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PREFACE

In order to make our extensive series of lecture notes more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.
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REFACE

The purpose of these notes is to give tﬁe reader an appreciation
for the mathematical aspects related to the establishment cf horizontal
geodetic networks by terrestrial methods. By terrestrial methods we
mean utilizing terrestrial measurements (directions, azimuths, and
distances). Vertical networks are not discussed and instrumentation
is described only indirectly via the accuracy estimates assigned to the
obsegvations.

The approach presented utilizes the well known aspects of
adjustment calculus which allow cne to design and analyse geodetic
networks. These notes do not provide extensive derivations. The relation-
ships between mocdels for the ellipsoid and models for a conformal mapping
plane are also given.

These notes assume the reader to have a knowledge of differential
and integral calculus, matrix algebra, and least squares adjustment

calculus and statistics.
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1. INTRCDUCTION

e becuin these notes by first =2stablishing the need for
geodetic networks . Secticn 2 also serves as motivaticn for

the mathematical developments in the remaining sections. In Sections 3
to 5, inclusive, the mathematical models for distance, azimuth, and
direction observations on the ellipsoid are developéd. It should be
noted that the observations considered in these notes are assumed to

be made on the ellipsoid; however, it is well known that terrain observa-
tions must be properly reduced toc the ellipsoid [Bomford, 1971].

These models give the functional relationships between the observables
and the unknown coordinates to be estimated. The models are also applied
to examples to show how solutions of networks can be made. The technique
of pre-analysis of networks is described in the final Section. This
procedure allows one to design a network before actually making the

observations.



Traditionally, the emphasis placed on =stablishinag geodetic
wetworks was for the purpose of producing maps. The production of maps
of varving scales still relies heavily on geodatic coordinates but at
khe same time accelerated activities in a wide variety of other disciplines
have vrompted, and also proven the need for these coordinates. The
main areas where gecdetic networks are or can be applied are the following
{~rakiwksy and Vvanicek, 1974]: mapping; boundarv demarcation; urban manage-
ment; engineering projects; hydrography; environmental manaygement; ecology;
2arthguake-hazard assessment; space research. here are other, perhaps more
indirect scientific areas of application like astronomy, various branches
»f geophysics, etc., which will not be deal* with here. Tc show how geodetic
networks can be applied in the listed areas, let us single out the geodetic
tasks associated with them.
Mapping

The need for a network of appropriately distributed points
{geodetic control) of known horizontal and vertical positions has been
demonstrated in Canada by the production of the 1:250 000 map series [Sebert,
197C0]. Additional geodetic control of higher density and accuracy is now
required by the federal government's 1:50 000 mapping programme, by the
medium scale mapping programmes of the provinces [Roberts, 1966}, by the
large scale mapping programmes of the municipalities [Bogdan, 1972;
McLellan, 1972] and by the special purpose mapping projects of private
2nterprise and the various levels of the govarnment. The estiblishment
of adequate geodetic control for the production of maps ig cl-e:arly an

important geodetic task.



3oundary Demarcation

The rigorous definition of Canada's international and provincial
boundaries is of paramount importance; so are the boundaries of private
land parcels [Roberts, 1960]. Recently much emphasis is also being placed
on the speedy and accurate description of oil and gas concessions in the
arctic and eastern continental shelf arsas of Canada [Blackie, 1969;
Crosby, 1969; Heise, 1971]. The positioning and staking-out of these boundaries
is most economically done by relating them to a framework of points with

known coordinate values - the geodetic network.

Urban Management

In the urban environment the "as built" locations of man's creations,
such as underground utilities, need be defined and documented for future
reference [Andrecheck, 1972]. The use of geodetic coordinates in the urban
environment is clearly indicated in Hamilton {1973]. Hence another application

cf geodetic networks.

Engineering Projects

During the building of large structures, such as dams, bridges and
buildings, it is useful to lay out the various components in predetermined
locations. For this purpose various coordinate systems are used [Linkwitz,
1970]. The availability of control points is naturally desirable. As well,
it is often necessary to know the a priori and a posteriori movements of
the ground and water levels. 1In the case of dams, water tunnels and
irrigation constructions, the exact knowledge of the ecuipotential surfaces

1s also needed. The determination of the movements and the location of

the equipotential surfaces are geodetic undertakings.



Hyvdrogravhy
Tt has been accepted that hydrographic survevs arce estential to

mapping Carada's coastal areas and to cother continental shelf activities.

1

he nositioning of hydrographic ships, drilling vessels, and buoys with

resnect to a coordinate system is a requirement for any hydrographic survey
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again makes use of geodetic networks.

Environmental Management

It has been recognized that the establishment of environmental
data banks as integrated information systems to serve in transportation,
land use, community and social services, land titles extracts, assessment
of tax data, population statistics, should be based on land parcels whose
locations are to be uniquely defined in terms of coordinates [Konecny, 1969].

It is advisable that these coordinates be referred to a geodetic network.

Ecology

In the past decade, the necessity of studying the effects of human
actions on the environment has been realized. One such effect is the man-
made movements of the ground caused by underground removal of minerals
or subsurface disvosal of wastes [Van Everdingen and Freeze, 1971; Denman,
1972]. The detection and monitoring of these movements is clearly related

to geodetic networks.

Earthcuake-Hazard Assessment

Repeated geodetic measurements can give quantitative information
about the creeping motion of the ground that allegedly precedes earthguakes

[Canadian Geodynamics Subcommittee, 1972]. This information plays an
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anproxdimate magnitude of earthquakes.

The capability to predict orbits of the spacecraft is essential
for any space research [NAS, 1969: NASA, 1972]. Prerequisitss to this
cooabllity are an adequate geodetic coordinate system and a well defined

ax

ot

ernal gravity field of the earth.

Having enumerated at least the principal practical applications

£

apdetlc networks let us now turn to the development of the basic

mathematical medels used in horizontal geodetic network adjustments.



In this section we develop the mathematical model relating
distances and coordinates. Coordinates are the geodetic latitude and

lonyitude referred to a reference ellipsoid. Distances are the corresponding

geodesic lengths between points on the ellipsoid. This means that observed
distances must be reduced to the ellipsoid surface before they can be
a‘iusted.

It is worthwhile to note that, if thé geodesic distance between
two points on the ellipsoid could be expressed in a closed form, as a
function of the coordinates, then it would simply be a matter of linearization
to obtain the linear form needed for the adjustment. But since the inverss
problem on the ell;psoid does not have a mathematically expedient closed-
form solution, an alternate approach must be taken. Two approaches are
given below. The first is based on an ellipsoidal differential expression,
while the second begins with a spherical approximation. The relationship
of the ellipsoid model with the plane case model is also discussed, and an

example using the ellipsoidal differential approach is worked out.

2.1 Ell:psoidal Differential Approach

The mathematical model for the geodesic distance, expressed as a function

of two sets of coordinates, is symbolically written as

F =S(¢/ )\.r . X) - S.. =Ol (3—1)
id + 1 ¢] J 13

where the first term is a non~linear function of the coordinates, while

the second term is the value for the geodesic distance. This non-linear

(o))



mod -l i1s approximated by a linear Taylor series.
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he firsc Lwo terms represent the point of expansion,

The resulting

equation is
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~

(3-3)

namely the

sa. 22 of the diszance based on the approximate values of the coordinates
g a 2 . . . .
R A 5j' Xj), minus the observed value of the ellipsoid distance S‘j'

The third term is the differential change in the distance due to differential

cnaiiges 1in the ccordinates and is described by the total differential

(4 lmert, 1880; Tobey,1228]

35 35 . 3
45 = ==dé. + =—d) + B g+ B
D', - 9

A 3 3 A
i i 1 dd)] J 3\]

zS 0 o)
= = -M, ¢cos a,. ,
22, i 1)
3¢ o . 0 o}
= = N,sina., cos $. ,
3k, 3 Jji b
i
3s 0 o
= =-M cosa.. ,
Ic, 3 o1
2
25 o . 0 0
——— = =N_ sina. ,6 cos 9},
AL J1 ’
J

di,

(3-4)

(3-5)

(3-6)

(3-7)

(3-8)

) - 0 . . D - . . : R s oas
M and N being the radii of curvature of the ellipsoid in the meridian and

. . . 0, o s . —- R
prime vertical planes, respectively, and a is the geodetic azimuth. Finally

VS is the correction to the observed length.
i3



2 b) 2 p) E; J :
M, COS n. ., M. sin a.i cos ¢ M. ccs oz {
4 1 " - ] .
V.= - ~:~——7—~—l-dc + ]" — dr" et 3"
S, . o b p s ° J
41
p) o b
Nq sin-u.. cos :1 N
- < 11 4aA" (s.. - (3-9)
D" : l] l]
" 1" i -] " o - -
= a do + b . dA 4 .. dsY + 4, dAY +S.. -5, . (3-10)
ij i i3 i i3 3 ij 3 ij ij

This observation equation assumes the longitudé to be positive
east. Note that each term in the above has units of metres. This was
acnhleved by changing the units for the corrections to the coordinates (3-4)
from radians to arcseconds and the units of the coefficients from metres to
metres divided by arcseconds (p" = 206 264.806). Variances used to determine
weighté for the observed distances are given in metres squared. The impor-
tance of changing the units will become evident when faced with combining
distance and direction information in one adjustment.

It 1s important to note that the distance SO is "approximate"
in the sense that it is computed from approximate coordinates, and that
the computation of its value must be made using formulae which are accurate
to say better than one-tenth of the standard deviation of the obssrved length.
In other words, the size of computational errors should be insignificant
in comparison to observational errors. This implies the use of accurate
inverse problem algorithms such as Bessel's method [Jordan, 1962]. This method

leads to an iterative solution because of the non linearity of <the observation

equation (3-9).



ical Differential Approach

begin with (3-1) as in the ellipsoid

that is
F=S(¢1 ’X./ @., }\.)_S.‘;—O-
- 13 1 1 J J 1]
The first step is to replace the ellipsoid terms in the above with a
scherical aporoximation - the radius of tne sphere belng egual to the
Gaussian mean radius
R = f-:l :_J ’ (3"‘11)
wihere M and N are the mean radii of curvature over the line in guestion.
The distance function 1is
S{b., A, &., A.) = RE
T z J J

sind

T

R arccos [sind. + cosd, cosd, cos(A,-1%, (3-12)
i i j j i

whare 6§ 13 the spherical angle in radians between the two points i and j. Note the
intent of the above formula is not to compute a value of the distance, but

to orovide an expression for evaluating partial derivatives in the linearization
as shown immediately below.

We again approximate (3-1) by a linear Taylor series, yielding

o ) 0 0
F..=8(d., A,, ¢., X)) — 5, +
i3 i i 3 j i9
v (22 dq>.+ss ar, + 23 dq>.+as di) -V
39 . IA i I . j A j S.. +.. =90, (3-13)
i i b j ij
where
5 -cosh sin¢? + sin¢9 cos¢? cos (A?- X?)
IS o i b i i J 1,
= = R | 1, (3-14)
a9 . . . 0
L sin ©
s¢o d)o . (AO AO)
-cosd, cosd. sin -
as i i 1
== R L 1, (3-15)
S sind



= =R - - . 1 (3-18)
ll‘j’ sin ).'
- L W 0 )
4s cosy . cosy. sin (AS =A7)
- J 1
=R I I ] (3-17)
7t sin 3
This 1s essentially the model used by Grant [1973]. UNote that the units

2

of the terms 1in the linearized model (3 -13) may be changed as irn (3-10).
Again, the computation of the distance from approximate coordinates must be

done rigorously and not, for example by (3-13). Bessel's method is one of

the most reliable and accurate for this purpose. Again, for the same reasons

as in Section 3.1, an iterative solution is reguired.

3.3 Relationship of the Ellipsoid Model with the Plane Model

We know that the mathematical model for a distance observation

on the plane is

2 2.1/2
L= .- X.) 4% LY. - 5,. =0, 3-
FlJ [ (xJ xl) (y] yl) ] S5 (3-18)
and after linearization
0 0 0
o (x =x) (yj-yi)
F,.. = LTS, ‘~;LU—“~—‘ . Y.
ij (Sl] Slj) S, dxl < d]l
13 1]
o) 0 o o)
(x. —xi) {y. —yi)
+ ~—;—U——— dx, + "-Slg'———‘ ay, - vy =0, (3-19)
i3 J i J i
or
\Y = - sina?. dx. - cosa?. dy.-sina?. dx
S.. 13 1 1] 1 J1i
13
- cosd? dy. + SO - S . (3-20)



“y o Figure 3-1, we can obtain tne gelaticnsnip between differential

2lomonts on the =21lipsoid and differential elsments on the plane:
dv,
-1
AL A
d‘yi 9 ‘40 ’
i M7
s}
M, .
dyw', = —O-‘T qu'i , (3-21)
o
M.
dy. = —+ do" . (3-22)
J (& J
dx

AN = oY —r———o
1

N. coso,
dx, = ——————2 axv. (3-23)
i o i
[e]
N. cos 9.
dx, = —+—-—d axv . (3-24)
j o j

Subszituting (3-21) to (3-24) into (3-20) yields an expression similar to
(3-9 1 except for dk; term. It has been shown by Tobey [1928] that 1\.’icos<bisinot1.j
is anproximately equal to —Njcos¢jsinaji, allowing us to deduce the ellipsoi

model from the plane model.

2.4 Illustrative Example

We now extend the linearized mathematical model (3-9) to many distances
between many stations. The observation equation in matrix form is

2 .1 (3-25)

AX + W = VvV, P =0 . “n

n,uu,l n,l n,l n,n

where n i3 the total number of distances observed and u the total number
- . . 2, . .
of cocrdinates of unknown stations. o 1is the a priori variance facter and
o

L the variance-covariance matrix for the observed distances.
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cances observed, (Fizure 3-8)has the following obszarvation =2cuiztions

r T T 7 Moo 7 r 7
b d o 0 ds S._ -5 v
S 1 3 1
! 3 3 13 3 S5
- A . 0 ;
' o a Q- 3 -3
1 4
14 14 3 14 "1 Sy,
3 0 0 as + SO S = v
=23 “23 4 23 23 - Sy3 1,
(3-26)
0 0 c. d dX S - \Y%
24 24 L. 4] 24 T24 S
24
a b, <, d s. . -S v
i 34 34 T34 T34 | ] 34 T34 ] - 534‘
where P is a diagonral matrix of the form
- - -1
.2
s
13 ﬂ2 0
’s
L
2 I
PS,S - ho 523 2
G: (3-27)
>4
0 52
®34

The above equations would now be used to perform an iterative

least squares adjustment of the distances [Xrakiwsky, 1975].



o

14

Sa4

A Fixed Station

O Unknown Statjon

Figure 3-2

Quadrilatera! with Two Fixed Points




4. AZIMUTH MATHEMATICAL MODEL

Azimuths are "absolute" directions which give orientation to a
geodetic network. Azimuths must be referred to the ellipsoid as was the
case for tne distances described in the previous section. More specifically,
the azimuth which we deal with here is the geédetic azimuth of the geodesic

between two points in guestion.

4.1 Development of the Mathematical Model.

The azimuth mathematical model is

F..=a(d,, x,, ¢., X.,) - a.. =0, {(4-1)
ij i i j 3 ij

wh>re the first term is a non-linear function for the azimuth in terms
of the coordinates of two points 1 and j, while the second term is the
value for the azimuth. This non-linear model is approximated by a linear

Taylor series. The resulting equation is

0

F.. =F, + dF,,
13 1] 13
Q 0 0 Q
= P .>\.r’.l>\.)-..+ . =t e e = . -
qu (@l, i ¢3 : Ql] dui] ]Ctj + 0 (4-2)

) )
aij (?i, Ai' ¢j, Xj) is the value of the azimuth based on the approximate
values of the coordinates. It must be computed accurately so as to intro-
duce no error, or an error of magnitude much smaller than the standard

deviation of the azimuth observation. dij is the observed value of the

azimuth. The total differential is

da. . 3a, da 3Qi.
do, | = 2 dd, + —1 an, + —l-ap + —L av_, (4-3)



fr

LL'\)be:&', 1928}

3 2 o
Mosin o, M, sin o, .
= 1] . L ,
gt = =ty apt v ———J% auy
17 S 1 S J
13 ]
0 z 2
N, cos i, cosp,
+_ j ]l :‘ (d/\l' — d“li) (4_4)
=0 . AN .
5. i j
1]

Note that longitudes are taken as positive east in the above.

Substituting (4-4) into (4-3) vyields the observaticn equation

o 2 o o] o
M, sin a. . N. cos a.. cos ?.
v.n = 1 lj ‘i‘é" 4 A‘J 'le J ,q}\n
T e s M
1] i3 i3
o ! b
M. sina N, cos a,, cosd. o
+ —————  d3" - drx" + (o, . -a. )"
0 0 - i
Sij J i3 3 3 J
(4-3)
it " " " A 0 H.
Y = e, . dé! + £, A\ + g, .de¢" + (-f. .) AT + (a.. -a..)
2L ij i i3 1 i3 73 ij 3 ij i3 "
iy (4-9)

Note that the units of each term in the above is arcseconds. The coefficients are
I

unitless thus the corrections to the coordinates have units of arcseconds. The

variances used for determining the weights have units of arcseconds sguared. Since

the corrections to the coordinates also have units of arcseconds in the distance

model, distances and azimuths can be combined in one solution.

4.2 Relationship of Ellipsoid Model to Plane Model

We know that the mathematical model on the plane for an azimuth

S X, -xi
F.. = acrtan S R . a,. = 0 , {(4-7)
1] Y. “Yi 13 )
J



and after linsarization
D U\ 0 O
o (x, X {y. "Yi)
o= (o, -u..) + - dy, - —4=—=— dx,
13 1] 1] 2 i 2 1
D ‘. S:-'v-
13 43
(x? —xz) (y: —yz)
- .+ et dx. - V. + ... = 0,
o 9y 2 3 @
So, . So. . 1]
1] 1]
or
. 0 0 .o
sin ai, cos ai* sina.
v — i a - " ______ldx‘ + d' J = dV.
o © S0, Yy TP S0, i S0, 75
1] 1] 1] 1]
0
cos o, ,
—— O" dx + !:t‘ — ‘4.. "
S0, ( i ulj) .
1]
1f we substitute (3-21) to (3-24) into (@-9) we get
c . o} 0 o 0
Mi sin ai. Ni coSs ai. cosod.
vt o= d¢" - 5 dax" +
A, S. . . S 1
ij 13 1 1]
o . o 0 o
M. sina.. N. cos a., coOs ¢.
__2_ - ]l 1] J ]l " G
+ — d¢" - v drxt + (o, .- o,
si". i S. . j ij i3
J 1]

i

=
PRFE S

above signs are for positive east longitude.

~1

et

To show the equivalence

(4-8)
(4-9)
(4-10)

D R

of the ellipsoid and plane models, we make the same assumption as that in

Section 3.3, namely Ni cosai.

4.3

Illustrative Example

Again we extend the mathematical model to include many azimuths

between many stations.

o have azimuths
addition to all

in matrix form are:

the distances.

observed between stations 1 and 3,

cosr,bi is approximately equal to —Nj

CcCOsa ..
Ji

Consider the quadrilateral shown in Figure 3-2

and 3 and 4, in

The corresponding observation eguations

CcOs?

J



7,4 4,1 7,1 7,1 7.7 (4-11)
_ . - o r i 7 [ 1
13 Y43 V0 %5 13 °13 's
13
0 0 c 0
] - \v4
14 %14 I, S.4 “Si4 ¢
14
a 0o 0 d s? g v
€23 23 P . 23 "723 =] So5l, (412
0] 0 c a di S -8 v
24 %24 L 24 24 S,
b a 5o -5 v
%34 38 S33 Y34 34 734 s
e e ___34
o
- o - AN
993 “fH3 0 0 13 Y93 Va
, 13
£ £ C‘.O - \%
€34 36 934 "F34 34 34 o
b -t - - L 34 d
z | 0 o) 0
5,5 l 13
|
p 2 [T T T
. =0 / z
e A 2,27 | 5°
L | 2,2 § a34A

The above equations would now be used to perform an iterative

least squares adjustment of the distances and azimuths [Krakiwsky, 1975].



W

CIRECTION MATHEMATICAL MODEL

Direction ohservations are relative to the "zero" of the

The location of the zero relative to the north

direction is an unknown "nuisance" parameter and must be solved for
by the adjustment along with the unknown coordinates. The direction
5

These directions are assumed to be referred to

The r=lationship between an azimuth «.. and a direction dij'
is given via the orientaticon unknown Zi' namely (Figure 5-1)

a =d,.. + Z..

pservations are usually arrived at from numerous sightings from a given

i3 ij i (5-1)

5.1 Development of Mathematical Model

The mathematical model for direction observations follows from

(4 -1)by substituting (5-1) for the azimuth, namely

Fo.oo=afd., A,., ©,, A,) = (d.. + Z.)
i i 3 j ij i

OI (5"2)

O
w2 Tng

orientation unknown Zi joins the coordinates as a guantity to
be estimated. Linearization of (5-2) yields

0 5 o o °_ . 4 a7 - v
.= 2 (2, . ) . . ) - - Z., - .. + Q. T .7 - +
i3 Py Ay Cbj A]) i ij 13T dy

[l

"
where all guantities have been previously defined except for Zi which is

1Q

approximate value for the orientation unknown. It is usually obtained
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Figure 5-1

Orientation Unknown
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foF

ifferencing the observed direction of a station sighted with the
azimuth of the same line computed from the approximate coordinates. Several
estimates at each station can be obtained with the mean being the approxi-

mate value, nowever only one value is necessarv.

{3-3) yields the observacion equation
for a direction, namely
o . ) ) o) o
M. sin a Nj cos u.i cos éi
1 J .. 3
v - da" + d)\',’
a.. s9. Ti s9. i
i3 13 L]
o 0 0 o) 0
M, sin &, . N, cos a.. cos J.
+ ‘l, d¢" - ] jl ] Al
- Yo, SA
ST, 3 S9. .
13 1] J
o c
- dz" + (a,, = d.. - 2Z2.)" , (5~-4)
i 17 ij i
(\/" ~
d

L= ooe. . de" + £, dA" 4+ g, . dé" + ( -f..) dA"
137 %13 %% i3 T 9y dey T CoE ) A

0
- dz" + (a., - 4,
i ij

-2y (5-5)
ij i

5.2 Illustrative Example

We now apply the direction mathematical model to the quadrilateral
shown in Figure 5-2, where all distances have been observed plus the three
directions at station 3 and two at station 2. The matrix form of the

observation egquation is

10,6 6,1 10,1 10,1 10,10 (5-6)
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A Fixed Station

O Unknown Statijon

dij . .
Sij. | Distance
Figure 5-2
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o 3 14
- 3 b -s Y
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Note the variance-covariance matrix for the distances has already been
dafined, while the new 5x5 matrix pertains to tie direccion observations.

diagonal matris sets have been obserwved.

[

when all directions in al

The above eguations would now be used to perform an iterative least

sguares

adjustment cf the distances and directions [Krakiwsky, 1975].



In this section we (1) describe and put the techninue of pre-arzlysis
in perspective, (1i1) give the mathematical foundation upon which it 1is based,
and {111} outline the procedure of the technigue and discuss the representation

of results from a pre-analysis.

o
s
@]

escription
By pre-analvsis we mean the study of the design of geodetic

netwo

~

’
[543

. This is done prior to the establishment of the network in the

th

b
(3}

b=
fo N

, thus no observations are necessary for performing a pre-analysis.
There are several aspects needing study, all of which are related

to the accuracy of the network and thus to the economics. These aspects

are:

(1) accuracy and distribution of the observations;

(2) roles played by the various kinds of observations (e.g. distances for
scale, azimuths for orientation);

(3) geometry of the network (e.g. area net, chain net, figures of triangles:
guadrilaterals, traverses);

(4) adjustment set-un (e.g. number and distribution of points held fixed,
degrees of freedom) .

We will concentrate on describing the techniqué for studying the above four

aspects. No mention will be made on how to optimise field procedures and

the like. These aspects kelong to the realm of data acquisition. Optimi-

sation of thése and still other parameters not directly related to accuracy

are, however, recognised as part of the entire problem and should be considered.

The purpose of these notes is to describe the technique for optimisation
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cthose s}

U

rameters related to accuracy, and which can be described

[

within the methoda of least sguares.

6.2 Mathematical Foundation

The technidue of pre-analysis described herein 1s pased on the
method of least squares. To begin with we introduce the mathematical

model relating the vector of unknown parameters X (coordinates) and the

-

of observables (distances, azimuths, directions), namely

F(x, L) = 0. (6-1)

The above represents the set of equations, usuvally nonlinear, arising
from a specific set of observations to be contained in the network. The
linearization of the model by a linear Taylor's series yields the well-

known eguations for the parametric case

= = ) 3F| C I3
F(X, L) =F(X , L +— x+, +37| vV =0 6-21
B 3X XO,L XO,L ( J
= W+AX -V =0 - (6-3)

i
T
joy
@

above, W is the point of expansion of F about the approximate wvalues
of the unknown coordinates (XO) and the observed Values of the observables
(L). The remaining te¥ms are the departures from the point of expansion
resulting from corrections to the approximate coordinates, corrections to
the observations and the nonlinearity of the mathematical model. The
weight matrix corresvonding tc the observations L is

P=o- I (6-1)

L
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whera I_1is the variance covariance matrix of L and o  is the a priori
o

pwy

variance factor.

When the method of least squares is employed to get sstimates

for X and V in 6.3, the resulting equation is

g T -1 T
X = -(A"PA) A PW . (6-5)

estimated variance-covariance matrix, and also that of

—~
t
193]

- 0 ~
the adiusted coordinates, X = X + X, is

. 2 T -1 -
L. =0 (A"PA) , (6-6)
X e}
L . 2 . .
when the a priori variance factor, g r 1s assumed to be known. In the

. 2 . . , .
case where co is taken to be unknown, then the estimated variance-covariance

matrix 1s given by

#

5o o= 02 (atpa) "t (6-7)

X

~

where co is estimated from the adjustment as

N
"2 v pv
o, = T35 (6-8)



fraedom. The estimate for ¥V 1s obtained by substituting

¥ lnto {6-2) and solving for V.

There 1is more to the method of lesast sguares, but let us stor

as we have recapitulated enough of the method to allow us to explain

the fundamental eguations upon which the technigue of pre-analysis is

Since pre-analysis is essentially a design tool, no cbservaticns

are made and thus there is no estimate for X. Because W esquals zero this

only one eguation, namely (£-5) in the form

[
>

|
3

~l
il
A

= 3 Ton , 6-10
(A o 1, ) (6=-10)

- -
- iy Tt (6-11)
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Pre-~analvsis 1s based completely on the above esquation and is performed
by simply speclfying the elements of the design matrix A and the variance-

covariance matrix ZL.

6.3 Procedure

The inclusion or exclusion of certéin elements in A and in EL is
in part the key to analysing the four aspects stated in Section 6.1. The
presence of certain observables is accomplished by inserting a row of
elements in the design matrix in columns corresponding to points between
which observations are to be made. The accuracy is represented by a
variance placed in the corresponding diagonal position of ZL' The geometry
of the network is depicted through the numerical value of the elements in the
design matrix. In the adjustment set-up the fixed points of the network are
implicity represented in the design matrix by the absence of elements
pertaining to voints held fixed.

The following are the steps to be followed when performing a
pre-analysis:
(1) Evaluate the coefficients of the particular linearized mathematical

model (observation equation);

{2) Assign variances to observables;
{3) Place the coefficients of (1) into design matrix A and elements of (2)
into Z_;
L
. T -1
{4) Form the matrix product A I A;

L

T 1
(5Y Invert (A L A);
L
{6) Compute the standard two-dimensional confidence region for each point

(relative to points held fixed), by solving the eigenvalue problem of
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‘ . - . . . P N
the zorresvonding 2 x 2 sub-matrix oi (AT A) ., [Mixkhail, 19761

]

.}
3

Compute the standard two-dimensional confidence region (relative)

hetween each pvair of points, by solving the eigenvalue problem of
the corresponding relative 2 x 2 variance-covariance matrix between

the two points;

2) Increase the probabilities associated with {(7) znd (8) to =z higher
probability level (say 95%).
Some elaboration on items (7) and (8) 1s in order. To
compute the standard relative variance-covariance matrix between a pair
of points 1 and j we first formulate the mathematical model. In essence

it i3 the coordinate differences

A¢ij = ¢j - ¢i' (6-12)

Axij = Aj - Xi ' (6-13)

that are of interest. In matrix form

(20, ] -1 o0 1 o0 N
l p—]
Iax . 0o -1 0 1 A
L 1] i
¢‘ ’ (6“14)
j
AL
L 7

where the coefficient matrix is denoted by G for further use. We wish

to propagate the errors from the coordinates into the coordinate differences.

This 1is achieved by

[z
~
[3S]
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o
NN
SN
e
N
o))
|
fa
wn
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whnere
z$ ) zi
it '3
2,2 2,2
L ) b} b}
&, . L .
' = Pl PLAL (5-16)
4,4 ] ‘53 J ‘
2,2 2,2
. . - T.-1_ . -1
i3 =he wariance-covariance iInformation from en = (A2, 7R)

To increase the probability level of the standard two-dimensional

confidence region (about 38%) to a higher level, say 95%, we revert to

the basics of multivariate statistics | { Wells and Krakiwsky 1971, pp.

, . 2
126-130]. The quadratic form for the parameters in the case of Oo known
is

Q.

- T -1 - 2
(x-x) Zg (x-x) ~ Xu,1-a (6-17)

where X is the least squares estimate, X is the true value of the

parameters, u is the dimensionality of the problem, a is the desired

o . 2
confidence level, and ¥

U Lo is a random variable with a chi-square
,1-

distribution and degrees of freedom u. In other words, we can establish
a confidence region for the deviations from the least squares estimate
X, of some other set X, based on the statistics of ; .

Returning to equation (6-17) we see that

- T -1 -
X - x) .7 X -X) =¥
X

2
u,l-a

is an eguation of a hyperellipsoid that defines the limits of the associated
confidence region. Translating the origin of the coordinate system to i
and assuming the dimensionality , u, to be 2, we get the eguation of

an ellipse
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T -1 2
Xz X = ¥ (6-18)
= 1 -0
X "
- -
Gx “x.x
1 12 Xl 5
3 = (6-19)
{"1 xz] , X2, 1-a !
Oy bl c x x2
L 172 2
where >  and x, represents the coordinates (¢i, Ai) or the coordinate
differences (A¢.., AXh..).
13 1]

An eguation without cross product terms can be obtained via the

sigenvalue problem, namely

-1
2 0 B
Omax 41
[y, v.] 2
1 = -20
2 . 02 ' X2,l—a (& )
min ¥ \

and Yy, are the transformed xlxz coordinates with respect to the

where v

1

rotated coordinate axes resulting from the eigenvalue problem.

To obtain the equation of the ellipse from the above, we write

y -yl
1 2
”2 /2 T 2 2 = ll (6’21)
Smax ° *2,1-a “min © X2,1-a

which says that the semimajor (a) and semiminor (b) axes of the ellipse

are
/A
a = . G
Kz,l—a max
/.2
= ! s 9]
b Y X, ' “min

Thus, to obtain a confidence region with a certain probability

axes of the standard coniidence region must be multiplied by a

the

[
D
<%
(0]
Jeoa
~

actor as shown above. Note for any 2 dimensional adjustment with

/ 2
o= .05, vV ¥y = 2.45 .

h
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z L . - .
For the case whers - 1s unknown, a similar development Icr the
o)
semimajor and semiminor axes of the confidence =llipse vields
S —
a =vur . ol {(6-24)
Gu,df, l-n max
b =YuF . {(6-25)
u,df,l-u min

For any 2 dimensional adjustment with

df = 10 and o = 0.05 we obtain

Also note that the above development applies tc the examinaticn
of a single point. For "simultaneous ellipses", see, for example, Vanicek

and Krakiwsky [in prep].
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