BLK CONTAINING ARRAY DECLARATIONS OSPLIN
REAL®8 Al1(S08,7)+eW1(1008,1)+sTX(50251)+P(1008+3),PV(1008+1) DSPLIN

. LCBS(1008+s1)sVAR(S502¢2+2),V(1008,1) DSPLIN
REAL*8 A2(30+11)TK(3241)DTK(31,:1),X(128,1), OSPLIN

. vx(128-128).w2(60»l).V2(60.1).x0(128.l).COF(BI.8).VCOF(31-8.8) O0SPL IN
REAL#*8 ACBS(741)¢ACONC1141) s MAT(242)sVTHV, DSPLIN

. Cx{(8,1),VCX(8,8),CC(8,1).,vCC(8,8) DSPL IN

€LT
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C %

Cx=
C2

Cx
Cx

Cx

Cx
C#

b (WK1(4682) FLWUK3(1)),
2 (WK1(S023) FLWKA(1)),
? (WK1(5064)FLUKS(1))
EQUIVALENCE (WK1(S100),AWKL1C1)),
? {WK1(S601)+AWK2(1)),
D (WK1 (6102) s AWK3 (1)),
2 (WKL(6603)sAWKA(1)),
? (WK1(7108),AWKS (1))
EQUIVALENCE (wWK2(1),VCQOF(331))
DATA ASSIGMNENT
DATA ITITLE/80%' °/,ACON/11%0.0000/,ICANYS/10%0/
DATA FCRF1IV/0.785398164D0/ NINTY/1.57079€327D0/
FUNCTIONS
IROW(1) = (I+1)r2
ICOL(I) = (2 = ((I1+1)/2 = (1/2)))
READ UNIT
IRD = 5
WRITE UNIT
I¥R = 6

EQUALITIES GOVERNING THE MATRIX SIZES

MAXTIMUM NUMBER OF OBSERVATIONS THAT CAN BE TAKEN INTO THE PROGRAM
10BSNO = 500

MATRIX SIZES ARE AS FOLLOWS

I0Al = 10BSNO + 4
IDnl = [ICBSNO*2 + 8
IDTX = I0BSNO + 2
IDP = ICBSNO*2 + 8
[0PV = [0OBSNO%2 ¢+ 8
10L0OBS=10BSNDO*2 + 8
IDVAR= 1QBSNO + 2
IOV = 10BSNO*2 + 8

MAXIMUM NUMBER OF KNOTS THAT CAN BE TAKEN INTO THE PROGRAM
[NKNQTY = 32

MATRIX SIZES ARE AS FCLLQOWS

1CA2 = [OKNOT -
IDTK = [DKNQT :
[DOTK = IDKNOT -1
10X = IDKNOT=*4
i0VX = IDKNOT=*4
[DwW2 = [OKNQT%2 - &
IDV2 = IDKNOT=*2 - &
[OXO = IDKNOQOTx%4
IDCOF = IDKNOT -

-

IDVCOF= IDKNOT -
ADDRESS SEQUENCE OF Al AND A2 MATRICES FOLLOW THEIR RESP MATRICES
*#% SUBR LSIFCFO2 REQS MODIFICATION YO DIM IF NO. OF KNOT CHANGES
PRINTS THE DATE AND TIME OF RUN

CALL GDATE(DUATE.TIME)

DSPLIN
OSPLIN
DSPLIN
DSPL IN
OSPL IN
DSPLIN
DSPLIN
OSPLIN
OSPLIN
DSPLIN
DSPLIN
DSPLIN
DSPLIN
DSPULIN
DSPLIN
DSPL IN
DSPLIN
DSPLIN
OSPL IN
DSPLIN
DSPLIN
DSPLIN
OSPLIN
DSPLIN
DSPL IN
OSPLIN
OSPLIN
OSPLIN
DSPLIN
DSPLIN

*x%x0DSPLIN
DSPLIN =~

OSPLIN
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WRITE(IWR,9040)DATE, TIME
Cx READ IN TITLE OF J0OB : MAX 80 CHARACTERS
READ(IRD+9020)(ITITLE(I), [ = 1,80)
HRITE(IWR9O030)(ITITLE(I).l - = 1,80)
C* QOPTION CHANGE
CALL OPTION(CHANGE-IREAD,IFLT, IAPRI ISC «IELIPS,.ECHO,
e PRCCVPRPMAT ¢ PRTX s PRTK, PRDTK RLOBS, ICHECK .,
@ PRAMAT.PRXHAT.PRVARX.PRKNT.PRRESD PRCOFF,PRCOFV,
bl ITYPE+SPLINWPRPTS,PRKNOT,ORAW,PRGEN,1ANLYS,IPLOT,
aQ ICANYS.SCTIME.OINT-DINC-ALPH.ALPHA CALPHA,
b FESCosESCIXSTART ¢ XINT+GSTART ,GINT)
C*x RESET PROCESSING CPU TIME CQUNTER FGR NEW DATA SET
CALL CPUTIM(IELARPS,IREM)
ZELAPS = [ELAPS/10.0
ZREM = IREM/10,0
c WRITE(IWR,9050)ZELAPS, ZREM
*
C%* READ IN THE NUMBER OF DATA SETS
READ(IRD.#*)ITOTAL

C* RESET DATA SET COUNTER
ICOUNT = 0
8CO00 READ(IRD,*)KNQ, TKRD
Cx READ [N THE TKNOT TIMES
IF({TKRD.NEL.1)GO TO 6
READ(IRD+#)(TK(I1,1),1 =
IF(ECHO.EQ.1)WRITE(I®WR,
C*x ALTERNATIVE TO READING KNO
€ IF(TKRC.NEL.2)GO TO 7
READ(IRD %) (ICKNGT(I),I=1,1
READ(IRD+#*) IRJET JALPKNT
IF(ECHOEQ.1)WRITE(IWR,7530)(ICKNOT(I)sI=1,10C)
IF(CCHOWEQW 1 )WRITE(IWR,7550) IRJET , ALPKNT
C* RCADS CATA SET ONCE ONLY IF [T RCMAINJ THE SAME.
7 IF(CHANGE.EQ.0 . ANDo,ICOUNT ,EQ.QO)READ(IRD, *)NO

KN
0)
IM
0

1
S

-

)
TK(Is1)H I = 1 +KNQ)
S

—a~
m~o

~

[F{CHANGE «CQ.1 JREAD(IRD,*)NO
ICOUNT = ICOUNT + |
IF(ICOUNT «GT 1 )WRITE(IWR,G060) ICOUNT
IF(ECHO.EQ .1 )WRITE(IWRV7S10)KNONO
Cx AVOIDING THE REFORMULATION AND REACING IN OF THE DATA
C* SET. READS ONLY OURING THE FIRST RUN
[F(CHANGE cEQ+O0+AND+ICOUNT «GT.1)G0O TO 13

CALL DCLEAR(LCBS.IDLOBS.1) .
CALL ROATA(NO:TXsVARLOBSPMAT,
@ IREADCCHO XXy YY o CXY s TUME)
Cx TIME SCALING - -
13 CALL TIMSC(KNOsNOsISCT 4 SCTIME ,TX,TK+sIOTX+IOTK,TKRD)
Cx LINEAR FILTER IMPLEMENTATION
IF(IFLT.EQ.Y)

DSPL IN
OSPLIN
OSPLIN
OSPLIN
ODSPLIN
OSPLIN
DSPL IN
OSPLIN
OSPLIN
DSPLIN
DSPLIN
DOSPLIN
OSPLIN
DSPL IN
DSPLIN
DSPL IN
OSPLIN
DSPLIN
DSPLIN
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Cx

Cx
C#
C»
C*
Ct
Cx

Cx%

C*
Cx

7000

D

D
FORMULATIGON OF KNOTS

CALL

FILTER(NOsTX LOBS+P,y VAR, DINT+DINC,ALPH,FESC, SCTIME,
FLWK] JFLWK2 ,FLWK3,FLWKG ,FLRKS,FWK6)

CALL SELKNT(TKRD.KNOQNOoXCHECKQTXQTKoLOBS.VAQ.XCKNDTQ
IRJET yALPKNT 4OTK DD, FWK1 ' FWK2 ) FWKI,FWKA s FUKS,FWK6E,FWK 7)
SET UP MATRICES FGR LS SOLUTION

D

CALL PREPAR(KNOONO R MyN,

@

g
PFOGRAM CUTPUT

Al «ADDA1 ,A2,ADDA2,

CALL CUT(XNCsNCOJRsMyNy

PRTX,PRTK, PRLOBS,PRDOTK .PRCOV +PRPMAT, PRAMAT,
TXs TKsLOBSsOTK+VARP+A1,A2,A0DAl,ADCA2)
LEAST SQUARES PRCCESS
CALL LS(A1,ADDALl sA2.ADDA2,P
@

®
m}

1

' W1
D41,I0A2,I0P,IDWLl,10W
IF

TECRMINATE CATA SET PROCESSING
IF(IER.NE.O)GQ TC 700C
RESICUALS
REMAIN(R+MoNocAl s A2, ADDA1,ACDA2 W1, W2,
VARIANCE FACTOR AND CCEGREES CF FRKREEOOM
VARFQC(SOvOEGOFoNOvRoM.N'CALpHAvTX.ponpVoVTHVoOXlvDXZ)
NOTICE THE APOSTERIORI VAR USED.

COMPUTC
CALL
COMPUTE
CALL
SCALING
CALL

[F(PRXMAT,EQ.1)CALL OPRINT(X,
IF(PRVARX .EQ+1)CALL CPRINT(VX,
PRINT END SLOPE AND KANOT INFORMA

OF THE COVARINACE MATRIX
SCMULT({SO0sVXaVXyMM, IDVX,IDVX)
FFCRMS FINAL LEAST SQUARES ESTIMATES

CALL CADO(XOsXsMeloeXseIDX,1)
RESULTS CUTPUT SECTION

M
T

IF(PRVARX.NE.1 .AND,PRKNT .NE. Q)
CALL PRNKNT (X M,
IF(PRRESD.EQ.1)CALL OPRINT(V.,Nol
TRANSFORM KNCT VECTORS TC CuBIC COEFF
CALL BUILD(KNO:XeVXesCOF,.VCOF,DTK,
CX+VCX,COWWCO, PRCOFV,PRCOFF)
PLOTTING OF KNOTS+PCINTS AND SPLINE
CONFIDENCE ELLIPSE SET AT THE ALPHA PERCENTAGE LEVEL
LIPS.EQ 1 )WRITE(IWR.+7540)ALPHA,ESC
IPS.EQ.0)WRITE(IWR,7570)

"
)

IF(1
IF (1
IF(S
Do 7
caLL

E
€
p
0

Q

1

= 1+SPLIN

L
LIN.EQ.0)GO TO 8020
1
c

ESIGNINCsKNCo ICOUNT,ITYP

LIN
LIN

o TKeT
GT el e AND.IoNE.SPLINIR
GToloAND, I.NEJSPLIN.A

A\
2
I

ZMX>X De m

X0oLOBSoV¥l +W2,1APRI)
SECTION PRIOR TO LS SOLUTION

W
’
N

2
I
v

,
0
E

— X

TXs TKeDTK+AOHBS s ACON,

XCVXQR'N'M'
XelERyWK]14sWK2)
RSE FAILS

E
D

INAL EST X~-VECTOR',9)
VXes *'COVARIANCE AF SC°

XoVev2)

DVX sPRKNT)

*0OBS VECTOR RESIDUALS'.10)

T

S

~TUVAree Z

s PRPTS+PRKNOT,
£

ME,

VeNINTY,

KesVAR1.0RBS)

TS+ PRKNQT, DRAWPRGEN
REAC(S+*x )XSTART + XINT

+8)

OSPLIN
ODSPLIN
OSPL IN
DSPLIN
OSPLIN
OSPLIN
DSPLIN
DSPLIN
OSPL IN
DSPLIN
OSPLIN
OSPL IN
DSPLIN
DSPLIN
DSPL IN
CSPLIN
DSPLIN
DSPL IN
OSPL (N
DSPLIN
DSPL IN
OSPLIN
DSPLIN
OSPL IN
ODSPLIN
DSPLIN
DSPL IN
OSPLIN
DSPLIN
DSPL IN
DSPL IN
OSPLIN
DSPLIN
ODSPL IN
DSPLIN
DSPLIN
DSPLIN
DSPL IN
OSPLIN
OSPLIN
DSPL IN
OSPLIN
OSPLIN
OSPL IN
DSPLIN
OSPLIN
DSPL IN
O0SPL IN

=
~
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WRITE(IWR.S070)
7010 CONTINUE
C* ANALYSIS GF RESIDUALS VIA PRINTED NUMBERS OR pLOTS
8020 IF(IANLYS EQ.0)GG TO 8030
OC AR040 I = 1,I1ANLYS
CALL ANALYS(IANLYS,ESC,ICANYS,KND, NOsSCTIME+XSTART+XINT GSTART,
6 ulNT.SO.DEGOF.LOBS.VAR.TX.TK.COF.VCOF.V.ICOUNT.IPLOT.IER.
G AWK] sAWK2 s AWK3, AWKA , AWKS )

IF(IANLYS.,EQ.0.QOR,I1.,EQ.IANLYS)GC TO 8025
pEAC(IRO.*)(ICANYS(II)'XI=1.10)

IF(ECHO.EQe1 )WRITE(IWR,7530)(ICANYS(IT),11=1,10)
IF(ICANYS(8).EQ.1)READ(IRO+#)GSTART,GINT
IF(ECHQO.EQ., 1.AND.ICANYS(B)-EQ-1)WRITE(XHR.7520)GSTART.GINT
IF(ICANYS(9)«NE.O)READ(IRD,*)XSTART» XINT
IF(ECHOL,EQ. 1 AND. ICANYS(9) ,NE.O)WRITE(IWNR 7520 )XSTART 4 X INT
8025 WRITE(IWR.9070)
3040 CONTINUE
C* EVALUATE CPU TIME USEO AND REMAINING
8030 CALL CPUTIM(I,
ZELAPS = /10,
ZREM = J/10.0
WRITE((wRo9050)ZELAPS.ZREM
IF(ICOUNT.CQ.ITOTAL)GO TO 9999
C* CORRECT THE SCALED TX VECTOR IN ORDER TO TAKE IN NEW SCTIME
SC = 1.0000/SCTIME
L = NO ¢ 2
CALL SCMULT(SCeTXsTXsLe1,4IDTXe1)

GO TO 8000
C* FORMAT BLGCCK

7510 FORMAT(///+3X,'ECHO ¢ *,14,14)
7520 FORMAT(/s3Xe'ECHO : *+46(1PD12.5,3X))
753C FORMAT(/4+3X+°0PTION LIST 9,100(3S13+/,15x))
7540 FORMAT(/,3X,s'SCALE FACTOR FOR ' ,Fb6.1,*' PERCENT CONFIDENCE"*,
@ * ELLIPSES = " ,F10e8,/)
7550 FORMAT(/3X4"ECHO : *414,2X,F&.1)
7570 FORMAT (/4+3X,*STANDARD ELLIPSE REQUESTEOD',/)
Cx%
GC2C FORMAT(100A1l)
G030 FORMAT(//.3X,100A1,77)
9040 FCRMAT(1IHL1,//+3Xe*DATE OF RUN I '",18A1,5X,*TIME : *,2A1,
D 2(' ¢ *,2A1))
S0S0 FORMAT(//.' ELAPSED TIME ! ',F9.,2,' TIME LEFT : ',FG,.2,
@ ' MILLISECONDS®)
9060 FORMAT(IHL,////7+° DATA SET NUMBER *+14,/,1X,20('='),///)
9070 FORMATI(1K1)
696G WRITE(IWR,9070)
[F((IPLOT.EQ«l s AND.IANLYS.EQ.l)OR.SPLIN,EQ.1)CALL ENDPLT

DSPLIN
DSPLIN
DSPLIN
OSPLIN
ODSPLIN
OSPLIN
DSPLIN
DSPLIN
DSPL IN
DSPLIN
OSPLIN
DSPL IN
DSPLIN
DSPL IN
DSPLIN
OSPLIN
ODSPL IN
ODSPLIN
DSPLIN
DSPLIN
DSPLIN
DSPLIN
OSPL IN
DSPLIN
DSPLIN
DSPL IN
DSPLIN
DSPLIN
DSPL IN
OSPLUIN
DSPLIN
OSPL IN
OSPLIN
DSPLIN
OSPL IN
DSPL IN

—
~
@



[eXeYoYoReNoYoXoXoXo)
Q000000000
POLDLPDLPLLPOPLP
PPLUIWWWLWWW
—OoVMmM~NOWU P W

AN DNAOONNNOANADCONONNONDNODNANAONOOND

END DSPLIN
SUBROUTINE ANALYS(IANLYS,ESCyICANYS,KNOsNO,SCTIME,XSTART» XINT, DSPLIN
a GSTART.GINT+SO0,0EGOF,LQOBS, DSPLIN
2 VAR s TX s TKy COF e VCAOF o Vs IC, IPLOT+IERTIM4DIST s XXsYY,SDIST) DSPLIN
IMPLICIT REAL#%8(A-=H+0-Y) ,REAL%*4(2) DSPLIN
##tt*##ttttt##*#####****‘*#t##t###*#&t#*tt*ttttttt#t#t##tttt#t# DSPLIN
% VERSION $ 23 SEPTEMBER 1582 % DSPLIN
® DESCRIPTION : ANALYSIS AND DISPLAY OF RESIDUALS * DSPLIN
*ttt#ttt###ﬁ#ﬂt##t#*##*t###t##t##**#ttt*#t#tt*tt#t**t#t####*#t* DSPLIN
INPUT PARAMETERS DSPLIN
10 OPTIONS CCNTAINED IN ICANYS CONTRQOL THE PERFORMANCE DSPLIN
OF THIS SUBROUTINE. DSPLIN
ICANYS{10) : DSPLIN
A) ICANYS(1) — BREAKDCWN OF RESIDUALS ESSENTIAL FOR ICANYS(2) DSPLIN
AND ICANLYS(S) DSPLIN
B8) ICANYS(2) — PLOTTING OF RESIDUALS DSPLIN
0 — NC PLOT DESIRED DSPLIN
1 — RESIDUALS CNLY DSPLIN
2 - INCLUDED SMOOTHED STANDARD DEVIATIONS DSPLIN
3 -~ INCLUDED ALSO RAW STANOARD DEVIATIONS DSPLIN
C) ICANYS(J) ~ COMPUTE AND PRINT SMOOTH DATA POINTS DSPLIN
0) ICANYS(4) -~ COMPUTE AND PRINT SMOCTH VELOCITIES AT DATA TIMES OSPLIN
E) ICANYS(S) - PLOT GF _ RESIDUALS VS TIME DESIRED. OSPLIN
1 - ABSOLUTE DISTANCE DSPL IN
2 - EASTING OSPLIN
3 — NORTHING DSPLIN
4 = SIGNED DISTANCE OSPL IN
S - APP, STD RESIDUALS IN EASTINGS CSPLIN
6 — APP, STD RESIDUALS IN NORTHINGS OSPLIN
F) ICANYS(6) - ACTIVATE SIMULATED DATA COMPARISON DSPL IN
G) ICANYS(7) - PRINT PLOTTING VALUES OF OPTION (E) OSPLIN
H) TCANYS(B) — LGREX PRINT FORMAT DSPLIN
I) ICANYS(9) = PLOT ______ VS TIME DSPL IN
1 -"COUR3E DSPLIN
2 - SPEED DSPLIN
J) ICANYS(10)- NOT USED DSPL IN
OSPLIN
IF  ICANYS(8) = 1 THEN INPUT DSPLIN
K) GSTART - TIME TO BEGIN SMOQTHED VALUES DSPLIN
L) GINT - INCREMENT BETWEEN SMOCTHED PARAMETERS DSPLIN
FOR FIRST CALL TO ANALYS SUBROUTINE OSPLIN
INPUT OF VARIABLES XSTART ANO XINT IS VIA THE OPTION SUBR DSPLIN
FOR THE SECOND ANDO SUBSEQ CALLS TO ANALYS SUBROUTINE.I.E. I[ANLYS >1 DSPLIN
IF ICANYS(9) = 1 QR = 2 INPUT: DSPLIN

M) XSTART - TIME TO START SPEED/CQURSE PLOT OSPL!

N) XINT - PLOTTING INCREMENTS DsSePL

CURRENTLY PROCESSING DATA SET NUMBERED
NLYS — NO OF TIMES THE ROUTINE IS TO CALL IN THIS DATA SET

l[C'
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Cx
Cx
Cx*

Cx

Ca

NOeNO'SCTXME'SOODEGOFoLODSoVAR.TXoTK'COFo
Vs IPLOT,LI1ER

- SEE MAIN FOR DESCRIPTION

OUTPUT PARAMETERS ’
PROGRAM NOT DESIGN TO RETURN ANY PARAMETERS

wWORK ARRAYS
TIMDIST s XXoYYoSOIST

ESC,
VCOF,

CALLS -

PRNTCHsNOWPLT+OSHLNS+ENDPLT ( PLOTTING LIE ROUTINE
PLOT,PCOPY+POINT,SCMULT ySMOOTH,VSMOTH,SIMULA, ELIPS
SIGDISWCTIME
- OSQRT
COMMON /DIML/ICBSNQO, IDAL, IDW]l ,I0TX,IDP,1DPV, IOLCBS, [DV
COMMON /0D IM2/IDKNOT . IDA2,I0TK, IODTK, IDX,IDVX,10W2,10V2
D I0COF, IDVCOF
REAL*8 LOBS(IDLOBS+1 ) VAR(IDVARG242) s TX(IDTXs1) ,TK{IDT
) CUF(IDCAOF+83)+sVCOF(IOVCOF+8+9)4V(IDV,1)
DIMENSIONS CF LOCAL MATRICES - IDCOM = ICBSNO
- OIM TKG = IOKNOT
REAL*8 XX(S500+1)eYY(S00+1)+D0IST(S50041),TIM(S00,1),TKO
REAL%®S8 SOIST(S00,1)
REAL*4 Z0ASH(2)
INTEGER ICANYS(10).0EGQF
10COM = 10BSNO
IDTKO = IOKNQT
SC = 1,0D000/SCTIME

IGNORE ROUTINE IF SUBR LS FAILED
IF(TANLYSeEQel s ANDeIPLOT.EQ.1)CALL PLOT(ZA42ZB42C+2G+2S
IF(IER.NELO)RETURN
IF{(ITANLYS.GT.1) AND, ( (ICANYS(2)aNE.O)

DeORe (ICANYS(9)aNEO) ) JCALL PLOT(Z2A2B842C»+2G+25+,20,2F
[F(ICANYS(1).NE.1)GO TO SO

TRANSFER AND COMPUTATION OF THE TIME . RMS AND DISTANCES
IL = 2%NQ + &
J =0
RMS = 00,0000
0N 10 1 = 5,1L,2
J = J + 1
12 =1 + 1
XX(Js1) = V(I1s1)
YY{(Jsl) = V(I2,1)
X2 = XX(Jsl)xXX(Js1l)
Y2 = YY{(Js1)%YY(JU,el)

S )
E.

AR, ICV
«10Xx0,

Kel)s

(32,1)

«ZDVZF W ZE)

v 2E)
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DIST(Jsl) = X2 4 Y2
RMS = RMS + DIST(J,y1)
DIST(Jsl) = DSQRT(DIST(J,1))
10 CONTINUE .
Cx TRANSFER THE TIME OF FIXES FOR LATER USE
IL = NO + 1
CALL pCOPY(TX-ZoloILol.TIM‘lnl‘IDTX.l'IDCOMol)
RMS = DSQRT(RMS/NCQC)
C*
Cx COMPUTE SIGNED DISTANCES
CcALL SIGDIS(KNOcNOoTIMoSOISTvTK-COF.VCGF.LOBS.IOCDM)
C*
Cx* SUBPROGRAM QUTPUT
Cx
WRITE(E:9000)KNO
CALL SCMULT(SCeTKsTKCsKNOs1I0TKOS1)
CALL SCMULT(SCsTIMTIMyNCs+! +1DCQOM,1)
WRITE(6,9005)(TKO(Is1)sl = 1,KNQ)
WRITE(64+9010)Y(TIM(IL1)e! = 1,NO)
ﬁkITE(éoQOZO)(XX(Iol)ol = 1 +NQ)
RITE(64+S030)(YY(I,1)el = 1,NQ)
RITE(6.,9040)(DIST(I.1)sI = 1,NO)
RITE(6+,904S)(SDIST(Ie1)sl = 1,NO)
RITE(E4+4G050)RMS
Cx
C*x PLOTTING OF THE SEPARATION BETWEEN THE SMOOTH AND 0BS DATA POINTS
50 IFCICANYS(2).EQ.0)GO TO 100
FSC = (DSART(DEGCF/(2%NO+8.000)))
IF(ICANYS(7)EQ.1)WRITE(6,9120)
Cx DRAW THE CENTRE LINE FIRST ONLY FOR EAST OILFF AND NORTH DIFFERENCES
[F(ICANYS(2)+EQel sCR«ICANYS(S).EQ.1)GO TO 90
CALL PRNTCH(*-")
ZX = TIM(1,1)
CALL NOWPLT(042ZX,0.0)
ZX = TIM(NO,.1)
CALL NOWPLT(1:2X40.0)
C& SET THE TYPE OF LINE YO BE DRAWN
90 ZOASH(1) = [C*0,05
ZCASH(2) = 0.1
C% POSITIONS THE PEN AT THE FIRST PQOINT
ZX = TIM(1,1)
IF(ICANYS(5)5EQal1)2Y = DIST(1,1)
IF(ICANYS(5)+EQe2)2Y = XX(1,1)
IF(ICANYS(S)«€EQe3)2Y = YY{(1l,1)
IF(ICANYS(S)+EQ.4)ZY = SOIST(1.41)
[IF{ICANYS(S)eEQeS)2Y = XX(141)/(FSC®XDSQRT(VAR(2+,1,1)))
[IF(ICANYS(S5) cEQe6)2Y = YY(1,1)/(FSC*0SART(VAR(2,2,2)))
CALL NOWPLT(0,ZX,2Y)
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C* WRITE OUT VALUES
IF((CICANYS(S) .E

60 CONTINUE
Cx AVOID FOR DIS
IF{ICANYS(
CALL PRNTC

o0 70 I =
CALL P
D
0

T

R.(CICANYS(S).EQ.6) )
CANYS(7).EQ.1))WRITE(6,9110)2ZX,2Y

>0
Ze
o o
~~0
-0

1.0R+ICANYS(5).EQ.1)GG TO 100

(Ie1)sXsYeVXys VY, VXY, ICOI1KNO+TK.COF 4VCOF )

- <<
I h
w
<

IF(ICANYS (2
I1
S X
SY
IF(ICANYS
IF({ICANYS
CALL PRNT
CALL NQOWwPL
CALL PRNTC
70 CONTINUE
Cx
C* PFINTS THE SMOOTHED DATA POINTS,COVARIANCE ETC.
100 IF(ICANYS(3).NE.1)GO TO 200
c CALL SMOOTH(NO+KNO:SC+ESC4+TXTK+CQF,VCQF}
*

C+ PRINTS THE SMOOTHED VELCCITIES AT THE DATA INPUT TIMES
200 IF(ICANYS{4).NE.1)YGO TC 300
CALL VSMOTH(SCTIMENO+KNOsTX,TKsCQF,VCOF)
Cx

Cx SPECIAL = DETERMINES SEPARATION OF SPLINE FORM SIMULATED DATA

W
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300 [F(ICANYS(6).NE.1)GO TO 400

E# GENERATOR DEACTIVATED IF ICANYS = 0
&

Cs TEST POINTS

C=x%

WRITE(€,9090)

C*x INTERVAL BETWEEN COMPUTED FIXES
CINT = 2.0000%SCTIME
SUMT = 0.,0000
XLARGE = 0.,0000 .
INO = (TK(KNO+1)=TK{1,1))/CINT + 1
DO 20 1 = 14,INO
TFIX = TK(1s1) 4+ (I-1)%CINT

Ce COMPUTING SIMULATED VALUES OF X AND Y AT TIME TFIX
TFIX2 = TFIX%xSC
CALL SIMULA(TFIX2,GX,GY)
CALL POINT(TFIXoX Y43 VXeVY, VXY, ICOsKNO+TK+COF «VCOF )
CALL ELIPSE(VXsVYoVXY,A,B,ESC,DIR)
SX = DSQRT(VX)
SY = DSQRT(VY)
OR = RADDI(DIR)

C* COMPUTE SEPERATICN
DX = X - GX
DY = Y - GY
OIS = OSART(DX%DX 4+ DY=*DY)
SUMT = SUMT + DIS
[FIXLARGE.LT.DIS)XLARGE = DIS
TRU = TFIX%xSC

40 NRXTE(609070)IoTRU.Xc*oSXOSYoVXY.DXoOY.DIS

20 CAONTINUE
WRITE(6+,9100)SUMT s XLARGE
C»
400 IF(ICANYS(8).NE«1)GO TQ $00
Cx

C* PRINT SMOOTH LOREX PARAMETERS AT GINT INTERVALS
Cx
YSTARY = GSTART*SCTIME
YINT = GINT*SCTYIME
ING = ((TK(KNQOs1) = YSTART)I/ZYINT) + 1
C* SET COUNTER
IST = 0
IK = 1
0D0. 410 I = 1,L.INO
TFIX = YSTART. ¢+ (I=-1)=YINT
CALL POINT(TFIXeXoYoVXs VY VXY,L,ICO,KNO,TK,COF,VCOF)
[F(ICO.EQ.0)G0 TC 410
IST = IST + 1
CALL ELIPSE(VXoeVY VXY A,0,ESC.DIR)
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DR = RADDI(DIR) DSPLIN
CALL VELO(TFIXoSPEED+DIRIVEVN+SVE,SYN,CVEN:ICO,KNO,TK+COF 4 VCOF) OSPLIN
SOR = RADO(DIR) DSPLIN
VX = SVE%*SVE DSPL IN
VY = SVN%xSVN ) ODSPLIN
CALL ELIPSE(VXsVY,CVEN.VA,VB,ESC,DIR) ODSPLIN
VOR = RADD(DOIR) ODSPL IN
TRU = TFIX/SCTIME OSPLIN
CALL CTIME(TRUsIDAY, IHR, IMIN) DSPLIN
C% CCNVERT TC INTEGERS ODSPLIN
IX = X OSPL IN
Y =Y DSPLIN
1A = A DSPLIN
13 = B DSPLIN
IOR = CR DSPLIN
IvVE = VE DSPLIN
IVN = VN OSPL IN
ISDR = SDR OSPLIN
ISPD = SPEED DSPLIN
IVA = va DSPL IN
IVE = vB DSPLIN
IVODR = VDR i DSPLIN
Cx OSPL IN
Cx WRITE HEADING DSPL IN
IF (IST.NE.IK)GQ TO 405 DSPLIN
IX = IK + 45 OSPL IN
WRITE(€,9130) DSPULIN
405 WRITE(6+9140) IDAYWIHRIX,IYs1A,13,IDR, DSPLIN
0] IVE+IVN,ISPD,ISDR.IVA, I1VB, IVDR DSPLIN
410 CONT INUE DSPLIN
Cx DSPLIN
590 [FLICANYS(9) sNEol sAND.ICANYS(Q).NE.2)GO TO 999 DSPLIN
Cx DSPL IN
C+* DRAW COURSE VS TIME OFR SPEED VS TIME CHARTS DSPLIN
CALL PRNTCH('."') - DSPLIN
YSTART = XSTART®SCTIME OSPLIN
YINT = XINT®SCTINME DSPLIN
INO = ((TK(KNOs1)=YSTART)/YINT) + 1| DSPL IN
IK = 0 DSPLIN
DO S10 1 = 1,ING OSPLIN
TFIX = YSTART + (I—-1)*YINT DSPL IN
CALL VELO(TFIX sSPEED+DIRsVEsVNsSVEISVN,CVEN,ICC+KNO+TK,COF,VCOF) DSPLIN
IF(ICC.EC.0)GO TO S10 DSPLIN
IK = IK + 1 DSPL IN
SDR = RACO(DIR) ODSPLIN
ZX = TFIX/SCTIME OSPLIN |
ZY = SPEED DSPLIN o

IF(ICANYS(9).EQ.1)2Y = SDR DSPLIN =
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IF(IK EQ.1)CALL NOWPLT(0,2ZX,2Y) DSPLIN
IF(IXKeGTo1)CALL NOWPLT(1,2ZX42Y) DSPLIN
S10 CONTINUE DSPLIN
C* DSPLIN
G99 [F({TANLYSoNEG1) «cAND. ( ( ICANYS (2) +NE.O) DSPLIN
) oGRo (ICANYS(9) .NE.0) ) )CALL ENDPLT DSPL IN
C% OSPLIN
RETURN OSPLIN
GCOC FORMAT(/// NUMBER OF KNGTS = ',.14) DSPL IN
G005 FORMAT(// . TIME QOF KNCTSt',//, DSPLIN
D 100(2X+s10(1PD12:Ss1X)s/)) DSPLIN
GO1C FORMATI(// " TIME OF DATA POINTS*,//, DSPL IN
@ 100(2X+8(1PD12,Se1X)s/)) OSPLIN
G020 FORMAT(//7 6" SEPERATION BETWEEN THE SPLINE AND DATA POINT',.,//, OSPLIN
Q ! EASTING® 4/, DSPL IN
D 100(2X,8(1PD12.561X)s/)) OSPL IN
G03C FORMAT(// " NORTHINGS "4/, OSPLIN
@ 100(2X,8(1PD12.S,1X)e/)) DSPL IN
9040 FORMAT(// " ABSOLUTE DISTANCE':/4100(2Xe8(1PD12.5+1X) 1) DSPLIN
904S FORMAT(// " SIGNED DISTANCE*+/+100(2X+s8(1PD12.5,1X) )) DSPLIN
S0SC FORMAT(/// 4 ReMeSse VALUE = ',1PD12.5,//) DSPL IN
G070 FORMAT(2X»14,2X4F10,4,10(F12¢3+42X)) DOSPL IN
G09C FORMAT(//:10X+*PREDICTED FIXES AT SPECIFIED TIMES*,/10X, DSPLIN
e l7('==0)3// 12X *"NQ!' 6X+*TIME*,12X, DSPL IN
«'"POSITION(E «N) SIGMA POSN(EWN)'",13X,* COVARIANCE*,aX, DSPLIN
« "SEP=-X (M) SEP-Y (M) DISTANCE(M) *,//) OSPL IN
9100 FORMAT(//¢3Xe°SUMMATION OF SCPERATION DISTANCES *w1PD12.547, OSPL IN
@ 3Xe°LARGEST SEPERATION BETWEEN POINTS*,1PD12.5) DSPLIN
9110 FORMAT(3X ' TIME : ', FQ,.,4," STD RESICUAL : ¢ ,F3,.2) DSPLIN
G120 FORMATI(//e3Xs*"PLOTTING VALUES',/,/) OSPLIN
9130 FORMAT(IH1,12(/)+12X,°DAY HR CASTING NORTHING El E2 DIR?*, OSPLIN
h o VEAST VNORTH SPEED CCuU El E2 ODIR', /) DSPLIN
9140 FORMAT(IZX-IB-lX.r2.2x.l7.1x.I8.2X.Ia.1X.13.lx.14. DSPL IN
) 2X s IS sl Xel6s2Xs 1501 Xe1332X,14,41XeI3,1X4148) DSPLIN
END . DSPLIN
SUBROUTINE APRORI(XsM.L,ICODE) DSPLIN
IMPLICIT REAL%XB(A-H,P=-2) OSPLIN
REAL%8 X(L,1) DSPLIN
C ﬁ“#“#“‘#“““*‘*“**““**#*4?**‘*#‘*‘*t‘t"#““““‘*‘*“#“‘ ‘DSPL IN
C x* VERSION ¢ JUNE 1982 ® OSPLIN
C * DESCRIPTION : INCORPORATES A READ~IN—-APRIORTI SOLUTION VECTOR * ODSPLIN
Cc = FOR THE LEAST SQUARES ESTIMATION x DSPLIN
C TR 22X %KX B XA XKRERERXBRXEXRXEIRIXE ISR KR AR B R G R AR AR R XK ARG KX B R K AR K Kk & DSPLIN
C INPUT PARAMETERS DSPLIN
C ICODE = 0 NO. APRIORI SOLUTICN VECTOR IS CONSIDERED DSPL IN
C 1 THE APRIORI SOLN VECTOR IS READ DSPLIN
C 2 THE APRIORI SOLN VECTOR IS GENERATED B8BY THE PROGRAM DSPULIN
C

DSPL IN

S8T1
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C QUTPUT PARAMETERS
C X(Ms1)= APRIORI SOLUTION VECTOR QF
g BUT WITH ODECLARED DIMENSIOQ
Cx READ/WRITE UNITS
IRD = S
IwWR = ¢
[F(ICODE LT +0+AND+ICODELGT - 2)RETUR
IF(ICODE.EQ.1)G0 TC 200
IF(ICODE.EQ.2)GO TQ 300
C* CPTION ZERO
100 DO 10 I = 1,M
10 X(1s1) = 0,0D000
RETURN
Cx OPTION ONE
200 READ(IRD,*)(X(I141)s1 = 1,M)

RETURN
C* OPTICN TwO
300 WRITE(IWR,96G)
99 FORMATI(// !
IF(ICODE.EQ.2)GG TG 100
C* DEVELQPED ALGG SHQOULC BE FEEC IN HERE
Cx%

RETURN
END
SUBRQUT INE BMULT1(FsToeJy IBAND.S Ko
REAL*8 F(NF ,IBAND) +S(NS.MS) 4R (NR,M
EXANFEKERABRERRE X AR XA R K E Ak ok k k& X &k & &

* VERSION « JAN 1Ggy
* DESCRIPTION : TO MULTIPLY A DANDED F

INFUT PARAMETERS
F —- PSEUDQ DIMENSIONS QOF F ARE (
THE ACTUAL DIMENSICNS OF F A
IBAND - EANCWIDTF OF MATRIX F
S - THE DECLARED SI2E QOF S IS (N

OUTPUT PARAMETERS
R — DECLARED SIZE IS (NR,MR)

ADDIT IONAL INFORMATICN

DIAGONAL ELEMENT IN ANY ONE ROW — NG
*BEGIN
[ELE = (IBAND+1)/2
OO0 10 Il = 1,1
I1POS = 11 - 1ELE
00 10 IJ = 1,L

ONONOONNHAOONADNND

VARIABLE IELE DENGCTES THE NUMBER OF ELEMENTS UP TO AND

ODIMENSION (M,1)
N (L,1)

N

THIS OPTION IS NOT AVAILIABLE YET!,//)

LsRWNFyNSsMS,NR +MR)
R)

LE R E R E R E RS R E RS RS Y Y

MATRIX WITH S TO GIVE R

*#####$$#*‘#t##t##*#*###*****t*#t*t****##*tt#*#tt#**tt*#‘ﬁﬁ#####t

1.J)
RE (NF, IBAND)

SWMS)

« OF CODIAGONALS + 1

INCLUDING THE

ODSPLIN
DSPLIN
DSPL IN
OSPLIN
DSPLIN
OSPLIN
OSPL IN
DSPLIN
OSPLIN
DSPLIN
DSPLIN
OSPLIN
OSPLIN
DSPLIN
DSPL IN
DSPLIN
DSPLIN
DSPL IN
OSPLIN
DSPLIN
DSPLIN
DSPLIN
DSPLIN
DSPLIN
OSPLIN
OSPLIN
OSPLIN
OSPLIN
DSPLIN
DSPLIN
DSPLIN
OSPLIN
DSPLIN
ODSPLIN
DSPL IN
DSPLIN
OSPL IN
OSPL IN
DSPLIN
DSPLIN
OSPLIN
OSPLIN
OSPLIN
OSPLIN
DSPLIN
DSPLIN
OSPLIN
OSPLIN
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R(IT,IJ) = 0,0000
DO 10 JAC = 1,1BAND
C* JAC DENOTES THE ACTUAL POSITION OF THE ELEMENT IN THE F MATRIX

IK = JAC + IPOS
IF(IKsLT.1.0R.IK.GT.K)GO TO 10

20 R(II+IJ) = ROIT41J) 4+ F(II1.JAC)*S({IK,1J)

10 CONTINUE
RETURN
END

[a¥a¥ala¥aYaYaXaNaXeXaYaXeNaYaXaNaYa)

SUBROUTINE BUILD(KNO+XsVXsCOF,VCOF,DTK,

) . CXeVCXsCOsyVCOWPRCOFV PRCOFF)
*#tt*#tt#t##t##*t**####***t#*#*#**####ktt*t**tt*t*ttt#t##t»at*#t#t
* VERSION ! 7 JUNE 1982 *
* DESCRIPTION : TRANSFORM PQOSITION AND SLQAPE INTO COEFFICIENTS #
ttttttﬂ#&##tﬁ#t#*tt‘t#t##tttv#t*t**#****#t*#t*#tn#tt#t###ttt##tatt
INPUT PARAMNETERS

KND — NUMBER QF KNOTS

XyVX = SQLUTION AND COVARIANCE MATRICES (DIM PASS IN BY CCM BLK)

OTK — INTERVAL IN TIME BETWEEN KNOTS(SEE MAIN )

PRCOFF;PRCOFV - CCOES FOR PRINTING OF COEFFICIENTS AND VARIANCES
(SEE GPTION RQOUTINE ) :

OQUTPUT PARAMTERS
COF,VCOF- COEFFICIENTS AND COVARIANCES (CIM PASSED IN BY CON BLK)

WORX ARRAYS
CX+VCX,CCy»VCG AS DIMENSIOMED IN THE RGUTINE

caLLs — PCCPY,,CCEF+CPRINT
LA EEEEE SRS 2SS

COMMON /DIMl/IOBSNO.IDAl.IOWl.IOTX.XDP.IOPV.XDLOBS.IDVAR.IDV
COMMON /OIMz/IDKNUT'XDAzoIOTK'IODTK.ICX-KOVXoIDWZ.IOV2|XOXO.
3 IDCNF,1DVCCF
C&x ARRAYS
REAL#+8 X(IDle)vVX(IDVXo[OVX)oCOF([OCOF'G)OVCOF(XOVCOFQBoG)-
n} CO(G.I).VCO(G.B).CX(B.I).VCX(B.B).OTK(IDDTK.l)
INTEGER KNO+PRCOFV,PRCOFF
C®*REGINS
L = 4%KNO - &
J =0
DN 10 I = 1.L,4
J=J + 1
IL =1 + 7
CALL PCOPY(X ol ol eoIlolesCXolslsIDXye1le8,s1)
CALL PCOPY(VX.I.I.IL-IL.VCX.I.l.ICVX.IOVX.B.B)
CALL COEF({CO.VCO+DTK(Js1):CXsVCX)
DO 20 IK = 1,8
COF(JsIK) = CO(IK.1)
DO 20 1y = 1.8

OSPLIN
OSPLIN
ODSPL IN
DSPLIN
DSPLIN
DSPL IN
OSPLIN
OSPLIN
DSPLIN
DSPLIN
DSPLIN
DSPL IN
ODSPLIN
DSPLIN
DSPL IN
OSPLIN
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20 VCOF(JsIK,1J) = VCCIlIK,1J)
IF(PRCOFV.EQ.0)GO YO 10
CALL DPRINT(CO+89s14841+°COEFFICIENTS® ,6)
CALL DPRINT(VCO+8:8:84+8,'COVARIANCE*,S)

10 CONTINUE

C* QUTPUT OF COEFFICIENTS

IF{PRCOFF «EQ.0)RETURN
IF(PRCOFF.EQ,.,1.AND.PRCOFV.EQ.1)RETURN
CALL DPRINT(COF,J.8,10CQOF 8, 'COEFFICIENTS PER INTERVAL®*,13)
RETURN ’
END

SUBROUTINE CHECK(KNO,NQOsTX,TK,ICOCE)

IMPLICIT REAL*8(A=H,0-2)
iRt dhivhinhi b L EE L L E e e P P P PN S is I
¢  VEIRSION ¢ 22ND MARCH 1982 *
* DESCRIPTION : CHECKING AND OPTIONAL DROPPING OF KNOTS *
Vbbbt bhibai bt LS EE L e e Y P eI I
INPUT PARANMETERS

KNO - NUMBER OF KNQOTS

NO - NUMBER QF POINTS

TX = ARRAY CONTAINING DATA POINT TIMES

K - ARRAY CONTAINING KNOT TIMES

ICODE - © TKNOT VS DATA POINT SEQUENCE 1S NOT CHECKED

1 CHECKING AND DROP SCHEME KNOT ACTIVATED

QUTPUT PARAMETERS
X - MODIFIED AS INSTRUCTEC QY CCOES

CALLS = INTERV
ADDITIONAL NOTES

PER INTERVAL BEFCRE THE *DROP KNOT SCHEME® IS IMPLEMENTED.
KNOTS ARE DROPPED IN SUCH A MANNER AS TQO INCREASE THE

2¥a¥aXa¥aYalaXaYalalaXakaYalakaYelalaYaYaYaYaYalaYaYaYe!

MORE OEFICIENT ADJACENT INTERVAL. X
EG. DATA PLACEMENT 6 2 1 4 5 UNDER CRTERA = 2
BCCOMES € 3 4 5
WHEREAS
DATA PLACEMENT 6 4 1 2 5 UNDER CRTERA = 2
BECOMES 6 4 3 5
EXRPB R RS R RS EE AKX

COMMON /DIM
COMMON /D 1M
D I0CC

1 OBSNQO. IDALl ., IDWL ., IDT X, IDP,IDPV, IDLCSBS, IDVAR, ICV

2

F
REAL%x8 TX(ID

(o]

/

1
IOKNOT. IDA2,10TK, IDDTK,IDXsIOVX,10wW2,10V2,10XC,
IODVCOF
Xel) e TKIIDTK,.1)
INTEGER*4 N K
DATA CRTERA /
C*BEGINS

/
/
°
T .
sKNCeNUM(40) s NOKs ITOTAL . I1B4 ,1AF,IDRAP,CRTERA
1

CRTERA DENOTES THE PRESET MINIMUM NUMBER OF DATA PCINTS ALLCWEO

DSPLIN
DSPLIN
DSPL IN
DSPLIN
DSPL IN
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DSPLIN
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OSPL IN
OSPLIN
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OSPL IN
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DSPL IN
DSPLIN
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ITOTAL = 0 DSPLIN

999 NOK = KNQ - 1 DSPLIN

DO 10 I = 1,NOK OSPLIN

10 NHUM(I) = ¢ DSPL IN

L = NO + 1 DSPLIN

DO 20 I = 2,L DSPLIN

CALL INTERVITX(I41)sTK KNQ,INT,IDTK,IC) DSPL IN

IF(IC.EQC.O)IWRITE(6+50)TX(1,1) OSPLIN

IF(IC.EQ.0)GO TO 20 DSPLIN

NUMCINT) = NUMCINT) + 1 DSPL IN

20 CONTINUE DSPLIN

WRITE(6+40) (NUM(I)yI = 1,NOK) OSPLIN

40 FORMAT(//+3X,*PLACEMENT OF DATA PCINTS IN THE KNOT SEQUENCE®, DSPL IN

@ //e¢3X45(10146/:3XVe77) DSPLIN

c S0 FCRMAT(/,' TIME ',1PD12.5,' BEYOND THAT OF QUTER KNOTS'.//) DSPL%N

* DSPLIN

C*x IF [ICODE = 0 THE CHECKING 1S IGNORED DSPLIN

IF(ICODE.EQ.0)RETURN DSPLIN

Cx DSPLIN

C* BEGIN *%% LOCATE THE FIRST DEFICIENT INTERVAL WITH LESS THAN DSPLIN

Cx CRTERA NUMBER OF DATA POINTS DSPLIN

00 100 I = 1,NOK OSPLIN

IF(NUM(I).LT.CRTERA)GO TO 110 DSPLIN

100 CONTINUE DSPL IN

C+ IF NONE ARE TO BE FQUND ANY MORE DSPL IN

IF(ITOTALNE-O)IWRITE(6,200)ITOTAL DSPLIN

GO TO 9999¢ DSPLIN

C* NOW IDENTIFY WHICH KNGT TO DROP(ICROP) ODSPLIN

C* SPECIAL CASE I = 1 QR I = NOK DSPLIN

110 IF(I.EC-1)IDROP = 2 DSPLIN

IF(I ,EQ.,NOK)IDROP = NQK OSPLIN

IF(1.EQ.1.0R.1.EQ.NOK)GO TO 1000 DSPLIN

C*x NO SPECIAL CASE 1 <1 < NOK OSPLIN

IBa = 1-1 DSPL IN

IAF = 1 + 1 ’ DSPLIN

C# THE KNOT IS DRCPPED IN SUCH A WAY AS TO INCRCEASE THC MORE DEFICIENT DOSPLIN

C* ADJACENT KNCT INTERVAL DSPL IN

C#* SPECIAL CASE - EQUAL DATA POINTS IN ADJACENT INTERVALS DSPLIN

[IF(NUM(IB4).EQ.NUM(IAF))GO TO 120 DSPLIN

Cx NO SPECIAL CASE DSPL IN

IF(NUM(TAF) LT NUM(IBA))IDRGP = [ + 1 DSPLIN

IF(NUM(TAF).GT «NUM(IBA))IDROP = 1| DSPLIN

GO TO 1000 OSPL IN

Cx 1F THEY ARE EQUAL THAN THE NEXT OUTER TwO XNOTS IS EXAMINED OSPL IN

C* SPECIAL CASE [=2 CR I = NGK-=1 DSPLIN
12C 184 = NOK - 1 OSPLIN
IF(I ,EQ.,2)I0ROP = 3 DSPLIN &

I[F(I.EQ,IB4)IDRGP KNQ =2 OSPLIN
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[F(IEQ+s2+0R.1.,EQ.IBA)YGO TO 1000
NQO ?g Cc A% CO;SIDERATION 2 < I < NCK-1
[A I + 2
IF THEY AREIALSO EQUAL THEN THE LATER KNCT IS ODRCPPED
IDROP = + 1
[F(NUM(IAF)+GT «NUM(1B4))IDRQP = I
DELETION OF THE UNWANTED KNOT
000 DC 130 J = IDRCP,NCK
1 = J + 1 .
130 TK(Jel) = TK(1J,s1)
READJUSTMENT QOF THE TOTAL NUMBER OF KNOTS
KNO = KNC - 1
TAOTAL UP ThC NUMBER OF DROPPED KNOTS

ITCTAL = ITQTAL + 1

GO TO 999
200 FORMAT(/+3X.'NUMBER OF KNQOTS DCGLETED : *',14)
96 RETURN

END

SUBROUTINE CHITES(S0,DEGOF,ALPHA, ICODE)
IMPLICIT REAL*8(A-H,0-Y)
tt#t###3**##*#****#*t*#t##*tt#**###tt**t#**tt*##tttt*#**t####

* VERSION

< 4 JULY 1982 : *

* DESCRIPTION : DETERMINES IF THE VARIANCE FACTOR (S0) %

%
»

PASSES THE CHI SQUARE TEST ON THE VARIANCE =*
FACTORS wITH DEGOF DEGREES QF FREEDOM. *

R R s e I I T T I T T I T ™™
INFUT PARAMETERS
SO

DEGOF
ALPHA

QuTPUT
ICooE

CALLS -

VARIANCE FACTOR YO BE TESTEDO

OEGREES OF FREEOCM ASSOCIATED WITH THE ABOVE APQOSTERIQRI
VARIANCE FACTCR.,

PERCENTAGE CONFIDENCE INTERVAL

0 < ALPHA < 100

PARAMETERS

0 PASSED THE TEST
1 FAILED THE TEST - EXCEEDED LOWER LIMIT
2 FAILED THE TEST - EXCEEOED UPPER LIMIT

MDCHI ( IMSL ROUTINE )

DB AKB KRR

REAL %8 ALPHA,SO
INTEGER DEGOF

ZuUL
ZLL

1,000 = ((1.0D00 - (ALPHA/

100. 0))/2 000)
(1,000 - (ALPHA/100.0D00))/2. 0

ZOEGOF = ODOEGOF
CALL MOCHI(ZLL<ZOEGOF,2ZX,lER)
IF(IER'NE-O)RETURN

OSPLIN
DSPLIN
DSPLIN
DSPLIN
DSPL IN
OSPLIN

DSPLIN
DSPL IN
OSPL IN
DSPLIN
DSPLIN
DSPLIN
DSPLIN
OSPLIN
OSPLIN
OSPLIN
OSPLIN
OSPLIN
DSPLIN
DSPLIN
OSPLIN
DSPLIN
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06T



000000000000 ON0C00CO00000O0O000VLOOO0OOONOO0O0OLO00O000O00O00
Ot Pt G Pt s gl PP s s PP Pt s B S Pt et ot B s ot b Pt Pt gt it PP D g B s PP et b b s poo Pl e B B bd s BB s (P po Pt o
feXeTeoXoXoXeX=XoToXe ko XeXoXoXeXeXoXoXeXoXo Xo X o Xo 1o X o XoXo X e X e Xo X o Yo X o Xo Yoo Xo X e XoXo X e Xo 1o X o Xo R o X o)
NVOONOLNUNPLLPLPLPPLLL,LPUWUWWWWWUWUWUNNNNNNNDRINN m e = e s e e e = O
CUNPUWN=OODONOMPWN~0O0DNONPWN—~OVONOUNOPWN—=OVONOINPLWLN~OWV

CALL MDCHI(ZUL »ZDEGOF+2Y, 1ER)
IF(IER.NE.O)RETURN

1CODE = O

ZS0 = SO0*DEGOF
IF(2S0.LT.ZX)ICODE = 1
[F(ZS0.GT «ZY)ICQDE = 2

REZTURN

END

SUBROUT INE CHOLO(AWM,L,ICO,DET, [ER)
IMPLICIT REAL*8(A-H,0-2)

* VERSION DATES - 2STH APRIL 19682
* NAME CHOLD

* AUTHOR - D.¥WELLS

* MODIFICATIONS - SH QUEK

* DESCRIPTION - MATRIX INVERSION

INFUT ARGUMENTS

ICO - NC. OF CODIAGONALS
DET

IER ERRCR CODES

1 SINGULAR INVERSE

QUTRUT PARAMETERS

[a¥alalaXeXeYakaXaYaXaXalaYaXaXaY