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When measuring the positions and relations between the points 
on the surface of the earth (and above and below the surface point as 
well) we are subject to all kinds of physical influences from the 
physical environment. Our instruments obey some physical "l aws" and 
"ru I es " \vh i ch we have to try to understand in order to be able to 
interpret our measurements. We are all aware of the gravity force, 
Cor l o l l s ' force, air refraction, influences of temperature variations 
to name but a few. 

For the static processes - as the geodetic observations are - 
the two most important physical Influences are the refraction and the 
gravity. They both change the geometry of the space we are working in 
and have to be therefore studied and understood as clearly as possible. 
While we shall leave the study of refraction alone completely - this being 
one of the topics of surveying courses - we are going to devote our 
attention almost completely to the gravity. 

The theoretical understanding of the gravity field, its 
determination and its relation (relevance) to the geometrical 
investigations (that constitute the main topic of surveying) is the 
field of physical geodesy. Hence the first semester of our course will 
be devoted to two main subjects. First we shall try to get some 
understanding and grasp of the mathematical model of a gravity field. 
This subject is known as the theory of potential. The second subject 
will be the earth gravity field and its approximations used in geodesy. 

In this first half of the forthcoming semester, we should 
learn something about the mathematical tools used in physical geodesy. 
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In vector notation 

of mutual attraction of two masses m1 ,m2 is proportional to their 
product and inversely proportional to the square of their distance". 

The classical formulation of this principle is - 11the force 
corner stone of the Newtonian mechanics. 

Isaac Newton derived his principle of gravitation (Philosophiae 
ne tural ls principia mathematica, 1687) which remained until our day a 

these three experimental laws the English mathematician and physicist 
motion of planets around the sun (beginning of 17th century). From 
Kepler based the formulation of his famous three laws governing the 
the foundations on which a German astronomer-mathematician Johannes 

(astronomical observations) by a Danish astronomer Tycho-de-Brahe 
made in the second half of 16th century. These observations constituted 

At the beginning of all were the experimental results 

2.2) Newton1s gravitation 

regarded as coordinates of the radius-vector of the point in question. 
of the point in space. These three coordinates, real numbers, can be 
(to describe the 11three valuedness11) of the arguments - the coordinates 

f ' f (~) 

three-valued function f, usually denoted as 
Hence any such stationary field can be fully described by a 





M : n 

We can similarly write for a whole system of masses M1, M2, ... , 

M l -+ ~ (-- p 3 1 pl 

gravitation force: 

'.~iM R/ 
the vectors p1, p2 being the respective vectors connecting M1 ,M2 with m. 

acting on a unit mass m, we can write for the compound 

vectors in Eucleidian space E3. Hence if we have two masses M1 ,M2 
forces can be added in the same way as the ordinary three-dimensional 

It was established through experiments that gravitation 

2.4) Gravitation field of a physical body 

that m exerts on M. 

Note that in this case, we are not interested in the effect 

It is called gravitation field of a point. 

i 

'\ \ 
~ ' / 

-, 

""j / 
/ 

......... ~ 

~ • 4 ...-- - - - /M"' /" / 1 
......... 

-, 
/ ! 1 '\ -, 

t 





the object is pushed from the body. f < f g c body, if 
Note that if f > f the object is attracted towards the g c 

of the earth acting on a stationary object. 

These are the two forces we are experiencing on the surface 

-+ ~ Note the difference between r11 and p ! 

combined force, known as gravity is hence givm by 

force of the body and second 
It is first a t t r ac t ed by the gravitation 

ru~~ 
pU~ed a~y by the centrifugal force. The 

rotate on or above a body B. 
Let us imagine now a situation when a unit mass is forced to 

- J 

2 -+ 
t1J m r11 

I 
- 1' 

f c 

form is 
The expression for the centrifugal force, as it is known , in vectorial 

2-+ + w r11 • I 0 -+ 
== - at - p dB B 3 

p 
+ f c f g 

8 





which is the expression for gravitation of a mass Mas shown in 2.3 . 

Hence 

-2 r - o1· 
r /I r I , ar = - ;( M zr-1, 'V(r} = 

- 1 yr ar - l xr r - l 2x 
2 r 

;1 v ( ) - v r 8r 

'' (V) 

vle have; 

mass M is given by: 

\~e can show that the potential of an attracting point of a 

2.7) Potential of an attracting point 

Potential is the most important notion used in physical geodesy. 

vector field we have found the potential. 

a scalar field the gradient of which is identical with the original 

its gradient is the original vector field. In other words if we find 

assuming M located again in the centre 
of the coordinAte system. v (1) = 'J! ~ : 

r I' 
! 

difficulty somehow. If the potential exists it sufices to show that 

difficult subject on its own. Thus we usually try to bypass this 

It is usually not easy to integrate the vector field to get 
to/ 

its potential even if it exists. It leads/the integral equations - 

\0 





-• ·r -t -+ r =xi + YJ + zk 

71: x T + y j + ok 

We get 

rotation. (This is not detrimental to the generality of the treatment). 

rotation. Let us out, for convenience sake, z axis into the axis of 

_,.. -> 
1·11 is the projection of r r n the p l ane perpendicular to the axis of 

r11 = r cos o , 

is the notential of the centrifuqal force. We have 

(note -~11 

that It can be shown ,- •. 

' w Ct) i 

~(V + W) = V(V) + 9(W) = J + 1 g c 
We know already \I from 2.8 so that the problem is solved upon finding W. 

Oenot 1 no the first by V and second by W 1-Je can wr i te 

potential of gravitation and potential of the centrifugal force. 

the potential of qravity in terms of a sum of two potentials - 

The gravity force 1 is given as a sum of the gravitation 

force 1 and the centrifugal force 7 . Since V is a linear operation, g ~ 
i.e. 9(A + B) = 9(A) + v(B} for any two scalars A,B, we can try to find 

Notice again the sign of V. potential of f. 

which is the necessary and sufficient condition for V to be the 

12 
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v 
0 

l im 

V +O 
0 

1/>s F dS 
n div t v (F) 

-+ -+ field F, called also divergence of F, is expressed as 

As we know from vector analysis the "first derivative" of a vector 

2.10) Potential as a solution to Poisson's or Laplace's equation 

--r The above integral cannot be evaluated because a(r) is not known. 

derivatives. 

potential can be transformed to a boundary value problem in partial 

~·le shall now show that the problem of finding the appropriate 

> BVP Hence we have to look for another way how to evaluate U 

l3a 





b. (V} 0 

The last e0uation 
6(V) h(1) i O ,where h is a known function. 

formula being 
~e first two equations are known as Poisson's equatton, the general 

/ 
- 4 TI~l} in B 

/', (V) 2mto the surface of B = - - on -, 
0 outside B , 

differential equations for V: 
Puttinq these two results together we end up with the partial 

second order. It is known as the laplace1s operator. 
is a differential operator of Here 

ii(V) . 

V being the rotential of F. Hence 
~2v a2v a2v v(F) = ry,(v(v)) = + + T2 32 ()2 x y z 

F = V(V) 

But we have learnt that 

(scalar product). V•F 
3F z 

'.)z 

;ff 
IJ (F) = -25_ + ax 

0 -;: I B. 

Let us now have a look on v(i~) itself. We can write 

r on the surface of B 

r € B except the surface of B -4n)(:1 

I = - _, 

\ 
'- (F (;) ) 

take a ohv s i ca l body B w l t h density er in a space with density 0, vie get 





-1-,., <fk \' (r) rlS. 
L R /. s 
HT\ 

V(o) 

a radius R we have 

the sphere. Hence, if the s phe r e i s centered upon the origin and has 

the center of the sphere is eo ua 1 to the mean of a 11 the values on 

iv) The value thatV, harmonic inside a sphere, attains in 

inverted. 

generalized for any ~cA w i t h the consequence that l; gets also 

upon the origin of the coordinate system). This property can be 

sphere transforms to itself (i.e. 1·1e talk about unit sphere centered 

-r -r 2 
where R = r/r , is harmonic outside (inside) the same sphere, while the 

unit sphere , l V(~) , 
r 

that if v(~) is harmonic inside (outside) a 

iii) It lends itself to spherical inversion. This means 

derivatives of any order. 

ii) Is analytic in all the points of A, i.e. has got 

the maximum and larger than the minimum. 

i) Attains both maximum and minimum values on the boundary 

of any enclosed region~c. vl{, the values inside iJ being smaller than 

has got the fol lowing properties: 

body is a harmonic function outside the body. Any harmonic function 

called harmonic in.A:. For example, the gravitation potential of the attracting 

Function s a t i s f v i no the Laplace's equation in ri;>gionAare 

2. l 1) Harmonic functions and their properties 

U itself is continuous throughout the space. 

the body if it has discontinuous density (Regions, layers, points). 

·+ 
whe r e o(r) is discontinuous, i.e., on the surface of the body or inside 

Uhas discontinuous second derivatives only at the points (surfaces) 

where only o is a function of the position. Hence throughout the space 
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Dirichlet1s principle, the equation 

combination of the first two boundary values is given on the surface S: 

f (+r) (-+) + '~vc;) -+ =c1Vr CZ on rES, 

where f is a function. Note that together with the assumptions for 

We speak about the third boundary-value problem when a linear 

the Newman's problem has a solution. 

Oirichlet1s orinciple are all the sufficient conditions to ensure that 

surface S has to be ni I. This, together with the conditions for the 

within the region, hence the flux of its gradient through the whole 

(~~ ~dS = O. 
}j s an 

This condition follows immediately from the assumption that Vis harmonic 

that 

For the second problem to have a solution inside a region it is necessary 

~ ~ c;:) • -; £ s 
of the sought function along the normal n towards the boundary S. 

on the boundary but instead we know the derivative 

differs from the first only so far that we do not know the value of V 

of the Dirichlet1s principle ar~ satisfied. 

of interest. The problem has a solution if and only if the assumptions 

~ -+ the value V(r) r £ S, where S is the closed boundary surface of the region 

This means that we have to solve the Laplace1s equation (6V = 0) knowing 

• h boundaries of the region, find the harmonic function V in the region. 

Second boundary-value problem, bearing the name of Neuman, 

region of interest and the values of a harmonic function Von the 

The first, due to Dirichlet, whose name it usually bears is the one 
II It can be stated as - given the expressed in Dirichlet1s principle. 

There are basically three types of boundary-value problems: 
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obviously cannot vary because lf they did they would vary Independently 

the other side is a function of y,z, both sides must be constant (they 

ii) Since the left hand side is a function of x only while 

and 

Hence 

V(x,y1z) = X(x) · ¢(y,z) 
i) we suppose first that 

second or d e r : 

development leads to three separate ordinary differential equations of 

or, as we sometimes call it, it seeks the separation of variables. The 

V(x,y,z) = X{x)•Y(y)•Z(z) 
three independent functions: 

0 
2x ~2,,, ,..,2 

3 x ( s.. _..,. + ~) <P-2- + 2 2 
3x ay az 

principle. l t seeks the solution V(x y z) in terms of a product of 

The Fourier's method is based on an entirely different 

where f is the spherical angle of 11 and 1. 

dS 
V(R,0,>.) 

v (i: I ) 

R is known as Poisson's int~gral; 
R(r)Z - R2) 

The special case of the Green's solution for the sphere of radius 

boundary-value problem for Poisson1s equation as well. 

Green1s method in a slightly different form can be used for solving the 

For external problem, we have to use the spherical inversion. The 

'2\ 





0' 1 ,2, ... sin ;,,h .x 
I 

cos "-!\ .x 
I 

Its eigenfunctions are 

0, 1,2, .... 4·· 2 .2 A. ~~-- I 
I ( '2 b-aJ 

eigenvalues: 

equation of harmonic motion. We get, for its 

the Sturm-Luiville equation represents the 

Example: For K(x) = 1, q(x) = 0, p(x) = l on [a,b], 

L'; y.(x) Y, (x) p(x) dx = N. o .. ' a I J I I J 

T: 2 p(x) dx the norm of and v1here N, = y. (x) is know as y. 6 .. IS 
I a I I IJ 

the Kronecker1s o. 

system of functions on [a,b} with weight p. We have hence: 

Luiville equation. 1t can be proved, that they create an orthogonal 

infinitely many, distinctly different, eigenfunctions for any Sturm- 

are called eigenfunctions of the equation. There are, therefore, 

These solutions (functions) y. to the equation. 
I 

particular solution 

non-negative, 

for xe.[a, b] for infinitity many values of A (eigenvalues), all of them 

to be bounded. It can be shown that such an equation has got a solution 

A., gives one and only one 
I 

A, say Every particular value of 

real number. In addition, o , known as the we l qh t function, is required 

functions of x, q is a known, non-negative function of x and A is a 

whe r e y is the sought function of x,K,p are some known , positive 

The Sturm-Luiville equation is usually written as 

(Ky') I - qy +\py = 0 





>. arctg (y/x) . 

0 

/(x2+/+z2) t 

2 2 arctg (l(x +y )/ z), 
r = 

x = r sin 8 cos "· 
y = r sin 0 sin x , 

z = r cos 8 
' 

and 

:z 

1) Spherical coordinates: Examples 

Above is one example of coordinate lines of a curvilinear system. 

ct I 





----- = r sin 0 

Ex. Spherical coordinates 

M ( r, 0 1;1.) M ( r+i'lr, 0 )), ) 
- = l im ~- = H = l im 1, r fir fir flr-+O fl --.o 

M(r101;1.) M ( rJ 0+1'10., "A) 
1. rMl 

H0 = l im - = 1m-= r , fl0 fl0 
Nl+O M-+0 

M(r10,"A) M (r; 0 ,Hfl"A) r sinefl>. 
HA = 1 im = 1 im 

!).;\, fl). 
ti>..+0 t;'J.,-+O 

are known as Lam~1s coefficients. 

q, 
M(~.+Aq,, ~~. q,) 

M + L\t-12 = M ( q I , q 2 + flqi q 3) or 

M + flM3 = M(ql,q2,q3+flq3) 

- where M M+AM. is the length of the q. line connecting the two points 
I I 
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R(r) • Y(0,>.) . 

in 2.15 and seek the solution fin the f o l l ow i nq form: 

Let us take the Laplacean in spherical coordinates as derived 

2. 16) Fourier method as applied to the Laplacean in spherical coordinates 

Problem: Derive the Laplacean in el 1 ipsoidal coordinates. 

. ;/f 
2 

1 a2f ( 2 r . () f 2 af . a f 
= s1near + r s i n O -·- + ccs o - + SI n0 -- + -.--) 2 sin8 Cl r2 ae ao 2 s i n O Cl-"2 r --7 ~ 

2 () f ri2 f co t qo a f 1 () 2 f ::i2 f 
= --+ --+ --·- -- + --+ r Cl r ar2 2 ao 2 2 2 2 -2. r r ao r sin(-)~ 

substituting for H. from the earlier formulae 
I 

Ex. Laplacean in spherical coordinates wi 11 be simply obtained by 

-1 a -2 Jf 
(ITH • ) I. (-., - ( ( ~ H . ) H . -" -) ) i I i nqi J J I oqi 

l f ( -1) ( a ( -1 ( ) -1 ~)) ITH. L -" - H. ITH. H. " i I i nq i I j J I c q i 

Realizing that 6f = V·Vf we get for the Laplacean: 

- 1 
1 a(f.H. DH.) 

(ITH~ )L I I I 
i I i d q . 

I 

\ 
I___ 





2.14, the eigenfunctions of 1111 are 

is obviously the "equation of harmonic mo t l on". Hence, according to 

have a solution, let us take the last equation first. The equation 1111 

In order to see for which values of c1and C2the three equations 

1.17) Eigenfunctions of the laplacean in spherical coordinates, 
spherical harmonics 

coordinates). 

solution of our boundary-value problem (formulated in spherical 

Any function of~ G ~ that would satisfy the three equations 

(1, 111, 1111) and satisfy the boundary conditions as we l l is the 

0 + L11 

0 + 

and we end up with 

l11 tt/ 
L = cost. = c2 

Hence: 

Let us multiply this equation by sin2B/(TL) and we obtain: 

sinE:l cos0 T1/T + sin20 T11/T + L'1/L + c1sin20 = 0 . 

substitution to II we get: 

-2 cotg0 T'L + T"L +sin n TL11 + c1T L = 0. 

\./e have: 

;_1y dT 2 ;)Y a2Y L T' 
.; y 

T" TL1' T L11 and after -= 
d0 -2 = ' -= --= 

;10 Cl!. ;n2 l (j 

'31 





and the corresponding e i qen f unc t ions 

2 ~ l: 
(l--1 ·)2 ---- p (T) 

dim n 
p (T) 

nrn 

(c1 =) µn = n(n + 1) , n > m 

It can be s hown t h.i t i t ; eigenvalues are: 

the requirements for S.-L. eouatic~. 

., wh i c h for -rc(-1,1) satisfies 
7 2 111 

Here obviously (l-1) = K, T~-= r·, 

0 ((1-/) T' )' 
T 

type, rarticularlv when we write: 

It can be <een that the Legendre'-, equation is again of the Sturm-Liuvi 1 le 

0 . 
2 

+ (Ll - m ) T 
l-T2 

Hence 

2 C = rn 
2 

I o r wh i c h even 11" has a solution: i.e., for 

It makes sense to try to find a solution only for such values of c2 

This equation is known as Leqe ndr e t s equation of lc2-th order. 

0 . ) T 
1 - r 

2 + (r 1 - 

0 T II 
r r 

l 2)2 ! - l 

" Sub s t i t u t i r o 1 f o r c o s : and ,'(J-r') for sin.J 1·1e get: 





2 (n+m) ! 
2n+1 T~-m) ! 

v/he r e 

/IT p (cos G) pk (cos o) s l nr: on 
o nm 1.1 

f l P (T) Pk h) d r 
-1 nm 11 

for .~,([-1,l] for· r) with the 1-Jci~ht I. It can aqa l n be shown that 

0 n t he o t h e r ha n d , l he f 11 n c t i on s P a re o r t hog on a l on [ 0 , rr ] nm 

cos or sin. 

i=-U 1 Zn 

\ 11 

N. 
I 

for 1 either sin or cos and 

( i) d: "' N. \' .. 
I l J t: 

[-n,~] with the weiqht I. We havF: 

Hence the functions cos m\, sin m~ are orthogonal on vie i qh t o 

Lui vi 11 e e o ua ti on are o r t honona l 011 the ano ropr i ate i nterva 1 1·1i th the 

\•Je hav e seen in 2. 14 t ha t any two e i genfunct i ans of a Sturm- 

2. 18) 9_r_t !1_n9~~JJ_!_y_~~2.Eb_e! i_c~_!_ _l:i~_c_moni__c~ rind deve 1 opmen t in 
~2,!:_e_r_i ca 1 harmonics 

r ecornme nded source: 1 .• 1. (\, Heiskanen, H. Moritz: Physical Geodesy. 

are not both either , _i is, of cour s e , ri lv1ays zero if qi. , 
I 

The 1 n t eur o l 

the Leqendra1s functions nf second kind is left on the students. The 

R~adinq on the Legrndre ~associated functions as well as 





2 r R11 + 2rR1 - n(n+l) R 0 . 

This must be born in mind when solving equation I, that changes to 

We have learnt that equation I I has a solution only for 

n ee rn , m+ l , n (n+ l) 

from 2. l 6. 

in spherical coordinates we have to find the solution of equation I 

To complete the discussion of the Fourier method applied on Laplacean 
surface srherical harmonics is a solution to equation 11 from 2.16. 

So far we have established that any 1 inear combination of the 

2.19) Complete solution of the Laplace's equation in spherical 
coordinates 

sphere for 1:1h i ch the h is known , 

is the solution of the boundary-value problem outside or inside the 

boundary-value of a boundary-value problem, then 

R(r) h (o.x) 

the Laplace's equation. If the function h happens to be the 

into the series of spherical harmonics, without any connection with 

any function defined on the spherical surface can be thus developed 

\.le are purposely not using §.A. for f.;t since .A does not 

have to be closed in this development. 

NoL l;1a1: a spherical surface is one of such areas A and that 

00 L y n=o n ( c1 , \) 
(..(; " (0, x) h l: L c ('· n=o m=o nm 'nm 

whe r e the coefficients c are given by nm 

c -I L h(C-),>,) ij)nm (e,;i,) d.A. nm 0nm ~ 





or for the outside respectivelv. 

are the complete solutions for the inside of the sphere of radius 'a1 

L 
n=O 

- f = e L 
n=O 

~ f. 
I 

00 

easily done and we can see that 

in such a way as to make them both agree on this new sphere. This is 

for a sphere of radius 'a', all 1·Je have to do is to scale the solution 

value problem for the unit sphere. If we wish to solve the problem 

In practice, though we seldomwant to solve the boundary- 

outside the unit sphere. 

is a solution inside the unit sphere and the other is a solution 

co 00 -(n+l) f. :::: L r" Y f J: r y 
! n"'O n e n=O n 

lend themselves to spherical inversion (see 2. 11) if and only if one 

the two solutions to Laplace's equations 

sphere w i t h radius r ee l, the unit sphere. Really, one can see that 

value on the sphere. It is evident that this can happen only on a 

case we require that both external and interval solution have the same 

because no function can be ha1·monic throughout the space !) in which 

be harmonic outside and inside (apart from a certain region or point 
We may, of course, have a sphere for which a function would 

outside a sphere. 

first and the fourth property of harmonic functions (see 2. l I). Thus 

R(l) gives the solution to the Laplace's equation inside and R(Z) 

because it qr ows beyond all limits for r ~~ 0 wh i ch contradicts the 

3f 





whole sphere. 

Note that h(8,A) = f(a,8,A). The integration is carried over the 

E 
n=O 

Hence h(0,A.) = (form= 0 the term 2n is replaced by 4n). 
00 

are determined by the integrals (developed in 2.18): 
( - ~~~------ -- ~----~----------- ---- -- ----- 
1 A Zn+l (n-m) ! iA h(8,A.) p (cos o) cos ffiA dS I 

\ nm " 
2::1 

:n+m)): ~ nm 

l B n-m · ~ h(e !..) P (cos e) sin mA dS 
__ n-~---2n (n+rn) ! s ' nm 

~ ~~-------------.-- --~--· 

1 Yn=m~O v., (cos 0) (Anm cos:;+ Bnm •• "" \ 
L -~ --- - -- --- --- - --- 

where the coefficients A B by the surface spherical harmonics nm' nm 

--· --- ------------"" --~----- --( 
00 

f = E (~)n+l y 
e n=O r n 

00 

E (E-)n y 
a n ' n=O 

f. 
I 

problem can be written as 

surface of radius 1a1• Hence the solution of the spherical Dirichlet1s 
Dirichlet1s problem if h(0,A) is the boundary value on the spherical 

2.21) Solution to the spherical boundary-value problems using 
spherical harmonics 

In 2.18 we have shown that R'h is the solution to spherical 

n 
If vJe denote y l~ y \'Je can wr i te n m=O nm 

00 n 
f. I: )~ f)nm y 

I n"'O m=O nm 
00 n 

f E r, qnm y 
e 

ri=O m=O nm 
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,...,. C • •,.. : ..... ..., r .-..h ...... V" : r- ':l 1 h:::. ~mrH); r' 

of approximation of the boundary value. This is the main advantage 

degree of approximation of the actual potential depends on the degree 

spherical harmonics represents always a potential of some force. The 

approximates the boundary value, Therefore any truncated series of 

From this point of view it does not matter how well the truncated series 

supplies a precise solution of the Laplace1s equation, I.e. is a harmonic function 

Note that any truncation of the series of spherical harmonics 

of the sphere of radius r=a. 

solves the third type spherical boundary-value problem for the outside 

. -~----·-·----~--- - -·-- - ·-·-~------ L 

y11 
n 

00 n+l 
l: (~) 

n=O r 

.. -., ... ,. .... __ 
I 

I f = 
! e 

proof is left to the reader. We just recapitulate by stating that 

To prove it, we adopt the same approach as for Neuman1s problem. The 

B R We can show that such n n. H · h " y11 d R11 ere we assume again = n~O nan n 
a solution exists if we take 

00 

R•' 
n 

I 
n=O 

f e 

00 

case only and seek the solution in the form: 

is qiven on the sphere. We shall be again interested in the external 

( f ( 0 ') af(r,G,.A) 
= c 1 r , - •"' + c2 Cl r I r=a 

value problem when a function 

The most important spherical boundary-value problem in physical 

n+l Y1 •• J 
(~) n , 

r n+l 
- ·------ - . ----- 

\ 

O> 

f = - a l: 

L ~ -· -- ---·. ~-~~ . 

We speak about the third boundary- geodesy is the third. 





n 

(~ 2 (n-m) ! p (cos0) n P (cos81) cos mA' dJfcos mA + ~ Kor 1 

m=O nm (n+m) ! nm 

+ [15 2(n-m)I Kor10 p (coso ' ) sin ml. ' d1i s i n mx ) } (n+m) I nm 

points with coordinates r' 181 ,A1 • Thus we can write: 

Here the integration is carried over the who l e body/:t, l .e . all the 

= Kr"J! air ~ (C)11 [P o(cos(:)) p o(cos01) + 2 ~ ((n-m)! p (cosE>) }, r n n m--l (n+m) l nm n=O 
V(~) 

and that again back into the formula for V one gets: 

Substituting this result back into the expression for l/p 

P (cos81) (cos MA cos m A1 +sin mA sin rn>..1))] d/3. nm 

complete symmetry in 8,8' and A,A1 

This formula is known as decompositon formula and we may notice its 

+ 2 ~ [ (n-m) ! P (cos8) P (cose') m::l (n+m) 1 nm nm 

that 

It can be shown by tedious computations 





r I s i n 8 I s i n }, I ' z "" r I cos 0 I x = r I s j n 0 I cos ), I ' y 

from 2. 15: 

Changing over to Cartesian coordinates x,y,z using the transformation 

I I 

coo = 500 0 

c'10 0' I 0 = cos 510 

I sin 0• !..' 
I sin 0• sin :>i.' c 11 = cos s 11 

c~o 3 2 0' l t 0 = 2 cos - 2 520 

c~, 3 sin 01 0' ;1.• I 3 sin e• 0• sin >-' :; cos cos 521 cos 
I 3 sin 2 0• 2 A I I 3 sin 2 01 sin 2 >-' c22 cos 522 :::: 

Hence the functions C' , S' can be written as f o l l ows nm nm 

The associated functions are given by: 

Poo = 

plO cos 0• 

pl l = sin 01 

p20 l cos 2 0' I 
:::: 

2 2 
p21 3 sin 0' cos 0• 

p22 3 sin 2 01 

to evaluate, the terms 

01) sin mt- 1 
• 

s~0 
mx ' ,~(cos nm C 1 = P (cos 0 1) cos nm nm 

coefficients by lower degree harmonics physically. To do so vie have 

The formulae developed in 2.22 allow us to interpret the 

2.23) Physical interpretation of the coefficients by lower 
degree harmonics 





Aoo K = - M 800 ee 0 a 

K 
AlO = -M r; 810 0 2 a 

K K 

All = -M ~ BI l = aL Mn 2 a 

A20 
K (A+B _ C) = aJ 820 = 0 2 

moments), we get 

system's origin and D,E,F are the products of inertia (deviation 

whe r e A,B,C are the principal moments of inertia in the coordinate 

c -F -E 

-E -0 A 

-F B = -D 

/')(y2+/)odi?, -{11 xyod.;9 , -f'b xzadl> 

J = -flt xyod:i;o ' fa (x2+z2)od) ' -rb yzo = 

-["It xzodj>, -/11 yzodi.i, [ll (x2+y2)od 

in the origin of the coordinate system: 

Introducing, in addition, the matrix of the tensor of inertia of 'JI- 

n = ~ f ~ oydB 





surfaces. In such a state there are no tangential forces (strains) 

body tries to reach a shape that conforms with one of the equipotential 

equipotential surface. This is the reason why a homogeneous elastic 

We can also see that there is no force acting in the 

proved. 

d+ ' ~ to a; 1 .e., vv must coincide with normal to V =canst., which was to be 

+ + +. But for VV·da to be zero it is necessary that vV be perpendicular surface. 

zero; there is no Increment of the potential if we move on the equipotential 

lies in the tangent plane to the equipotential V = const.t dV must be 

• + + dV when we point da in various directions. It is clear that if da 

This formula provides us with the tool to determine what happens with 

+ + VV · da av av av dV; ~ dx + ~ dy +~dz ax ay az 

potential V: 
by a simple computation. We get for the total differential of the 

are always perpendicular to the equipotential surfaces as can be proved 

potential; i.e., the field of force, is tangent in every point. They 

The lines of force are the curves to which the gradient of the 

density may look thus 

rotating rigid sphere with homogeneous distribution of 

a crossection of a gravity potential of a Example 





Y in the spherical solution are exactly the same as Y used in the n nm 

one way or the other is, of course, identical. The spherical harmonics 

reference surface, called reference ellipsoid. The geoid expressed 

using the ellipsoidal harmonics. Here, the ellipsoid (b,E) is the 

canst. 
co n 

u(u,~,A)=r, E q (u,E,b) Y + t w2 n=O m=O nm nm 

Another way to express the geoid is 

of the geoidal surface U(r) = U 
0 

U(r) in a certain area and tracing 

determine the geoid. The determination would involve the evaluation of 

its normal derivative) on the reference sphere, we would be able to 

potential or alternatively a linear combinatfon of the potential and 

potential (or for that matter if 1·1e knew the normal derivative of this 

computationally. We can see that if we kne» the value of gravitational 

earth. The excess of the masses outside the sphere can be eliminated 

practice, the reference sphere is not required to encompass all the 

harmonic. Such a sphere is genera 1 ly known as reference sphere. In 

earth; i.e., sphere outside which the earth gravitation~! potential 

where 1 a' is the radius of a sphere encompassing a 11 the masses of the 

~ 
n=O 

= cons t , , l 2 +-w 2 
y 

n 

n+l 
(~) 
r 

co 
wr it ten as 

in averag~ is cal led 9eoid. Mathematically, the geoid can be again 

The equipotential surface going through the ocean surfaces 

not all have the same level and are probably even "s l op i nq" away from 
and sou-lh; 

northraue to the continuous melting of the polar caps. 

equipotential surface at places byalegedly some± 2m. In addition, they do 

the oceans do not behave reasonably and their surface depart from the 





unknown quantities: H, A, B, C, w . 

Note that the express ion for spheroid contains the fol lowing 

interested in the spheroid as an approximation to the geoid. 

rotation by only a very little. This is the reason why we are not much 

A= B. If we do that we discover that the spheroid departs from an ellipsoid of 

further simplified by assuming a rotational symmetry of the earth; i.e., 

surface of 22nd degree. The expressions for the spheroid can be 

Helmert's spheroid is based on the same assumptions although 
th it uses spherical harmonics up to the 4 degree. The result is a 

th allegedly a surface of 14 order. 

cons t ') KM K 2 2 2 w2 2 2 
= ~ + ~- [(B+C-2A) x + (A+C-28) y + (A+B-2C) z] + ~2 (x +y) 

r 2r5 

Substituting for c20, c22 the expressions involving x,y,z (2-23) we get 

+ K K A+B K w2 112 U (r) = - M + - (- - C) C + - (B-A) c22 + -2 r = const. 
B r r3 2 20 4r3 

2.23 we get under the above assumptions: 

and substituting for the coefficients by the spherical harmonics from 

We can write for the potential of the earth: 
2 
~ (~) n+ l Y 
0 r n n= 

of inertia D,E,F == 0) and let its z-axis coincide with these two. 
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I 2 2 3 w a (P00(cos o) - P20 (cos 0)) . 

and the potential of the centrifugal force is 

2 = - (P (cos 0) - P20 (cos 0)) 3 00 

In terms of Legendre1s functions 

2 3 2 1 3 ( 1 - 2 cos 0 + 2) 2 2 3 3 2 I - cos 0 = 3 (2 - 2 cos 8) = . 2" Sino 

r11 = a sin 0, 
lr=a 

Here 

. 2 "'\ 
SI n \~1. 

J 2 2 ;:: 2 w a 
1 2 2 Hence - w r11 2 

where Y(S) =A P (cos 0) because it does not vary with A (rotational n no no 
symmetry of the sphere). The components in 0 are present because they 
have to compensate the assymmetry in 0 of the centrifugal term. 

u(s) = u(s) 
co n+l y(S) l 2 112 

(~) + - w r = cons t. L n 

.J I r=a 2 I r=a N 'r=a NO n=O r 
... 

V(S) 
N 

Hence 

U = V + L w2 r112 = U(S) + T(S) = V(S) + L w2 r112 + T(S) 
2 N N 2 

where U~S) is constant on the sphere of radius a. 

3. 4) Sphere as a 11norma l 11 reference surf ace 

We can write for the sphere: 
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cons t , l 2( 2+E2) . 28 + ~ u I sin - 
u=b 

co 
U(E) = 
NO 

U (E) = 
N lu=b 

as yet not specified. Hence, using ellipsoidal harmonics: 

where we require lJ(E) to be constant on the reference ellipsoid (b.E) 
N 

U = v + 1 2 112 2 w r 

similarly to the case of sphere. ~le again write 

or spheroid. The normal potential related to it can be developed 

exclusively used in geodesy. This is because of its closeness to geoid 

Ellipsoid of rotation is the normal reference surface almost 

3,5} Ellipsoid of rotatknas a 11normal11 reference surface 

equipotential surface -- the reference sphere. 

are not generally spherical. Only for r=a do we get spherical 

Note that the equipotential surface of the normal gravity 
KM , a, w. 

Note that the normal potential is known up to three unknown quantities: 

a reference: 

we end up with the expression for normal potential using a sphere as 

Substituting this result back into the equation for U~S) 





. ·._, ··:f :·-·. 

I 
I 
ll 
~ 

•l 

! 
! 
j 
i 

•I 

l 





3 
3 ~(I - O((E/u)4)) c: 

u 

and finally 

b3 4 "' - (l - O((E/u) )) u3 

(1 - O((E/b)2)) c: L (E/b) 3 
15 

(1 - o((E/u)2)) 4 3 TS (E/u) 

Hence 

and 
f(x) (3(E/x)-2 + 1) ((E/x) - I (E/x)3 + t (E/x)5 + ... ) - 3(E/x)-l 

= 3(E/x)-l - (E/x)+ t (E/x)3 - t (E/x)5 + .. , + (E/x) - t (E/x)3 + 

+ t (E/x)5 - ... - 3(E/x)-l 

= (t - I) (E/x) 3 + (t - t) (E/x) 5 + 

4 3 8 5 = T5 (E/x) - 35" (E/x) + ... 

= ~ (E/x)3 (1 - O'((E/x)2)) . 
15 

arctg(E/x)= E/x - I (E/x)3 + t (E/x)5 - 

where f(x) = (3([)2 + 1) arctg(E/x)- 3-f we get 

q20 = f(u)/f (b) 

in u/E or b/E respectively. Denoting 





Hence 

K~ ( 1 + (~} 2 m) • 
a 

and 0 0, 180°, P20(cos 0} 
0 l e=O, 180 

Similarly, for the normal gravity on the poles yb: 

equator Ya : 

G = 90°, P20(cos o} I 3 2 1 and = - cos 01 - = 
0=90° 2 8=90° 2 2 

KM ( l 2 ((~)2 m + ~ m)) dt ( 1 (~} 2 ~ } Ya "' ab - - m ab - m - 
3 2 b 3 b 2 

the reference ellipsoid. \•/e can wr i t e for the normal gravity on the 

geodesy can be developed that links the gravity with the geometry of 

Usinq the normal gravity a very important theorem of physical 

Clairaut1s theorem forgra;ity and geometrical flattennings -,--- 3.7) 

ellipsoid can be expressed as follows: 

The term a2bw2/(KM} is often denoted by m (being roughly equal to 0.33 

10-2 for the earth). Using m, the normal gravity on the reference -·-·~-- ~-------- - ___, --~-- J 
(1 - .?-m + ((~)2m + ~m) P (cos 0)) 3 b 3 20 . __ , _ 

y 
0 





KM 
aby a 

formulae 

The expressions in the round brackets can be substituted for using the 

we can wr i te 

KM a) 2 ) 2 (a) 2 m) . 2 ] 

I 2 2 
[ ( l + (b m cos 0 + { 1 - m - b 2 s 1 n 0 , 

a (a cos 0 + b2sin20) 

Using another identity 

1 - T m = ( l - T m) (cos 20 + sin 2o) 

Substituting this into the formula for y0 , we get 

2 a 2 2 2 
( l - 3 m + ( (b) m + 3" m) cos 0 - 

P ( 0) 2,.., 1 . 2 
20 cos - =cos~ - 2 sin 0. 

as 

3 20 1 . th . d . 2 cos - - 2, using e 1 entity 

geodesist Somigliana (1929). He has developed the formula for y 
0 

let us rewrite P20(cos 0) = (from 3.6) along the following lines: 

Handier formulae for normal gravity are due to the Italian 

3.8) Somigliana1s formulae for normal gravity 
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We thus get 

Since the flattennings are much smaller than l we can develop the 

l+(f*-f-ff*) sin2¢ 
Ya l(J+(f2-2f) sin2qi) 

l+[(l+f*)(l-f)-1] sin2¢ 
yo ~ya 2 2 ~ 

l(J+((l-f) -l) sin <Ji) 

denominator into porter series: 
(l+(f2-2f) sin2rp)-l/Z 

and 

1 - f b l + f>'<' a 

y 
b 

Hence 

According to our notation from 3.7 

I 2 2 2 . 2 (a + (b -e ) sin rji} 

formula (ln 3.8) as l - . 2 A. sin'+' , we get: 
+ (Yb!?. - l) sln2¢ Ya a ay + (byb-ay) sln2¢ a a 

of the values of the coefficients to the IUGG congress in 1930. The 
theoretical development goes as follows: expressing cos2$ in the latter 

This is because Cassinis was the first to have presented his estimates 
due also to Somigliana although commonly known as Cassinis1 formula. 

f . l - !?_ = 
a 

a-b f>'< ' -- = a 

yb-ya 
--= 

In geodetic practice It is usual to use yet another formula 

3,9) Cassinis1 formula for normal gravity, international formulae 





90p - YoQ. cos o. 
4iop = 

instead of 

compute the gravity anomaly From 
69oP 9oP - YoQ 

already large.). Because of this small amplitude of 0 we generally 

exceeds 11 and is usually smaller than 511• (El: 3011 are considered 

The geodial heights probably do not exceed 2"_ 100 m anywhere 

in the world. The angle O = 1 gOP yOQ (do not mix up with the second spherical 
coordinate), known as the deflection of the vertical, very seldom 

is called anomaly vector and its absolute value 6gOP is known as 

gravity anomaly on the reference surface. 

(geoidal undulation) at point Q. The vector 

-+ YoQ is the normal gravity on 

the reference surface. The distance N = PQ is known as geoidal height 

•the geoid, the surface we would 

like to determine,g0p is the 

actual gravity on the geoid, 

We can see, that U = U is the 
0 

draw the following cross-section: 

reference ellipsoid!) on the reference ellipsoid by U , We can then 
0 

normal potential (whose one of the equipotential surfaces coincides with the 

that we know the reference ellipsoid already and let us denote the 

Let us assume, for the sake of the forthcoming definitions, 

reference ellipsoid, W = U is 
0 
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(or outer ellipsoidal normal for that matter). 

disturbing potential taken with respect to the local outer vertical 

Thus the gravity disturbance is given as negative derivative of the 

3T 
3n 

3\1 au -+-= 3n an 
aw au 

= - an-+ ~· g-y 

vertical) is small we get: 

respectively. Since the angle between the two normals (deflection of 

where n, n' are local outer normals to the geoid and the ellipsoid 

g = - an 'y = - an1 
au aw 

wrl te 

by the gradient of the disturbing potential at the point. We can also 

Hence the gravity disturbance vector at a point Pon the geoid is given 

tg = g - y = VW - VU= V(W-U) =VT. 

the normal field plumbline. 

Realizing that g = VW and y =VU we get 

arising from the curvature of 

They differ only by the term 

with the deflection of vertical. 

all practical purposes identical 

Taking W=U0 and U=Up in such a way as to let the two surfaces 

coincide in Pon the geoid we get the gravity disturbance vector: 
-t -+ + og0p = gOP - Yp , gravit~ 

disturbance ogOP ~ 9op - Yp 

d 1 ~ -+ + . f an the ang e ~ 9opYp 1s or 

7:z 



But WP equals also to U0 (see 3,5) or UQ in our notation. Thus we get finally 

Hence By definition WP 

au 
an-· I NQ 

Q 

- y QNP > (NQ=Np) . 

u = u!t 

and let W{1) be called W and similarly p p 
tip, UQ. \Je can wr i te 

'n I 

3.ll) Relation between disturbing potential and geoi<lal heights, 
2nd Bruns1 formula 

any of the involved quantities. 

neither the geoid nor the reference ell ipsold. Hence we cannot measure 

cross-sections from 3. 10 together: Let us take now both 

Note that we are sti 11 moving on a superficial level knowing 

geoidal height wi 11 be thought of as being related to the geoid. 

systematically to the geoid. Hence even the disturbing potential and 

to the point P, rather than the ellipsoid, we shal 1 relate everything 

Since the gravity disturbance is related to the geoid, i.e., 

theories and satelite geodesy. 

terrestrial qeodesy, gravity disturbance is widely used in modern 

The gravity anomaly is mostly used in the classical 
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imprecision in our knowledge of WP' the value of potential corresponding 
to the geoid. 

M 1 ,a', E 1• t n pract Ice oU Is assumed constant and t nterpreted as 
differences between the correct values M,a,E and the assumed values 
function of oM, oa, oE, U, 0, where by oM, oa, oE, we denote the 
to the geoidal height above the assumed ell lpsoid. Note that 6U Is a 
disturbing potential (as computed from an assumed normal gravity field) 
This formula is known as generalized Bruns' formula and lt relates the 

ou = yQ,NP - TP. 
Finally, we obtain: \~~~_:~ul • Np 

Now WP= U0 and oU = UQ_ - WP; UQ - (Up+ Tp). 
But up - UQ = -yQ' NP 
and we get: 

let us denote the assumed value of normal potential by UQ and the 
difference UQ - U0 by oU 

it is likely to have a wrong value of potential (normal). the case, 

When we assume a reference ellipsoid, without knowing the 
proper values of the constants involved (KM, a, E,w) which is always 

and relates the disturbing potential T to the geoidal undulation N. 
to a German geodesist Bruns (1878). It is known as 2nd Bruns1 formula 
wh i ch is one of the most important formulae of physical geodesy, due 
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ay 
"' ogp + }n' ! 

o_ 

disturbance, since 

(Notice that this equation relates the gravity anomaly to the gravity 

ay n "' -::;:-. I Np - ::;-1 I . on Q ' n p 

But, according to 3.10, 9p - yQ ~ Agp. Hence 

Combining these two equations we obtain 

9p - Yp 

We have shown in 3.10 that 

v - '( - (ly 
, p Q - an'! Q 

- yQ and we have 
au 
an i IQ - Yp ' au 

"5111 Ip here 

-~ 
Jn' I 

Q 

We get 

3.11 with respect to n1• 

determine the normal gravity. Let us differentiate the equation (*) from 

reference ellipsoid (a,E) and the other two constants (KM,w) necessary to 

ar 
an' Ip 

Let us assume again that we know the correct size and shape of the 

3.12} Fut'.ciam_ental Gravimetr_i~qu~ion 



selected properly. There are three difficulties involved in solving the 

ellipsoid and the values KM,w (to compute the normal gravity) are 

for the outside of the reference ellipsoid, providing the reference 

Ll.T ""' 0 

solve the Laplace1s equation 

equation provides us with the boundary values of the mixed type to 

It is not difficult to see that the fundamental gravimetric 

3. 13) Discussion of the fundamental gravimetric eguation, 
mixed boundary-value problem of geodesy 

where all the variables are related to the arbitrary reference ellipsoid. 

Cl (T +6U) Cly' 
,.., - ah + 71 'ah (T +OU) 

reference ellipsoid we end up with the generalized equation 

Assuming again an arbitrary (though close to the geoid) 

convenience. 

and we have earlier decided to denote them by subscript P merely for 

may do that because Ag as well as Tare really related to both P and Q 
terms are related to the point Q, i.e. to the reference ellipsoid. We . 
where n ' (outer normal to ellipsoid) is replaced by height and all its 

Ag~ ar + l ~ T - ai1 y ah 
Q 

This fundamental gravirnetri~ equation is usually written as 

Using the 2nd Bruns1 formula to substitute for Np we get 
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-
Cly' problem, let us have a look at the term Clh and try to find an expression 

for it. It could be done directly from the normal potential (3,5) if 

the mixed boundary-value Before trying to solve 

boundary-value problem are already corrected in the proper manner. 

shall be assuming that the gravity anomalies, used for the mixed 

the topic of the present course and wi l l be dealt w i t h elsewhere. We 

computationally. These gravity reductions, however, do not constitute 

earth to the geoid and then account for the masses above the ellipsoid 

We first reduce the gravity observations made on the surface of the 

alterinq the 9ravity anomalies in such a way as to neutralize them. 

The last two difficulties are usually dealt with by means of 

continent and even underneath the sea level at various places. 

mean sense so that it is almost always underneath the terrain on the 

assumed reference ellipsoid is usually approximating the geoid in the 

a= 0 everywhere outside the ellipsoid, is usually not satisfied. The 

iii) Even the basic requirement for 1H = O, l .e . the density 

the ocean surface are still thin and a matter of concern. 

further considerations. On the other hand the observations of 9op on 

Hence the value gOP necessary for determining 6g (see 3.10) is not 

observable. Therefore even 6g cannot be obtained without introducing 

ii) The geoid is neither known nor accessible on the continents. 

we cannot apply the earlier developed method (see 2.21) as it is. 

a,E and KM, uJ. Hence the unknown term oU will be always present and 

i) We never know, and never will know, the true values of 

gravity equation): 

third boundary-value problem using the gravity anomalies (the fundamental 
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d2~ 
\.J11-- + w1., -- - o . yy z -2 - dy 

Similarly, the second total derivative with respect toy yields: 

is perpendicular to W = const. The second total derivative then becomes 

dz In addition,-::::-= 0 since z 
dx 

, 

dx 
Since W =canst., we have 

ax 
Cl\.J I Let us denote---.:::-= W ~and similarly the other partial derivatives. x 

2- 
d z 
-2 dx 

second total derivative is 

Total derivative of W with respect to~ is 

(vertical), x-axis is in the tangent plane to W =WP and points to north, 
y-axis points to west. 

w::: w p coordinates such that z-axis coincides with the outer normal to 

equipotential surface W(x,y,z) =WP can be regarded as an implicit 

function of x,y,z. Let us consider a local orthogonal system of 

let us take the potential W of the actual earth. The 

3. 14) Vertical gradient of gra~ 

show a shorter approach using dlfferential geometry. 

the ellipsoidal normal, but this would be a very tedious job, We shall 

we expressed y as its gradient and differentiated it with respect to 

7S 



2 - 2gJ + 4rr~cr - 2w 

-~ we get f i na 1 l y 
~I h 

() 

(lz 

Combining the last three equations together and realizing that 

and the Laplace's operator in the local coordinates system is given by 

2 6W = - 4nK0 + 2w , 

satisfy the Poisson1s equation 

On the other hand, since Wis the potential of gravity, it has to 

(w11-- + \•/"~-) . 
xx yy 

curvatures of the two perpendicular profiles, we get 

of the equipotential surface, given as the arithmetic mean of the two 

Denoting by J the negative value of the overall curvature 

are zero. 

2~ the N-S profile of the equipotential surface, dz the curvature in the -:z dy 
E-W profile. This is because the first derivatives in both directions 

z = z(x), 
d2~ -:z can be considered the curvature of 
dx 

In our case then, 

-3/2 
k:::: y" (1 + yt2) 

of the curve y = y(x} is given by 

From differential geometry we know that the curvature k 

in question. 

(lz 

-= 
flW ~ - - g, the absolute value of gravity at the point Cln - 

ClW W'­ z Here 
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l . 

where e1 

b I 2 2 l /2 
2 ( 1 + e cos 1>) 
a 

b 12 2 3/2 
= 2 ( I + e cos qi ) , 1 IN 

a 
l/M 

geometric geodesy, 

.:, 

the outer normal). Here Mand N can be expressed, as we know from 

convex surface, in geodesy positive for a concave surface viewed along 

(note the sign ; the curvature in mathematics is taken positive for a 

J = 2 (l/M + l/N) 
We have 

geoidal undulation!). 

section N (do not mix up these M,N with the mass of the earth and the 

curvature Mand the radius of curvature of the prime vertical cross- 

we are able to express J as a function of the meridian radius of 

Here J is as yet unknown. Howeve r , dealing with the reference ellipsoid 

ay 2 ah = 2yJ - 2w 

the ellipsoid we get 

It is not difficult to see, that for the normal gravity above 

few rigorous formulae in physical geodesy. 

examine the gradient in. The 1-st Bruns1 formula is one of the very 

field, Note that the quantities g, J, a are related to the point we 

gradient of gravity to the other parameters determining the potential 

This is known as the l r s t Bruns' formula and it relates the vertical 
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{ly - - ~ (~ + 2~ f cos2cJ> + m) . ah- a a a 

we can write 

from 3,7, Substituting this result back to our original equation, 

as a corrective term. It may therefore be approximated by 

·- 
2w2 "' 

2ym 
a 

using the formulae form from 3. 6 and 

Here 2w2 is smaller than the first term and can be considered 

We then can write for the vertical gradient of normal gravity. 

ay - Zyb (1 + 2f cos2~) - 2w2 . ah""' 2 'f 
a 

and 

; (1+2f cos2¢ ) • 
a 

J "'b (2+4f cos2qi) 
2a2 

Hence 
b 2 3/2 b ( l 2 ... ) l/M "' 2 (1+2f cos qi) =- + 3f cos <P + 2 a a 

b (1+2f co/qi) l/Z b ( l 2 1/N "' 2 =2 + f cos 1' + ... ) 
a a 

2 2 3 2 = 2f - f + 4f - 2f + ... = 2f + 3f + ... "'2f . 

2 
l-(l-f) = (2f-f2) (1+2f+ ... ) 
(J-f)2 

2 1/(1-f) - l 12 e 

Using f = I - b/a we can write 
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problem can be then written approximately {see 2.21) 

the coefficient by (T+oU) is on the ellipsoid constant and equal to 
- 2/R where R = 3v(a2b). The solution to the third boundary value 

_., 
of the order of 3. 10 ~ It can be shown that with an error 

on the reference ellipsoid. 
LI (T + OU) = 0 

value for 
computed on the basis of this assumed ellipsoid. This is our boundary 
sufficiently close to the geoid. Hence all the involved quantities are 
equation is valid on an arbitrary reference ellipsoid which is 
where we understand, from now on, that the 

llg "' - ~h (T+&U) - ~ (l+m+fcos2qi) (T+6U) 

gravimetric equation we obtain: 
Substituting the result of 3.14 into the fundamental 

3.15) Solution to the mixed boundary-value problem of physical geodesy 

neglecting thus all the higher order terms in m,f. 

ay - ~ (l + m + f cos 2~} ah"' a 'l' 

Hence we finally end up with 

2 2f cos qi= f(l+cos 2~) . 

smaller than the first term) and 

b b 2 Here - = 1-f in the cos qi term may be equated to l (since it is much a ' a 
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~ ~ 
wher~by T 

0 
we denote the zero-degree harmonic of T. This is the 

solution on the surface of the reference ellipsoid. 
~ oM Since T0"' r0 + oU and r0 ~ w0 - u0 = K~ we can write 

the above equation as 

the first-degree harmonic to zero and write 

of gravity of the earth. Assuming that they coincide, we can bring 

displacement of the center of the reference ellipsoid from the center 

~ 
that the coefficients by the first-d0gree harmonic for T depend on the 

we can develop all three potentials into spherical harmonics and find 

~ ~ T = W - (U - oU) = W - U 

~l 6g cose dEl = 0. Expressing 

0 for the Neuman1s problem. Our condition here is dE I ~ 3f 
~I an 

combination of boundary-values. It corresponds to the condition 

condition that has to be satisfied for this particular linear 

that the first-degree harmonic is missing altogether. This is the 

~ 
T "' l: 

n=O 
Note that the expression is not defined for n=l. We have to assume 

ellipsoid we get 

where 69 are the spherical harmonics of 6g. On the reference nm 

l: 
n=O 

T+6U 
~ 
T l: 

m 
E 
n 

q (u,E,b} nm 69 = 
2 (n+iT nm 

- R + R 

n 
l: 

m-0 

00 

<+) 00 



[cos m>..fR.1 llg cos mx ' P0m (c oso ") dEl +sin m>..<JPc.1 llg sin m>.1 Pnm(cosG') dEI]}. 

2n+l ( )R. ( ) n (n-m) l 2n+l p ( ) ~ P00 cos O JfiE l Ag PnO cos8 1 d El + l: { ( ) 1 Zn nm cosG m=l n+m , 
llg 

n 

the coefficients back into the expression for llg we get: 
n 

dummy variables in the integration. Substituting the expressions for 

(for m=O, there will be 4n instead of 2n). By dashes, we denote the 

with A (n-m)! 2n+ 1 'fir. Ag(01,>..1) cos m>..1 p (cos0 1) dEl nm (n+m) ! 2n El nm l 

B :::: 
(n-m)J 2n+l ~ l\g ( 0 I '/,. I ) sin ffiA I p (cosG1) dEl nm (n+m) l 211 El nm 

[(A cos m), + B sin mx ) P (cos 0)] nm nm nm 
n 
E 

m=O 
where 

6g = E 6g ·n n=O 

for any arbitary function: 

into spherical (ellipsoidal) harmonics. As we know, we get for Ag as 

let us develop the gravity anomaly on the reference ellipsoid 

3.16) Stokes' integral 

i i)the reduction from the terrain to the geoid of the observed gravity. 

l) the influence of the masses above the ellipsoid and; 

Here, in dealing with 69, we assume that it has been corrected for 

00 

I: _R_ 6 
n+ l 9n 

n=z 

6M 
T "' K-- + R 
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gravity of the earth T1 goes to zero. The coincidence of the two centers 

is to be assumed. 

We can see, that in the development we have left out the 
R first-degree harmonic T1 = T=T flg1. This can be done because it was 

shown that for the center of the ellipsoid coinciding with the center of 

problem on the ellipsoid for llg0=0. lt corresponds, to Pol s son ' s 

integral for the first boundary-value problem on the sphere. 

is n~thing but -Rng0. The second term is usually called Stokes' integral 

and it represents the closed solution to the mixed boundary-value 

where the series is known as Stokes1 function - S(ijJ) - and the first term 

00 

R Jt. R ,ft 2n+ l ( ) - 7irrYfEl fig Po(cosijJ) dEl + 7irr1.f'El ~g L -n=T" pn COS!/J dEl 
n=2 

[_R_ 2n+l Jt, ( ) ] n-l -z;;--~El fig Pn cos l/J dEI - T "' L 
n=O 

and we get 

This result can be substituted into the equatfon(+)in 3.15 

6.g = 2n+l .if.1 ll.g (01,A1) P (cosijJ) dEl . 
n 411 :t.Jt. n 

(0,A) for wh i ch gn is computed and the "dummy poi nt " (o 1,A1) involved 

in the integration. We can thus write 

We can see that the expression in the square brackets equals to P (cosijJ) n 

(see 2.22) with ljJ denoting the spherical distance between the point 

P (cos0) P (cos01) (cos mA cos mX1 +sin mA sin mX1))]} dEl . nm nm 

Taking the integration sign outside the summation we obtain: 
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the undulations of the geoid above the assumed reference surface-ellipsoid. 

The formula for N is known as Stokes• formula and it supplies us with 

oM ou 6N = - KRG - G 

we get 

Writing the formula for N as 

N + oN = 4~G <jpEl 6g S(;J.t) dEl . 

development. Recalling the formulae for T0 and T0 in 3.15, we get 

where by 0 we denote again the first spherical harmonic in the appropriate 

From the formula for T (3. 15) we can see that 

on the already limited accuracy. It remains to be seen whether 6g0 

can be expressed in terms of other parameters. 

Here we can take a mean gravity G instead of y with 1 ittle influence 

or 

~ 
T = T+OU = yN 

undulations N can be computed from T. We can write 

equipotential surface W (r,0,X.) = w0 ~ u0. It is easily seen however, 

that using the generalized Bruns• formula (see 3. 11) the geoidal 

knowledge of T is just an intermittent step; geoid being defined as the 

From the point of view of determination of the geoid the 

3.17) Stokes1 formula, gravimetric determination of the geoid 
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R e 1 1 e 2 1: + l - 3 R - cos iJ; (5 + 3 In (2 - "2 cos iJ! + 2R ) ) . s (l)J) 

infinite series as 
The Stokes1 Function can be expressed without using the 

3.18) A few remarks about the Stokes1 formula 

geoid which is a desirable property. 
than its mass. The reference ellipsoid hence follows more closely the 
for the effect by changing the size of the reference ellipsoid rather 
uncertainities is indistinguishable. It is though easier to account 
6U can be regarded as mostly due to oM and oa. The effect of these two 
the reference ellipsoid are known much more accurately than a,KM and 
ellipsoid1s axis. The reason for this is that the parametersE,w of 
usually taken as constant and interpreted as correction to one of the 
presumptions, always concentric with the reference surface. 6N is 

The geoid as computed from this formula is, due to our 
data. 

geoid (as related to the assumed reference ellipsoid) from the gravimetric 
formula of physical geodesy. It permits the determination of the 
1t was first published in 1849 and is, perhaps, the most important 
Gabriel Stokes (1819-1903) mathematician and physicist in Cambridge. 

The formu 1 a (without the term 6N) is due to Sir George 
e 11 ipso f d. 
6M and 6U, the errors in the mass and in the potential of the assumed 
The correction cN to the computed undulations can be added if we know 
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ways. We are going to mention two of them here. First, we can chose 

the point of interest as the origin for polar coordinates on the 

ellipsoid and get 

The Stokes• formula can be rewritten in various different 
are interested in. 

It can be clearly seen how the gravity anomalies over the whole earth 

contribute to each particular separation Nat any place. The closer 

we go to the point of interest the more the anomaly Ag contributes 

towards the separation. Therefore, when using the Stokes1 formula, 

we have to know Ag well particularly In the vicinity of the point we 

A 
a 
1 

Sl"t) 70° lBo0 

-1 1' __., 

-2 

\~e can see that for 9-+0, 1J!-+O and 

S (lj!)-+«>. I ts graph l oaks thus: 
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component of 0 called s (n). 
the meridian (prime vertical) plane, s represents the N-S (W-E) 
defined by the two normals, thens= 0, If the cross-section lies in 
cross-section that dN = EdS. If the cross-section is taken in the plane 
earth. They can be derived as follows: it can be seen from the 
deflection of vertical from the gravity anomalies known all over the 
permitting the computation of the N-S and W-E components of local 
boundary-value problem, i.e., the Stokes' integral, are the formulae 

Another application of the closed solution to the mixed 

3.19) Venlng-Meinesz1 formulae 

are used almost exclusively. 
In practice the numerical methods to evaluate these integrals 

o/ = arccos (sin~ sin ~1 +cos$ cos~· cos (A1-A)). where 

where F{~) = ± S {~) sinw and 6g(o/) is the mean anomaly at the angular 
distance w from the point of interest. 

Alternatively, ~l can be expressed in terms of geographical 
coordinates and we get 



we get; 

cos ljJ =sin <P sin ¢1 +cos$ cos ~1 cos (;.'-)..) 

and derive~: , ~t from the formula for cos ljJ used in 2.22: 

Here we express the partial derivatives as 

dE l • n 

Taking N from the Stokes• formula and regarding oN as 
constant we get (only S is a function of¢ and).. l): 

I ;ff.. aS(ijJ) 
[, = - 4irG 'frEJ l:ig aqi dEl ' 

1 aN aN [,=--- n=---- 
R aq, ' R cos¢ 3).. 

and 

dS~ = H~dm = Rdt 
dS).. = HAdA = R cos<fi d).. 

for r = R (on the ellipsoid): 

coordinates in meridian and prime vertical, and using the Lame1s coefficients 

convention for fl· Denoting by d¢, d!i the differential increments of the 

t owa r ds West, n decreases. Some European countries use the reverse 

increases towards No r t h , !';decreases and similarly if the geoid increases 

~ (A). This means that if the geoid 

is taken as decreasing with increasing 

convention that for dN positive[, (n) 

where the negative signs express the 

For these two components we get 
dN dN 

[,= - ds ' n = - ds ¢ ).. 

90 

--H-- ,. 



of gravity have been observed on the earth surface. Hence, we cannot 
They can be computed for a number of discrete points where the values 
formulae are not available for every point on the reference ellipsoid. 

The gravity anomalies fig in Stokes' and Vening Meinesz1 

3.20) Outline of numerical solution of Stokes' and Vening-Meinesz1 formulae 

to any other pair of coordinates on the ellipsoid. 
again for 11polar11 coordinates on the ellipsoid or they can be transferred 
the Vening-Meinez' formulae. In these formulae, 1J! ,a can be taken 

fig (l S ( 1J!) s i n a d E I , 
<li}J 

fig as (1Ji) cos a dE 1 
CllJ! 

we finally end up with: 
Substituting the results back into the formulae for~ and n, 

E..t - - cos~ sin a ();\ - 'I' - cos a , 

we get 
Comparing these two sets of equations 

triangle we obtain 

- sin 1J! ~=cos¢ cos ¢1 sin (A1-A), 6A 

On the other hand, from the spherical 

aip - sin 1J! ~=cos¢ sin ¢1 - sin¢ cos <P' cos (A'-A) 
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convinces us that the immediate surroundings of the point have 
functions approaches to point of interest. A brief look on the weight 

The most serious difficultyencountered in the numerical 

solution is the increasing influence of the gravity anomalies as one 

does not change from one point of interest to another. 

to use when we study the whole globe, as opposed to individual points, 

because the representative values of 6g in individual blocks~~ x 6A) 

can be attached to the appropriate blocks once and for all. The grid 

coordinates as mentioned In 3.18. This approach is somewhat preferable 

The rectangular grid is generally based on geographical 

contributing to the result too much and vice versa, 

llg Is weighted 111 ightly'1, it can represent larger area w l t hou t 

areas corresponding to smaller weight and vice versa. Evidently, if 

weight of 6g varies with~ (and a as well, in case of Vening Meinesz' 

formulae) the grid can be designed in such a way as to have larger 

so as to make it centered upon the point of interest. Because the 

either polar or rectangular. The polar grid corresponds to variables 

a,~ as described in 3. 18. Hence the grid has to be shifted every time 

The grid for the summation can be basically of two kinds, 

parameters. 

we use, replace the double integration by double summation over two 

to evaluate the double integrals. All the numerical methods, whichever 

the e 11 ipso id and we have to use one of the numerous numer i ca 1 methods 

product of the gravity 
3~~p) respectively) over function S(~) or anomalies with the weight 

integrate them (more precisely integrate the 



considerable effect on the result. This problem can be overcome by 

two means. First, it is usual to make the grid finer in the immediate 

environment of the point. Second, various formulae have been designed, 

to express the influence of the gravity anomalies in the close vicinity 

via other characteristics of the gravity field, that do not deal with 

the Stokes' function. Using these formulae, we divide the double 

integral in two or more parts that reflect the contribution of close 

and more distant zones. These parts are then evaluated separately. 
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we regard them as permanent. On the other hand, we know that the value 

yet whether the values of g are subject to any secular changes. So far 

, it has not been established As we have said earlier 

is easier achievable using the relative rather than absolute observations. 

stations. For geodetic purposes we would like to know the gravity with 
-4 an error in absolute value smaller than 0.1 mgal = 10 gal; i.e., 

-7 ~ 10' tiMes the observed phenomenon g. This is a very high accuracy and 

a point. The latter observes just the difference in gravity for two 

The former is based on the idea of observing directly the value of g at 

ii) relative observations. 

i) absolute observations; 

can speak about 

From the point of view of the observation technique used we 

iv) airborne observations (from the aircraft). 

iii) sea-surface observations (from the ship); 

or on the sea bottom); 

ii) underwater observations (either observed from the submarine 

i) terrain observations; 

we can divide the gravity observations to: 

From the point of view of the position of the observation points 

approximate value of g anywhere on the surface of the earth is 980 gals. 

-2 (1 gal = l cm sec ) or its 
-6 = 10 gal). Obviously the 

usually denoted by g, is measured in gals 

decadic fractions (mgal = 10-3 gal, ~al 

of gravity Acceleration at the desired points. The gravity acceleration, 

The gravity observations are meant to provide us with the values 

4. l) Gravity observations 
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deduce the value of g, providing C is known. 

It is not difficult to see that by observing the period of swing we can 

The above relation originates in the equation of motion of the pendulum. 

where C Is the constant related to the mass and the length of the pendulum. 

_l; 
T =Cg 2 

between the period of swing and the value of g, namely 

multiple. Their use is based on the idea that there is a known relationship 

Pendulums can be either ordinary, reversible, inverted, very long or 
second cannot. 

The first and the third types can be used for absolute measurements, the 

iii} free-fall devices. 

ii) gravimeters 

i} vertical pendulums 

used for gravity observations (measurement of g) 

There are basically three distinctly different types of devices 

4.2) Instruments used in gravimetry 

time on both differences. 

by a known constant give two differences In gravity. Their discrepancy 

is attributed to the drift of the instrument and divided linearly with 

known point. Hence we have t\'10 differences in readings that multi p 1 i ed 

take another reading at the unknown point and another one back at the 

the gravimeter reading at one point where gravity is known already. Then 

Th~ relative measurements are done in such a way that we read 

predictable they can be corrected for. 

to +0.08 mgals. Since the tidal variations of gravity are known and 

phenomenon, kno1vn as gravimetric tide, can account for as much as - 0.16 

of gravity changes with the position of the Sun and the Moon. This 
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~ or·he;}\ 
re.rat{ ov-t ii) Circular spring 

devices and different readout systems,is used by American Worden (precision 
!. 0.03 mgal) and German Graf gravimeters. 

Basically the same design,although equipped with various compensational 
was first utlized in a Danish gravimeter deslqned by Norgaard (p rec l si on + 0.2 mga 
The whole construction is made of one piece of fused quartz. This design 

·\m:iol\a\ ~lh01men1 

~) 
/ .. --~-L----- a(b-ocled h\a>s- 1N1J~ 

\ \tnirrol'"' 

t1x~J l'\\C\~\ w;t~ 
lnivTOY 

i) torsional: 
modern gravimeters : 
and free masses. There are three distinctly different basic designs in 
designs are invariably based on measuring the relative position of a fixed 

Gravimeters are the widest used devices in gravimetry. All the 
errors in timing contribute significantly to the relatively low precision. 
and edges), temperature, instability of the fixed construction. Also 
achieving any better precision are numerous influences 1 ike friction (air 

best, precision of+ 4 mgals. The major obstacles in hadt at 

!. 3 to!. O. 1 mgals (for very long pendulums).Vening-Meinesz's submarine 
pendulum apparatus (three coupled pendulums with photographic registration) 

The precision attainable with pendulums is of the order of 



precise coordinates to the observation point, 
bottom gravimeters, where the major flaw is our inaptitude to attach 
accelerations of the vessels involved, The same holds true for the sea• 

platforms. Their precision is still comparatively low (:t_ 0.5 and:!:._ 10 
mgal respectively) mostly because of inadequate accounting for the 

or airborne instruments mounted either on gimbals or gyro-stabilized 
The gravimeters are also used almost exclusively as shipborne 

gained any wide recognition. 
gas pressure, vibration or bifilar gravimeters. But they never have 

to be the most successful one. 
American and Lacoste-Romberg {precision+ 0.01 mgal) gravimeters and seems 
This system with various compensations and readouts is used by North 

Besides these three, there is a number of other designs I ike 

vary by d l f fe rentscompens a t lona l and reedout system. 
iii) Spiral spring 

This is the principle used by Molode.:nskij in his GKA grav,jmetrer {pr~~;ision 
:!:.. 0.3 mgal) and the whole family of subsequent Russian grav,ime-te;rS<w They 

97 



distinguish two different gravity surveys: 
From the point of view of the use of the observed gravity we can 

4.3) Gravimetric networks 

directions. 
values of gradients of g in various 
azimuth of the balance arm giving the 
The inclination a changes with the 

There are t~10 different types of varlometers: 
(variometer) designed to measure the horizontal gradients of gravity. 

II U • It is the Eotvos~ torsion balance not measure gravity directly. 
One more instrument should be mentioned here even though it does 

and the precision so far within the region of±.. 1 mgal. 
The device is still under development deduced from the free-fall time. 

the acceleration of a free fall is g, the magnitude of the gravity can be 
They are based on the timing of a fall of a free body in vacuum. Since 

Free-fall devices are the newest development in gravimetry. 
components and other causes. 

iii) the inevitable presence of drift due to aging or various 
ii) the necessity of frequent calibration; 

calibration. Three major hindrances can be listed against gravimeters in general: 
i) the inability to measure the absolute gravity; 

compared to the proper value of gravity. This compar l sorr el sr-known as a .re s 
one can get from a gravimeter is the reading on a scale. This has to be 
are easy to operate and their theory is well known. The only information 
other gravimetric instrument mainly because of their versatility. They 

Generally, the gravimeters have proved more successful than any 

98 



individual gravimeters -- i.e., to derive the one to used to calibrate 

widest possible range of gravity values. Their points are usually observed 
values of gravity. They are very precise very precisely to obtain 

ii) Second order consists of points established some 10-20 miles 
apart within an easy reach by car (along highways, etc.). 

iii) Third order has points closer together although their 
accuracy is lower. This is being currently built in Canada. 

Besides the national networks there are some international 
11calibration lines" stretching across wide areas so as to cover the 

The second, used in geophysical prospecting (location of various mineral 
deposits) has got a local character. The users are not Interested in 
absolute but relative gravity. It has little interest for a geodesist. 

The first, because of the necessity to supply the abso 1 ute values 
of gravity has to be organized on the international level. Hence the 
national gravimetric works are all connected to one international reference 
point -- Potsdam. The last adjustment of international gravity networks 
was carried out in 1971; 

The national networks are divided into 3 orders-- - · 
i) First order consists of the national reference station and 

all the "abso l ut e po l nt s". They are usually located at the airports so 
that the access to them is easy. Canadian'natlonat· refer~n~~ ~tation i§~the pier 
in the basement of the former Dominion Observatory in Ottawa. It was 
established by relative methods. 

i) geodetic; 
ii) geophysical. 
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of classical geodesy. 

geoid is hence a formidable one and represents one of the major hindrances 

the parts protruding above the geoid. The task to evaluate the 69 on the 

variations of density within the surface layers, by which we understand 

distribution of density a, within the earth. Neither do we know the 

However, we do not know the distribution of masses; i.e. the 
geoid instead of ellipsoid. 

to the same as if we had formulated the boundary-value problem on the 

requirement that all the masses above the geoid are removed. This amounts 

the masses above the ellipsoid are accounted for but replace it by the 

convenient approximation of the same order. We shall not require that 

ellipsoid on g0. Since all the formulae used for the determination of 

geoid are only approximate, we can afford to introduce one more highly 

ii) supress the effect of the masses above the reference 

i) know the "actual gravity" g on the geoid; 
0 

to get the 69 {gravity anomaly) on the reference ellipsoid we have to 

formula (see Section 3). 
We may recall (section 3,15) that in order 

anomalies on the reference ellipsoid needed to evaluate the Stokes 

the observed gravity can be processed so as to supply us with the gravity 

and the forthcoming paragraphs of this section we are going to show how 

are also various aspects of the processing of the gravity data. In this 

Since there are various users of the gravity information there 

4.4) Processing of the observed gravity 

American calibration line runs from Alaska to South Mexico. 

one correspondence of scale readings with gravity values. The North 
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e 11 i psoid: 
approximated by either the length of the radius vector of the reference 

Jn this formula, r can be further ag that approximates the term~ 
ar 

M - 2K - 
r3 

3g 
0 

Differentiating this with respect tor we get 

gravity we can write approximately for g (on the geoid): 
0 

and denoting by r the distance of the geoidal surface from the center of 
Considering all the mass of the geoid concentrated in its center of gravity 
to do with the gravity disturbance defined in 3. 10). 

where h is the height of our station above the geoid. ( og here has nothing 

the gravity value on the geoid is 

above the geoid. The observation station is thus imagined to be hanging 
>free in the air! Then the only correction (reduction) necessary to obtain 

topographical surface of the earth) in absence of all the redundant masses 
following imagination: suppose we had taken the observation of g (on the 

The free-air correction originates from the somewhat simplified 

4.5) Free-air correction and anomaly 

\4e are going to show here only the generally accepted and most widely 

used approaches to the problem. 

of ideas, techniques and attitudes displayed by various scholars in geodesy. 
The difficulty of the task is reflected in the wide spectrum 
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plate. 
between the topographic surface and the flat surface of the 
topography; i.e., the influence of the masses enclosed 

ii) removal of Lt.e influence of the irregularities of the 

thickness h -rne t e r s high; 
i) removal of the influence of the plate (layer) of uniform 

surface and the geoid as well as by the masses enclosed within the geoid. 
This influence of the masses above the geoid should be corrected for as 
well. It is usually done in two steps: 

the earth its value Is influenced by the masses in between the topographic 
reality well enough. Obviously, when observing the g on the surface of 

Seemingly, the free-air treatment of gravity does not deplct the 

~.6) Bouguer correction and anomaly 

because of some properties we are going to discuss later. 
based on seemingly quite erroneous assumptions it is very widely used 

The corresponding gravity anomaly 

G9F = g + ogF - y J 
is known as the free-air anomaly. Even though the free-air anomaly is 

(with ogF in mga\ for h in m,)can be used. 

og 01 ZKM h = 0.3086 h 
F R3 

In the majority of cases hence, the simplified formula for the free-air correction 

390 -2KM 3 ~h 01 7 ( 1 + I f cos 2 c1> + •.. ) 

or by the radius R = ~ (a2b) of the reference sphere: 
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-: j£X. 

O Integration with respect to a yields: 

ld8 We get 
L fh I V(P) f21T fa _!_ dB KO 

a=O Z=O r11=0 p 

whe r e dB == r11 dr " dZ da and 

p = ((Zp-Z)2 t- r112) l /2 

for a point located on the Z axis: potential 

cylinder is to express it in cylindrical coordinates and compute first its 

The easiest way, how to derive the attractive force of our 

~dB . 
p 

V = K 

by (see Physical Geodesy I, § 2.8): 

- K f CT ~ 
B 3 P dB. 

p 

The potential of this force is given 

f = 

Physical Geodesy I, § 2.4): 

the reference ellipsoid!) and density o. What will be its attraction at the 

cylinder of height h, radius a (do not mix up with the semimajor axis of 

acts on a unit mass with the force (see 

point P? We know from the theory of potential that an attracting body B 

added to it, as we shall see later. 
To derive the correction for the plate, consider a circular 

plane layer. Then a correction for the curvature of the earth can be 

quite sufficient in the first approximation, to consider the plate as a 

therefore quite a complicated spatial shape. Fortunately, however, it is 

The plate, or the layer, covers the whole of the geoid and has 

wi 11 be dealt with in the next section. 

considered as a refinement of the first is known as terrain correction and 

this correction in his gravity survey in Peru in 1749. The second step, 

as Bouguer1s plate according to the French geodesist Bouguer who first used 

In this section, we are going to deal with the plate -- known 
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derivative of V (in P) with respect to Zp. We obtain: 
purposes coincides with the direction of g, we have to take the first 
potential; i.e., the component in Z direction which for all practical 

Since we are interested in getting the vertical gradient of this 

2 Denoting (a + can write finally 

2 2 2 l/2 +a ln (Zp + (a + ZP) ] 

2 2 1 /2 by d and (a + ZP) by b we 

1 2 2 112 2 2 2 112 
- 2 [(Zp-h)(a +(Zp-h)) +a ln ((Zp-h) +(a+ (Zp-h)) )] + 

= 2TIKO [ -z h + .!.. h2 + f~ ,Y((ZP-z)2 + a2) dZ] p 2 

The integral here can again be solved by another substitution t = z -z p 

which gives 

fh 2 
1/2 f -h (a2 + t2)1/2 d t . = o (a + (Zp-Z}2) dZ - p zP 

l/2 1 2 2 112 2 2 2 l/2 Here J (a2+t2) dt = 2 [ t (a +t ) +a ln (t + (a + t } )]+const. Hence 

f h ~ / 2 2 V(P) Znxo Z=O [v((Zp-Z) +a) - Zp + Z) dZ 

Hence 

This yields: 

V (P) 
h a r11 d r11 dZ 

2nKo J Z=O f r11=0 2 2 J ((Zp-Z) +r•1 ) l 2 

Th . . 1 b 1 d b b . . 2 ( z z) 2 112 e inner 1ntegra can e so ve y su st1tut1on t = p- +r . 
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-nKO 

Evaluating the above formula at Pon the cylinder we have Zp = h, 
d =a, b = "\}(a2 + h2) and we get: 

p 

Hence fp can be rewritten as 
2 d (Zp-h) 

fp = - 21TKO [h + Z + 2d 

(Z -h) 
~ = l d-1 2 (z -h}f = P 
azP 2 P P 2d 

whe r e 

p 

~ = fp = 2nK0 [-h - .!_ {d + {Z -h) ~ - b 
tiZP 2 P tl1p 
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is called incomplete (simple) Bouguer anomaly. 

The sum ogF + ogp = 0. 1967 h became known as incomplete 
(simple) Bouguer correction and the corresponding anomaly 

the correction due to the Bouguer's plate. In practice, a of the upper 
part of the earth crust is usually assumed to be 2.67 g cm-3 giving thus 

~ - 0.1119 h _\ 
in mgal for h in meters. 

cylinder to Bouguer1s plate we get finally: 
Considering the diameter of the cylinder infinite, i.e., extending the 

= - Znxoh ( l - 2~ - . . . ) . 

l h2 = - 2TIKO (h - 2a- - ... ) 

2 
f p "" - 2TIKa (h + a - a ( l + -21 ( b._ ) + ... ) ) a 

a> hand we obtain 
Here ~(a2+h2) can be developed into power series, considering 

a2+h2 

2 2 ·v (a +h ) 

2 a 
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compartment is givenby 

our correction dogT.'due to one 
I 

mass element in the i-th 

component of the attractive force, 
primes over r. The vertical 
here, we are omitting the two 

:: K 

Note that 

dm 
2 

p 

= r2 + z2. where P2 

value due to one mass element dm: 
attracting force in absolute 
coordinates r,a,Z for the 
write, using again cylindrical 
of one such compartment we can 

To determine the contribution 
combined effect then determined, 
is computed separately and their 
of each individual compartment 
the diagram. The contribution 
possible divisions is shown on 
to a template. One of such 

done using a template method. We first divide the area surrounding our 
trapped between the Bouguer plate and the surface. The evaluation is easily 
the geoid and the topographic surface consists of accounting for the masses 

station into compartments according 

The second step in evaluating the influence of the masses between 

4.7) Terrain correction and refined Bouguer anomaly 
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2 2 ,-,,}((a+b.a) + tih ) 2. 2 2 2 
= KoL'io:(t'.ia - J dt) = Kob.a [b.a --v((a+t'.ia) +lih) +'\/(a +b.h )] . 

'\I (a2 +b.h 2) 

Another substitution t2 = r2 + 6h2 yields 

dr ) • r J a+b.a ( ogT = KOt'.ia. 1 . a 
I 

Hence \ve can wr i te: 

2 2 og = KCJb.a r+6a r ( JrY(r +Ah ) d2t ) dr , 
T. r=a 
l 2 t 2 I '\)(r +b.h ) 

where the inner integral gives [ - - ] - 
t r 

We get: 

2 2 .:;:: r + Z • Integration with respect to Z can be solved using substitution t2 

(r2+Z2)3/2 d r dZ . Zr og = KOt'.io; ft'.ih fa+f'..a Ti Z=O r=a 

Integration with respect to a yields: 

ogT. Jb.a ft'.ih J~:~a z dr dZ do: KO a::::O Z=O - r 
I p3 

Jlia Jt'.ih Ja+l;a Zr d r dZ do: . KO o:=O Z=O r=a = (r2+Z2)3/2 

above P: 
homogenous density o for the whole compartment and an average height t'.ih 
For the whole compartment(b.a by b.h by lio:)we obtain, considering again 

dogT. = df P sin S = df Pi 
I 
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correction is then applied only when it is absolutely necessary. 
Obviously, the computations involved are quite tedious and the terrain 
values themselves. These are to be furnished by additional observations. 
be determined through other methods using gravity gradients or the gravity 
adequate precision. Then the contribution of the immediate vicinity is to 
particularly in mountaineous areas, even a fine grid is not enough to give 
the grid has to be denser in the vicinity of the gravity station. Sometimes, 
heights there have to be known therefore with a higher accuracy. Hence 
The closer compartments contribute more towards the whole correction. The 
involves the determination of an average height Li.h for each compartment. 

how to set one up. 
one scheme 0r another, and one has therefore to understand the way 
lost their significance. However, even on computers one has to use 

In all the schemes the determination of the terrain correction 

With the appearance of computers the templates have equation. 
Various schemes have been devised for the template to simplify the above 

The complete terrain correction is given by: 

l Li.h 2 l Li.h )2)] ogT. "" KO Li.a [tia + a ( l + 2 (a) ) - (a+lla) (1 + 2 ( a+sa 
I 

2 
.!.. + KOl'lafi.h ) = 2 a a+Li.a 

~[a.+1-a. +-V{a~ + tih~j) -,Y(a~+-l+Ah~· ~~]l-1 
I I I I ll I I·, J 
- --·---.·---~-----------" - -·------~~-~~~----~-~--~- 

ogl· = KO' ~ { ts«, 
I j J 

·---- -'--·-···--------- 

or approximately: 

For Li.h<<a we get: 
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potential of a surface layer of variable density. 
Bouguer correction (refined) can be computed from the expression for the 
plate may be regarded as zero when compared with the distance. Hence, the 
From this distance o~ the thickness of the topography and even the Bouguer 
the inner area in Hayford template of which more wi 11 be said in 4.8.S. 
distance of 1.5° (-167 km). This distance corresponds to the radius of 
such a case we usually begin considering the earth curved from the spherical 
work this "s phe r I ca l effect1has to be accounted for mathematically. In 
the gravity station diminishes very rapidly. However, for very precise 
since the attraction of the masses departing rrom the horizontal plane of 
Bouguer correction,we have considered the earth flat. This can be done 

We can note that here, as well as when deriving the incomplete 
is called complete Bouguer anomaly. 

The sum ogF + ogp + ogT is known as complete (refined) Boug.1er 
correction. Correspondingly, 

Hence1neglect of the terrain correction introduces a systematic bias. 

~eJ1.A.111bv.t 
ma% 

be understood from the drawing: 
the terrain is lower or higher than the observation station. This fact can 

We notice that the terrain correction is always positive, whether 
of about 40 mgal were experienced in Colorado, 70 mgal in the Carpathains, etc. 
ml l l l qa l s Ln a hilly area and tens ofrniHiga·lsin the mountains. Corrections 
few tenths of a mgal for flat and gently rolling country. It reaches a few 

The magnitude of terrain correction is usually of the order of a 
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blocks as floating on the level of magma that lies 1n the depth T. This 

He then considers the or less independent blocks of different density. 

Pratt1s basic idea is that the earth crust is divided into more 

4.8.2) Pratt1s model and theory 

outline all of these theories. 

the three today. Since isostasy is important for geodesy we are going to 

his theory which is being accepted as the, perhaps, most realistic of all 

and G.B. Airy (1855). More recently (1931) , F. A. Vening-Meinesz produced 

mathematical formulations can be found in the theories of J.M. Pratt (1854) 

already by Leonardo da Vinci. The first 

idea of isostasy was probably originated 

equilibrium of the earth crust. The 

is sought in isostasy, the theory of 

below the ellipsoid on the seas. 

ellipsoid under the mountains and lay 

The explanation for this discovery 

certain degree, to protrude above the 

based on physical principles. If the earth crust were homogeneous and of a 
uniform thickness we would expect the 

under the mountainous regions. This discovery contradicts our expectations 

generally to positive geoidal undulations on the seas and negative undulations 

geoid to follow the terrain, to a 

and large negative values under the mountains. Such values correspond 

discovers that they have systematically large positive values on the oceans 

When one computes the Bouguer anomalies in larger areas one 

4.8. l) lsostasy 

4.8) Isostatic correction and anomaly 
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North America. 
which were deployed for the determination of the best-fitting ellipsoid to 
Hayford (1912) for smoothing of the gravimetric deflections of vertical 

The Pratt1s model with certain modifications was used by J.F. 

crust block under the sea, we get 
(T-0.) a. + DioW = To 

I I 0 

Hence 

~- To - DioW J 0 
T - D. 

~ I 

also the weight of the involved water column. Denoting by ow the density 
of water {usually taken as 1.027 g cm-3) and by D. the mean depth of the 

I 

Dealing with a block submerged in the ocean, we have to add 

Here T has to be postulated (usually around 100 km to make the individual 
densities realistic) and o is generally taken to be 2.67 g cm-3. 

0 

T 1 (J -o -- i - o T+h i ' 
~-·~~--- -··· 

column, protruding h. km, in average, above the sea level: 
I 

these two expressions we can determine the density of each individual 
and regard it as a contribution of a column with average height zero. From 

const. =To 
0 

compensation level and an average density o we can express the constant as Oi 

be the same for all the columns. Postulating a certain depth T of the 
(T + h.) o. be constant, i.e. 

I I 

necessary that the product 
pressure on the magma it is 
(co 1 umns) to 1,~xert the same 

For the individual blocks 
"compens at l on l eve l ". 

level is usually called the 
112 

717/ll) 

T 



and 

h.a +AT.a AT.1oM 
I 0 I 0 

T = T 
0 

Then the first equation yields 

we can determine 

zero subner s l on AT.): 
I 

and oM is the density of the liquid, 
in our case the magma. aM is usually 
assumed to be 3,27 g cm-3. 

From the equation for a column of zero height h. (and therefore 
I 

Here T +AT. is the depth of submersion 
0 I 

(T + h. + 6T.) a = (T + 6T.) oM ~ 
I I O O I 

equality is satisfied: 
is achieved when following 
into a liquid T + AT. deep, 

0 I 

T + h. +AT. high, submerged 
I I 

equilibrium of a column 

Se.a 

l 

T 

sink differently into the plastic magma according to their heights. 
all the individual blocks and has,therefore,to conclude that the blocks 

His model assumes a constant density 0 = 2.67 g cm-3 for 
0 

with icebergs. 
Airy1s model is based on the analogy of the earth crust blocks 

From the Archimedes law the 
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variable thickness known as regional 

as an elastic homogeneous layer of 
earth crust. He regards the crust 
came up with a different model of 
This was the reason why Vening-Meinesz 

that the models are somewhat oversimplified. 
investigations have shown some evidence that this is not quite the case and 
to move more or less independently of each other. The geophysical 

Both the preceding models assume the individual blocks (columns) 

4.8.4) Vening-Meinesz1s model and theory 

attempts to compute the isostatically corrected anomalies. 
The Airy1s model was originally used by Heiskanen in his first 

T is generally postulated to be somewhere between 30 to 50 km. 

T + h + 4.45 h = T + 5.45h on the continents 
t = / 

............__ T - D - 2.730 = T - 3,73 D under the oceans. 

then given by 
The thickness of the crust, according to the Airy1s model, is 

and 

Substituting for T we get 
0 

water assumed to be I .027 g cm-3. 

where again Di is the average depth of the ocean and ow the density of 

(T - 6T. - D.) a + D. ow= (T - 6T.) oM 
I I 0 I 0 I 

For the blocks under the oceans we can write similarly 

l 14 



correction. When we want to account for the isostasy we have to subtract 
or T + h, where h is the height of our gravity station1in case of the simple 
of density a and height either T + h., in case of the refined correction, 

0 I 

be regarded as having accounted for the attraction of some 1~ean columns11 

crustal blocks according to the template disregarding the actual structure 
of the blocks wh i ch (if it exists) is largely unknown anyway. 

Then the Bouguer correction (without the free-air component) can 

columns of the earth crust. In other words we chose the boundaries of the 
surface into compartments, using a template, and obtain the corresponding 
as we have used for computing the terrain corrections. We divide the earth 
correction accordingly. This can be done using basically the same technique 
the earth surface) one has to change the Bouguer or the refined Bouguer 
known to be isostatically compensated over an area covering about 90% of 

4.8.5) Isostatic correction and anomaly 

contributing to the so-called crustal movements. 
still goes on and has to be regarded as a continuous dynamic process 
to design a truly realistic model. Besides, the isostatic compensation 
(seismology, earth tides, geology, tectonics, etc.) it will be difficult 
layer. Until more has been learnt about the crust from other sources 
density as well as variable thickness and behaves as a 11structured11 elastic 
combination of al I of these three models. It has definitely a variable 

In order to account for the earth crust isostasy (the crust is 

According to our present knowledge the earth crust behaves as a 
used in practice. 
complicated. Because of its complicatedmathematics it is rather seldom 
description of the model is based on the theory of elasticity and is quite 
model. The mean thickness is assumed to be about 30 km. The mathematical 
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dipole. 
column of the height Tacts as a 

corresponding to the I ack of mass in the co 1 umn , is repe 1l in g. Hence each 
corresponds to the variable heights) is attracting, the lower layer, 
upper layer, corresponding to the "condensed topography11 (variable density 

the cases of the plate or the terrain corrections this is usually chosen 
to be 1.5°. From this distance on,the combined correction 091 (Bouguer 
without the free-air -~~compensation corrections) can be computed from 
the expression for the potential of double surface layer T km apart. The 

considering again the earth to be curved from a certain distance. As in 
When computing the isostatic correction we have to start 

tables by Vening-Meinesz are available for his own isostatic model. 
geodesists and Heiskanen's name has to be mentioned in this context. Similar 

the immersed parts of the columns, with density aM - 00• Various tables 
assuming different values of T have been published mainly by Finnish 

When we use the Airy1s model we have to subtract the effect of 
and lost somewhat its importance with the introduction of computers. 
design was based on the necessity of doing all the compu ations manually 
computations of the terrain corrections mentioned already in 4.7. His 
The template used has also proved useful for various other tasks such as the 
almost all the subsequent attempts in the field of isostatic corrections. 
template pattern which he devised then, has been serving as a prototype for 
in 4.8.2. This was what Hayford did in 1912 selecting T = 113.7 km. The 
of the same sizes but with the densities a.= 0 -a. computed for 0. given 

I 0 1 I 

Hence, using the Pratt1s model, we subtract the effect of the columns 
compensated columns. 
the effect of the difference between these mean columns and the isostatically 
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correction. 
correction computed for T = 0. It approximately equals to the free air 

masses by means of expressing their effect In terms of a surface layer (on 
the geoid) of varying density. It Is equivalent to the Pratt's isostatic 

ii) Helmert1s condensation correction accounts for the redundant 
physical interpretation. It is therefore seldom ever used. 
sphere. The correction is mathematically rigorous but does not have any 
the geoid. The masses protruding above the geoid are "sh i f t ed" inside the 
inversion with respect to a sphere of a radius R going everywhere underneath 

i) Rudlki 's correction based on the principle of spherical 
met already. To name but a few, let us mention the following: 
in 1 iterature. They are based on hypotheses different from the ones we have 
precedent sections, there are many more corrections and anomalies defined 

Apart from the corrections and anomalies dealt with In the 

4.9) Other gravity corrections and anomalies 

therefore having no effect on the gravity station on the surface. 
level to be fully compensated for by the lack of masses underneath and 
free air anomaly may be interpreted as assuming the masses above the sea 
the isostatic correction. This can be understood when we realize that the 

correction og1 is generally fairly small in comparison with ogF and the 
free air correction is then often regarded as the first approximation to 

is called isostatic (isostatically compensated) anomaly. The combined 

is known as isostatic correction. The anomaly 

I llg I :=: g + 09F + og I - y J --~----~-· ~~·--·---.----- 

The sum of the combined correction and the free-air correction 
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The only difference is that here we would be looking for differences in 

T8 and then 8N8 all over the earth surface. The template method may be 

used for this purpose again to determine the T81s in individual compartments 

in much the same way as it was used for determination of the terrain corrections. 

the surface thus distorted is known as cogeoid. oNB of the Bouguer anomalies 

can be as large as 440 m, i.e. much larger than N itself. 
The cogeoid can be reduced to the geoid by evaluating the quantity 

This distortion is usually called the indirect effect of the mass removal and 

oW8 TB 
oN8 ee - = y . y 

given, using the Bruns• formula: 

removal of the Bouguer plate and/or the terrain by T8 we may say that the 

potential w of the earth is changed by oWB = T6. The effect of the Bouguer 

anomalies on the geoid computed by means of the Stoke1s formula ls hence 

change the real distribution of masses, the potential of the earth and hence 
even the geoid. Expressing the change of the potential due to the 

words, when using the Bouguer anomaly (simple or refined) we mathematically 

undulations, we actually disregard the masses above the geoid. In other 

When removing the effect of the Bouguer plate and/or the terrain 

4. 10) Indirect effect, cogeo id 

hindered by our lack of knowledge of the geoid. 

us thus with the boundary value on the ellipsoid. Its application is 

since it removes the effect of the masses above the ellipsoid and provides 

formally the same shape as the ogF (see 4.5) with h + N replacing the h. 

Theoretically, this correction should be preferred against the free-air 

related to the reference ellipsoid rather than geoid. It has, therefore, 

iii) Bruns' correction is nothing else but the free-air correction 
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The isostatically compensated (isostatic) anomalies are obviously 
the most truthful representation of the nature and would be theoretically 
the best to use for geoid determination. Their distinct disadvantage is 
the complicated computation. We have seen that one has to compute the 

manner. 
in the most useful smoothly and reflects the local gravity irregularities 

In spite of our intuition it is not the Bouguer anomaly that 
depicts the real distribution of masses the best. Although it seems to 
account for the visible distribution of masses adequately, the fact that 
there is the mass deficiency in the lower part of the crust tending to cancel out 
the mass redundancy in the upper part of the crust, distorts its real 
meaning. This can be seen from its huge indirect effect. Hence the 
Bouguer anomaly is not recommended for geoid determination. However, it is 
still very useful for geophysical prospecting because it varies very 

4. 11) Discussion of the individual gravity anomalies 

air rather than any other anomalies. 
masses at all. This is one of the outstanding advantages of using the free- 
produced by the free-air anomalies: There we do not manipulate with the 

Similar argument holds true for the isostatic anomalies. However, 
they yield a different cogeoid that has to be transformed into the geoid 
using again the above formula, where 6W is given as the difference TB - TC. 
TC here denotes the potential of the "anomalous blocks11 the effect of which 
was subtracted from the "r equ l ar Bouquer blocks". Since the absolute value of 
TB-TC is much smaller than the absolute value of TB, even the indirect effect 
of the isostatic anomalies is much smaller than that of the Bouguer anomalies. 
It is of the order of+ JO m. 

It is not difficult to see that there is no indirect effect 

potential rather than differenc~s of the attractive force. 
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It is usual to depict the results of a gravity survey in the 
form of a map. The maps may deal with either the observed gravity or with 

4. 12) Gravity maps, gravity data banks 

The literature is rich with examples. The individual geoids vary quite 
widely mainly due to different interpolation techniques used by the authors 
to determine the interpolated values of anomalies in the unsurveyed areas. 
Even the best geoids are not supposed to have better precision than some 
+ 10 m. This is because of the fact that large regions on the surface of 
the earth still remain unsurveyed and because the Stokes' formula, due to 
all the approximations used, has its own inherent imprecision. In 
section 6 we are going to show some more precise techniques for computing 
geoidal undulations above the local datum. 

refined Bouguer correction first then determine the compensating correction 
and finally evaluate the indirect effect after having applied the Stokes• 
formula. More precisely, the Stokes formula is really evaluated on the 
cogeoid and therefore the free-air correction should be taken with respect 
to the cogeoid. Hence the height used in determining the free-air correction 
should be h + oN1 instead of h. 

As we have stated in 4.8.5 already, the free-air anomaly can be 
considered as the first approximation to the isostatically compensated 
anomaly. In addition, it is very simple to compute and has no indirect 
effect. These are the two reasons why the free-air anomalies are used 
almost exclusively for gravimetric determination of geoid. 

Many 11gravimetric qeo l ds " have been computed by various authors. 
The best known geoids have been produced by Hirvonen (1934), Jeffreys (1943), 
Tanln (1948, 49), Heiskanen (1957), Uotila (1962, 64) and Kaula (1961, 1966). 
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the sum of the observed level 
it is not difficult to see that 
parallel equipotential surfaces, 
is represented by generally non- 
realize that the gravity field __,;,,£.W-'..---'L---- ----- hs - bA 

~l\\-1-'---'--~--------~~ r ~-~-,\'{A-\~~ 

- - -- --3· --~·' -W 
_)Y_::_ A 

depicted by circles. When we 
A,B with the intermediate stations 
Let us consider a levelling line 

5.1) Observed heights 

5) Heights 

wanted scale containing the re~uested anomalies or the observed values. 
Another example is the U.S. Air Force agency, "Aeronautical Charts and 
Information Center11, dealing with wor l d-v .. d de gravity data that can be 

magnetic tape accompanied by a computer listing and a coarse map in any 

obtained from them. 

gravity data can be supplied by them In either the punch-card form or on 

Gravity Section of the Earth Physics Branch (Department of Energy, Mines 
and Resources) in Ottawa may serve as an example in this respect. The 

gravity data from a certain area in a digital form. The data bank of the 
forms of data representation. Namely, the user may be now provided with 

Recently, the tendency has been to replace the maps by other 
the most important are the small scale map of free-air anomalies. 
have different scales and show therefore regions of different size. For us, 
I ines joining the points of equal anomalies -- isoanomales. The maps can 
anomalies. They may depict either the individual points or provide us with 
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The last o rooe r t v is usually written as 

Path 2 Path l 

and also 

levelling, we can write generally 

Using differentials instead of differences, i.e., abstracting from the actual 

I ines connecting the same two points yield di'ferent level differences [oL. 

This unfortunate property results in the fact that various level! ing 

and if 9p ~ g81 then oh~ oL. 

where gp, 981 is the actual gravity at P and 81 respectively. Hence we can 

write for oh; 

E ~ ::. ~ll 

or using differences 

dWl 
dh 81 

dwj dh p = - gp' 

We can write 

and the "cor re spond i nq" height difference oh can be expressed through gravity. 

The actual relationship between the observed level difference ol 

difference A and B, h8-hA. This is due to the non-parallelness of the 

equipotential surfaces. 

the levelled difference of any two points A,B is not equal to the height 

differences ol is not equal to the sum of the height differences oh. Hence 
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~g dl 0 . 

A with B we take, the i1CAB will be always the same. We say that the 

geopotential numbers are not ·1*1 th-dependent and write 

the height of every point uniquely. This means that whatever line connecting 

It is not difficult to see that the geopotential numbers define 

connecting 'A with B. 

the surface (actual) gravity along the levelling line 

the difference of two equipotential numbers c8 - CA can be computed from 
- A \NA\'> ~.___/ 

~ B 
~A - C~ = i1CAB = fA g dL "' . E g. c,l. 
F\ .{/ I =A I I 

The numbers c0 - GB, G0 • GC\' where c0 is the potential of the geoid, are 

known as geopotential numbers defining the heights of Band A. Evidently, 

that a point laying on equipotential surface W =CB is above (below) the 

point laying on equipotential surface W =CA by 

( 
) 

~ 

equipotential surfaces directly to define the height of a point. We may say 

One way how to define the heights uniquely Is to use the 

5.2) Geopotential numbers 

consideration. 

feature. In order to achieve it, we have to take the gravity into 

definition of a height of every point on the surface is a highly desirable 

account do not define the height of every point uniquely. But the unique 

We can conclude that the results of level I ing without gravity taken into 

and quoted as integration over a closed circuit. 
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D llCAB • 1 B 
Llh = -- = G E g. oL .. AB G i=A I I 

Adding and subtracting G to g. ~·.Je obtain 
I 

To derive such a correction let us write: 

of two points A,B in terms of a correction to the observed level difference. 

It is a general practice to express the dynamic height difference 

11 II 
in dynamic height system a lake surface is flat. 

geopotential number does. On the other hand, points laying on one equipotential 
tt- surface have the same dynamic height. This is usually expressed by A_slogan-- 

not deviate from the level led height as much as the value of the corresponding 

question -- usually a country or a group of countries. 

We can see that ho is expressed in length units and its value does 

in such a way as to be close to the average value of g for the area in 

where G is a gravity value selected as a reference. G is generally chosen 

Dynamic heights are designed to retain the advantage of the 
. -lt<t~ > 

geopotential numbers and eliminate .~ disadvantage. The dynamic height of 

a point A is defined as 

5,3) Dynamic hei~hts 

geopotential numbers are very seldom used in technical practice. 

This is far too much for any technical work and it is the reason why 

depart from the observed heights by some 2% even when we chose the units in 
ld, .. t..-_) 

the most convenient way, i.e.~ express the gravity in kgal, so that g - 1. 

The disadvantage of the geopotential numbers is that they are not 
2 2 given in length units but in cm /s -- hence the name. Numerically, they 
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b 
a value between f(a) and f(b) . 

expressed as "f(X) (b-a) where f (x) is ~(6) 
I/ 

I I . .. f . . r: /' . . (.X) / ''.·" ·; ' ' ' ('' 
I : ! I i: !; 'I 
.' • ' 1 • I I ,' 1/,/1 

is continuous on [a,b) then the definite 

integral Jb f(x) dx can be always a 
/1 . ' 

\.le now recall the theorem about the "me an value11 saying that if f 

d\-1 
9' 

0 \·IA 
hA = - f vi 

0 

and 

o\.J ah= - 

p l umb+ l i r.e . \.Je can write thus for 6h 

whe r e s ' is the gravity along the 

expressed as 
Ci o 
A\A 

5.1) that the difference 6W can be 

actual plumb-] ine connecting the point A with the geoid. We have seen in 

Orthometric height of a point A is defined as the length of the 

5.4) Orthometric heights 

D 1 g. - G 
(g. + G - G)6L. }: SL. E 

I 6L .. LlhAB "G ~ + G I I I I 
I 

Here 

M 
E6L. = LlhAB i I 

is the observed (measured) level difference between A and Band 

~ 

- G 
1vJt~ ~-lt r; ~< D 6L. = 6AB G I 

---· 
is the dl'.namic correction we are 1 ook i ng for . 
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'--, 
dY _ 2 ~ - 2yJ0 - 2(JJ , 

The same formula, appl i~d td'-normal gravity above the mean earth ell ipso id 
/ - <, <, 

y i e 1 ds '',·.,, 

reads: 
based on the 1st Bruns' formula (see Physical l i ne. Stt:i_e i r approach is 

.._______.... "" 
Geodesy I, \,3.Jl1) that -, 

I 

uses the Poincare-Pray's hypothesis concerning the gravity along the plumb- 

The best known of the various definitions is that of Helmert who 

we get various definitions of orthometric heights. 

function of height. According to the type of assumption (hypothesis) used, 

In the last integral, g' has to be assumed known along the plumb-] ine as a 

1 

~ A 

g' = - _1 (\•/ - \.J ) 
ho A 0 

A 

In order to evaluate the mean gravity, let us write 

along its plumb-1 ine in the sense of the theorem quoted earlier. 

~~ 
i/3~ 

is then defined as the ratio of its geopotential number and a 11mean gravity11 

w 0 orthometric height of a point The 

the orthometric height of A, we get: 

and the definite integral equals 

[a, b] = 

w A 
theorem on our case, where 

the b-a 
f (-2-) . . A1pp lying 

!/~A 
-----~-..___~-- 

Obviously, if f is a linear function, then f(x) 
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(gA + 0.0848 ( h~ g' 

Substituting the last result for g1',in the formula for g1 we get 
\ -, 

-, -, 

line. 

evaluate the mean gravity along the plumb- We can now 

0 for h in meters. 

[mga I] 

Finally, we obtain 

[mgal]. 

N~, let us wr l t e for any point A1 on the plumb-line of A: - ·-·----- 

"',,_ A I .. 

. ,· !_~_,--- g A I = g I = g A + f A EJL dh'/ 
. \ ah./ 

.:.'. t ~' 
»-> + ---- 

-, ~~~-~~~---1 
) ~-~-~- - 0. 0848 mga l /~-· I 

This is the Poincare"-Pray gradient of the actual gravity underground. 

0.2238 ll)Qal/~. 

~ + 4nKCJ, ah 

1<1e get when subtracting the second from the first formula: -. ··,"/' 

.·· .··"·"' 
l ON k <; I In this formu -~'ah" can be ta en apprq_ximately equal to the 1free 

'"' a i r " gradient; i .e., -0.3086 mgal/m. 4nKCJ, for a~'- 2.67 g cm-3, becomes 
-, -. 

Here J and J0 are the mean curvatures of the actual equipotential surface 
-, 

and the correspo~ng normal equipotential surface .r e spec t l ve l v . Taking 

approximately ', 

~ 
gJ ~ yJO ', 

'- ~,, 
-, 
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and similarly for B. For the difference of their orthometric heights we get 

to do so let us write for the orthometric height of a point A: 
the observed level difference and the correction. In order of two terms 

to express the orthometric height (whichever it may be) difference as a sum 

Baranov , Ramsayer, Ledersteger, et. a 1. 
It is again a general practice, as in the case of dynamic heights, 

systems, used extensively in technical practice have been put forward by 
due to Niethammer, Mader, Ledersteger, et. al. Many more approximate 

~= C/(g + 0.0424 hM}~ 
Other, more refined variations on the same theme, are definitions 

or, with sufficient precision: 

z 
orthometric height: 

0 0 hA = CA/(gA + 0.0424 hA) 

Thi s is the consequence of having chosen g to be a I i -~'ear function of h O. 

Using the determined value of g' we can now write for the Helmert's 

point of the plumb-line:' 
that could have been deduced Jrom u() rig~ away for g 1 of the cent ra 1 

-. -, ,,"' 
'·, 

'""' -, 

Note that after all the computation~'~e are ending up with the value for g1 
-. 

[~gal for h~ in m ]. = gA + 0.0424 h~ 

0 
2 hA 

0. 0848 [h~Z - .;-] 
0 
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levelled heights. Since they have a definite geometrical meaning -- 

It uphi 11. On the other hand, they are usually numerically closer to the 

points laying on one equipotential surface are generally different. Hence 
lj 

in the orthometric system, a lake surface is not flat and water may flow 

following three lines AB, A0A, B0B. Or to be more precise as a sum of 
dynamic corrections in the open circuit A0ABB0. 

To conclude with, let us note that orthometric heights of different 

can be regarded as being composed of three dynamic corrections for the 
The interesting thing to note about the orthometric correction is that it 

orthometric correction 
heights without any detrimental effect and we finally get for the 
In the corrective terms, the orthometric heights can be replaced by observed 

tio tio M 9A-G M 9a-G 
AB AB + hA -G- - hB -G- 

L'ihD D G-g' ho G-g' B A 
= + hB --- AB g' A g' B A 

9• - I 

D M 1P ho ho B and similarly ho 0 9A But llhAB llh AB + == h --""- Hence AB B B G A A G 

tih0 lihM 0 ho 9A-G - ho g'-G B 
= AB+ llAB + -G- -G- AB A B 

1) - 1) - hD 
A 

' ·-~~ .-1, .. , -v.; ,, 

() 

)., J) ·/''( .i. 
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too far apart. 
field, the two values, g', y1, are not 
quasigeoidal) undulations and the gravity 
therefore to a certain extent even the 
relationship between the geoidal (and 
gravity in AA" and due to the 
last §)would be a mean value of actual 

where ~'is the mean normal gravity along the ~lumb-1 ine of A taken from the 
mean earth ellipsoid to a point h~above the ellipsoid. In other words, y1 is computed 

as a mean value of normal gravity in A0A1 

(see the diagram). Note that s ' (see the 

defined as 
' 

approximation to orthometric heights. The normal height of a point A is 

On the other hand, the normal heights can be regarded as 

coincides with it on the seas. 

physical meaning) that departs from the geoid by at most a few metres and 

in particular. Quasigeoid is a purely mathematical surface (without any 

and are closely tied to modern geodetic theories, Molodenskij and Hirvonen 

the geoid. They relate the points to another surface known as quasigeoid 

The normal heights are not supposed to describe the heights above 

5.5) Normal heights 

about 30 times larger than the tolerance 1 imit for precise levelling. 

St. Bernardino) on a stretch of 50 km climbing from 300 to 2000 m. This is 

attain is the 23 cm experienced in the levelling of one Alpine road (Biasca- 

As an example of the magnitude the orthometric correction can 

as the most appealing intuitively and used in practice almost exclusively. 

geometrical heights above the sea level (geoid) -- they are also considered 
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to determine y. from 
I 

height h. of the point for which y, is computed. It is quite sufficient 
I I 

of course, a function of both latitude~. and 
I is' The normal gravity here 

from the following formula 

)o~ • i~Ayi 6Li .J 

compute the approximate values of geopotential number differences ~C 
If we decide to use the normal instead of observed gravity, we 

usually less than 200 mgal, are neglected. 

of 5400 mgal. The local irregularities of the actual gravity field, 

corresponding to the change of Y from the equator to the poles of the order 

for the effect of the overall convergence of the equipotential surfaces 

Wherever the gravity survey ls not detailed enough to evaluate the 
geopotential numbers and the corrections on the basls of observed surface gravity) 

we can at least take the normal gravity into account. The normal gravity accounts 

5.6) Heights based on normal gravity 

again uniquely. 

Obviously, the normal heights define the vertical position of every point 

It is easily seen that the normal correction to the observed 

level difference ~h~B is given by the same formula as the orthometric 

correction with the exception that Instead of i1 we wrlte ~·. Hence 

~~ ~~B +~~ ~A:G -~ YB~~ · I 

adopted in Western Europe for the unified European levelling network. 

They have been dre called ~nal heights. Normal heights using 
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