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PREFACE

In order to make our extensive series of lecture notes more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.
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1} The topic of physical geodesy

In surveying, we are concerned with the determination of mutual
position of points. When we work In small areas, we are able to get away

with the measured relations. Hence the relation between two points can

be expressed as
-
P] « Pz.
In larger areas, we cannot do the same. We are not able to measure the

direct relations between the points and have to refer them to a common

framework that interrelates the two points, Hence then we really speak

about the relation

P b framework < P2

1

The description of such a framework and the relations between the points

and the framework is one of the main concerns to geodesy.

In geodesy usually some kind of surface, ''close' to the
topographic surface of the earth, is chosen as a reference surface that
plays the role of the framework. It is, of course, desirable that the
reference surface be as close to the topographic surface as possible so
that the individual points {whose position towards the topographic
surface can be measured) can be related to the reference surface in @
simple manner.

On the other hand,for the computational convenience, we want
the reference surface to have the simplest possible geometrical shape.
It is, for instance, conceivable that the topographical surface would

not be a good reference from this point of view.



When measuring the positions and relations between the points
on the surface of the earth (and above and below the surface point as

well) we are subject to all kinds of physical influences from the

physical environment. Our instruments obey some physical ''laws' and
“"rules' which we have to try to understand in order to be able to
interpret our measurements. We are all aware of the gravity force,
Coriolis! fqrce, air refraction, influences of temperature variations
to name but a fTew,

For the static processes - as the geodetic observations are -
the two most important physical Influences are the refraction and the

gravity. They both change the geometry of the space we are working in

and have to be therefore studied and understood as clearly as possible.
While we shall leave the study of refraction alone completely - this being
one of the topics of surveying courses - we are going to devote our
attention almost completely to the gravity.

The theoretical understanding of the gravity fleld, its

determination and its relation (relevance) to the geometrical

investigations (that constitute the main topic of surveying) is the

field of physical geodesy. Hence the first semester of our course will

be devoted to two main subjects., First we shall try to get some
understanding and grasp of the mathematical model of a gravity field.

This subject is known as the theory of potential. The second subject

will be the earth gravity field and its approximations used in geodesy.

in this first half of the forthcoming semester, we should

learn something about the mathematical tools used in physical geodesy.




The knowledge of these tools should enable us to follow, in the second
half, the development of the classical concepts as how to determine the
relation between the gravity field and some of the reference surfaces

used in geodesy.

2} Elements of the theory of potential

2.1) Concept of a field of force

Where, in a certain area of our time-space, we have some
physical forces acting, we often describe the area of interest by

a vector-field, instead of dealing with the forces, their sources and

the objects of the forces directly. By a vector field we understand
a triplet of real numbers attributed to each point,(given by a four-
tuple of real numbers) of our time space. Using Cartesian coordinate

system we can represent the vector field graphically thus:
Z
‘/, //// at any point of time.
' //

a3

-~ /

X

To make things easier, we in physical geodesy, consider all the vector

fields we work with as stationary, i.e., not changing in time.



Hence any such stationary field can be fully described by a

three-valued function f, usually denoted as

. f0%) € R, ,T € R

3 3

{to describe the ''three valuedness') of the arquments - the coordinates
of the point in space. These three coordinates, real numbers, can be

regarded as coordinates of the radius-vector of the point in question.

2.2} Newton's gravitation

At the beginning of all were the experimental results

(astronomical observations) by a Danish astronomer Tycho-de-Brahe

made in the second half of 16th century. These observations constituted
the foundations on which a German astronomer-mathematician Johannes
Kepler based the formulation of his famous three laws governing the
motion of planets around the sun (beginning of 17th century), From
these three experimental laws the English mathematician and physicist

Isaac Newton derived his principle of gravitation {Philosophiae

naturalis principia mathematica, 1687) which remained until our day a

corner stone of the Newtonian mechanics.

The classical formultation of this principle is - '"the force
of mutual attraction of two masses m ., is proportional to their
product and inversely proportional to the square of their distance'.

In vector notation




>
where oy = Jﬁz are the vectors connecting the two masses (do not

> >
confuse with accelerations) and directed against the forces F],fz

and « is the constant of proportionality, called gravitation (Newton's)
constant. From a multitude of measurements, the value of k was

determined as

8 I -2

¢ = 6.67 107° + 0.007 1070 [em3g™! sec 2]
and accepted by a number of international scientific organizations as
the best approximation known at this time. The argument is still going

on as to whether the value of ¥ is varying with time.

Note the physical units of «.

2.3) Gravitiation field of a point with mass M

We can see, that the Newton's principle of gravitation is
completely symmetrical; i.e., there is no preference as to the masses.
However, it is a matter of convenience to call one of the masses
attracting and the other attracted. This allows us to reformulate the

principle in terms of a force-field (vector field) as

]
M o> ]
a of =9{‘§‘p

L .

understanding that the vector t represents a force exerted by the mass

M on a unit mass m. The Vectorﬂg,is ""directed'" from M to m and is Qﬂﬂ »
mr: tr\ W ﬂ
nothing but the radius vector of m if M is located in the cenfer of
coordinate system,
This isanexample of a radial (or central) vector field where

all the vectors point féﬁm o@k{fde towards one point (M). In any

two-dimensional projection it looks thus:



TN

. IN

It is called gravitation field of a point.

Note that in this case, we are not interested in the effect

that m exerts on M,

2.4) Gravitation field of a physical body

It was established through experiments that gravitation

forces can be added in the same way as the ordinary three-dimensional

vectors in Eucleidian space E3. Hence if we have two masses M],Mz
acting on a unit mass m, we can write for the compound gravitation force |
M M WA
2 s 2 -
= + = —— - — .
F=f +F, =% $0) " 5 P,), &
p p

the vectors ; being the respective vectors connecting M, ,M_ with m,
Pre Py 12"

We can similarly write for a whole system of masses M], MZ""’



i,
i -
'_'D

o7 !

I'IL‘1 3

- = =» > >
?_'Eli_‘xf y P r r

.} .
» I'is the rad. vector of M,,
1

Here, we are again not interested in the gravitation acting between the

individ M, nei i i
vidual masses Hi)nelther are we interested in the effect of m on the

M's,

f\inﬁkr

I'f we imagine a physical body as aff area B of E

37 with a density

(r) attributed to each point from the area, then the mass AM of a

differential

_ part AB of the body will be given by the product
AM = aBo (F)
Rl
Then we can write for the gravitation field of the body B:

. +=-+__—>I
&% Kjg 3 de P r 'r(,

v 'being the rad. vector of\\ﬁa element dM. y» and thus the dummy variable in

Where 0(_F') is the value of density in a representative point of AB, 47€2j7kh

the integration.

Note that here o is a function of the position of the element
dB and 3 is a function of the position of both the element and the point

we are investigating the field for.

2.5) Field of force on and above the surface of a
rotating body (when you rotate with it)

It is again known from experience that a forced rotation of
a mass m with rota$iona] (angular) velocity w at a distance r" from the
Lo gy .
axis of rotation ﬁgﬁbes the mass in the direction away from the axis

of rotation. Tha&pressure (force) has a magnitude

./H



The expression for the centrifugal force, as it is known, in vectorial

form is
. e
7 2 2
= w mr
c
Let us imagine now a situation when a unit mass is forced to
rotate on or above a body B. It is first attracted by the gravitation

Ana
force of the body and second pu;ﬁéd éyéy by the centrifugal force. The

combined force, known as gravity is hence given by

A Y A K Rty

©

-
Note the difference between r'" and'gl

These are the two forces we are experiencing on the surface

of the earth acting on a stationary object.

Note that if Fg > fc the object is attracted towards the

body, if fg < fc the object is pushed from the body.



2.6) Notion of potential

The field of force is a very useful representation of a
physical environment. However, the necessity of having to know three real
numbers {coordinates of the force vector) for each point in space is
inconvenient. For this reason, It is better to adopt a simpler tool
to deplct the physical framework. One of such simpler tools i5 the
potential.

The relation of potential (scalar field) to the field of
force (vector field) is very much the same as the relation of the
primitive function to the original function in the analysis of real
variable. There the primitive function F (if it exists) is related to

the original function f by relations

f0) = [F () ax, S e

Here the potential ¥V (if it exists) is related to the force

¥ by similar equations:

V(F) = jf?(?) dr , v(V(¥)) = arad v(7) = F(¥)
where V {or grad ) operator is the vectorial equivalent of 3% operator
in the ordinary analysis. We speak of ¥ as of the gofentia% of T and of
¥ as of the gradlent of V.

Note that T here means the radius (position) vector of the

point we are computing the potential (force) for. In E3 ¥ is simply

(x,y,z) or as it is sometimes denoted

- ¥ > >
r= xi +vy| + zk ,

i 3 + L]
?, j, k being the unit vectors in the coordinates axes.



\0

It is usually not easy to integrate the vector field to get
its potential even if it exists, It Iead:bthe integral equations -
difficult subject on its own. Thus we usually try to bypass this
difficulty somehow. If the potential exists it sufices to show that
its gradient is the original vector field. In other words if we find
a scalar field the gradient of which is identical with the original

vector field we have found the potential.

Potential is the most important notion used in physical geodesy.

2.7) Potential of an attracting point

We can show that the potential of an attracting point of a

mass M is given by:

\ .
. |
} V(?) - Mo assuming M located again in the centre
j r |* of the coordinate system.
We have:
) ox Wy J 3z 3r (ax 3y ] 82 k)
3
=Yoot
oF
2,1/2 ar I -1 -1 ar -1
= o 3 = = — = — T
r (x“+y“+z7) > <=7 " 2% = Xro, Dy vroo,
ar - au -
Friaias ,VArY = r/jr|, T Mo
Hence
Moo
\(V)=”’}{—?F
r

which is the expression for gravitation of a mass M as shown in 2.3




Thus
viv) = f
which is the sufficient and necessary condition for V to be the potential

of f.

Notice the sign of V!

2.8) Potential of an attracting body

Similar to 2.7) it can be shown that

g -1

v - [yt |

> -+ - = N N
where p = r - r', r'! being the radius vector of the element dM = odB,

is the potential of the attracting body B, Ve have

V() = v(sfy Sam) = Jio v 08 .

Since F o= xi o+ y} + 2k , Fio= gT + n} + CK
we have v o= {x -£) ? + (y -n) j + (z -1) i
and o= {(x -E)z + (y - n)2 + (z “C)Z)]/z
. -1 ¢ -1 3p v dp -+ 3p
\ = ¥ = 2 l2a “P sp
Hence (1/e) = vl ) i (o ) Gt 5y ) 5, k)
-1
29 Lo_.-2 an__ _ .
where o = g ° and B 2pdp = 2(x - £) dx.
90 -1 ,
Therefore . {(x - £)p , and cyclically:
:3 = {y - n)p-l, ;z = (z - ¢} p_1 . (Note the similarity with 2,7)

We get finally

(/) =02 (x- ) T+ ty-n) T+ -c) k)
3

)
.o

e



and RUSEE ~?Q/; 5%—3 dB = f {see 2.b)

which is the necessary and sufficient condition for V to be the

potential of £ Notice again the sign of V.

2.9) Potential of gravity of a rotating body

The gravity force T is given as a sum of the gravitation
force T and the centrifugal force ?c . Since V is a linear operation,
i.e. V(A + B) = v{A) + v(B) for any éwo scalars A,B, we can try to f}nd
the potential of gravity in terms of a sum of two potentials -
potential of gravitation and potential of the centrifugal force.

Denoting the first by ¥ and second by W we can write

v+ W) = v () o+ o) = F o+ f
g o
We know already V from 2.8 so that the problem is solved upon finding W.

ft can be shown that

F ‘
‘l‘. W (_g) = —;— r"z cuz \5 {note ?” = ?” (?))
2 ‘ i

is the potential of the centrifugal force. We have
r''= ¢y cos a,
T

r'' is the nrojection of Fin the plane perpendicular to the axis of

rotation. Let us put, for convenience sake, z axis into the axis of

rotation. (This is not detrimental to the generality of the treatment}.
We get

? = XT + yj + zﬁ

s ki o+ yT + ok




,._
Ta

and ¥ (W}_ =
X . e
Vi ") = 2r" (=i + —~£ 9} = 2¢".

2 >
Herce V(W) = w " = fc (see 2.5) .

Therefore the potential of gravity of a rotating bedy B is

U=V+W=}<)Jg-g-dB+%r"2 w2.

[

A brief look on the last formula will convince us that the first term decreases

with p as we go away from the surface of B while the second term increases
. 2 * > .
with r"". Hence there must be a locus where fC = -~ £ . The following

diagram shows the situation in the terms of potentials.

A
UV W
AN
i ‘\\\
\.“—\ R}
\\ =
\\..
W ) v
—T T o . e —— R S r‘
>
Therefore there is a minimum of U {that coincides with %c = -fg} where VU

does not have a radial component, i.e. the gradient of U is directed in the
tangential direction. This is actually the place where.the stationary satellites
are placed.

>
Note that the integral has got a singularity at the point r if this

is within or on the surface of the body B. Then 3 of the same point becomes

zero and the integrated function goes to infinity. We may notice the same
phenomenon with the gravitation force as well. This is a rather unfortunate

property.
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We shall now show that the problem of finding the appropriate
potential can be transformed to a boundary value problem in partial
derivatives,

The above integral cannot be evaluated because U{;) is not known.

Hence we have to look for another way how to evaluate U = > BVP

2.10} Potential as a solution to Poisson's or Laplace's eqguation

As we know from vector analysis the "first derivative" of a vector

- >
field F, called also divergence of F, is expressed as

v(F) = div F = tim ii% Fn(jS

V 50} VO
0




where VO is the volume of the space embraced by the surface S and Fn
is the magnitude of the vector ﬁn which in turn is the projection of E
onto the normal to §.

The inteqration?@é is carried out over

the whole enclosed surface §S.

. 4> _> . 0 _}
The term FndS is often called flux of F through dS. If 9(F) is in r
nositive, we speak about a 'source'' in ?, negative is called '"'sink'.

Let us take now for simplicity the S to be a sphere

(I't can be shown that the shape of S in irrelevant and in limit we get

always the same answer) and ask '"what will be the divergence of a
aravitation field?'". The mass embraced by S will obviously be
M= gV
(@]
with obeing the density of the mass within S. This mass will'radiate"

(or rather "absorb") gravitation force

F= - (aM/r

when we locate the S in the centre of the coordinate system for simplicity,

This force will obviously be normal to S everywhere so that
F = - al/ /I’2
n O
oV woV
_ 0 _ 0 Z
Hence #ands = 5 ﬁd‘i = 5 bhrr® = lswxc\lo
r r
and V(F) = lim (<bnao) = ~bows  (sink).
V -»o
o}

This equation for divergence is valid for all the points throughout the

space. We may notice thatV(?) depends on the value of o. |f we hence



take a physical body B with density ¢ in a space with density 0, we get
-hnyo v € B except the surface of B
() =% - hwac%-: - 21qc F on the surface of B

\ 0 ?F’B.

lLet us now have a look on V(?) itsetf. We can write

Lo AF, oF oF
v(F) = - + —35- + i VeF {scalar product}.

But we have learnt that

F=v(y)
¥V being the rotentia! of F. Hence
2 2 7
> Aty Y g v
7 m= T i = ———— s =
S = ern) = L DY 2 L)
X y z
Here vy () = vz( } = a( ) is a differential operator of

second order. It is known as the Laplace's operator.

Putting these two results together we end up with the partial

differential equations for V:

- hbao in B
AV} =Z— - 2m0 on the surface of B
0 outside B,

The first two equations are known as Poisson's equation, the general

formula being

-

4 (V) h{r) # 0 ,where h is a known function.

The last eauation

ALY)

il
[




is known as the Laplace's equation. They are the two fundamental differential

equations of the theory of potential
We have thus learnt that the potential of gravitation of a
physical body must satisfy the Poisson's equation in and on the surface
of the body and the Laplace's equation outside the body.
Note that A is again a linear operator so that
AlA + B) = A(A) + a(B) )

A{KAY = K A(A)

=TT

for any two functions A, B and a constant K
Let us see, what differential equation is valid for the /

potential of the centifugal force. Puting z-axis into the axis of

rotation of the body, we can write {/
wl 2y 2 /
On the other hand
AW = A( lgr”zwz = 3§w2 ari?, /
But
2 2 2
o = (g 2 (Pey?) 4 2 (PP
2 2
IX dy az \

Il
]
+
]
4
<
I

We conclude that since Ar”2 = 4 in this particular coordinate system, |
it equals 4 in any coordinate system and we have

AW = 2w2, . o (a_

We shall just notice that potential of gravitation outside
the attracting body satisfies the Laplace's equation, the potential of

gravity does not. The potential of gravity has to satisfy the following

Poisson's equation:

} ALY + W) = AU = ~huwo + 202
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where only o is a function of the position. Hence throughout the space
U has discontinuous second derivatives only at the points (surfaces)
where o(¥) is discontinuous, i.e., on the surface of the body or inside
the body if it has discontinuous density (Regions, layers, points).

U itself is continuous throughout the space.

2.11) Harmonic functions and their properties

Function satisfying the Laplace's equation in region A are

called harmonic ins. For example, the gravitation potential of the attracting

body is a harmonic function outside the body. Any harmonic function

has got the fellowing properties:

i) Attains both maximum and minimum values on the boundary

of any enclosed regionj?c.u4, the values inside & being smaller than
the maximum and larger than the minimum,

ii) s analytic in all the points of A , 1.e. has got
derivatives of any order.

iii) It lends itself to spherical inversion. This means

that if V(¥) is harmonic inside (outside) a unit sphere , % v(®)

= Y S . . _ ;
where R = r/r°, is harmonic outside (inside) the same sphere, while the
sphere transforms to itself (i.e. we talk about unit sphere centered
upon the origin of the coordinate system). This property can be
generalized for any Be oA with the consequence that e gets also
inverted.

iv) The value thatV, harmonic inside a sphere, attains in

the center of the sphere is equal to the mean of all the values on

the sphere. Hence, if the sphere is centered upon the origin and has

a radius R we have
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v) The most important property has been established by a

Frenchmathematician Dirichlet who proved that the values of a harmonic
function on cliosed boundary surface determine one and only one
harmonic function within the boundary. This became consequently known

as the Dirichlet's principle. |t has been shown that the corresponding

harmonic function always exists if the boundary is''sufficiently smooth'

i.e. has a continuously varying tangent plane and if the harmonic

function is allowed to disappear in the infinity (when the region fgw
considered infinite).

{et us just state the proof of the Dirichlet's principle,
which is the easiest to prove: 1et1§ be a finiteregion with boundary
$. Let us suppose that there are two harmonic functions, V, W that
can attain the same values on the boundary S. Hence U =V - W, also a
harmonic function due to the linearity of A operator, must have its
boundary-value zero. But, according to the first property of harmonic
functions, both maximum and minimum lay on the boundary. Since the extrames for
U equal both tozero, U must be zero even within the whole'i& . Hence
V - W=0and V = W which concludes the proof.

Let us mention here that the function

P ) =1/ (hng)
is known as the fundamental harmonic function or fundamental solution

to the Laplace's equation. The use of it will be shown later,

2.12) Boundary-value problems

The Dirichlet's principle insures that there exists a solution
to the Laplace's equation if we know the values of the sought function
on the boundary of a certain region.,The problem of finding the harmonic
function that would satisfy certain boundary conditions is called a

boundary-value problem.



There are basically three types of boundary-value problems:
The first, due to Dirichlet, whose name it usually bears is the one
expressed in Dirichlet's principle. |t can he stated as —“giVen the
region of interest and the values of a harmonic function V on the
boundaries of the region, find the harmonic function V in the region?
This means that we have to solve the Laplace's equation {AV = 0) knowing
the value V{¥}) ¥ ¢ S, where S is the closed boundary surface of the region
of interest. The problem has a solution if and only if the assumptions

of the Dirichlet's principle are satisfied.

Second boundary-value problem, bearing the name of Neuman,

differs from the first only so far that we do not know the value of V
on the boundary but instead we know the derivative
g% (?), ? £5
of the sought function along the normal n towards the boundary S.
For the second problem to have a solution inside a region it is necessary
that

LT

s an

This condition follows immediately from the assumption that V is harmonic
within the region, hence the flux of its gradient through the whole
surface S has to be nil. This, together with the conditfons for the
DE}Fchlet‘s principle are all the sufficient conditions to ensure that
the Newman's probliem has a solution.

We speak about the third boundary-value problem when a linear

combination of the first two boundary values is given on the surface S:

, -
F) =) 4o, BL s,

where f is a function. Note that together with the assumptions for

Dirichlet's principle, the equation

4fs f(Fy ds - .;—ﬁﬁlv('?) ds




nust be satisfied (o, {P . 5 ds = 0).

2.13) Some methods for solving the boundary-value problems

There are many different ways how to salve a boundary-value
problem. We can use the operator calcuilus {Laplace's, Fourier and
other transformations), functional analysis methods, transition to
integral eguations, Green's method, Fourier's method, numerical methods,
to name but a few. They are all interrelated one way or the other and
to venture into these would take a considerable amount of time. Ve

shall briefly touch only the Green's method and devote our time mostly

to the Fourier's method which is the best sulted and therefore the most

popular in physical geodesy.
The Green's method as applied to Dirichlet's problem for the

interior of a regionuf£ consists of two steps:

iy first, we try 1o find the Green's function in the form

>

(PP = P+ v (7,5

2 . . .
where r',r € "453"5 the fundamental solution of the Laplace's equation
(see 2.11) and v s, for any fixed T, harmonic in , function of T
In addition, G on the boundary must be identically zero, i.e. ¥ =~ 3*
on the boundary. We can hence see, that G is a function of the shape
of Jé-@niy and generally it is a difficult problem to find the G for a
specific J4.

i) Once the Green's function is known, the solution to the

Dirichlet's internal problem is given explicitly by:

vy = -gp By (@) as

s an s
where %%vis the outer gradient of G on the boundary S and VS is the

boundary value of V. Note that T becomes dummy variable in the integration.
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For external problem, we have to use the spherical inversion. The
Green's method in a stightly different form can be used for solving the
boundary-value problem for Pcoisson's equation as well.

The special case of the Green's solution for the sphere of radius

R is known as Poisson's integral;

12 2
R(r™" - R") @ V(R ,0,))

b 5

V(F') = ds

(r2+R2—2Rr cos¢)3/2
. . e e
where ¥ is the spherical angle of r! and r.

The Fourier's method is based on an entirely different
principle. It seeks the solution V(x y z) in terms of a product of
three independent functions:

U(x,y,z) = X{x):Y(y)+eZ(2)

or, as we sometimes call it, it seeks the separation of variables. The

development leads to three separate ordinary differential equations of
second order:
i) we suppose first that

Vix,y,2) = X{x) + oly,z)

Hence
2 2
2 N 4
A= alxe) = 022 4 x(2L 4 2Y L g
2 2 2
Ix oy a3z
and
2 2 2.
X}‘i}—-;-=-€b¥(aé+aé)
X ay 3z

it} Since the left hand side is a function of X only while
the other side is a function of y,z, both sides must be constant (they

obviously cannot vary because if they did they would vary independently
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and the equation cannot be satisfied). Hence
2 2 2

S A i
X 3y 3z

X

or, as we usually write it}

X -¢X=0,¢" +9¢' +Ca = 0
] vy zz 1

Thus we have separated the first variable x.
iii) Let
oly,2) = Y{y)2(z),
Then the second equation becomes

Zy" + Yzt + C]YZ =0,

Applying the same argument as in ii) we get

[ - = " =
Y 02Y 0, 2"+ (c] + Cz) Z 0 .

The original partial differential equation is thus split into 3 ordinary
differential equations that are related through the constants. Any
solutlon of these three equations (for any value of C], 62) that
satisfies the boundary conditions is at the same time ;he sotution of the
boundary-value problem.

2.14) Eigenvalues and eigenfunctions

The three ordinary differential equations we end up with in
Fourier's method may or may not have solutions for arbitrary values of
the two constants CI’CZ under the prescribed boundary conditions. As
a matter of fact the ord;narydifferentia! equations we have to deal

with are mostly of the Sturm-lLuiville type (special case of self-adjoint

differential equations) that have a solution only for some particular
values of the constant. These values are known as eigenvalues of the

equation in guestion.
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The Sturm-Luiville equation is usually written as
(Ky'}' - qy +xpy = 0

where y is the sought function of x,K,p @are some known, positive
functions of x, q is a known, non-negative function of x and X is a
real number. In addition, p, known as the weight function, is required
to be bounded. It can be shown that such an equation has got a solution
for xgla,b] for infinitity many values of x (eigenvalues), all of them
non-negative,

Every particular value of X, say AE, gives one and only one
particular solution vy, to the equation. These solutions (functions)

are called eigenfunctions of the equation. There are, therefore,

infinitely many, distinctly different, eigenfunctions for any Sturm-
Luiville equation. 1t can be proved, that they create an orthogonal

system of functions on [a,b} with weight 5. We have hence:

J2 v v 0 060 dx = N 5y

where N, =_/2 y?(x) o(x) dx is know as the norm of y, and aij is

the Kronecker's §.

Example: For K(x) =1, q(x) =0, p(x) =1 on [a,b],
the Sturm-Luiville equation represents the
equation of harmonic motion., We get, for its

eigenvalues:

Its eigenfunctions are

cos ‘fxix , sEr}ﬂfAix , 1 =0,1,2,..




24

As we know, any linear combination of the particular solutions
that satisfies the boundary conditions is the solution of our boundary-
value problem (one dimensional). We are going to show that this concept
has basic importance in physical geodesy so that we shall be working
with the eigenfunctions extensively. Note that all three ordinary
differential equations derived in 2.13 are of the Sturm-Luiville type.

$o far, we have been working with the common Carteslan
coordinates x,y,z. However, they are not the best suited for geodetic
purposes where we deal with the body of the earth which is roughly
spherical or ellipsoidal. Hence we find the spherical or etlipsoidal
coordinates handier. The transition to these systems will furnish the

topic for the next few chapters.

2.15) Laplacean in curvilinear coordinates, Lame's coefficients

Curvilinear coordinates: we say that we have defined &

curvilinear coordinate system (q1q2q3) in E3 if for every point (x,y,z)

we have
>
(q! )qZ:Q3) s (X)sz)
i.e. If we can express each g, as a function of {(x,y,z)} and vice versa
atl the x,y,z as functions of q; - Hence the one-to-one relationship is

required.
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Above is one example of coordinate lines of a curvilinear system,

Examples

1)

rx

Spherical coordinates:

L Y Y SN -
e e e s

X =
yﬂ
2 =

and

_‘
1

o)
]

b
1]

r sin ® cos A,
rsin @ sin A,

r cos O,

= J(x2+y2+22),

arctg (/(x2+y2)/z),

arctg {y/x)
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2) Ellipsoidal coordipates:

this system requires
the focal tength £ to

be given beforehand

= al - b)), k
o 5E O Esing
> XY
X

X = /(u2+E2) sin® cos XA,
y = /(u2+E2) sinO sin A,
Z = u cosh,

and u given by equation

uq - uz(x2+y2+22-E2) - zZE2 = 0,

% = arctg {y/x),

1l

O = arccos z/u.

Both these systems are locally orthogonal.

Lame's coefficients. The functions Hi of 19,93 defined as

o
M M+AMi

Hith T i =1,2,3
5q,%0 ‘
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"d—m..-‘ * . .
where M H+nMi is the length of the q; line connecting the two points

M o= M(q},qz,q3), Mo+ AN, M(Q]‘*-’quqz,q?)) or

M
{ + AHZ

H(q} ,q2+qu,q3) or

= +
o+ M, M(ql,qz,q3 Aq3)

4

-~ . f
are known as Lame's coefficients.

Ex. Spherical coordinates

Mr, 9 0) M{r+ar, 0,2)

b]
Ho= lim - = Yim &= 1,
Ar-0 ar-0 °F
N Mir, ® A} m(r, 0440, 2) i TAO
o = UM G ST T T
AC-D Ap—0
0 +A) ,
H o= lim Mir, 0, Mir,0,1+en) = jim LSiR8AY s
A ¥} 3)

AX+0 AX~0
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Problem: Derive the Lame's coefficients for ellipsoidal coordinates,
Note that for the x,y,z system, all the Hi's equalto 1!

It is evident that using the Lame's coefficients we can
express the differential length increment dS; along individual coordinate
lines q; as
p——
ds, = HH + dM, = H.dq,

The derivatives of any scalar field along these lines are then given by

@
-y

II-—-
az

af
9%,  H; daq,

so that we can write for the gradient of f in curvilinear coordinates:

a2

f e
e

q,

L
H,
i

Ly

i=1

Taking the differentlal volume d¥ = ﬂdSi = HHidqi we can similarly
i i

derive the expression for divergence of a vector field
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]

a(FiH; HHI)

i
i 39

Realizing that Af = V+9Yf we get for the Laplacean:

= 3 | -1 5f
tf = (IH, )(z=— (H, (IH)H. =)
(i 1 )i(aqi i (j jooi qu
-1 -2 of
= (H, )5 G ((IH,)H.° =—))
(i i )I Aqi joa aqi
Ex. Laplacean in spherical coordinates will be simply obtained by

substituting for Hi from the earlier formulae

; +

) * 35 7 99 '

(ri (rzsine af
2 oo —
rsinG ] ar

"2

= ! (2r sin@ii + r2 sinod i—£'+ cos0 —£-+ sino
’ ar L2 26
r‘sine ar
2 9f . 9°F . cotga af . | 2°f i
Syt T2t et 7 T T
r ar r rooan rsin © i

Problem: Derive the Laplacean in ellipsoidal coordinates.

0 rzsin@ §£J g__(rzsin@

rzsinza

255 )

a%f |
‘ )

+ =
sino BAZ

2.16) Fourier method as applied to the Laplacean in spherical coordinates

Let us take the Laplacean in spherical coordinates as derived

in 2.15 and seek the solution f in the following form:

flr, @A) = R(r)e Y(0,)\)



Ve get:
2 2 2
of _ dR f of oY a9 f 9y
Loy =Ry, L= RY, =R, = R
or dr r2 ] a0 aO2 ae2
2 2
( J s
Lo R éi-, Sty i< s Substituting these into the
oA aA 2 .2
oA A
Laplace's equation, we get:
2 cotg® . aY . 1 2%y | a2y
AF=-T_-R‘Y+R"Y+-O—29—RB—G+—2R s+t R=5 = 0
¥ r 30 rsin © oA

Let us multiply the equation by r2/(RY). We obtain:

2 2

] i
Af = 2r g-+ r2 %- + cotgl %gJY + 2 ;/Y s ]2 B ;/Y = 0
a0 sin 0 3
Hence
L2 _ 2
L (2rr" + rZR“) = —l-(cotge 3i.+ 2 L+sin % E—XJ = const. = C
R Y 30 302 832 1

and we have separated the first variable r into the equation

I

PR 4 2rR' - CLR 0 . @

The remaining two variables © X must satisfy the equation

2 2
aY 3y -2, 2°Y
cotg® = + — + sin @ —+ C ¥ = 0. (:)
) aO2 axz ]
Let us again seek the solution of Il in terms of a product

of two independent functions of T and L

Y (0r) = T@) " L),

H
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We have:
2 2
i 3 ;
%Z-= S4—1!— =T" LA T, ix-: TLY, iy T and after
Jo o do 2 by 2
g8l A
substitution to 11 we get:

cotgd T'L + TUL + sin 20 TL" + €T L= 0.

Let us multiply this equation by sinze/(TL) and we obtain:

sin® cosO TH/T + sinzo TYT + LWL+ clssnzo = 0 .
Hence:
] L n,
l-(sin29 T + s5inC cos@ T') + € sin2@ = - — = cogt. = L
T ] L 2
and we end up with
sinZ0 TV + 5in0 cosO T' + ({:lsin26 - Cz) T = 0 (::)

Any function of r, ¥ A that would satisfy the three equations
(£, 1Y, 11'")  and satisfy the boundary conditions as well is the
solution of our boundary-value problem {(formulated in spherical

coordinates).

2.17) Eigenfunctions of the lLaplacean in spherical coordinates,
spherical harmonics

In order to see for which values of C1and Czthe three equations
have a solution, let us take the last equation first. The equation HI"
is obviously the 'equation of harmonic motion’'. Hence, according to

2.1k, the eigenfunctions of 11'" are
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cosivpy , sinaxvu , m=0,1,2,.
m m
The definition interval of } is [0,2w] or [-m,n]. Hence the eigenvalues

are.

2 ha 2

r = = = =
(,2 ) po=moogm = m,om OsVaZicns

and the eicenfunctions can be written as
cos mi , sinmk , m=0,1,2,...
Hence any linear combination of these trig. functions satisfies the
equation II'.
The equation 11" is slightly more difficult to deal with,
It can be solved, for instance, by substitution
T = cos O,

Then we get: O = arccost and tel-1,1]. Further, we obtain:

LT T
0 dt d9 ’
‘ 2 2 2
oo @ dTdy 4 @lyde dTd deg dT deys, ATET
do ‘dt do do ‘dt’ dO T d do do dt 2
dt de
dT i d
Denoting ey by T'T and ;:E-by T“_H and establishing that a% = - sin O,
d2T
—5 = - cos O we get:
de

5in2 a(T" sinZO - T' cos®) + sin0 cos® T' (-sin0®) + (C sinZO -Cc) T
TT T T ] 2
This can be rewritten as

sin“e T”TT - 2 sin 3cos! T'1 + (C sin2@ -Cc.) T =0
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-

Substitutico 1 for cost and +'(1-t") for sinJ we get:

11_{2)2

™ - ?l(l—zz)':'1 + (C](l-tz) -C) T=0

| G

2

or, as we usually write

‘)
) TT e, F (Cl ) ]_[2 )T =0

2

(17

This equation is known as Leagendre's equation of /Cz-th order.

It makes sense to try to find a solution only for such values of Cz

for which even II'" has a solution; i.e., for

Hence

. %

It can be seen that the Legendre's equation is again of the Sturm-Liuville

type, particularly when we write:

Here ohviously (1‘T2) g Ky === . 1 = which for Ttc(-1,1) satisfies
the requirements for S.-L. ecuaticn.

It can be shown thal its eigenvalues are:
e, = ) o= nln+ 1) , n>m

and the corresponding eigenfunctions

m .
A = f-stymd
an([) = (1-19)2 o Pn(T)

where



3k

n
P (1) = *'l——' d_

2
n n n ( )n
nle2 dr

T -1

The functions an are known as Legendre's associated functions

(polynomials) of n-th order and m-th degree while P are known as

Legendre's polynomials (functions). The latter are only a special case

of the former for zero-degree.
Thus any linear combination of the associated Legendre's
functions is a solution of equation Il ! Hence any linear combination

of the trig. functions and the associated functions is a solution to

equation |1 (2.16). Ve can thus write:
i o0 . _
. O.)) = ) + i \
. ¥ (0,2) mio[(Anm cos mA Bnm sin mi) an (coso)] ,

\ n>m L e ]
where Anm’ Bnm are'aFBWtrary constants. The above exDression —

written also in following ways:

[y (53] n (&3] n
y= §$y = ¥ £ Y = Y ¥ (A_C +8B_S )
=0 N n=0 mM=0 1 n=0 m=o0 nm nm nm nm

The functions Y , Y , C , S are all called (surface) spherical
n nm nm nm
harmonics.
It is not difficult to see that on a sphere of radius r = a
(we have R(a) = const = k) we have

fla,0,)) =k YY = T ¥
n=o0 n n=o0 n

vthere Qn = KYn. Hence the solution of the Laplace's equation on any
sphere is given by a linear combination of spherical harmonics.

Therefore, the spherical harmonics are eigenfunctions of Laplacean on

any sphere.
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Reading on the Legendre s associated functions as well as
the Legendr='s functions of second kind is left on the students. The

recommended source: W, A. Heiskanen, H, Moritz: Physical Geodesy.

2.18) Orthogonality of spherical harmonics and development in

spherical harmonics

We have seen in 2.14 that anv two eigenfunctions of a Sturm
Luiville eruation are orthoaonal cn the anpropriate interval with the
weight o . Hence the functions cos mi, sin mi  are orthogonal on

[~7,%] with the weight 1. Ve have:

for + either sin or cos and

2n i={
-
i s
\ 7 P
The integral is, of course, always zero if ¢;, g are not both either

Cos or sin.
On the cther hand, the Tunctions an are orthogonal on [0,n]

for &, {[-1,1] for t ) with the weicht 1. it can again be shown that

1
Jhoe wye ) a -

- /W P {cos ¢} P, (cos ) sinC dn = M ¢
0 nm kia : : ok

where

" 2 {n+m)!

Cam 2n+) Tﬁ—mi!
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Hence even any two functions

S (0,2} = ¢m(;\) an (cosB)

where again ¢m(x) is either cos m A or sin m A, are orthogonal in the

area
A

with weiaht 1.

(0<0<m, -vw<r<)

We have

L
& by () by () dA:fO f_ﬂ L) P {cos 0) ¢, ()

P

m

T
{cosP) sin O d¥ do = /; an {cos 0) ?k1 (cos 0) sin © do

/

LNV K 2 () dr

= Mnm énk - Nm 6m1 -
e (n+m)! § m o= 0
(\3n+l (n-m}1 “ak “ml
= M

nm Nn énk 8

mlé?
21 (n+m)!

on+1 (n-m)! 6nk 6m1 m# 0.

Note that by dividing the individual functions ¢n

m by J(Mnm Nnm)

= /Onm the system becomes orthonormal.  Functions

W = ) - \/
¢nm(0’” b (x/ 0

are orthonormal; 1.e.

fiven any integrabie function h{(&,x} defined on HAve can

develop it into generalized two-dimensional Fourier series:
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= n o
h (0,2) = 2 % C ¢ (9,0) = LYo,
n=c mM=0 Mo n=

where the coefficients Cnm are given by

-1
C = Dnm'l;e h(on) o (0,x) dA.

nm

We are purposely not using ¢§; for /:6 since A does not
have to be closed in this development.

MNotw: tnat a sphericaisurface is one of such areas Jé and that
any function defined on the spherical surface can be thus developed
into the series of spherical harmonics, without any connection with
the Laplace's equation. f the function h happens to be the
boundary-value of a boundary-value probiem, then

R(r) h (5,1)
is the solution of the boundary-value problem ocutsideor inside the

sphere for which the h is known.

2.19) Complete solution of the Laplace's equation in spherical
coordinates

So far we have established that any linear combination of the
surface spherical harmonics is a solution to equation 1t from 2.16.
To complete the discussion of the Fourier method applied on Laplacean

in spherical coordinates we have to find the solution of equation |

from 2.16.
We have learnt that equation 1! has a solution only for
C, = nin+l) , n=m, m+l ,
This must be born in mind when solving equation |, that changes to

FZR“ + 2rR' - a{ntl}) R = 0
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This equation is known as Euler's and can be solved by substitution

r = exp (t). We can write:
dt | —t
= ' v S5 oopr Lo gy
t=lnr; R =R LT RLe
TR P T C (I dztzRi G2t 2Ly
“rr T odr V4 dr tt Tt drl tt tY 2
r r
2t -2t
_ 1 - i
R tte R te
Hence the Euler's equation becomes:
2t ., -2t . -2t t ., -t
\ - + - n(n+1)R =
P (€ R (© ) 2e R (& n{n+1) 0

or

R" 4+ R' - n(n+tl)R =0
tt t

This is a linear equation of secon! order whose characteristic

equation is

az + o - nln+l) =0

and

+ "’(n2+n+fi—) = - ";"i /(n-&;—)z

£V(E () = 4

- -4
1,2 2

There are thus two sets of functions satisfying the Euler's equation:

R(i): QNE ’ R(Z) _ e—(n+l)t _ r-(n+l}

n n

We knovt already that for the boundary-value problem to have

a solution outside a sphere, the disappearance of the solution in the

M

cannot supply the solution to

(2)

infinity is a prerequisite. Hence R
a boundary-value problem outside a sphere. On the ohter hand, R

cannot give a solution to a houndary-value problem inside a sphere



3f

because it grows beyond all limits for r - 0 which contradicts the
first and the fourth property of harmonic functions (see 2,11}, Thus
R(}) gives the solution to the Laplace's equation inside and R(z)
cutside a sphere.

We may, of course, have a sphere for which a function would
be harmonic outside and inside (apart from a certain region or point
because no function can be harmonic throughout the space !) in which
case we require that both external and interval solution have the same
value on the sphere. |t is evident that this can happen only on a
sphere with radius r = 1, the unit sphere. Really, one can see that
the two solutions to Laplace's equations

Foa o Ny, f o=y le¥l)y

' n=0 n © n=0 "

lend themselves to spherical inversion {(see 2.11) if and only if one
is a solution inside the unit sphere and the other is a solution
outside the unit sphere.

tn practice, though we seldomwant to solve the boundary-
value problem for the unit sphere. |If we wish to solve the problem

‘a', all we have to do is to scale the solution

for a sphere of radius
in such a way as to make them both agree on this new sphere. This is

easily done and we can see that

Fooox Oy, F o= oz @My
| a n o g n
n=0 n=0

are the complete solutions for the inside of the sphere of radius 'a’

or for the outside respectively.
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2.20) Complete solution of the Laplace's equation in ellipsoidal
coordinates

We shall just mention here that the complete solutions to the
Laplace's eauation in spherical coordinates has  an analogy in
ellipsoidal coordinates:

o ]

fi = ¥ I [pnm(u,E,b) an {cos 0) (Anm cos m) + Bnm sin mx )1

n=0 m=0
" i n
fo= = I [qnm(u,E,D) an (cos 0) (Anm cos my + B sin m )]

n=0 m=0
where b (u,E,b) =P (iZ) /P (2

nm e nm E nm E
o (wEb =0 (%) /a (%)
nm ' nm E nm £ )

Here 'i" is the imaginary unit, Qnm are the lLegendre's functions of

second kind and "b' is the semiminor axis of the ellipsoid (defined by
b and E) towards which fi is the internal and fe the external solutions.
This ellipsoid hence plays the same role as the sphere of radius 'a'
has played in 2.19,

Note the similarity in structure of these formulae with the
spherical ones, If it was not for the indeces m by p and g we viould
be able to write them in the same manner. Here because of the asymmetry
of ellipsoidal coordinates with respect to © , the 'radial'' functions
p, q depend on the order as well as degree of the surface spherical
harmonic with which it is combined.

Further reading on this topic is left to the reader. (Use

Heiskanen and Moritz: Physical Geodesy).



bt

n
If we denote Y = I Y we can write
n nm
m=()

oo n

FE = 7 ’ Pam nm
n=0 m=
o0 n

fe =2 % qnm Ynm
r=0 m=0

2.21) Solution to the spherical boundary-value problems using
spherical harmonics

tn 2.18 we have shown that R'h is the solution to spherical
Dirichlet's problem if h{0,)) is the boundary value on the spherical
surface of radius 'a'. Hence the solution of the spherical Pirichlet's

problem can be written as

Lo @y, o= ®
, n=0 n=0

where the coefficients Anm’ Bnm by the surface spherical harmonics

[an {cos 0) (Anm cos m\ + B sin m )]

[E R e e

m=0)

T
v o=
}n
!

are determined by the integrals {developed in 2.18}:

5 2n+1 {n- m)‘
Ao S Ty T ¢5 h(o,x) P {cos ©) cos mr dS ,

J

i

i

i

\ 2n+1 (n-m)! ,

[ B . = 5o Trrm) ¢§i h(o,x) an {cos 0) sin mx dS

T e e —— —— i i e 2 R

(for m = 0 the term 27 is replaced by kw), Hence h{(8,}) = I v CIPY
n=0

Note that h{e,A) = fla,®,)). The integration is carried over the

whole sphere,
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For the spherical Neuman's problem, when the boundary-value

h(0) = f (000, =32 F (r,00)
an |r:a ar |r=a

is given we try again to get a solution in the form (we shall be for simplicity
interested in the outside of the sphere 'a' only):
ek
fo= = R! Y;
i n=(}

where Y'n is the spherical harmonic of n“th degree determined from the
same formulae as for Dirichlet's problem (but h (6,1) is now the
derivative of the sought function with respect to the outer normal to
the sphere}, R'n equals uan and a is for a particular n constant.
We shall show that such a solution really exists and
o = = a/{n+l)

n

To prove it, let us take the assumed solution

and differentiate it with resrect to r. We obtain

af > a n+2 . o -n-1 _ ) (2 n+2 .,
P I~= E A S R A A
n=0 n=0
and for r = a
x3
g
Jr=a n=0

which is the boundary value again. Hence if
qgs hds =20
5

and the Neuman's probltem has a solution! the assumed solution. (*) is the

only one. it is usually written as
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( - n+l ¥!

& =2
Vf o =-a I r nti
l e n=0

The most important spherical boundary-value problem in physical
geodesy is the third. . We speak about the third boundary-

value problem when a function

af Af (r,0,1)

0.2) = . e g = o} DL A Tt A

h (6,%) (c)f (r,0,0) + ¢, 7= (r,o,x))]rza (cif {r,0,A) + c, T |
r=a

-

is given on the sphere. We shall be again interested in the external

case only and seek the solution in the form:
fF = E R y®o
_ n

Here we assume again h = §0 ¥' and R" =8 R We can show that such
n= n A non

a solution exists if we take

Bn = '/(Cl - Cz/a (n+1))

To prove it, we adopt the same approach as for Neuman's problem, The

proaof is left to the reader. We just recapitulate by stating that

e e
£ =1 (2
e g F ¢ c,/a (n+1)

e

solves the third type spherical boundary-value problem for the outside
of the sphere of radius r=a.
Note that any truncation of the series of spherical harmonics
supplies a precise solution of the Laplace's equation, f.e. is a harmonic¢ function
From this point of view it does not matter how well the truncated series
approximates the boundary value, Therefore any truncated series of
spherical harmonics represents always a potential of some force. The
degree of approximation of the actual potential depends on the degree

of approximation of the boundary value. This is the main advantage

af il tiamn crbAariAnl bharmAanliecoc
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2.22) Connection between the coefficients of the spherical
harmonics and the attracting body

Suppose, we are interested in solving the Dirichlet’s problem

for outside of a sphere of radius 'a' encompassing fully an attracting
body B . Ve are interested in what relation there will be between the
coefficlents of the spherical harmonics and the attracting body, i.e.,

can we say anything about the body3§ when we know its potential?
To establish this, let us take the potential of the attracting
body (see 2.8)
V) - Kégd:a.

', Thus 02 = rz - 2Pt 4+ r'2

—
Here n =

>
The scalar product rr' can be
rewritten as rr' cos ¥ so that

J(r2-2rr'cosw + r'z)

™
[t}

2

! 1

r#(}~2£—-cosw + ii— )
r

it is known from the theory of Legendre's
. 2,-1/2 :
functions that y = {1 - 2xt + t7) for fxi <1 and] ti< 1is the
"generating function' for the Legendre's polynomials that can be expressed

as

where Pn are Legendre’s polynomials {of zero degree).
It is easily seen that in our case r > r' hence ]r’/r|< 1

and {cosW]irlso that we can write:
« g1 N
/o = 1/r ¢ P (cosy) { —)
n r
n=0
Here cos ¥ can be expressed from the spherical triangle:
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cosy = cosOcosd' + sindsin®' cos{r'-A).
it can be shown by tedious computations
that

P {cos¥) = P (cos0) P _{cos0') +
n n n

0 0

n
{(n-m)! "
+ 2 Z] {W an {cos0) an(cosO)

(cos mi cos mA' + sin mA sin mA')]

This formula is known as decompositon formula and we may notice its

complete symmetry in 0,0' and X ,)'
Substituting this result back into the expression for 1/p

and that again back into the formula for V one gets:

V(F) = scfa s/r E (T':—L)n [Pnﬂ(cos(—)) Pno(cose‘) + 2 g (_%%;_nm%_: P {cos0)

n=0 m==1 nm

P (cos0') (cos mh cos m &' + sin mh sin mx'))) d& .

Here the integration is carried over the whole bodyé, i.e, all the

points with coordipates r',0',%' . Thus we can write:
> = } n+l n
vir) = = (=) {P _{cos0) f kaor' P {coso') 4B+
n=0 T n0 5 nG
n (n-m)! n
+ ¥ an {cose) (é 2 = = kor! an(coso') cos mi' dfcos mh
m=0 !

+ fb Z-E%;—gj)—; kor'D an (cos0') sin mr' dB sin mr) }
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+ .
Multiplying and dividing each term by a" } we obtain

o 1
V) = x @™ i (eos 0) g—fﬁ (59" p o (cos ') d +
n=0
n 2k {n-~m)! r'in
% an (cos 0) I?Wa 0(3——) an {cos 0') cos m'ax dF cos mr +
m= ] )
2K n m)l ( i K] ] d$ » }\ ]}
a i) T /8 o \COS O ) sin m') sin m .
Denoting

K Flyn W
5'4; U(E“J PnO {cos @') dB = AnO
(%)
2k {n-m)! rlon . i ?
a  (n+m)! 40 g—) P o (cos ©') cos my' d& = A
2¢ (n-m)! rton ' i
a (n+m)| 4; o 5“3 P (cos 0') sin my' d® = B j
we can write:
V (?) = Z (a)n+! Yn
n=0

which is our well-known formula for the external Dirichlet's solution
from 2.21. The above equations (¥) determine the relationship between
the coefficients Anm’ Bnm and the attracting bodyé .
Notice the structure of the integrand which is a product of
a harmonic (inside the sphere r=a) function (with unit coefficients by
the harmonics) with the density,
We can see that the formulae (%) do not give us much information
about the body® . However, we shall show in the next paragraph that

some information can be gained from the lower degree harmonics.
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2.23) Physical interpretation of the coefficients by lower
degree harmonics

The formulae developed in 2.22 allow us to interpret the
coefficients by lower degree harmonics physically. To do so we have

to evaluate, the terms

SP'J
¢' =P (cos 0') cos mx', P {cos 0') sin m)’

gl nim

The associated functions are given by:

POO =}

P]O = cos O

Pil = sin Q'

PZO = %cos2 ot - %
le = 3 sin 0' cos @'
P22 =3 sin2 o .

Hence the functions Clnm’ S’nm can be written as follows

COO = ] SOO =0
b ; v
C}O cos O StO 0
C;E = sin O' cos A' S;} = s5in 6' sin !
v 3 2 ., _ 1 o
620 =5 cos O 5 820 0
CEI = 3 s5inp 0! cos O' cos A! Sé] = 3 s5in A" cos O' sin X!
v 2 . VoL L2 \
sz 3 sin” @' cos 2 A 322 3 sin @' sin 2 X

Changing over to Carteslan coordinates x,y,z using the transformation
from 2.15:

x=7r'sin®"cos 2, y=rtsinesin)', z=r'cos @
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we get:
"l = 2 Pl = O
rt‘r = X rS:I =y
J2Céo = %—xz - % yz + 22 HZS;O = 0
HZC;] = 3xz HZSE} = 3yz
Hztéz = 3x2—3y2 HZS%Z = Bxry .

The proof of the latter formulae is left to the reader,
Substituting these results into the expressions () for

A , B , we obtain
nm

_ K _
Mo = 3 fa” dk Bog = 0
K
A¥0 = ;—2[.':0 z dB Bto = 0
A = K d B, = & déf
Ry .
_ 2.2 2 _
AZO = ;3£;0(22 ‘x y ).dﬁ 820 =0
= X = K.
A22 = a3 fb oxz dB 82! a3 j';cyz @
_ K 2 - X
AZZ ——1;33 [b (x"-y“) d& 822 ——-—233 fﬁ aoxy dB.

On the other hand, the coordinates of the centre of gravity of ® are

given by {M is the mass of 8):
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fias]
1}

—r:-f* axdB

o
|

—%féoydé

= ;],]-fb czd B .

]
|

Introducing, in addition, the matrix of the tensor of inertia of &

in the origin of the coordinate system:
fa(y2+22)odi? , -fﬁ xyod® | ~f* xzod®
7 - _fb xycd & , fk(x2+22)od:§ , -fb yzod‘é =

"['.b xzod &, -/b yzod® , /‘;(x2+y2)cd§

A D -E
={l-D B -F
£ -F ¢

where A,B,C are the principal moments of inertia in the coordinate
system's origin and D,E,F are the products of inertia (deviation

moments), we get

«
Agp = 3 M Boo = 0
AL =Mt
107 2 Bip =0
a
K K
App =g ME By =z’
8
_ K A+B _
AZO"EJ(T c) 820 0
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< K
A, = —E B, = —F
217 3 21 3

K K
A, = —= (B-A) B, —=D ,
22~ 43 22

Hence, the coefficients by the lower degree harmonics have
quite definite physical meaning. This discovery will help us at later
stages to get some insight into the formulae used in physical geodesy.
Here, we just notice that whatever shape the attracting body may haye
and whatever distribution of density, the first few spherical
harmonics of its gravitation potential depend only on its principal

moments of inertia and its products of inertia.

2.2h4) Equipotential surfaces, lines of force

The loci of equal potential
V{F) = const.

are called equipotential surfaces of the potential V. For various

values of the constant we get various eguipotential surfaces. Because
the potential is continuous throughout the space, anayltical in the area
where it is harmonic and has only discontinuous second derivatives on

the boundaries of validity of Laplace's and Poisson's equation, the
equipotential surfaces of a gravity potential (gravity field) are smooth.
Their curvature varies smoothly apart from the places where density
changes suddenly, i.e., their curvature changes as suddenly as the
density does. The equipotential surfaces never cross each other and

would look very much like the onion peals.
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Example a crossection of a gravity potential of a
rotating rigid sphere with homogeneous distribution of

density may look thus

The lines of force are the curves to which the gradient of the

potential; i.e.,, the field of force, is tangent in every point. They
are always perpendicular to the equipotential surfaces as can be proved
by a simple computation, We get for the total differential of the

potential V:

av v v > e
dV = X dx + 5;'dy + 35 dz = 9V * da .

This formula provides us with the tool to determine what happens with
dV¥ when we point da in various directions. It is clear that if da
lies in the tangent plane to the equipotential ¥ = const,, dV must be
zero; there is no increment of the potential if we move on the equipotential
surface. But for VW-da to be zero It is necessary that V be perpendicular
to d;; j.e., VW must coincide with normal to V = const., which was to be
proved,

We can also see that there is no force acting in the
equipotential surface. This is the reason why a homogeneous elastic
body tries to reach a shape that conforms with one of the equipotential

surfaces. In such a state there are no tangential forces (strains)
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acting on the surface and the body is in equilibrium. Ffor a rigid

body though the tangential forces are always present. |If the elastic
body is not homogeneous, it does not follow the shape of an equipotential
surface. Denser elements are ''pulled into the body' more than the
lighter ones, pushing the lighter elements aside. This "additional'
force contributes towards the balance of forces making it different

from the equilibrium of homogeneous body. The equipotential surfaces

then reflectto a certain extent, the “immersion'' of the denser elements

area of higher density

3) The gravity field of the earth and its approximations

The earth as a whole behaves as an unhomogeneous elastic
body. It has reached a certain equilibrium so that it does not depart
"too far'' from one of its equipotential surfaces, Whenever it does
depart, it is due to

i) locally rigid earth crust {with its topography that,

of course, cannot conform with the equipotential surface;

ii) unevenly distributed density of its masses.

if the oceans were homogeneous; i.e., if the density of water
were the same throughout (salinity, temperature, mineral content, etc.},
and if there were no dynamic effects (currents, sheer stresses, river

discharges etc.} the ocean surface would follow an equipotential surface.

Unfortuhate]y,
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the oceans do not behave reasonably and their surface depart from the
equipotential surface at places by alegedly some + 2m. In addition, they do

not all have the same level and are probably even "sloping'' away from
and south
north{due to the continuous melting of the palar caps.

The equipotential surface going through the ocean surfaces
in average is called geoid, Mathematically, the geoid can be again

written as

n+1
(EJ Y + l—wz r”2 = U = const. ,
r n o]

U(F,¢,;\)= 2

H o1 8

n=0

' is the radius of a sphere encompassing all the masses of the

where 'a
earth; i.e., sphere outside which the earth gravitational potential

harmonic. Such a sphere is generally known as reference sphere. In

practice, the reference sphere is not reguired to encompass all the
earth. The excess of the masses outside the sphere can be eliminated
computationally. We can see that if we knew the value of gravitational
potential (or for that matter if we knew the normal derivative of this
potential or alternatively a linear combination of the potential and
its normal derivative) on the reference sphere, we would be able to
determine the geoid. The determination would invoive the evaluation of
U{F) in a certain area and tracing of the geoidal surface U(F) = U

o

Another way to express the geoid is
®

Ulusg )= 2 g (u,E,b) Y+
n=0 m=0

l—mz r”z = | = const,
2 s}
using the ellipsoidal harmonics. Here, the ellipsoid (b,E} is the

reference surface, called reference ellipsoid. The geoid expressed

one way or the other is, of course, identical. The spherical harmonics

Yn in the spherical solution are exactly the same as Ynm used in the
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ellipsoidal solution. The reference ellipsoid should contain all the
earth. |In practice it does not and the deficiency is accounted for
artificially.

Unfortunately, though, we do not know the values of thegrav-
itational  potential on the reference surface. We cannot, therefore,
use the described approach. |In the forthcoming chapters, we are
going to see how we go about solving the problem.

The question may remain in a reader’s mind, why are we
inferested in the equipotential surfaces rather than any other
characteristic of the gravity field. The explanation is simple --
the equipotential surfaces have an immediate application in geodesy.
They define the local "horizontal plane" {tangent plane to the
equipotential surface in a point} to which we align our instruments
when setting them up., Hence they define the geometry of the space we
work in, in the most obvious way. Theyrepresent the framework to

which all our surveying is attached.

3.2) Remarks on Spheroid

By spheroid (in the non-English literature) we understand a
simplified geoid (in English literature, spheroid coincides with
rotational ellipsoid). Bruns' spheroid takes the potential of the
gravitation force of the earth developed into spherical harmonics up
to the 2nd degree plus the potentlal of the centrifugal force. At the
same time, it takes the origin of the coordinate system to coincide
with the center of the earth. In addition, it assumes that the axis

of rotation coincides with the main axis of inertia (i.e., the products
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of inertia D,E,F = 0) and let its z-axis coincide with these two.
We «can write for the potential of the earth:

. 2 2

U = 5 @My el a2
r n 2

n=0

and substituting for the coefficients by the spherical harmonics from

2.23 we get under the above assumptions:

K K A+B K w? 2
U (r) ";" "'3 (T c) C20 + 'L}——?’— (B A) sz + 5 r = const.,
r r
Substituting for Conr Cop the expressions involving x,y,z {2-23) we get
5k BB ) (2122 L2y ¢ 02 (2,2
Uglr) = = 3 (( 0) (27-5x"-3y 2y 4 + £ (8-A) (x* )) 5~ (xT4y")
2
= E%-+ ""g-[(B+C 2A) NG (A+C-28) y2 + (A+B-2C) 221 + %m-(x2+y2) = const .,
2r

allegedly a surface of 14 order.
Helmert's spheroid is based on the same assumptions although

it uses spherical harmonics up to the Mth degree., The result is a
surface of 22nd degree. The expressions for the spheroid can be
further simplified by assuming a rotational symmetry of the earth; i.e.,
A =B. If we do that we discover that the spheroid departs from an ellipsoid of
rotation by only a very little. This is the reason why we are not much
interested in the spheroid as an approximation to the geoid.

Note that the expression for spheroid contains the following

unknown quantities: M, A, B, C, u .
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3.3) ‘“Normal' and disturbing potential

One way how we try to bypass the difficulties mentioned at the
end of 3.1 is to define ''normal" potential and the corresponding ''normatl'!
aravity, The idea behind doing this is to split the actual potential
U of the earth into two parts:

U=ug+T

where U is a potential whose one of the equipotential surfaces coincides
with the reference surface and T is the difference between the actual
and assumed potential. The assumed potential UN is usually called

normal potential, T is then taken as disturbing potential. The reference

surface is hence called normal reference surface.

The reference surface, towards which the normal potential
can be related, is usually either a sphere or an ellipsoid of rotation.
Notice that if we succeeded to split the actual potential
= 12 e
U=V + > 0T

in such a way as to make
we end up with

and the disturbing potential satifies the Laplace's equation outside
the attracting body =-- the earth. We are going to show that this can

be done for both the sphere and the ellipsoid,
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3.4} Sphere as a "normal' reference surface

We can write for the sphere:

12,2 (S) L (s (s) L1 2 2. (5)
g=V + Fw rito= UN + T = VN + y o T + T
where Ués) is constant on the sphere of radius a.
Hence
u(8) _ (8 ; (gan+] Yés) + %—wzr“z = const,
N NO r l
n=0
r=a NS r=a
(s)
VN
where Yés) = Anopno (cos 0) because it does not vary with x {rotational

symmetry of the sphere). The components in © are present because they

have to compensate the assymmetry in @ of the centrifugal term.

Here
r“l = a sin 0,
r=a
Hence-% mzr”z = %-wza2 sin’ 0 in terms of legendre’s functions
2021 - =233 0?9y =2y -3 s 1
sin@=1-cos” 0 = 3 (2 5 cos Q) = 3 (1 cos” 0 + 3

= %—(Poo(cos 9) - Poo {cos 0))

and the potential of the centrifugal force is

% w232 (Poo(cos o) - on (cos ©))
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. (s)
We can write for UNO
U(S) = AP _4A P A, P +im2a2(P -p. )+ ; A P
NO 00 00 "10 10 20 20 3 00 20 =3 n0 n0 .
Therefore:

1 2.2 .(s) 122 ? _
(Aggtua™Ung") Pog*hioPio * (Aye 3w a’) Pyg * I AnoPno = 0
in order to be zeroc for all © , all the coefficients by PiO must be
zero. Hence

122 sy, _ L22, _
(Aggtgua” = Uyg") = 0, (Aygmguia®™) = 0, Aygs Aggs Aygs voo = 0.
Substituting these results back into the original formula for Vés)
we get:

22
(8) a (8) 1 22 2> alu
Vo= E Uy T g etal) Poo‘“:i“ =3 Pa0

The value Uég) (constant) should be selected in such a way
as to correspond to the attractive force of the actual earth., For the
geoid, we have (3.1)

u@ = 5 @™y w L2 oy o L2
r n 2 2
n=0
where V(?) is the attractive potential of the earth. It can be

written (3.2) as

V(E) =S o(r™3)

- ~2
where 0 (r 3) are the terms of lower than r = order. Hence we may
write approximately, comparing the first terms of the two potentials:

a (8) .1 22,  «
F Uy m3ee) g

(s) _ kM w a
or UNO = g“— + ——-—-—-3
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(s)

Substituting this result back into the equation for UN

we end up with the expression for normal potential using a sphere as

a reference:

2
(s) _ «M 2’ 1 2.2
UN = +---r3 5 on +§_w a® {1 on)
KM wza2 azwz a
R S T BT

Note that the normal potential is known up to three unknown quantities:

kM , a, w.

Note that the equipotential surface of the normal gravity
are not generally spherical. Only for r=a do we get spherical
equipotential surface -- the reference sphere.

3,56} Ellipsoid of rotatlnas a 'normal'' reference surface

Ellipsoid of rotation is the normal reference surface almost
exclusively used in geodesy. This is because of its closeness to geoid
or spheroid. The normal potential related to it can he developed
" similarly to the case of sphere. Ve again write

2,2 (E)

U=V + %-wzr“z = UéE) + T(E) = VéE)+ w '+ T

1
2

(E)
N

where we require U to be constant on the reference ellipsoid (b,E)

as yet not specified. Hence, using ellipsoidal harmonics:

=U - i AnOPn

cosd) + lwz(u2+52)‘ sin26 = const.
n=0

q,n(u,E,b) (
no L 0 2 u=b

=h
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because the terms contianing A must all vanish, the (b,E) being
rotational in the X-plane.

Here evidently

.b .b
qﬂo(u!Eyb)l = QnO(I—E—)/QnO(]%‘) = ]! u2+E2! = a2 (See 2']5)
u=hb u=hb
so that we can write:
U(E) = ; A P (cos 0) + wzaz sin" @
NO n0 nod 2
n=0
o w282
= nio AnOPnO(COS a) + _§—*-(POO(COS 9) - on {cos 0}) .

Analogous to 3.4, it can be satisfied if and only if all the coefficients

by P_. are zero. Thus:

n0
22 22
wra® G (E)y - _wa _ _ _
(g * =5 = Uyg'd = Ajp = Pyg = =37 ) = A3p = v =0
and
NCE 2.2 . 2a?
00 = UNO 3 720 3
VéE) therefore becomes:
2 2 22
(E)_ (E)_wa w a
UN - qOO(U)E!b) (UNO 3 ) + qzo (U)E,b) 3 on (COS O)
Since
qoo(u,E,b)= arctg{E/u)/ arctg(E/b)

we can write, developing arctg E/u and again u into a series using r:

qOO(u,E,b) = E/(r arctg{E/b)) + o(r—B)
To establish the value of Uég), we again compare the first

(E)

!
terms of \N

with V deduced for the geoid asking for such a value

Uég) that would correspond to the attractive force of the actual
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3.6) "Normal''gravity related to ellipsoid reference surface

Taking the formula for the normal potential, we can compute
the force -- gravity force -~ corresponding to this potential on and
above the reference surface (reference ellipsoid). We know that the
force belonging to the potential can be obtained as the gradient of

the potential. Hence.

vV in ellipsoidal coordinates is given by (see 2.15)
3 2.
i 9
Ve § —o—
i=1 b O
vihere the Lame's coefficients equal:
u +£2c0520 2. .2 2 2,.2
H = /— , H. = V{u"+E%cose) , H, = V{U"+E®) sin 0 .
u ) 6] A
u +E
Since U(E) does not depend on A (symmetrical around z axis)
N
we have &U(E)
N = 0
X ’
Differentiating UéE) with respect to the other two coordinates we find:
(£)
3y 22
\ N __xM3 2 2 wa _ 2 2
i) YV Y arctg(E/u)+ wu + ( T 90 3 30 u) Poo
Here §%~arctg(5/u)= —_»%-E-(~E/u2) = - ZE 5
H+E™/u u +E
aq
20 _ 3 . U . b .
YT (on(! E)/on(a E)) can be evaluated approximately by

developing the Legendre's functions of second kind into the power series




in U/E or b/E respectively.

where f({x) =

Q0 ~

2
(3(2)

f{u)/f(b)
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Denot ing

+ 1) arctg(E/x)- 3%- we get

arctg{E/x)= E/x - %-(E/x)3 + l-(E/x)S - ..

5
and
Fl) = B2+ 1) (e - T (0% + L (607
=37 - (e 2 (e - 2 (ex)°
" %—(E/x)5 - 3(E/x)_]
= G- @0 -3 @’
- 5-5- (£/x)° - S (/%) +
= $§ (/)3 (1 - 0E/))) .
Hence
%g—(E/u)B (- ol(e/w)?))
o =
20 %? (E/b)° (1 - ol{e/b)2))
3
i} -‘?_g (-0 (/1)) (1 + o((E/b)%))
7]
3
=20 olter) ™)
3]
and finally
q 3 3
2 20 . %E (1 - ol{e/w)™y) = - 3 %5

RS B(E/x)“I

4 (E/x) - %-(E/x)3 ¥
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Thus the partial derivative can be written as

1 (E)
ifﬂi“ﬂ LS mzasz P4 22, (v -r )
ot u2+E2 uh 26 3 20
(E)
RII 2 2 2, 2 .2
- N wa® o (uT+ET) d
i) 30 ; (QQO(U,E,b) 7 3 ) 75 on (cos ©)
d . Y ém_ 3 2 i\_ _ - o
where on {cos 0} = 5 (2 cos” 0 - 5= 3 cosd sin8 = PZi (cos 9)

gn

It is not difficult to see, that on the reference ellipsoid,

the normal aravity ? must be perpendicular (normal) to the ellipsoid.

Y
Hence, dencting the normal aravity on the ellipsoid by Y, we get:

(£)
- _i_ UN >
"5 H U u
)
and after substituting for H and we get
u du
- t
il (K fulb’ 2 2, (0 -r.0) ¢ ;
? u2+E2c052' u +E2 u 203 20 |u=b . ;
e - i
or
Z 2
B ot .rk'” ; EI P 2 2 .
y o = e b e e b} ¢ .\)
’ b +E?6052H a2 3 o 3 20
’ o
Fealizing that FZ = aZ - bT we wvet
5 a9 5 o "
b2+Eécos2 = bz + acos U - rcosT) o= azcoszh + bzsin"v
and
S SRS %E_*EBJ_Z + (b_zal+ + 2 _é_z_b_wi) P
' 3 kM b M 3 « M 20

ai loleonda v blgin2e)
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The term azbwz/(KM) is often denoted by m (being roughly equal to 0.33

10—2 for the earth). Using m, the normal gravity on the reference

ellipsoid can be expressed as follows:

e L e e -

v alk 0 -Zms (An+Zme

a/(azcosze + bzsinzﬁ) 3 3

(cos G) )

20

L

3.7} Clairaut’s theorem forgrasity and geometrical flattennings
T

Using the normal gravity a very important theorem of physical
geodesy can be developed that links the gravity with the geometry of
the reference ellipsoid. We can write for the normal gravity on the

eguator Yg

0 = 90°, on(cos O)! = %—coszei - %—= - %‘ and
6=90° 0=90"°
M 2 2 i 2
v, ® §g~(l “gm %—((%9 m o+ % m}) = g%—(l - m - (%J g
Similarly, for the normal gravity on the poles Th
o =0, 180°, P, .(cos O = ] and
20 }e=0,i80°
M 2 2 M 2
Yy 57-(} Sy (SJ m -+ %—m) = 55 (1 + (EJ m)
a a
Hence
vb b ay 2 a 2 m
i 2 = il o
D20 @ 0 rar @5 )
= g.(i +m + %—(%JZ m o+ )
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Realizina that yb!ya - 1= {yb - Ya)/ya and b/a-1= (b-a)/a wve can write
b 'a _bra b (m + = @qz o+ b 2@y )
Y a a b +) = a 2 'b
But }2[‘1__: amzbz N bwz (1 -m - (_6_)2 El)
3 «M Ty b 2
a
Thus
VoY )
bayab. b Goa- @) 2@ )
Y a Ya
z 2
T Y - R
“ b

Here, the term (v, -v_)/v_ = f* { = a in older literature) is known as
b 'a’"'a

gravity flattenning and (a-b)/a = f ( = i in older literature) is the

known flattenning (geometrical) of the reference ellipsoid. Hence the

formula can be written as

which is known as the Clairaut's theorem. 1t was derived first by a French

mathematician Clairaut (1738) in the form:
2
5 bw

fv + f = = —
2*,'8

which Is obviously further simplification of the above for a= b .
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3.8) Somigliana's formulae for normal gravity

Handier formulae for normal gravity are due to the italian

geodesist Somigliana {1929). He has developed the formula for L

(from 3.6) along the following lines: let us rewrite on(cos Q) =
3 2

=~ gos 0 -

5 7 » using the identity

(c052® + sinZB)

03]

L
2
as

2, 1.2
on(cos 6) = cos“O 5 sin” 0,

Substituting this into the formula for Y, b We get

2
Yo © 3 ?KM2 5 (’"%m+((§')m+%m)°°520"
a’(a“cos™® + b sin“0)
1 ,sa\2 2 L2
3'((50 m + g-m) sin” ()
Using another identity
1 - g-m = {1 - %»m) (50329 + sinz@)
3 3
we can write
v, - KM L1+ (%) cos”0 4 (1 - m - @®? %) sin‘e ]

aV(azcosze + bZsin 0)

The expressions in the round brackets can be substituted for using the

formulae for Ty T (3.7):

az ab
b ame @20y .2
kM 2

n

(1 + (32

5 ™
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so that we get
r = = P s = ——
‘ .2
ary, Cogéﬁ + bya sin ©

L -
© /(azcoszo + bzsinzﬁ)

't is more common in geodesy to work with geodetic tatitude ¢
rather than with 2 . As we know from geometric geodesy,d and O are

related via geocentric latitutde B by following formulae:
= 90° - @, tgg =

Hence cotgld =

and we can write
cos® = ¢b sind , sin®@ = ca cosd

where ¢ is an arbitrary constant. Substituting these expressions

into the formula for Y, we get:

czbzavb sin2¢ + czazbya cos2¢

'Y =
o /( 2 252 . 2

= ¢ {b
ab sin ¢ + alble? c052¢)

, 2 2
p b+
{b stn 4 aYa cos ¢).

On the other hand, we must have sinzo + COSZO = }, Hence
cz(a2c052¢ + bzsin2¢) = |

which yields the value for ¢. Substituting this into our eguation
for Yo we finally obtain:

; .
! 2 , 2
: a\a cos ¢ + b(b sin @

! /(a2c052¢ + b285ﬂ2¢)

Notice the symmetry of the two Somigliana's formulae for normal gravity,
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3.9) Cassinis' formula for normal gravity, international formulae

In geodetic practice it ls usual to use yet another formula

due also to Somigliana although commonly known as Cassinis' formula.

This is because Cassinis was the first to have presented his estimates

of the values of the coefficients to the UGG congress in 1930. The

theoretical development goes as follows: expressing c052¢ in the latter
formula (in 3.8) as 1 - sin2¢ , we get:

¥

o+ (;E-g-* 1) sin2¢

Y, ¥ =y a2

° /(2% 4+ (b%-3%) sinZs) RAURI Y sinp)
a

. 2
ay_ + (be aYa) sin‘¢

According to our notation from 3.7

Y. Y Y .
ba=——b-—~;=f‘f'{,§—-b—=i~%=f_
Ya Ya a
Hence Y
—t-)w-_—_].i.f}';,é.:}_f
Ya a
and
B , 2 B . , 2
vy L) (1-F)-1] sin® _ y 1+ (f5-f-fF%)} sin"¢
° Ay ((-F)2-1) sin%e) d /O+(F2-2f) siny)

Since the flattennings are much smaller than | we can develop the

denominator into power series:

O+(F2-26) sinZe) V2 o0 < 1o (6%-26) sino - .

We thus get
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Vo= vy ((F=f-frx) sin®e) (13 (F5-2f) sinfe-...)

i

|

3 FHE) sin®p - L (F7-26) (o f-FF5) sin'y + L]

= v, Dle{fs-f-ffe- ;

Substituting sin2¢ - Ili-sin2 24  for sinh¢ we get

Y, Y, (1 + (f*-ff*-%.z-%.(fz-zf) (Fr-f=ffi)) sin2¢ + %-(fz—zf)(f*-f"ff*) sin22¢+..£

L v =y, 1+« sin2¢ + B sin? 2¢)

Cassinis' original formula, adopted in 1930 reads
Y, ® 978.0490 (1 + 0.0052884 sin2¢ - 0.000 0059 sin2 2¢ ) gal.

In 1967, the UGG adopted new values for the coefficients so that now,

we have

v, * 978.031 (1 + 0.0053024 sin4 - £.000 0059 sin® 26 ) gal.

3.10) Definitions of gravity anomaly, gravity distrubance,
geoidal height, defiection of vertical

Let us denote by U the normal gravity potential related to
a rotational ellipsoid as a reference surface (as yet unknown!) and the
actual potential of the earth by W. We have called the difference
T=VW-1U

disturbing potential (3.3), it is also known as anomalous potential.
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Let us assume, for the sake of the forthcoming definitions,
that we know the reference ellipsoid already and let us denote the
normal potential (whose one of the equipotential surfaces coincides with the
reference ellipsoidl) on the reference ellipsoid by UO. We can then
draw the following cross-section:
We can see, that U = U0 is the
reference ellipsoid, W = UO is

» the geoid, the surface we would

like to determine.aOP is the

actual gravity on the geoid,
> . .
Y0Q is the normal gravity on

the reference surface., The distance N = PQ is known as geoidal height

{geoidal undulation) at point Q. The vector
A-} > >
Jop = Jop "~ Yoq

is called anomaly vector and its absolute value 895p is known as

gravity anomaly on the reference surface.

The geodial heights probably do not exceed + 100 m anywhere

in the world., The angle © = } 309 ?OQ (do not mix up with the second spherical

coordinate), known as the deflection of the vertical, very seldom

exceeds 1' and is usually smaller than 5. (& 7 30" are considered
already large.). Because of this small amplitude of O we generally
compute the gravity anomaly from

80p  90p " Yoq
instead of

Mop = |8
T oY -
op 043 gOP - YOQ cos 0,




72

Taking W=U0 and U=UP in such a way as to let the two surfaces

coincide in P on the geoid we get the gravity disturbance vector:

g - > .

Sop = 9pp T Yp » LAVILY
disturbance 690P * 9gp ~ Yp
and the angle % EOP?P is for

all practical purposes identical

with the deflection of vertical.

They differ only by the term
arising from the curvature of
the normal field plumbline.
. > >
Realizing that g = VW and y = YU we get
Sg =9 -5y =uvd- 90 =v{W-U) = vT.
Hence the gravity disturbance vector at a point P on the geoid is given
by the gradient of the disturbing potential at the point. We can also

write

where n, n' are local outer normals to the geoid and the ellipsoid
respectively. Since the angle between the two normals (deflection of

vertical) is small we get:

> > aW | au aW |, 3U 97
R e S TXAE T i T

Thus the gravity disturbance is given as negative derivative of the
disturbing potential taken with respect to the local outer vertical

{or outer ellipsoidal normal for that matter).
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The gravity anomaly is mostly used in the classical
terrestrial qeodesy, gravity disturbance is widely used in modern
theories and satelite geodesy.

Since the gravity disturbance is related to the géoid, i.e.,
to the point P, rather than the ellipsoid, we shall relate everything
systematically to the geoid, Hence even the disturbing potential and
gecidal height will be thought of as being related to the geoid.

Note that we are still movipng on a superficial level knowing
neither the geoid nor the reference ellipsoid. Hence we cannot measure

any of the involved guantities.

3.11) Relation between disturbing potential and geoidal heights,
2nd Bruns' formula

Let us take now both cross-sections from 3.10 together:
.nl
' =\Je, and let W(?p) be called Wp and similarly
P/)U:JP ¥
; ”P’ UQ' We can write
. _au _
9o PTG M T T Mt
] Q .
Q {*)
eltipsoid
volps (Nghp)

By definition WP = UP+TP . Hence

Mo = Uy = vg Np + Tp

But WP equals also to Uo(see 1.5} or UQ in our notation. Thus we get finally
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or

which is one of the most important formulae of physical geodesy, due

to a German geodesist Bruns (1878). |t is known as 2nd Bruns' formula

and relates the disturbing potential T to the gecidal undutation N.
When we assume a reference ellipsoid, without knowing the

proper values of the constants involved (kM, a, E,w) which is always

the case, it is likely to have a wrong value of potential (normal).

Let us denote the assumed value of normal potential by U and the

Q

difference Uy - Uy by 8U

= T = 1
How Wp = Uo and §U UQ WP UQ
But Up = Uy = g NS
and we get:
= 1 -
SU = YQ’NP TP.
Finally, we obtain:
R ST
Nl = P : = N, + ~¥
P v P
T e Yo

This formula is known as generalized Bruns' formula and it relates the
disturbing potential (as computed from an assumed normal gravity fleld)

to the geoidal height above the assumed ellipsoid. Note that &U Is a

function of &M, 8a, SE, U, 0, where by &M, Sa, SE, we denote the
differences between the correct values M,a,E and the assumed values
M',a',E'. In practice 8U Is assumed constant and interpreted as
imprecision in our knowledge of wP, the value of potentlal corresponding

to the geoid.
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3.12) Fundamental Gravimetric equation

Let us assume again that we know the correct size and shape of the
reference ellipsoid (a,E) and the other two constants {kM,w) necessary to

determine the normal gravity. Let us differentiate the equation (¥} from

3.11 with respect to n'.
We get
gg'i - ﬂi =T ?'l| Ny -
an ‘ an I an | P
P Q Q
here N = -y N
8n'|P Yp oo Gn’IQ = g and we have
ENUEROCA 4
Yo T Yq T Bnt| Np

fombining these two equations we obtain

L2 ) - 8T
9 " Vg T Np an' |,

But, according to 3.10, 9p - YQ = AgP. Hence

3y aT

Agpﬁ‘amq“p'smp -

{Notice that this equation relates the gravity anomaly to the gravity

. . aT N )
disturbance, since an'i = 6gP.

P
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Using the 2nd Bruns' formula to substitute for NP we get
3T b3y
Agy, = = = Sl van -y T
P an |P TRl IQ p

This fundamental gravimetric equation is usually written as

UL I A 4
b == aw *o o]
Q
where n' {outer normal to ellipsoid) is replaced by height and all its

terms are related to the point Q, i.e. to the reference ellipsoid. We
may do that because Ag as well as T are really related to both P and Q
and we have earlier decided to denote them by subscript P merely for
convenience,

Assuming again an arbitrary (though close to the geoid)

reference ellipsoid we end up with the generalized equation

_Qli;iﬁﬁl.+ Ay’ (T +8U)

]
vt e 2
t9 3h v' 9h

where all the variables are related to the arbitrary reference ellipsoid.

3.13) Discussion of the fundamental gravimetric equation,
mixed boundary-value problem of geodesy

It is not difficult to see that the fundamental gravimetric
equation provides us with the boundary values of the mixed type to
solve the Laplace's equation

AT = 0
for the outside of the reference ellipsoid, providing the reference
ellipsoid and the values kM,w (to compute the normal gravity) are

selected properly. There are three difficulties involved in solving the
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third boundary-value problem using the gravity anomalies (the fundamental
gravity equation):

iy We never know, and never will know, the true values of
a,kE and <M, w. Hence the unknown term 8U will be always present and
we cannot apply the earlier developed method {see 2.21) as it is.

ii) The geoid is neither known nor accessible on the continents,
Hence the value 9op Necessary for determining Ag {see 3,10) is not
observable. Therefore even Ag cannot be obtained without introducing

further considerations. On the other hand the observations of 3op ON

the ocean surface are still thin and a matter of concern.

iii} Even the basic requirement for AT = 0, i.e. the density
o = 0 everywhere outside the eltipsoid, is usually not satisfied. The
assumed reference ellipsoid is usually approximating the geoid in the
mean sense so that it is almost always underneath the terrain on the
continent and even underneath the sea level at various places,

The last two difficulties are usually dealt with by means of
altering the aravity anomalies in such a way as to neutralize them.
We first reduce the gravity observations made on the surface of the
earth to the geoid and then account for the masses above the ellipsoid
computationally. These gravity reductions, however, do not constitute
the topic of the present course and will be dealt with elsewhere. Ve
shall be assuming that the gravity anomalies, used for the mixed

boundary-value problem are already corrected in the proper manner.

Before trying to solve the mixed boundary-value
]
problem, let us have a look at the term %ﬁ- and try to find an expression

for it. It could be done directly from the normal potential (3.5) if
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we expressed vy as its gradient and differentiated it with respect to
the ellipsoidal normal, but this would be a very tedious job. MWe shall

show a shorter approach using differential geometry.

3.14) Vertical gradient of gravity

Let us take the potential W of the actual earth. The
equipotential surface Wix,y,z) = WP can be regarded as an implicit
function of x,y,z. Let us consider a local orthogonal system of

coordinates such that z-axis coincides with the outer normal to W = WP

(vertical), x-axis is in the tangent plane to W = W, and polnts to north,

P

y-axis points to west.

Total derivative of W with respect to X is

dw oW oW d7

ax "3 Ty dx
second total derivative is
v ot stz oPw gz 0% a2 aw
dx?  a%  axas dx  829% dx 522 dw 37 dx’

Let us denote §¥-= W‘; and similtarly the other partial derivatives.

ax 2
Since W = const., we have 9$-= gjg-= 0. In addition, 9%-2 0 since z
dx  dx dx

is perpendicular to W = const. The second total derivative then becomes

2-,
W b S22 g

XX z ,~2
dx

Similarly, the second total derivative with respect to ; vields:

=
Z

(o

|

W= Y

1., » =0
vy z

2

4

[al



79

oW au . ;

Here W'E iRl B P the absolute value of gravity at the point
3z

in question.

From differential geometry we know that the curvature k

of the curve vy = y(x) is given by

\2 -3/2
k = YH (] + y )
427
in our case then, —5 can be considered the curvature of 2z = z({x),
dx
the N-S profile of the equipotential surface, 522 the curvature in the
~2
dy

E-W profile. This is because the first derivatives in both directions
are zero.

Denoting by J the negative value of the overall curvature
of the equipotential surface, given as the arithmetic mean of the two

curvatures of the two perpendicular profiles, we get

- l_ - ~ — iﬂ_ Pl o WL
J = 2(t<x+ky)— 5 (Wxx+\!yy)

On the other hand, since W is the potential of gravity, it has to
satisfy the Poisson's equation
AW = = hneo + 2&2 ,

and the Laplace's operator in the local coordinates system is given by

AW = W o Wl 4 W
XX vy zz

Comblining the last three equations together and realizing that

3 3 ig :
Heon — Vo oz — e = =-
W 55 P W 5 32 g b ve get finally
99 o . 2gJ + hreo - Zmz

[+3]
e
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This is known as the 1-st Bruns' formula and it relates the vertical

gradient of gravity to the other parameters determining the potential
field, WNote that the gquantities g, J, o are related to the point we
examine the gradient in. The l-st Bruns' formula is one of the very

few figorous formulae in physical geodesy.

It is not difficult to see, that for the normal gravity above

the ellipsoid we get

3y _ _ 2
T 2vd 2w

Here J 1s as yet unknown. However, dealing with the reference ellipsoid
we are able to express J as a function of the meridian radius of
curvature M and the radius of curvature of the'prime vertical cross-
section N (do not mix up these M,N with the mass of the earth and the
geoidal undulation!).

We have

J = ;— (1/M + 1/N)

1

{note the sign '; the curvature in mathematics is taken positive for a
conveX surface, in geodesy positive for a concave surface viewed along
the outer normal). Here M and N can be expressed, as we know from

geometric geodesy,

2 2. 1/2

3/2
1/M = 97 (1 + e'2 c052¢) , H/N = (1 +e'“ cos“4)
a

1] o
[

where e' = E/b = /(az-bz)/b. Hence
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Using f =1 - b/a we can write
12 2 1—(l—f)2 2
e = 1/(1-f)" -1 = —— = (2F-F°) (1+2f+...)
(1-f)
= 2F - F2 4 BFZ - 23 4 = 2F ¢ 3F% 4 ... = 2F .
Hence
3/2
/M = EE-(?+2f c052¢) = Eﬁ—(! + 3f c052¢ + ..00)
a a
N = 2 (142f cos2e) 7% - Pl + f cos%p + ...)
a a
and
J = E'—-—2--(2+11i" cosz¢) = E-2—-(l+2f c052© }
2a a

We then can write for the vertical gradient of normal gravity.

§%~f - ZIE,(I + 2f c052¢) - 2w

2
5 .
a

Here sz is smaller than the first term and can be considered

as a corrective term. It may therefore be approximated by

(3

vy = KM
Y =Y ab

from 3.7. Substituting this result back to our original equation,

\

we can write

Yy . 2 b, b 2
T 5 (a + Za f cos“¢ + m)
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Here g-ﬂ 1-f, g'in the c052¢ term may be equated to 1 (since it is much

smaller than the first term) and

2f c052¢ = f(l+cos 2¢) .

Hence we finaily end up with

. 2y
TS - {1 +m+ f cos 2¢)

neglecting thus all the higher order terms in m,f.

3.15) Solution to the mixed boundary-value problem of physical geodesy

Substituting the result of 3.14 into the fundamental

gravimetric equation we obtain:

Ag = - gﬁ'(T+5U) - (V+tm+fcos2¢) (T+8U)

TN

where we understand, from now on, that the
equation is valid on an arbitrary reference ellipsoid which is
sufficiently close to the gecid. Hence al! the involved quantities are
computed on the basis of this assumed ellipsoid. This is our boundary
value for
AT + 8U) =0

on the reference ellipsoid.

It can be shown that with an error of the order of 3.!0-3
the coefficient by (T+8U) is on the ellipsoid constant and equal to
- 2/R where R = 3/(azb). The solution to the third boundary value

problem can be then written approximately {see 2.21)
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) n qnm(U,E,b)

o R
T=Tel o~ 2 . 7 {at1) Y T % Y 55T Yom A%
n=0 m-0 "R + T n o om

where Agnm are the spherical harmonics of Ag. On the reference
ellipsoid we get

T= %
n=0

R
T Agn . (+)

Note that the expression is not defined for n=1., We have to assume
that the first-degree harmonic is missing altogether. This is the
condition that has to be satisfied for this particular linear

combination of boundary-values. t corresponds to the condition

9?2} %é- dEl = 0 for the Neuman's problem, Qur condition here is

¢

£ Ag cosiy dEl = 0, Expressing

T=W- (U~-dU)=W-U
we can develop all three potentials into spherical harmonics and find
that the coefficients by the first-degree harmonic for T depend on the
displacement of the center of the reference ellipsoid from the center
of gravity of the earth. Assuming that they coincide, we can bring

the first-degree harmonic to zero and write

- ~ hed R
T= TO + T ETT'Agn )
n=%2
wherqby %0 we denote the zero-degree harmonic of ?. This is the

solution on the surface of the reference ellipsoid.

\ A N _ o U8M .
Since TO > TO + 8U and TO & WO U0 = Ky we can write

the above eguation as
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Here, in dealing with Ag, we assume that it has been corrected for
i} the influence of the masses above the ellipsoid and;

ii)the reduction from the terrain to the geoid of the observed gravity,

3.16} Stokes' integral

Let us develop the gravity anomaly on the reference ellipsoid
into spherical (ellipsoidal) harmonics. As we know, we get for Ag as

for any arbitary function:

i
3
]
i~
=

where Ag cos m\ + B sin m») P__{cos 0}]
n nm nm

~{n-m) ! 2n+]

i = oy 1 :
with Arm )T 7 T Agl{a',2') cos mx P {cos0') dEI ,
_ (n-m)!  2n+] Doy . . .
B . = )T 2 e Ag{O',A") sin mh P {coso') dEI
(for m=0, there will be 4w instead of 2n}, By dashes, we denote the

dummy variables in the Integration. Substituting the expressions for

the coefficients back into the expression for Agn we get:

Ag = 2nt] p (cosﬁ)j$l hg P (cosot) dEF + ; {(n-m)t 2n+] p (cos@)
n e n0 £} n0 - {(ntm)! 2% nm

m=

' NN : H ' cn!
(cos mAj?%i bg cos mA' P {cos@') dE! + sin mA Ag sin mi an(coue ) dE1]).

El
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Taking the integration sign outside the summation we obtain:

_ 2n+] Do \ P (n-m)!
b9, = .~ %, {ag{®' ,n") {Pno(cos@) Pno(cosO ) + 2 mi; (TE?ETT

an(cose) an(cosG‘) (cos m\ cos mA' + sinmi sin ma'))]} dEI

We can see that the expression in the square brackets equals to Pn(cos¢)
{see 2.22) with y denoting the spherical distance between the point
{e,1) for which g is computed and the 'dummy point' (0',)') involved

in the integration. We can thus write

_ 2n+] e v
bg, = - 5#%1 ag (6',A") Pn(cosw) dEl

This result can be substituted into the equation{+)in 3.15

and we get
-~ 7 R 2n+)
T n"EO =t =5 9P, 29 P, (cos v) dET]
R R > 2n+l
= -1, e Po(cosw) dE1 + Eﬁﬂﬁ%l Ag E 3 Pn(COS¢) dE)

n=2

where the series is known as Stokes' function - S$(p)} - and the first term

is nothing but "Rﬂgo. The second term is wvsually called Stokes' integral

and it represents the closed solution to the mixed boundary-value

problem on the ellipscid for Ago=0. {t corresponds, to Poisson's
integral for the first boundary-value problem on the sphere.

We can see, that in the development we have left out the
first-degree harmonic %] = TgT-Ag}. This can be done because it was
shown that for the center of the ellipsocid coinciding with the center of

gravity of the earth T] goes to zero. The coincidence of the two centers

is to be assumed.
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3.17)} Stokes' formula, gravimetric determination of the geoid

From the point of view of determination of the geoid the
knowledge of T is just an intermittent step; geoid being defined as the

equipotential surface W (r,0,1) = WO = U It is easily seen however,

0"
that using the generalized Bruns' formula {see 3.11) the geoidal
undulations N can be computed from T. We can write

T = T+6U = yN

or

R
N = W#E] Ag S(lj)) dEl - R AQO/Y .

Here we can take a mean gravity G instead of v with little influence
on the already limited accuracy. It remains to be seen whether Ago
can be expressed in terms of other parameters,
From the formula for 7 (3.15) we can see that
T0 = - R Ago

where by 0 we denote again the first spherical harmonic in the appropriate

development. Recalling the formulae for T and T in 3.15, we get

0 0
- R Agy = K§%' + SU.

Writing the formula for N as

N+ 8N = K%E -, Ag S{y) dE}
we get

= . S su
SN = KRG 5

The formula for N is known as Stokes' formula and it supplies us with

the undulations of the geoid above the assumed reference surface-ellipsoid.
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The correction &N to the computed undulations can be added if we know
&4 and &U, the errors in the mass and in the potential of the assumed
ellipsold,

The formula (without the term SN) is due to Sir George
Gabriel Stokes (1819-1903) mathematician and physicist in Cambridge.
it was first published in 1849 and is, perhaps, the most important
formula of physical geodesy. |t permits the determination of the
geoid (as related to the assumed reference ellipsoid) from the gravimetric
data.

The geoid as computed from this formula is, due to our
presumptions, always concentric with the reference surface. &N is
usually taken as constant and interpreted as correction to one of the
ellipsoid's axis. The reason for this is that the parametersf , of
the reference ellipsoid are known much more accurately than a,kM and
SU can be regarded as mostly due to 8M and 8a. The effect of these two
uncertainities is indistinguishable. It is though easier to account
for the effect by changing the size of the reference ellipsoid rather
than its mass. The reference ellipsoid hence follows more closely the

geoid which is a desirable property.

3.18) A few remarks about the Stokes' formula

The Stokes' Function can be expressed without using the

infinite series as

5(¢)=2%+¥'3§g"cosw(5+3sn (%*—;—cosw+~2—§g)),
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We can see that for P»0, ¥+0 and

S(u)=e., |lts graph looks thus:

It can be clearly seen how the gravity anomalies over the whole earth
contribute to each particular separation N at any place. The closer
we go to the point of interest the more the anomaly Ag contributes
towards the separation. Therefore, when using the Stokes' formula,
we have to know Ag well particularly in the vicinity of the point we
are interested in.

The Stokes' formuta can be rewritten in various different
ways. We are going to mention two of them here. First, we can chose
the point of interest as the origin for polar coordinates on the

ellipsoid and get
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|

R {2 .
N + &N = e aIO j1=0 aglo,w) S(0) siny dy do .

5%{:0 [ ';'%'j;zzo g o) da] S(p) siny dy

[

s Lo W) FQ) dy

where F(y) = %—S {y) siny and Ag(w) is the mean anomaly at the angular
distance ¢ from the point of interest.

Alternatively,f?

rq can be expressed in terms of geographical

coordinates and we get

2
N($,A) + 6N = 1;% ATE:O ¢{=uﬂ/2 Agp',x') S{p) cosp' do' da'

where = arccos (sin ¢ sin ¢' + cos ¢ cos &' cos {A'-A)).

in practice the numerical methods to evaluate these integrals

are used almost exclusively.

3.19) Vening-Meinesz' formuliae

Another application of the closed solution to the mixed
boundary-value problem, 1.e., the Stokes' integral, are the formulae
permitting the computation of the N-$5 and W-E components of local
deflection of vertical from the gravity anomalies known all over the
earth. They can be derived as follows: it can be seen from the
cross-section that dN = edS. If the cross-section is taken in the plane
defined by the two normals, then € = 0, |f the cross-section lies in
the meridian (prime vertical) plane, &£ represents the N-S (W-E)

component of © called £ (n}.
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for these two components we get

o NN
- aT = qc
dS¢ dSA

where the negative signs express the
convention that for dN positive & (n)

is taken as decreasing with increasing

o (A). This means that if the geoid
increases towards North, £ decreases and similarly if the geold increases
towards West, n decreases, Some European countries use the reverse
convention for n. Denoting by d¢, di the differential increments of the
coordinates in meridian and prime vertical, and using the Lame's coefficients
for r = R {on the ellipsoid):

ds. = H,dé = Rdj

$ ¢
dSA = HAdA = R cosd di
and
1
R3 "~ ~ R cos¢ 3x

Taking N from the Stokes' formula and regarding &N as

constant we get (only $ is a function of ¢ and X |):

. as(y)
= 7 TG ?5%1 bg = dET,

oot

=
i

SR asly)
~ LaG cos¢ gﬁ%l 49753 del

Here we express the partial derivatives as

3S{y) _ as(u) 3w aSy) _ aS(y) 3y

9 CIVRE I D) 3y 3
. o1 a .
and derive 36 ' AN from the formula for cos Y used in 2,22:

cos ¥ = sin ¢ sin ¢' + cos & cos &' cos {A'-)x)

we get’
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- sin P %%—= cos ¢ sind' - sin ¢ cos ¢' cos {A'=}r)
, g o i
- sin ¥ === cos ¢ cos ¢' sin (x'-2).

On the other hand, from the spherical
triangle we obtain
sinpcosa=cosdsing'-singcosd 'cos{r'-r)

sing sina = cose’ sin (A'-2)

Comparing these two sets of equations

we get
W LI -
) = cos o , Yo cosd sin o

Substituting the results back into the formulae for £ and n,

we finally end up with:

L] 3s (y)
£ o= T e Ag ) cos a dEl

] 3sly) .
n = T e Ag 30 sin o dEV ,

the Vening-Meinez' formulae., In these formulae, ¥ ,o can be taken

again for 'polar' coordinates on the ellipsoid or they can be transferred

to any other pair of coordinates on the ellipsoid,

3.20) Outline of numerical solution of Stokes' and Vening-Meinesz' formulae

The gravity anomalies Ag in Stokes' and Vening Meinesz'
formulae are not available for every point on the reference ellipsoid.
They can be computed for a number of discrete points where the values

of gravity have been observed on the earth surface. Hence, we cannot
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integrate them {more precisely integrate the product of the gravity
anomalies with the weight function S(y) or ﬁ—g——liw-)—-respectiveiy) over
the ellipsoid and we have to use one of the numerous naumerical methods
to evaluate the double integrals. All the numerical methods, whichever
we use, replace the double integration by double summation over two
parameters.

The grid for the summation can be basically of two kinds,
either polar or rectangular. The polar grid corresponds to variables
o,y as described in 3.18, Hence the grid has to be shifted every time
so as to make it centered upon the point of interest. Because the
weight of Ag varies with ¢ { and « as well, in case of Vening Meinesz'
formulae) the grid can be designed in such a way as to have larger
areas corresponding to smaller weight and vice versa. Evidently, if
Ag Is weighted '"lightiy', 1t can represent larger area without
contributing to the result too much and vice versa,

The rectangular grid is generally based on geographical
coordinates as mentioned in 3.18. This approach is somewhat preferable
to use when we study the whole globe, as opposed to individual points,
because the representative values of Ag in individual blocks ¢ x A )
can be attached to the appropriate blocks once and for all. The grid
does not change from one point of interest to another.

The most serious difficultyencountered in the numerical
solution Is the increasing influence of the gravity anomalies as one
approaches to point of interest. A brief look on the weight functions

convinces us that the immediate surroundings of the point have
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considerable effect on the result. This problem can be overcome by

two means. First, it is usual to make the grid finer in the immediate
environment of the point. Second, various formulae have been designed,
to express the influence of the gravity anomalies in the close vicinity
via other characteristics of the gravity field, that do not deal with
the Stokes' function. Using these formulae, we divide the double
integral jn two or more parts that reflect the contribution of close

and more distant zones. These parts are then evaluated separately.
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4) Ffundamentals of gravimetry

4.1) Gravity observations

The gravity observations are meant to provide us with the values
of gravity acceleration at the desired points. The gravity acceleration,
usually denoted by g, is measured in gals (1 ga! = 1 cm sec_z) or its
decadic fractions (mgal = 10_3 gal, Mgal = IOHG gal). Obviously the
approximate value of g anywhere on the surface of the earth is 9830 gals.

From the point of view of the position of the observation points
we can divide the gravity observations to:

i} terrain observations;

ii) underwater observations (either observed from the submarine

or on the sea bottom):
jii) sea-surface observations {(from the ship);

iv) airborne observations {from the aircraft).

From the point of view of the observation technique used we
can speak about

i) absolute observations;

ii) relative observations.

The former is based on the idea of observing directly the value of g at
a point. The latter observes just the difference in gravity for two
stations. For geodetic purposes we would like to know the gravity with

-1
an error in absolute value smaller than 0.1 mgal = 10 } gal; i.e.,

* 107 times the observed phenomenon q. This is a very high accuracy and
is easier achievable using the relative rather than absolute observations.
As we have said earlier , it has not been established

yet whether the values of g are subject to any secular changes. So far

we regard them as permanent. On the other hand, we know that the value
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of gravity changes with the position of the Sun and the Moon. This
phenomenon, known as gravimetric tide, can account for as much as - 0.16
to +0.08 mgals. Since the tidal variations of gravity are known and
predictable they can be corrected for.

The relative measurements are done in such a way that we read
the gravimeter reading at one point where gravity is known already. Then
take another reading at the unknown point and another one back at the
known point. Hence we have two differences in readings that multiplied
by a known constant give two differences in gravity. Their discrepancy
is attributed to the drift of the instrument and divided linearly with

time on both differences.

b,2) Instruments used in gravimetry

There are basically three distinctly different types of devices
used for gravity observations {measurement of g)
i) vertical pendulums
i1) gravimeters
iii) free-fall devices.
The first and the third types can be used for absolute measurements, the
second cannot.
Pendulums can be either ordinary, reversible, inverted, very long or
multiple. Their use is based on the idea that there is a known relationship

between the period of swing and the value of g, namely

]
T=~Cg /2

where € is the constant related to the mass and the length of the pendutum.
The above relation orliginates in the equation of motion of the pendulum,
ft is not difficult to see that by observing the period of swing we can

deduce the value of g, providing € is known.
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The precision attainable with pendulums is of the order of
+ 3 to + 0.1 mgals (for very long pendulums),Vening-Meinesz's submarine
pendulum apparatus (three coupled pendulums with photographic registration)
had, at best, precision of + 4 mgals, The major obstacles in
achieving any better precision are numerous influences like friction (air
and edges), temperature, instability of the fixed constructjon. Also
errors in timing contribute significantly to the relatively low precision.

Gravimeters are the widest used devices in gravimetry. All the
designs are invariably based on measuring the relative position of a fixed
and free masses. There are three distinctly different basic designs in
modern gravimeters

i) torsional: Loesional  (ilament

aﬂ rac fed mass ‘-Ul‘..Jtt\

B ) )
okaa\ readout . ?”L/ {rame

f’ixeci ?:\ac( with
Mivesy
The whole construction is made of one piece of fused quartz. This design
was flrst utlized in @ Danish gravimeter designed by Norgaard (precision + 0.2 mga
Basically the same design, although equipped with variouslcompensational

devices and different readout systems,is used by American Worden (precision

+ 0.03 mgal) and German Graf gravimeters.
) op%ieat
i) Circular spring vead out
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This is the principle used by Molodenskij in his GKA gravimeter (precision
+ 0.3 mgal) and the whole family of subsequent Russian gravimetersw They

vary by differentscampensational and readout system.

¥

i1i) Spiral spring

S@raf

opheal

Ql readoul

This system with various compensations and readouts is used by North
American and Lacoste-Romberg (precision + 0.0} mgal) gravimeters and seems
to be the most successfuil one.

Besides these three, there is a number of other designs like
gas pressure, vibration or bifilar gravimeters. But they never have
gained any wide recognition.

The gravimeters are also used almost exclusively as shipborne
or alrborne instruments mounted either on gimbals or gyro-stabilized
platforms. Their precision is still comparatively low (+ 0.5 and + 10
mgal respectively) mostly because of inadequate accounting for the
accelerations of the vessels involved. The same holds true for the sea-
bottom gravimeters, where the major flaw is our inaptitude to attach

precise coordinates to the observation point.
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Generally, the gravimeters have proved more successful than any
other gravimetric instrument mainly because of their versatility, They
are easy to operate and their theory is well known. The only information
one can get from a gravimeter is the reading on a scale. This has to be
compared to the proper value of gravity, This comparisom:ig-known as o .ces
calibration. Three major hindrances can be listed against gravimeters in general:
i} the inability to measure the absolute gravity;
ii) the necessity of frequent calibration;
iti} the inevitable presence of drift due to aging or various
components and other causes.

Free-fall devices are the newest development in gravimetry.

They are based on the timing of a fall of a free body in vacuum. Since
the acceleration of a free fall is g, the magnitude of the gravity can be
deduced from the free-fall time. The device is still under development
and the precislion so far within the region of + 1 mgal.

One more instrument should be mentioned here even though it does
not measure gravity directly. It is the Eotvos's torsion balance
(variometer) designed to measure the horizontal gradients of gravity.

There are two different types of variometers:

The inclination a changes with the
azimuth of the balance arm giving the
values of gradients of g in various

directions,

4.3) Gravimetric networks

From the point of view of the use of the observed gravity we can

distinguish two different gravity surveys:
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i} geodeticy

ii) geophysical.

The second, used in geophysical prospecting (location of various mineral
deposits) has got a local character. The users are not Iinterested In
absolute but relative gravity. It has little interest for a geodesist.

The first, because of the necessity to supply the absolute values
of gravity has to be organized on the international level. Hence the
national gravimetric works are all connected to one international reference
point -- Potsdam. The last adjustment of international gravity networks
was carried out in 1971,

The national networks are divided into 3 orders--

i} First order consists of the national reference station and
all the "absolute points™. They are usually located at the airports so
that the access to them is easy. Canadian national referén€s station i§ the pier
in the basement of the former Dominion Observatory in Ottawa. |t was

established by relative methods.

it) Second order consists of points established some 10-20 miles

apart within an easy reach by car (along highways, etc.).
11i) Third order has polnts closer together although their

accuracy is lower. This is being currently built in Canada.

Besides the national networks there are some international
'calibration lines' stretching across wide areas so as to cover the
widest possible range of gravity values. Their points are usually observed
very precisely to obtain very precise values of gravity. They are

used to calibrate individual gravimeters -- i.e., to derive the one to
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one correspondence of scale readings with gravity values. The North

American calibration line runs from Alaska to South Mexico,

4.4) Processing of the observed gravity

Since there are various users of the gravity information there
are also various aspects of the processing of the gravity data. 1In this
and the forthcoming paragraphs of this section we are going to show how
the observed gravity can be processed 30 as to supply us with the gravity
anomalies on the reference ellipsoid needed to evaluate the Stokes
formula (see Section 3).

We may recall (section 3.15) that In order
to get the Ag {(gravity anomaly) on the reference ellipsoid we have to

i) know the ''actual gravity" g, ©n the geoid;

ii) supress the effect of the masses above the reference
ellipsoid on 9 Since all the formulae used for the determination of
geoid are only approximate, we can afford to introduce one more highly
convenient approximation of the same order. We shall not require that
the masses above the ellipsoid are accounted for but replace it by the
requirement that all the masses above the geoid are reméved. This amounts
to the same as if we had formulated the boundary-value problem on the
geoid instead of ellipsoid.

However, we do not know the distribution of masses; i.e., the
distribution of density o, within the earth. Neither do we know the
variations of density within the surface lavers, by which we understand
the parts protruding above the gecid. The task to evaluate the Ag on the
geoid is hence a formidable one and represents one of the major hindrances

of classical geodesy.
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The difficulty of the task is reflected in the wide spectrum
of ideas, techniques and attitudes displayed by various scholars in geodesy.
We are going to show here only the generally accepted and most widely

used approaches to the problem.

k.5) Free-air correction and anomaly

The free-air correction originates from the somewhat simplified
following imagination: suppose we had taken the observation of g (on the
topographical surface of the earth) in absence of all the redundant masses
above the geoid. The observation station is thus imagined to be hanging
’free in the air! Then the only correction (reduction) necessary to obtain

the gravity value on the geolid is

=799
8gp = 3y b

where h is the height of our station above the geoid.( 8g here has nothing
to do with the gravity disturbance defined in 3.10).

Considering all the mass of the geoid concentrated in its center of gravity
and denoting by r the distance of the geoidal surface from the center of

gravity we can write approximately for 9, {on the geoid):

Differentiating this with respect to r we get

9, M
— x = 2k —g
ar r
that approximates the term %ﬁ—. In this formula, r can be further

approximated by either the length of the radius vector of the reference

ellipsoid:




102

995 -2kM

—-_-.3 x
2>

(v + %-f cos 2 4+ ...)

or by the radius R = éx/(azb) of the reference sphere:

9g -2k M

ah R3 .

In the majority of cases hence, the simplified formula for the free-air correction

sqp = My 2 0.3086 h]

(with GgF in mgal for h in m,)can be used.

The corresponding gravity anomaly

[}gF =g *tdg -y

is known as the free-air ancmaly. Even though the free-air anomaly is

based on seemingly quite erroneous assumptions it Is very widely used

because of some properties we are going to discuss later.

4.6) Bouguer correction and anomaly

Seemingly, the free-air treatment of gravity does not deplct the
reality well enough. Obviously, when observing the g on the surface of
the earth its value is influenced by the masses in between the topographic
surface and the geoid as well as by the masses enclosed within the geoid.
This influence of the masses above the geoid should be corrected for as

well, It is usually done in two steps:

i} removal of the influence of the plate (layer) of uniform
thickness h-meters high;

ii) removal of ti.e influence of the Irregularities of the
topography; iie., the influence of the masses enclosed

between the topographic surface and the flat surface of the

plate.
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In this section, we are going to deal with the plate -- known
as Bouguer's plate according to the French geodesist Bouguer who first used
this correction in his gravity survey in Peru in 1749, The second step,
considered as a refinement of the first Is known as terrain correction and
will be dealt with in the next section.

The plate, or the layer, covers the whole of the geoid and has
therefore quite a complicated spatial shape. Fortunately, however, it is
quite sufficient in the first approximation, to consider the plate as a
plane layer. Then a correction for the curvature of the earth can be

added to it, as we shall see later,

To derive the correction for the plate, consider a circular
cylinder of height h, radius a {do not mix up with the semimajor axis of
the reference ellipsoid!) and density ¢. What will be its attraction at the
point P? We know from the theory of potential that an attracting body B
acts on a unit mass with the force (see
Physical Geodesy |, § 2.4}):

P

o dB.

© o]
LA

h The potential of this force is given

by (see Physical Geodesy I, § 2.8):

| d
V=rx [y 5 d8 .

The easiest way, how to derive the attractive force of our
cylinder is to express it in cylindrical coordinates and compute first its
potential for a point located on the Z axis:

We get

V(P) = ro }'ZTI- Ih Ia _]_ 45
a=0 'Z=0 'r'=0

it

where dB rt drt dZ do and

o = ((anz)Z + r,,2)1/2

Integration with respect to o yields:
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h a rode't dZ
V(P) = 2uxo [, [T, .
=0 “r''=0 ((ZP'Z)2+F”2)1/2
, . . \ 2 2.2
The inner integral can be solved by substitution t'= (ZP—Z) +prtT,
This yields:
N F'dr't dz 2 2
r1=0 75 17V (2,2)° + a%) - 2, + 2.
((ZP—Z) +r!te)
Hence

V(P) = 2mco jgzo [q/((zpnz)2 +a?) - 2, + 7} dz

] 5 1.2 h 2 L 2
= 2nko [-Zpgh + 5 b+ [0 A/((2,-2)" + a°) dZ]

The integral here can again be solved by another substitution t

which gives
1/2 _
= (P a2 s 2-0)%) dz = - (5T 2 e g
0 P ZP
1/2
+ aln (t + (a2 + t2)1/2)1+const, Hence

1/2
Here f(32+t2) dt = %—[t(az+t2)
1/2

1/2
| = - 5 [(Zymh) @2+ (2,-0) %)+ alln ((Z,oh) + (% (z,-M)P) )] +

1/2 1/2
] 2 2 2 2 2
+ 5-{2P (a” + zp) + a“ln (zP + (a” + zP) 1
2 2 1/2 2 2, 1/2
Denoting (a” + (ZP-h) ) by d and {a“ + Zp) by b we can write finally
{“mw"“““”’”'“““"'—"'{_;'"{_' T, zphed
V{P) = 2mko [~2Ph +ght - 5—((ZP—h)d - Zgb +a” In "?;iﬁ"‘)]‘
Since we are Iinterested in getting the vertical gradient of this

potential; i.e., the component in Z direction which for all practical

nurposes coincides with the direction of g, we have to take the first
derivative of V (in P) with respect to ZP. We obtain:!



105

Z.+ b

avV i ad b 2 P
ez = f o= 2ka [-h - = (d + (Z,-h) == - b -~ Z. ==+ a T X
32P P 2 P 8%> 4 8%) ZP h+d

. 3d ab

(1 + gz—D) (ZP+b) (1 + B (ZP h+d) |

(Zp+b)2
P
where
(z,-h)} z
ad | P ab 1, -1 P
S-=2d 2 (z,-h)]| = , ==b 2z | =2
BZP 2 P lp 2d P BZP 2 P!P b p
Hence fP can be rewritten as
2 2
(z,-h) Z 2 7 +b
- - d P b _ P L a P
fp = 2o [h+ 5+ 73 7 w3 Z,-hvd X
(ZP—h) zP
(1+-———d—)(ZP+b)—(l+~5-)(ZP—h+d)}
(Z -a-b)2

P P

Evaluating the above formula at P on the cylinder we have Z_, = h,

P
d =a, b= 1J(a2 + hz) and we get:

2

fp = ~mxo [2h + & - Wj(a2+h2) -
v (a+h?)
(ht V(a*+h?)) (he 4 (@2+h%)) = (1 + —D——) a
(a"+h“)
+a’ 2 2,,2 1

a (h +4(a" + %))

2 h

2 a” (1 + 27
= -nko [2h + a - (2+h2) S | N v (@ +h) 1
Ko ‘ a “J a (a2+h2) a . qj(az+h2)
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pd 2
-meg [2h + 2a - "\/(az-!-hz) - h - a

]
Vla®h%) Y (a®+h?)

[}

2,.2
-nxa [2h + 2a - ’\/(az-!-hz) - “ﬂ*—"]
V(a%n?)

il

-meo [2h + Zé_tM;'V(a2+h2)] = - 2nco (h+a - V«a2+h2));}

e
.
!

Here ‘V(32+h2) can be developed into power series, considering

a > h and we obtain

. - L h
fPu 2mxo (h + a a(¥+2(a)+ . ))
2
. _bh
= 2nko (h 33 )
- - bl
= 2nkoh (1 55 vee )

Considering the diameter of the cylinder infinite, i.e., extending the

cylinder to Bouguer's plate we get flnally:

\ chP = lim fP = - ZFKUh,‘i

——— ]

the correction due to the Bouguer's plate. |In practice, o of the upper

3

part of the earth crust is usually assumed to be 2.67 g cm giving thus

69P=~0.Hl9h&

in mgal for h in meters,
The sum GgF + 6QP = 0.1967 h became known as incomplete

(simple) Bouguer correction and the corresponding anomaly

bgp = g + 89 + 89, - ¥

is called incomplete (simple} Bouguer anomaly.
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4.7) Terrain correction and refined Bouguer anomaly

The second step in evaluating the influence of the masses between
the geoid and the topographic surface consists of accounting for the masses
trapped between the Bouguer plate and the surface. The evaluation is easily
done using a template method. We first divide the area surrounding our
station into compartments according
to a template. One of such
possible divisions is shown on
the diagram. The contribution
of each individual compartment
is computed separately and their
combined effect then determined.

To determine the contribution
of one such compartment we can

write, using again cylindrical

coordinates r,a,Z for the
attracting force in absolute

value due to one mass element dm:

p
where pz = r2 + 22. Note that

here, we are omitting the two
primes over r. The vertical

component of the attractive force,

our correction dagT y due to one
i
mass element in the i-th

compartment is givenby
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Z
P o

chgT = df  sin B = dfP
i

For the whole compartment(Aa by Ah by Ao)we obtain, considering again

homogenous density o for the whole compartment and an average height Ah

above P:
_ ha ¢hh patla 2
GgTi = Ko fa=0 IZ=0 r=a ;g'r dr dZ do
fAOl J‘Ah at+ha Zr dr d7 do .
= a=0 ‘Z=0 ‘r=a 2 .2.3/2
(r°+2%)

Integration with respect to a yields:

at+ha Zr

Ah
8g. = koho f - f N e
Ti =0 ‘r=a (r2+22)3/2

dr dZ .

. . . . . 2 2
Integration with respect to Z can be solved using substitution t~ = 7 + 22.

We get:

2 2
atda ( f:J(r +Ah“) é%')

5gT = gdha fr=a

i

dr ,
t
A/ {r248h2) |

. , : _ S R
where the inner integral gives | t ]r B q((r2+Ah2) fre

Hence we can write:

+Aa r atha F
8g. = xabaf? (1 = ————~) dr = cotalsa - | e )
T Ja ~(r2sah?) S rPean?)

Another substitution t2 = r2 + Ahz vields

A((a+2a)? + an?)

&g = xoha(ha - f
T A{aZ+sh?)
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For fh<<a we get:

6gTi = koho [Aa + a“V(I+(%?02) - (a+Aa)ﬂJ(P+ (aﬁzh)z)}

or approximately!

89, = koba fra + a(1+ %—(%?02) - (ataa) (1 + %-( Ah 1)1
i .

atha

_ KoAaahz ( l_+ ] )
2 a atha

The complete terrain correction is given by:

sa., _ ko I{Aa, I i 2 2, .2 2
'Z% = i i[ai+l a, 4—\/(ai + Ahiﬂ) w/(ai+]+Ahi) j

Various schemes have been devised for the template to simplify the above
equation. With the appearance of computers the templates have
lost their significance. However, even on computers one has to use

one scheme or another, and one has therefore to understand the way
how to set one up.

In all the schemes the determination of the terrain correction
involves the determination of an average height Ah for each compartment.
The closer compartments contribute more towards the whole correction. The
heights there have to be known therefore with a higher accuracy. Hence
the grid has to be denser in the vicinity of the gravity station. Sometimes,
particularly in mountaineous areas, even a fine grid is not enough to give
adequate precision. Then the contribution of the immediate vicinity is to
be determined through other methods using gravity gradients or the gravity
values themselves. These are to be furnished by additional observations.
Obviously, the computations involved are quite tedious and the terrain

correction is then applied only when it is absolutely necessary.
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The magnitude of terrain correction is usually of the order of a
few tenths of a mgal for flat and gently rolling country. It reaches a few
milligalsin a hilly area and tens of milligals in the ﬁountains. Corrections
of about 40 mgal were experienced in Colorado, 70 mgal in the Carpathains, etc,
We notice that the terrain correction is always positive, whether
the terrain is lower or higher than the observation station. This fact can

be understood from the drawing:

Fedindant sy (ng
mass - mass

Hence,neglect of the terrain correction introduces a systematic bias,

7

I

.\.\

The sum ég. + 8g, + &g is known as complete {(refined) Bouguer

correction., Correspondingly,

AgB=g+69F+SgP+5gTﬂyj

is called complete Bouguer anomaly.

We can note that here, as well as when deriving the incomplete
Bouguer correction,we have considered the earth flat, This can be done
since the attraction of the masses departing {rom the horizontal plane of
the gravity station diminishes very rapidly. However, for very precise
work this "spherical effect'has to be accounted for mathematically. In
such a case we usually begin considering the earth curved from the spherical
distance of 1.5° (167 km). This distance corresponds to the radius of
the inner area in Hayford template of which more will be said in 4.8.5.
From this distance on, the thickness of the topography and even the Bouguer
plate may be regarded as zero when compared with the distance. Hence, the
Bouguer correction (refined) can be computed from the expression for the

potential of a surface layer of variable density,
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4,8) lsostatic correction and anomaly

4.8.1) lsostasy

When one computes the Bouguer anomalies in larger areas one
discovers that they have systematically large positive values on the oceans
and large negative values under the mountains. Such values correspond
generally to positive geoidal undulations on the seas and negative undulations
under the mountainous regions. This discovery contradicts our expectations

based on physical principles. |f the earth crust were homogeneous and of a

uniform thickness we would expect the
geoid to follow the terrain, to a
certain degree, to protrude above the

ellipsold under the mountains and lay

' ) erust below the ellipsoid on the seas.
wab enedus i [ - . .
o b SO | o
& e e The explanation for this discovery
o i T
i & . .
LmJés "I is sought in isostasy, the theory of
A I
L as w?
<¥¢éf¢, ¢ equilibrium of the earth crust. The
-3 ,BO“%LL

idea of isostasy was probably originated

already by Leonardo da Vinci. The first
mathematical formulations can be found in the theories of J.M, Pratt (1854)
and G.B. Airy (1855). More recently {(1931) , F. A. Vening-Meinesz produced

his theory which is being accepted as the, perhaps, most realistic of all

the three today. Since isostasy is important for geodesy we are going to

outline all of these theories.

4.8.2) Pratt's model and theory

Pratt's basic Idea is that the earth crust is divided into more

or less independent blocks of different density. He then considers the

blocks as floating on the level of magma that lies in the depth T. This



Sea _ level is usually called the
=
T N u : 1"
_ ] compensation level'l,
level \ For the individual blocks
b (columns) to «8xert the same

pressure on the magma it is

necessary that the product

ma by
SN/ Ll e /J,/ -

(T + hi) o; be constant, i.e,

be the same for all the columns. Postulating a certain depth T of the

compensation level and an average density g,, we can express the constant as
L]

const, = To o —
8]

and regard it as a contribution of a column with average height zero. From
these two expressions we can determine the density of each individual

column, protruding hi km, in average, above the sea level:

Here T has to be postulated (usually around 100 km to make the individual
3

densities realistic) and o is generally taken to be 2.67 g cm

Dealing with a block submerged in the ocean, we have to add
also the weight of the involved water column, Denoting by Ty the density
of water (usually taken as 1.027 g cm‘3) and by Di the mean depth of the

crust block under the sea, we get

Hence

The Pratt's model with certain modifications was used by J.F,
Hayford (1912) for smoothing of the gravimetric deflections of vertical
vihich were deployed for the determination of the best=fitting ellipsoid to

North America.



4.8.3) Airy's model and theory

113

Airy's model is based on the analogy of the earth crust blocks

with icebergs.

His model assumes a constant density 9y

2.67 g cm_3 for

all the individual blocks and has,therefore, to conclude that the blocks

sink differently into the plastic magma according to their heights.

4ea

-ﬁ? }n}/‘ju_ef& kel
w)

E Q4
Tot ot

o

From the equation for a

zero submersion ATi):

Too = TOOM
we can determine
%
=T 5
M

Then the first eguation yields

h,o + AT,a
i o i o

and

/AT

(T + hi + ATi) o,

fh

Here T
o)

and GH

in our

assumed to be 3.27 ¢ cm °.

From the Archimedes law the
equilibrium of a column

T + hi + ATi high, submerged
into a liquid T0 + ATi deep,

is achieved when following

equality Is satisfied:

(T0 + ATi) Oy v

+ ATi is the depth of submersion
is the density of the liquid,

case the magma. 0, is usually

M
3

column of zero height h, ( and therefore

ATEO
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For the blocks under the oceans we can write similariy

(t - AT, - Di) o, * D, o = (TO - AT;) oy

where again Di is the average depth of the ocean and o, the density of

W
water assumed to be 1.027 g cm—g. Substituting for To we get
-ATic0 - Digo + Diow = - ATicH
and _ L
6 -0
- o ¥ _
My =0y =5 =2.730,

The thickness of the crust, according to the Airy's model, is

then given by

T+h+ 4,45 h = T+ 5.45h on the continents
t = ,///
TS~ T -D-2.730 =T - 3.73 D under the oceans.
T is generally postulated to be scmewhere between 30 to 50 km,

The Airy's model was originally used by Heiskanen in his first

attempts to compute the isostatically corrected anomalies,

4.8.4) Vening-Meinesz's model and theory

Both the preceding models assume the individual blocks (columns)
to move more or less independently of each other. The geophysical
investigations have shown some evidence that this is not quite the case and

that the models are somewhat oversimplified,

levearn This was the reason why Vening-Meinesz

_sea level  came up with a different model of

6; o earth crust. He regards the crust

v .
, Mg el _TjjﬂﬁT as an elastic homogeneous layer of
T 7R s T

variable thickness known as regional



. 115

model. The mean thickness is assumed to be about 30 km. The mathematical
description of the model is based on the theory of elasticity and is quite
complicated. Because of its complicatedmathematics it is rather seldom
used in practice.

According to our present knowledge the earth crust behaves as a
combination of all of these three models. |t has definitely a variable
density as well as variable thickness and behaves as a ''structured'" elastic
layer. Until more has been learnt about the crust from other sources
{seismology, earth tides, geology, tectonics, etc.) it will be difficult
to design a truly realistic model. Besides, the isostatic compensation
still goes on and has to be regarded as a continuous dynamic process

contributing to the so-called crustal movements.

4.8.5) lsostatic correction and anomaly

In order to account for the earth crust isostasy (the crust is
kinown to be isostatically compensated over an area covering about 90% of
the earth surface) one has to change the Bouguer or the refined Bouguer
correction accordingly. This can be done using basically the same technique
as we have used for computing the terrain corrections. We divide the earth
surface into compartments, using a template, and obtain the corresponding
columns of the earth crust. In other words we chose the boundaries of the
crustal blocks according to the template disregarding the actual structure
of the blocks which (if it exists) is largely unknown anyway.,

Then the Bouguer correction {(without the free-air component) can
be regarded as having accounted for the attraction of some 'mean columns'!
of density Iy and height either T + hi’ in case of the refined correction,
or T + h, where h s the height of our gravity station,in case of the simple

correction. When we want to account for the isostasy we have to subtract
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the effect of the difference between these mean columns and the isostatically
compensated columns.

Hence, using the Pratt's model, we subtract the effect of the columns
of the same sizes but with the densities §; = o, "o computed for o, given
in 4,8.2. This was what Hayford did in 1912 selecting T = 113.7 km. The
template pattern which he devised then, has been serving as a prototype for
almost all the subsequent attempts in the field of isostatic corrections.
The template used has also proved useful for various other tasks such as the
computations of the terrain corrections mentioned already in 4.7. His
design was based on the necessity of doing all the compu ations manually
and lost somewhat its importance with the introduction of computers,

When we use the Airy's model we have to subtract the effect of
the immersed parts of the columns, with density Oy T O Various tables
assuming different values of T have been published mainly by Finnish
geodesists and Heiskanen's name has to be mentioned in this context. Similar
tables by Vening-Meinesz are available for his own isostatic model.

When computing the isostatic correction we have to start
considering again the earth to be curved from a certain distance. As iIn

the cases of the plate or the terrain corrections this is usually chosen

to be 1.5°. From this distance on,the combined correction 89, {Bouguer
, . - . . A
without the free-air ébd\fompensatlon corrections) can be computed from
the expression for the potential of double surface layer T km apart. The
upper layer, corresponding to the '‘condensed topography' (variable density
corresponds to the variable heights) is attracting, the lower layer,
corresponding to the lack of mass in the column, is repeiling. Hence each
P

column of the height T acts as a

~. dipole.
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The sum of the combined correction and the free-air correction

is known as isostatic correction. The anomaly

Ag, = g + 8 + &g, - ¥ !

is calied isostatic (isostatically compensated) anomaly. The combined

carrection 69' is generally fairly small in comparison with GgF and the
free air correction is then often regarded as the first approximation to
the fisostatic correction. This can be understood when we realize that the
free air anomaly may be interpreted as assuming the masses above the sea
level to be fully compensated for by the lack of masses underneath and

therefore having no effect on the gravity station on the surface.

4.9) Other gravity corrections and anomalies

Apart from the corrections and anomalies dealt with in the
precedent sections, there are many more corrections and anomalies defined
in literature. They are based on hypotheses different from the ones we have
met already. To name but a few, let us mention the following:

i) Rudzki's correction based on the principle of spherical

inversion with respect to a sphere of a radius R going everywhere underneath
the geoid. The masses protruding above the geoid are '"'shifted" inside the
sphere, The correction is mathematically rigorous but does not have any
physical interpretation. It Is therefore seldom ever used.

ii) Helmert's condensation correction accounts for the redundant.

masses by means of expressing their effect in terms of a surface layer (cn

the geoid) of varying density. It is equivalent to the Pratt's isostatic

correction computed for T = 0. It approximately equals to the free air

correction.
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iii) Bruns' correction is nothing else but the free-air correction

related to the reference ellipsoid rather than geoid. It has, therefore,
formally the same shape as the GgF {see 4.5) with h + N replacing the h,
Theoretically, this correction should be preferred against the free-air
since it removes the effect of the masses above the ellipsoid and provides
us thus with the boundary value on the ellipsoid. Its application is

hindered by our lack of knowledge of the geoid.

L.10) Indirect effect, cogeoid

When removing the effect of the Bouguer plate and/or the terrain
undulations, we actually disregard the masses above the geoid. |In other
words, when using the Bouguer anomaly (simple or refined) we mathematically

change the real distribution of masses, the potential of the earth and hence

even the geoid. Expressing the change of the potential due to the

removal of the Bouguer plate and/or the terrain by TB we may say that the
potential W of the earth is changed by GWB = TB. The effect of the Bouguer
anomalies on the geoid computed by means of the Stoke's formula is hence
given, using the Bruns' formula:

GWB TB

SN = — = —
B vy

This distortion is usually called the indirect effect of the mass removal and

the surface thus distorted is known as cogeoid. 6NB of the Bouguer anomalies

can be as large as 440 m, i.e. much larger than N itself,
The cogeoid c¢an be reduced to the geoid by evaluating the quantity
TB and then 6N8 all over the earth surface. The template method may be

used for this purpose again to determine the T in individual compartments

F

5
B
in much the same way as it was used for determination of the terrain corrections.

The only difference is that here we would be looking for differences in
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potential rather than differencés of the attractive force.

Similar argument holds true for the isostatic anomalies. However,
they yield a different cogeoid that has to be transformed into the geold
using again the above formula, where W is given as the difference TB - TC.

TC here denotes the potential of the "anomalous blocks" the effect of which

was subtracted from the ''regular Bouguer blocks". Since the absolute value of

TB--TC is much smaller than the absclute value of TB’ even the indirect effect
of the isostatic anomalies is much smaller than that of the Bouguer anomalies.

It is of the order of + 10 m,

it is not difficult to see that there is no indirect effect
produced by the free-air anomalies. There we do not manipulate with the
masses at all. This is one of the outstanding advantages cof using the free-

air rather than any other anomalies.

4.11) Discussion of the individual gravity anomalies

In spite of our intultion it is not the Bouguer anomaly that
depicts the rea) distribution of masses the best. Although it seems to
account for the visible distribution of masses adequately, the fact that
there is the mass deficiency in the lower part of the crust tending to cancel out
the mass redundancy in the upper part of the crust, distorts its real
meaning. This can be seen from its huge indirect effect. Hence the
Bouguer anomaly is not recommended for geoid determination. However, it is
still very useful for geophysical prospecting because it varies very
smoothly and reflects the local gravity irregularities in the most useful
manner.

The isostatically compensated (isostatic) anomalies are obviously
the most truthful representation of the nature and would be theoretically
the best to use for geoid determination. Their distinct disadvantage Is

the complicated computation. We have seen that one has to compute the
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refined Bouguer corrvection first then determine the compensating correction
and finally evaluate the indirect effect after having applied the Stokes'
formula, More precisely, the Stokes formula is really evaluated on the
cogecid and therefore the free-air correction should be taken with respect

to the cogeoid. Hence the height used in determining the free-air correction

should be h + 8N, instead of h,.

}
As we have stated in 4.8.5 already, the free-air anomaly can be
considered as the first approximation to the isostatically compensated
anomaly. In addition, it is very simple to compute and has no indirect
effect. These are the two reasons why the free-air anomalies are used
almost exclusively for gravimetric determination of geoid.
Many ''gravimetric geoids' have been computed by various authors,
The best known geoids have been produced by Hirvonen (1934), Jeffreys (1943),
Tanin (1948, 49), Heiskanen (1957}, Uotila (1962, 64) and Kaula (1961, 1966).
The literature is rich with examples. The individual geoids vary quite
widely mainly due to different interpolation techniques used by the authors
to determine the interpolated values of anomalies in the unsurveyed areas.
Even the best geoids are not supposed to have better precision than some
+ 10 m. This Is because of the fact that large regions on the surface of
the earth still remain unsurveyed and because the Stokes! formula, due to
all the approximations used, has its own inherent imprecision. In

section 6 we are going to show some more precise techniques for computing

geoidal undulations above the local datum,

4.12) Gravity maps, gravity data banks

It is usual to depict the results of a gravity survey in the

form of a map. The maps may deal with either the observed gravity or with
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anomalies., They may depict either the individual points or provide us with
lines joining the points of equal anomalies -- iscanomales. The maps can
have different scales and show therefore regions of different size. For us,
the most important are the small scale map of free-air ancmalies.

Recently, the tendency has been to replace the maps by other
forms of data representation. Namely, the user may be now provided with
gravity data from a certain area in a dlgital form. The data bank of the
Gravity Section of the Earth Physics Branch (Department of Energy, Mines
and Resources) in Ottawa may serve as an example in this respect., The
gravity data can be supplied by them in either the punch-card form or on
magnetic tape accompanied by a computer listing and a coarse map in any
wanted scale containing the requested anomalies or the observed values.
Another example is the U.S. Air Force agency, '‘Aeronautical Charts and

Information Center", dealing with world-wide gravity data that can be

obtained from them.
5} Heights

5.1) Observed heights

et us consider a levelling line
A,B with the intermediate stations
depicted by circles. When we

realize that the gravity field

is represented by generally non-

parallel equipotential surfaces,

it is not difficult to see that

the sum of the observed level
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differences 8L is not equal to the sum of the height differences &h. Hence
the levelled difference of any two points A,B is not equal to the height

difference A and B, hB*i This is due to the non-parallelness of the

e
equipotential surfaces.
The actual relationship between the observed level difference §L

and the '"corresponding' height difference &h can be expressed through gravity.

We can write

6L = = gy, th

where 9ps 9g is the actual gravity at P and B' respectively. Hence we can

write for &h:

ot e

g
§h = — L

9g:
and if 9p # Q;T-then Sh # 8L,

This unfortunate property results in the fact that various levelling
lines connecting the same two points vield di“ferent level differences ESL.

Using differentials instead of differences, i.e,, abstracting from the actual

levelling, we can write generally

B
fA dL # hg = hy

and also

B B
L,
[y dt # [, d
Path 1 Path 2

The last property is usually written as

Pat # 0
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and quoted as integration over a closed circuit.

We can conclude that the results of levelling without gravity taken into
account do not define the height of every point uniquely., But the unique
definition of a height of every point on the surface is a highly desirable
feature. In order to achieve it, we have to take the gravity into

consideration.

5.2) Geopotential numbers

One way how to define the heights uniquely is to use the
equipotential surfaces directly to define the height of a point. We may say
that a point laying on equipotential surface W = CB is above (below) the

point laying on equipotential surface W = CA by

£ ow - G
g %i B "q§5

o

The numbers € - GB’ GO =Gy where CO is the potential of the geoid, are

0

known as geopotential numbers defining the heights of B and A. Evidently,

the difference of two equipotential numbers CB - CA can be computed from
— NWap =/
3 B
/(B
CA - Cp = 4C,. = [/ gdL = T g8,
.#& 13 AB A SN

whéi; g (gi) is the surface (actual) gravity along the levelling line
connecting ‘A with B.

It is not difficult to see that the geopotential numbers define
the height of every point uniquely. This means that whatever line connecting
A with B we take, the ACAB will be always the same. We say that the

geopotential numbers are not path-dependent and write

Qgg dbL =10
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The disadvantage of the geopotential numbers is that they are not
: ; 3 ; 2
given in length units but in cm /52 -- hence the name. Numerically, they

depart from the observed heights by some 2% even when we chose the units in
W :J.L»- )

the most convenient way, i.e.(we express the gravity in kgal, so that g ~ 1.
This is far too much for any technical work and it is the reason why

geopotential numbers are very seldom used in technical practice.

5.3) Dynamic heights

Dynamic heights are designig to retain the advantage of the
‘ (4{-."4
geopotential numbers and eliminate its disadvantage. The dynamic height of

a point A is defined as

N —

D _
hy = C,/G

where G is a gravity value selected as a reference. G is generally chosen
in such a way as to be close to the average value of g for the area in
question -- usually a country or a group of countries,

Ve can see that hD is expressed in length units and its value does
not deviate from the levelled height as much as the value of the corresponding
geopotential number does. On the other hand, points laying on one equipotentia]
surface have the same dynamic height. This is usually expressed by ﬁﬁs10gan——

"in dynamic height system a lake surface is FIatT

It is a general practice to express the dynamic height difference
of two points A,B in terms of a correction to the observed level difference.
To derijve such a correction let us write:

fh = — 2 ¥ iEA g.sL,.

Adding and subtracting G to g; we obtain
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D 1 gy - 6
Y = L. = @& )
AhAB 5 ? (gI + G - G)§ ? 5Li + ? B aLi
Here

ZﬁLi = Ah
i

is the observed (measured) level difference between A and B and

uhoo§ G'C £ |

is the dynamic correction we are looking for.

5.4) Orthometric heights

Orthometric height of a point A is defined as the length of the

actual plumb-line connecting the point A with the geoid. We have seen in
5.1) that the difference §W can be
expressed as

W = - g'sh

where g' is the gravity along the

plumb=1ine. We can write thus for &h
sh = - 2
g
and
0 W
hy = = | A dW
A W, g
by 0
‘\ - 'n/:'
& T'Jh B We now recall the theorem about the '"mean value' saying that if f
i '

is continuous on [a,b] then the definite
integral fs f(x) dx can be always
expressed as f(x) (b-a) where f(x) is

a value between f(a) and f(b).
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b, % ' (wA wo) ==
— g -
The orthometric height of a point “%3
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Obviously, if f is a linear function, then f(x) =
theorem on our case, where ‘VA

)
[a,b] = MW, f = 1/g]

A

and the definite integral equals

the orthometric height of A, we qet:

is then defined as the ratio of its geopotential number and a '"mean gravity"

along its plumb-line in the sense of the theorem quoted earlier.

In order to evaluate the mean gravity, let us write

A A
In the last integral, g' has to be assumed known along the plumb-line as a
function of height. According to the type of assumption (hypothesis) used,
we get various definitions of orthometric heights.
The best known of the various definitions is that of Helmert who
uses the PoincaretPray's hypothesis concerning the gravity along the plumb-

1ine.>‘%hefr approach is based on the Ist Bruns' formula (see Physical

~ -

Geodesy |, § 3.14) that reads:

39 _ . . L2
T 2 4 bmko - 20”7,

The same formula, applied to-normal qravity above the mean earth ellipsoid

yields
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Here J and'do are the mean curvatures of the actual equipotential surface
3

and the corresabgging normal equipotential surface respectively. Taking

approximately ™

gJ ~ YJO \\_\.

we get when subtracting the second from the first formula:

. L
N
a_g. o gl + ’41—”(0' \

ah oh \

e .
In this formu[a/%%-can be taken apﬁ?qximate!y equal to the ''free

\ )
air' gradient; i.e., -0,3086 mgal/m. kuko, for &\§\2.67 g cm 3, becomes

™,

0.2238 mgal/m. ~

Hence

} 3 . - 0.0848 ngal/m.|

[ oh I

This is the Poincaré:Pray gradient of the actual gravity underground.

:NQQf let us write for any'pbinﬁ A' on the p%umb-tfhe of Ay

N .
A A e e 9pr = g' = QA * fA ﬁﬂ.dh””
LT sh .~
- A N
e . .
ye = a, 0‘9848 [y dh [mgall .
//’ e _ AT -
— Finally, we obtain
g' =g, - 0.0848 (hy, - h?)
— O - 0 bl
=g, + 0.081}8-(hA hA,) {mgal] ()

for ho in meters.

We can now evaluate the mean gravity along the plumb-

line. Substituting the last result for g'-in the formula for g' we get

N

N,
~

S

h \

v | 0 - \\

g' = 5 fo p *0.0848 ((hy - 2)) dZ
A )

0
A (g
h
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0
2 A

B 0o, 2"
g, * X 0.0848 [h,7 - 5] .
A

0
A

il

inml].

0 ;.
h
g, * 0.0424 hy {mga} for

Note that after al} the computationgxwe are ending up with the value for g°

N

that could have been deduced_froh (%) ribht away for g' of the central
point of the plumb~liper”J RN

_ 0
-, 0 _ A .

. . 0
This. is the consequence of having chosen g to be a linéar function of.h .

[OOSR — —

Using the determined value of g' we can now write for the Helmert's

orthometrlcoheight: . - mg fu. 75 G DL 0Eu Y i@ﬁﬂq
— .?F\ Z )
hy = C,/(g, + 0.0424 b)) C

or, with sufficient precision:

bo = ¢/(g + 0.0k2k hM).

Other, more refined variations on the same.theme, are definitions
due to Niethammer, Mader, Ledersteger, et. al. Many more approximate
systems, used extensively in technical practice have been put forward by
Baranov, Ramsayer, Ledergteger, et. al.

It is again a general practice, as in the case of dynamic heights,
to express the orthometric height (whichever it may be) difference as a sum
of two terms -- the observed level difference and the correction. In order

to do so let us write for the orthometric height of a point A:

D
fp = Pa

= e

and similarly for B. For the difference of their orthometric heights we get



y T S S
N AB - BT AT B A
\) .ﬂ'rif-u, Y SR ;\,
’i(’\‘} il ot ‘,‘i\ Cridoa, f D 8 D o G
/ . ) _ D G _ _ G
o \” "'L‘ﬁ-‘..l_, e =)f;...{f" '/{"-'"(f B hB * hB ( - ]) hA hA ( ot ])
Y o 98 9n
V) -‘i“f'in,v__./{«{ PN 5‘5’(,},,—\«,,(
G-g, G-g!
D D B D A
=gt Ry Ty
98 9
3 3
D M D p_,0% - D_,0°A
But AhAB = AhAB + AAB , hB = hB C and similarly hA = hA G Hence
| -G .| -G
0 " D o9 o9
A —_— -
hag = OPag ¥ A * P T T g
H 0
= A
Mhag T Aap

In the corrective terms, the orthometric heights can be replaced by observed
heights without any detrimental effect and we finally get for the

orthometric correction

g,-G gq!-G
20 = a0 LM A MTB

AB  "AB A G B G

The interesting thing to note about the orthometric correction is that it
can be regarded as being composed of three dynamic corrections for the
following three lines AB, AOA, 808. Or to be more precise as a sum of

dynamic corrections in the open circuit AOABBO‘

To conclude with, let us note that orthometric heights of different
points laying on one equipotential surface are generally different. Hence
in the orthometric system, a lake surface is not flat and water may“flow

i1}
uphill. On the other hand, they are usually numerically closer to the

levelled heights. Since they have a definite geometrical meaning --
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geometrical heights above the sea level (geoid) -- they are also considered
as the most appealing intuitively and used in practice almost exclusively.

As an example of the magnitude the orthometric correction can
attain is the 23 cm experienced in the levelling of one Alpine road (Biasca-
St. Bernardino} on a stretch of 50 km climbing from 300 to 2000 m. This is
about 30 times larger than the tolerance limit for precise levelling.

5.5) WNorma! heights

The normal heights are not supposed to describe the heights above

the geoid. They relate the points to another surface known as quasigeoid
and are closely tled to modern geodetic theories, Molodenskij and Hirvonen
in particular. Quasigeoid is a purely mathematical surface {without any
physical meaning) that departs from the geoid by at most a few metres and
coincides with it on the seas.

On the other hand, the normal heights can be regarded as
approximation to orthometric heights. The normal height of a point A is
defined as

N
A

where y'is the mean normal gravity along the .lumb-line of A taken from the

mean earth ellipsoid to a point hz above the ellipsoid. In other words, ;' is computed
A as a mean value of normal gravity in AOA'

(see the diagram). Note that g' (see the

last §) would be a mean value of actual

/ ha 4 \ gravity in AA" and due to the
N
L ? ha relationship between the geoidal (and
\
W‘MH\\\\»_ therefore to a certain extent even the
Wbt erd ,_,_,H——w§1—-ﬁk_5m, quasigeoidal) undulations and the gravity

o {V\ Q“‘ ?so‘d

g al

ﬁ@a field, the two values, g', Y', are not

too far apart.
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We can again write for the mean value y':

I
y' o= N f v' dh
h 0
A
where h = 0 is the ellipsoid and v' (h) = v, is the normal gravity on

h=0
the ellipsoid. In Physical Geodesy |, § 3.14, we have developed the

following formula for the vertical gradient of normal gravity:

0
5% i %}'(1 +m+ f cos 2¢).

Integrating the vertical gradient from the ellipsoid upwards ylelds
ZYO
Y = Yo —5—'(] +m+ f cos 2é) h.

Substituting this y for y' into the above integral we get finally:

=y =—— (1 +m+ f cos 2¢ ) hx .

(Note that the same result can be obtained from the equation for y if we

take h = hz/Z). Heights computed for this Y' are known as Molodenskij heights,

They are used exclusively in Russia and Eastern Europe instead of orthometric

heights.

We can now have a look at the second term in the above expression.

It can evidently be regardéé_ég a corrective term to Yo Realizing that

v KM
0 RZ

and a= R we can write the second term as

Y
0 N kM N
?;-(1 +m+ f cos 2¢) hA = =3 hA .

Comparison with the free-air correction § 4.5 convinces us that our

corrective term can be written in first approximation as negative free-air

correction to vy, for h = hE/Z. Numerically, we obtain
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il _ N _ _ N
(= 4 0.3086 hA/Z Y 0.1542 hA .

0

Normal heights usin ?'V are called Vignal heights. They have been
g

adopted in Western Europe for the unified European levelling network.
It is easily seen that the normal correction to the observed
level difference Ah:B is given by the same formula as the orthometric

correction with the exception that instead of g' we write Y'. Hence

Obviously, the normal heights define the vertical position of every point

again uniquely.

5.6) Heights based on normal gravity

Wherever the gravity survey is not detailed enough to evaluate the

geopotential numbers and the corrections on the basis of observed surface gravity,

we can at least take the normal gravity into account., The normal gravity accounts

for the effect of the overall convergence of the equipotential surfaces
corresponding to the change of ¥ from the equator to the poles of the order
of 5400 mgal. The local irregularities of the actual gravity field,
usually less than 200 mgal, are neglected.

If we decide to use the normal instead of observed gravity, we
compute the approximate values of geopotential number differences Ah
from the following formula

g ] B
AC =

t AB

i

[
o

-2
=2
—

The normal gravity here is, of course, a function of both latitude ¢i and
height hi of the point for which T is computed. |t is guite sufficient

to determine Yi f rom
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Y. = Y

1
' o (&) - 0.3086 hy

where YO(¢5) is given by one of the international formulae for normal
gravity on the mean earth ellipsoid., The error introduced by using ¢ tand h
on the local ellipsoid instead of the mean earth ellipsoid, is at most a

:-.J A

few tqu of mgals in Canada.

Orthometric heights are then derived from AC tsing again the
normal gravity in exactly the same manner as the observed gravity was used.
The same holds true for dynamic heights as well,

Generally, we may observe that heights based on normal gravity
are meant to approximate the proper heights (based on actual, observed,
gravity) and may be thus regarded as lower order heights from the point of
view of rigour. They must not be mixed up with normal heights in any way.
Canada and the U.$.A. are among the countries where these approximate heights

are still used exclusively,

5.7) Discussion of the individual height systems

We have seen (§§ 5.3 - 5.5) that geopotential numbers can be
regarded as a basis for all the used height systems. According to the
value of gravity by which we divide the geopotential number, we get either
i) dynamic height (C divided by a reference gravity constant for one or
more countries);

ii) orthometric height (C divided by the mean actual gravity along the
plumb-line of the point taken between the geoid and the surface) ;

1i1)  normal height (C divided by the mean normal gravity along the plumb-
line of the point, taken between the ellipsold and a point hA high
above the ellipsoid).

Disregarding the heights based on normal gravity, that can be regarded as

a degenerate case of the proper heights, we have thus three distinctly

different definitions of heights. They are not,and do not claim to be,

equivalent. They represent three different geometrical (physical) quantities.
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The dynamic heights are closely related to the concept of
equipotential surfaces. One may say that they reflect the geometry of the
physical space surrounding us. As we have seen already, the points laying
on one equipotential surface have the same dynamic height (for one value
of the reference gravity).

The orthometric heights are, what one may call,“the common sense
heEghtsT The points that have the same orthometric height have the same
vertical distance from the geoid. Because these heights are not meant to
depict the physical properties of the space aroond us they have the
unfortunate property that they disregard the water flow; we may have water
flowing from a point orthometrically lower to a point orthometrically higher.

In order to see the magnitude of the difference between the
orthometric and dynamic heights let us take the normal component of gravity
only and draw the following diagram:

! The quantities Ah¥00 and Ah300 dencte

}f?ﬁlc the amount of convergence of the normal
equipotential surfaces, and therefore
also approximately the difference between

orthometric and dynamic height. They

—————— can be evaluated from following formulae:

. ] 1
phyon = Uy = Up) - =)
100 100~ Yo’ N7,
Bhane & (UL - U) (- )
300 300 ] Y, Yh

that can be derived from our known relation

dU = - y dh .

Taking Uioo™ Yo = - 160 m Y, =T 97800 gal-m and 1/ya - t/yb = 5.4 10—6 gai_1

we get approximately A[;hloo = 53 cm, Ah300 = 160 cm.uJ
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The normal heights are, philosophically speaking, closer to the
orthometric heights. The disadvantage though is that the
surface they are refered to (quasigeoid) has no physical meaning. On the
other hand, there are no hypotheses Involved in defining them. For practical
purposes the normal heights are just as good as the orthometric.

All three systems define the height of any point uniquely. They

may be graphically interpreted as follows:-

/ \ fuari -

vef
Wy~ Jeoid I

5.8) Mean sea level asa helght reference

basic é/ Pu “27

( beneh wark The levelling networks are usually

\. @ _Counber - connected to a number of basic bench-
P 8 we‘ghf
) W

marks situated close to tide-gauges.

l"\'hi 'i‘ .C“{)r\\t
j | Their heights (generally only a few
! ; -
L meters above the sea-level) are
L\h-;_ltb.
| ! determined as i\hi - Ah 3, where
L o
} g sh, is a constant for a tide-gauge,
[l‘r’\ :icke Jauge ; z’ ' I
( Conctart : \( Haat Ah3 is the level difference between the
5 i tide-gauge zero and the bench mark and

5t\:ei Eﬁz is the mean chart reading,
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corresponding to the ''mean-sea level'. Eﬁé is obtained as a mean of the
readings over a period of many years. Then the height of the basic bench-
mark can be regarded as directly related to the mean-seal level which is
representing the geoid {quasigeoid).

The heights of the individual points of the levelling network
are determined by adjustment. First the orthometric {dynamic, normal)
height differences of levelling lines are determined, using the levelled
differences and the appropriate corrections. Then the network is adjusted,
holding the heights of the basic B.M!s fixed.

This procedure of course assumes that
i) the mean chart readings represent the mean sea level that is constant

over any period of time;
1) all the tide~gauges refer to the same level -- the geoid {quasigeoid).
Strictly speaking, neither of these two assumptions seem to be valid. The
sea level at every point is subject to great many influences. It seems almost
certain now that the combination of these influences cause the sea level to
rise systematically all over the world. The second assumption appears
incorrect because the local conditions (prevailing winds, salinity,
temperature, etc.) influence the sea level somewhat permanently.

Hence more satisfactory procedure would be to hold only one
(reference) point in the network with an assumed height fixed for the
adjustment. This reference point should be located close to the center
of the net (preferably in a geologically stable area) to achieve the best
propagation of errors. After having adjusted the network one can study the
heights of the sea levels--as indicated by the tide-gauges~-relative to the
reference point, From these relative heights, a mean difference between
the sea levels and the reference point can be deduced that would be valid

for a certaln period of
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time and all the points, inciuding the reference point, can be given the
appropriate correction. The height of the reference point then may be

declared fixed for a certain period of time.

6) Use of astronomic observations in geodesy

6.1) Geocentric Cartesian, Geodetic and Astronomic coordinate systems
and their transformations; astro~deflection

F
£

i) The Geocentric Cartesian system

can either be average-using the
average axis of rotation of the

earth--or instantaneous--using

the instantaneous axis of rotation
for 7 axis. It is centered on the

center of gravity of the earth and

+XZ plane contains the Greenwich

%
o7
< £

observatory. |If the axes do not

interesect in the center of gravity, we speak about Relative Cartesian

system. The transformations between these systems are a matter of translation

and differential rotations.

ii) Geodetic Coordinates of a point P

are ¢,A,H. In order to be able to
relate them to the Cartesian

coordinates, the reference ellipsoid

has to be given as well, usually by its
center and the two main axes a and b, The

radius vector of the point P is given by
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{N* + H} cosd cosi

=¥

= (N + H) cos¢ sink

2
(n* (2») + H) sing| ,
Here,the radius of curvature in the prime vertical is

2
N% = az/ /(a2c05¢ + b2 sin2¢)

For small height above the reference ellipsoid, H, we get
cosd cosA
+ 1l
Foe= (N% + H) cos$ sini
by2 .
1 (59 sing

These formulae as wé]] as more details can be found in [Krakiwsky, E. J. &
Wells, D. E., 1971: Coordinate Systems in Geodesy, UNB.]

Note that we do not reﬁuire the center of the reference ellipsoid
to coincide with the center of gravity of the earth. On the other hand we
usually want its semiminor axis tobeparallel with the mean axis of rotation
of the earth. The formulae above are, of course, valid only for the two

systems {(Geodetic and Cartesian) being concentric, and represent the direct

transformation of geodetic into Cartesian coordinates. |f the two systems are
not concentric, then the shift (translation) of the two centres has to be
added to the transformation. The inverse transformation is more complicated

and is usually solved by an iterative process; see [Krakiwsky & Wells, 19711,

iii) Astronomic coordinates of a point P

—
aegid e

| ell\‘?md

aré ¢,A,h. Themeaning of these symbols
is apparent from the diagrams. We can

NG obviously write
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The relation between A and X is not so
obvious. However, we can write it easily
encugh realizing that the image of n'

in the xy-plane is given by n'/coso

L}E-A) cos¢ = QIZ]

The following equation is also valid

and thus

approximately
{A~A) cose = n'.
Hence we can transform the local
astronomic coordinates to geodetic
coordinates only if we know the geoidal
undulation N and the two components of

the deflection of the vertical £', n' at-the

point P. The geodetic coordinates can

subsequently be transformed to the

Cartesian coordinates through the reference ellipsoid on which the geodetic
coordinates are known. Therefore, we can conclude that in order to transform
the astronomic coordinates {that can be regarded as ''observed coordinates'')
to the Cartesian we have to know two surfaces--the reference ellipsoid and
the geoid or more precisely the ellipsoid and the gravity field, as given
by the equipotential surfaces, between the geoid and the point P,

Mote that if & is observed astronomically, it may or may not be
corrected for the effects of polar wobble. ¢ and A are in geodetic networks

observed on a whole set of points known as deflection points. Obviously,

if the astronomic coordinates ¢,A of a point are observed and its geodetic

coordinates ¢, derived from the terrestrial network (computed on the
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reference ellipsoid), the relationship of these two pairs of coordinates,
can be used to provide us with the components E:n’of the deflection of the

vertical on the surface of the earth, known as astro-deflection at P. This

technique is very widely used in practice.

6.2) Definition of a "corresponding point'' on the reference ellipsoid
to a surface point; Helmert's and Pizzeti's projections

It is known from geometric geodesy that the reference ellipsoid
is the surface on which the adjustment of the horizontal networks is
usually carried out. Hence we have to define the projection of the points
on the surface of the earth onto the reference ellipsoid or, in other words,
we have to define what we mean by a ''corresponding point" Po on the ellipsoid
to the point P on the surface.

The most obvious way how to define the corresponding point PO
to P = {¢,x,H) is to take P, = (¢{A,O). This definition is due to the

German geodesist Helmert and the

P kv,
e T
G '10 projection of P to PO is hence known

! P

' y

| i
,gﬂI ; as Helmert's projection. Its geometric
”ﬂTﬂ’” i
i Q- e interpretation is very easy and can be
.,4".’ ~.
e ! regarded as straightforward general-
_Mfw#_“w_ﬁu_mgqh refs ization of the earlier used definition
P ﬁﬁﬁgfgz&ka\\
o Prosed .. of corresponding points on the geoid
and on the ellipsoid. |If the point P on the surface is determined by its

astronomical coordinates @,A,h, the corresponding point on the ellipsoid

is then given by

P, = (6 =¢ -&', x=h - n'fcos &, 0)

where £',n' are the components of the astro-deflection at the point P.
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The second definition

P o e MW gy is due to the ltalian
f ﬁ W geodesist Pizzeti. He
Lo o Wy
i 1y "y
E ﬁﬁﬁﬁh??\\\H suggests to compute first
i “
s
[ B -‘“{H)h@? the ‘'corresponding point Q' "
W
h- ) on the geoid projecting P
i
~
' along the actual plumb-
J@ﬁ?\dk_ line. Then the point Q'
\__:\lké

on the geoid is projected

ey Fra
3 / 5“'(/&

along the ellipscidal
normal to the ellipsoid, to get the corresponding point Pé. This double

projection became known as Pizzeti's projection. Its mathematical

expression is evidently more complicated than this of Helmert.

In practice, the Helmert's definition is used almost everywhere
mainly because of its simplicity. These two definitions, however, yield
almost identical results, the distance between PO and Pé being usually no
more than a few centimeters. |t may occasionally reach the magnitude of

about 1 meter.
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6.,3) Relation between astro-deflection and gravimetric deflection

So far, we have come across two kinds of deflections of
vertical. One, introduced in 3.19, described the
relationship between the gecid and the mean-earth-ellipsoid. These
deflections can be computed from the gravity data and are known as

gravimetric or absolute deflections. Their components are denoted here

by £, n, conforming to the previous notation.

Second kind, the components £'n’ of which we have met in §6.I,
relates the equipotential surface of the point on the terrain with the
reference ellipsoid. Since these deflections can be determined from
astronomic observations {and geodetic observations and computations) they

are usually called astronomic or relative deflections,

[f the reference ellipsoid, used for the determination of the
astro-deflections happens to be the mean-earthﬂgﬂipsoid we would end up
with the situation depicted, on the diagram, where 6' denotes the astro-
deflection and 8 the gravimetric deflection. In such a case the two
deflections would differ just by the term &6 due to the curvature of the
actual plumb-line. Later, we shall see that when we know the mutual

relationship of the mean-earth-ellipsoid and the reference ellipsoid
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{used for deriving the astro-deflections) we are able to transform the
original astro-deflections to new astro-deflections related to the
mean-earth-ellipsoid. In other words, knowing the relationship of the
two ellipsoids we are able to talk about the relationship of the two
kinds of deflections in the terms used above, since the astro-deflections
can be first transformed to the astro-deflections related to the mean
ellipsoid. Hence for the rest of this paragraph we shall assume that
the astro-deflections are related to the mean-earth ellipsoid,

in order to develop the expressions for the two components of
the curvature term let us denote first

6 = £ - E£', An =7 - n', A8 = Y{AEZ + An?).

o

Let us take again the local orthogonal system of coordinates x,y,z
with z-axis coinciding with the outer normal and x-axis pointing south on
the tangent plane to the local equipotential surface (see also

3.14). This particular orientation of X,y,z system is chosen
so that it corresponds to the sense of £ and n, Taking the differential
vector increment along the plumb-line

d_;i:d><_|(¥+dyj’+([z[<>
paratlel to the gravity vector

= oy

oS

we can write
a': ': g1
dx/Ux dy/wy dz/UZ
where w; stands for %g-and similarly w*y,wg. This is the differential

equation of the plumb-line.
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Since we want to determine the A£,An; i.e., the curvature terms
in the meridian plane and in the plane of the prime vertical, let us
investigate the projections of the plumb-line in the XZ and yz-planes,

Writing for the projection into xz plane

x = x(z).
R ' Recalling the formula for
the curvature of x = x{z):
k= xit (1 + x12)73/2
- \ \.\\Jﬂ\.lﬁk(
e P .jLﬁ;’" and realizing that x' = 0

due to our choice of the
coordinate system (x has got a minimum at P) we can write for the

curvature in xz plane

d2x
kxz——-z-.
dz

On the other hand, from the differential equation of the plumb-line,

we have

i
ax _ Vx
dz = W'
zZ

Taking the derivative of this expression with respect to z we obtain:

=——}—~ i " i’i — W gt " El_’f. .
22 () (o, W ) - Wi+t )]

d2x
2 i
z

1
Z

But here again g§-= 0 as above and W; = 0 because the x-axis is tangent to

the eguipotential surface W = constant.



145

Hence
2 \l!i WH wll
K = d°% "z "xz _ xz
= - - i
* dz2 W'2 W z
z
We know that W is inside the earth analytic so that W;Z = W;X.
Realizing that w; = -g we can write finally:
~1log
ky = g ax

Analogously

Denoting by df the differential change
in the meridian component of the
deflection, corresponding to a
differential change of height dh (see

the diagram), we obtain

_ . dh 3g
d = k,dh = =

The total change AE in £ corresponding to the displacement from P to Pé

is then given by

P! 1
AE = j[ Eg'dh'
— P

L=

Analogously

N — e

99
§V~dh.
P

E
1l

o]

@ | -

Various formulae suitable for practical evaluation of these
quantities may be found in literature, They are based on different
hypotheses for the actual gravity inside the earth and we are not going to

deal with them here. let us just recapitulate here that the curvature
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corrections Af and An have to be applied when we want to reduce the
Hsyrface deflection' to the ''geoidal deflection'' or vice versa.

The magnitude of AE,An can attain several seconds of arc. |t
is likely to be higher in mountaineous area, lower in the flat regions.
Therefore, in the flat regions, the curvature corrections are often

neglected altogether.

6.4) Astronomic and geodetic azimuths; Laplace's equation

When we deal with a pair of points on the surface of the earth
we cah define an azimuth of one with respect to the other. In geodesy, we
work with two different kinds of azimuths - astronomic and geodetic.

Astronomic azlmuth A of a point B with respect to point P is

defined as the angle between two planes: the local astronomic meridian
plane of P and the vertical plane containing the point B. The local

astronomic meridian plane is given by one line-local vertical; i.e.,

the tangent line to the local plumb-line at P - and one point - the infinitely

distant point on the average axis of rotation as defined by the position

among the star formations. The yertical plane coptaining the point B Is

then defined by the local vertical as above and the point B on the surface
of the earth. We may note that the astronomic meridian planes do not
generally contain the average pole of rotation on the surface of the
earth. The bunch of the astro-meridian planes intersecting a unit sphere

centered upon the earth center of gravity may look thus

- average axis of rotation.
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Geodetic azimuth o of a point B with respect to point P is
defined as the angle between two lines:

the projection of the geodetic
meridian into the tangent plane to the reference ellipsoid at Po

(corresponding to P) and the tangent to the projection of the geodetic

curve connecting P, with B (corresponding to B), on the ellipsoid,
into the same tangent plane.

The geodetic meridian

[

Y

&
%

F
E
™
= .
3
%
%

[p]

e

of P {and also PO) is the geodesic on the reference ellipsoid containing
both ellipsoidal poles and the point PO

Note that the geodetic meridian
plane does not, in general, contain the earth axis of rotation, when the

reference ellipsoid is not co-axial with the earth.

To establish the relationship between the astronomic and
geodetic azimuths, let us first assume that the axis of rotation of the

earth is parallel (not coincident) with the semi-minor axis of the
reference elliposid.

We can then take a unit sphere centered upon the
point P,

The diagram shows the various points and circles we get on the
sphere!
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7 - the local ellipsoidal zenith;

Z‘p“ the local astronomical zenith;

N - image of the North pole; i.e., intersection of the Northern
\ branch of the line parallel
e
N 3 with the earth axis of rotation

going through P)with the sphere;

B' - projection of the point B
onto the sphere;
S -~ intersection of the

planes | and Il on the sphere.

The plane denoted by |
contains the local astronomic
vertical (tangent to the local
plumb-line at P) and the point
B. Plane 1l contains the local

normal to the ellipsoid and the

tangent to the geodesic POBO.

Redrawing, the two triangles we are interested in, namely NZpZ;
and ZéZpS, we obtain the following formation., Applying the Napier's rule

to the rectangular triangle NZPQ we get:

sing = cos {90° ~ & + £') cos n'

-sinn'= cos (90° + A)) cosé.
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Realizing that &')n',AX are very small
in absolute value we can write

sin ¢ = sin {o - £')

or

o= 0 - !,

and

n' = sin Ak cos ¢ = Alcoséd.

These equations coincide with the equations
in 86.1 defining the astronomic deflection
which in fact may be regarded as a proof

of correctness of the representation of

the triangle NZpZé in the way we have
done it.

On the other hand, the central part
of the last diagram can be redrawn and
it denoted thus.

Then we obtain

A
‘(\\ Sr A Boy = X cos (90" -¢)
N BA s
A S sin
" \\\\ b
\

'y AN and
& . \\

.5' E \\\\&t[xix‘:\&:,\ hoy = u cos Z.
SRy s A
P I, ]

AN We can thus write:

iy

&

L%

A-a = Aa]"Aaz = AX sing-ucosi.

Taking the triangles QZDZQ, RZpZé and projecting them on the plane tangent
to the sphere at, say Zp we aget the following diagram. Here the lines can

be drawn straight because of the extremely small size of the formation.
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From the triangle QZpZé we obtain:

-£' = 9! sin {k-90°)

>

’J or
' £Y = B' cos x
and
&
-5 ' =8'sin K,
(R)
! .
w T These formulae relate the deflection
i -
\ R
SO @' and its azimuth K to the deflection
| 2. .2
i TTm— components £',n'. Note that & = Y{£'“4+n'“) and

G)tg K =n'/g'. imf{/“;t

On the other hand, we can write,
using the triangle RZpZé:
§ =8 sin (x-a) =6' (sink cosa - cosk sinu)
=-n' coso - £' sin a.

But, from the spherical triangle SRZ& we get:

sind = sin Z sin u
or, considering § and u very small:

u o= &/sin 2 = (n' cosa + £' sina}/sin Z.
Thus, we can finally write for A-o!

‘ A~a = (A=A} sing + ]ﬁ' s{;ﬁ+n’cosa) cotg 24;}

This is the well known Laplace's equation {(do not mix it up with

the other Laplace's equation AV = 0} in its full form. It expresses the
relationship between the astronomic and geodetic azimuths through other

quantities.
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We can note that the second term contains Z, that depends on
the zenith distance of the sighting PB as well as the deflection at the
statien. and the curvature of its plumb-line. |Its precise evaluation
is very difficult. Z, in geodetic literature, is usually assumed to
equal just the mentioned zenith distance, which may cause some anxiety.
Application of the right corrections to the observed astronomical azimuths,
namely the ''skew normal'' correction, the correction ''to geodesic!, as
knuown from geometric geodesy, and the correction for the ''curvature of
the actual plumbline', eliminates this possible source of errors. These
corrections are, however, seldom applied in practice. For astronomical
purposes, the second term is usually disregarded altogether.

The azimuth {geodetic) determined from

a'' = A - (A -2) sin ¢

is known as Laplace's azimuth. A point, for which the Laplace's azimuth
p

was determined is then called a Laplace's point. The Laplace's points are

used for 1) orienting the horizontal networks on the reference ellipsoid;
ii) orienting the reference ellipsoid so that its semi-minor

axis becomes parallel to the earth axis of rotation. The straightforward

least squares solution minimizing the summation of the squares (o' - )

is usually depleyed for this purpose.

Note that the simplified Laplace's equation allows us to find
another formula for n' yet. Realizing that A-A = n'/cos ¢ (see earlier),
we derive

n' = (A - «) cotg 4
retating the E£-W component of the astro-deflections to the difference of

the two azimuths,
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6.5) Astrogeodetic determination of the geoid (astronomic levelling)

As we have seen in § 3.pg, there is a close
relationship between the deflections of vertical on the geoid and the
geoidal undulations. We have seen that following equation holds:

dN = - eds

where ¢ is the deflection component in the azimuth a of ds. The sign is
minus because of the sign convention for £ and n.

Obviously, if the deflection components on the geoid refer to
a reference ellipsoid (mean earth or local) we can use them for determining
the dN which are referred to the same reference ellipsoid. Hence the
astrodeflections can be used for the purpose of determining the increments
of geoidal height with respect to the used reference ellipsoid when
corrected for the actual plumb-line curvature between the surface and the
geoid. In other words, correcting the astro-deflection components for the
curvature term (see 6.3) they can be used in the above formula giving the
variations of the geoidal height with respect to the reference ellipsoid.

The quantity e can be determined from the components £,n and the
azimuth o of the line segment ds from the diagram as

Norlh £ = £ COSQ =1 Sino

The idea of the astrogeodetic
determination of the geoid, due to
Helmert again, is based on the
following. Consider the astro-
deflection component known along a given

line AB on the surface. Providing, we

can reduce these components to the geoid
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RS

(by applying the curvature corrections)

e T and providing the geoidal height at A,
P o
// B NA’ is known we can determine the

v
Q_?I/”/ geoidal height of B from the evident
A formula

T
NB = NA + IE dN = NA - fg (¢ cosa # n sina) ds.

In practice, we do not know the astro-deflections continuously along the
profile but providing the points with known deflections are spaced densely

enough we can replace the integral by summation and write

B-1 —
Ng = Ny = 2 (Ei cosa, # n, sin ai) ds .
i =A
This formula corresponds to the case
Bl shown on the diagrams.
It is usual in practice, to design
A 7R closed loops consisting of such piece-
/’§?$
—’g',_,g’ wise lines. Then the geoidal

undulations can be determined for all
the involved points and the loops, or
network of such loops, adjusted in
much the same fashion as levelling
loops. The results are the more
reliable the closer are the astro-
deflection points together.

We may conclude by noting that while the Stokes' formula furnishes
the geoidal undulations above the mean earth ellipsoid (once the proper

scale is determined), the astrolevelling, as this method became known,
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provides us with the geoidal heights above the reference ellipscid; ie.,
the ellipsoid used for computing the geodetic coordinates on. The gecidal
profiling (or loops) starts usually at the origin of the reference
ellipsoid, where the gecidal undulation is assumed (generally assumed to

be zero).

6.6) Astro-gravimetric determination of the geoid (astro-gravimetric levelling)

The astro-geodetic determination of geoidal profiles, viewed
mathematically, represents an example of the use of the trapezoidal formula
for evaluating the involved finite integral. The weakness of the technique
lies in the linear interpolation between any two adjacent astro-deflection
points. Hence, as we have mentioned already, it is an imperative there
to have the deflection-points spaced as closely as possible. This, of
course, represents a very costly requirement,

One way, how to overcome the necessity of having too many
deflection-points is to use the knowledge of the local gravity field to
supplement the deflection points. As we know (see § 3.13)
it is possible to obtain the absolute (gravimetric) deflection at any
point on the geoid from the gravity anomalies, using the Vening-Meinesz's
formulae. Taking the Vening-Meinesz's formulae for £ and n, we can
split the integration involved there into two terms: i) integration over
the vicinity of the point of interest (up to a few degrees or few hundred
miles); i) integration over the rest of the terrestrial globe.

The first term when computed for densely spaced points along a profile
vill reflect the '"local effects''; i.e., the effect of the immediate

environment of the points. It will Lherefore vary irregularly. The second
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term will vary only very slawly and its variations between any two adjacent
deflection points may be taken as approximately linear.

Hence, the first term of the Vening-Meinesz's formulae can be
used for densification of deflections along a profile connecting two
adjacent astro-deflection points. The fact that the Vening-Meinesz's
formulae yield gravimetric deflections; i.e., deflections related to the
mean-earth ellipsoid, is immaterial. The difference between astronomic
and gravimetric deflections can certainly be regarded as practically
linear in between any two adjacent deflection points and has therefore
approximately the same influence on the results as the second term in the
Vening-Meinesz’s formulae.

One way how to use the 'partial'' gravimetric deflections
(given by the first term) would be to compute their values ¢* along the

profile AB including

\ﬁb%?/‘//’+ the points A and B.
; Assuming, that the

. . [y
,?a&mi "avllhc‘k(‘i/ ' -k
N difference between ¢'s

and g='s varies

& linearly we can write for

A the interpolated astro-

deflection £;

B

e —— e e e e

(e; T sB)

which the reader can easily verify. This idea is due to Molodenskij

and the method became known as astrowravimetric determination of the geoid,
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It is not difficult to see that quadratic (or higher order)
interpolation can be used instead of the linear interpolation. In such
a case we would have to consider three {or more) astrodeflection points
along the profile. Other sources of Information can be used for
interpolating between or amongst the astro-deflection points as well.

We could, theoretically use, for instance, the values of the horizontal
gradient of gravity, zenith distances observed between two adjacent detail
points on the profile or just the computed values of isostatically
corrected terrain attraction,

We may note that the most serious difficulty with the astro-
gravimetric levelling is again the necessity to account for the effect
of immediate surroundings (up to a few miles) of the interpolated point.
This may require some gravity densification at certain points.

To conclude with, let us point out that both these methods
(astro-geodetic and astro-gravimetric) suffer from one unfortunate
property. The incertitude in the geoidal height increases as we go
away from the point of origin due to the build-up of random and
systematic errors inherently contained in the astro-deflections. Hence,
perhaps, a least-squares fitting of a surface to the astro-deflections
(and/or the densified deflections) might provide a better answer than

the profiles.
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6.7) Determination of an optimum reference ellipsoid from the
deflections of vertical and geoidal heights®

£.7.1} Relation between the change of the reference ellipsoid
and the deflections and geoidal heights

When dealing with deflections and geoidal heights we always
have to bear in mind the fact that they are related to the specific reference
ellipsoid. Hence, if we change the ellipsoid all the deflections and the
geoidal heights change as well (since the geoid remains the same for all
our work).

Talking about the change of the reference ellipsoid we talk about
three distinctly different changes:

i) the change of the center of the ellipsoid with respect to

the center of gravity of the earth; i.e., translation;
i1} the change of the orientation given by three rotation angles;
it1i) the change of the shape and size of the ellipsoid; i.e., the
change of the semi-major axis and the flattenning or any two
parameters describing the shape and size of an ellipsoid of
rotation.
A1l in all, there are 8 parameters involved.

Fortunately, the earth is almost spherical and therefore the
reference ellipsoids are usually almost spherical too (the flattenning of
the order of 1/300 does not flatten the sphere very much). Since the
orientation of the reference ellipsoid is generally quite good and because
the orientation of an almost spherical ellipsoid plays a minor role anyway,
the rotation is usually not taken into account at all., Thus, by a change
of the reference ellipsoid we shall understand the change of the remaining
5 parameters -- the three translation components and the two shape and size

parameters.
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As we know from geometric geodesy [Krakiwsky,and Wells,
19711, the assumed reference ellipsoid is usually not given by its center
and its shape and size parameters. 1t is generally defined by the geoidal
def}ection components go’ﬂo and the geodial undulation HO at the point of
origin (Meade's Ranch for the NAD 27, Pulkovo for the Krasovski's ellipsoid,
Potsdam for the European datum etc.) and its shape and size parameters.
Thus, instead of talking about parameters Xy Yor Zgr @ f, we shall talk

about go,nO,NO,a,f, taking the proper orientation for granted.

The formula expressing the changes in the geodetic coordinates
¢,\,H of a point P in relation to the change of X 1Y orZg a,f, has been

derived in [Krakiwsky & Wells, 1971]. it reads

8 6% 1 -
© % Sa
6 = A éyo L+ B (*}
‘ §f
&H 8§z
o]
where
' 2
I cosd sing cosh , cos¢ sind sink , -cos ¢
|
A = acos ¢ ‘ sin A , - ¢cOS A R 0
] 2 2, . ,
a8 cos ¢4 cosh , “a cos ¢ sink , =-a sing coS¢
and
l 0 , 2 sin ¢ cos ¢
B = 0o , 0

, 2
1, asin ¢

Here, all the elements of the matrices A and B are related to the point P,

To derive the relation between the change of go’no’ No’ a,f and the change
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of £, n,N at an arbitrary point, let us first establish the relation between
[
8¢ ,8\ ,8H on one side and §x_,8y ,8z ,8a,8f on the other side. Obviously,
o’ 0’0o o’ 70’ "o
this relationship is just a special case of the relationship introduced

above and we can write:

i -1

¢ X

l’ O o] 6 a

82 = A Sy + B (%)
| el o ° Olsf

taﬂo i [620

Here the matrices AO, BO are nothing else but A,B related to the point of
origin.

Now we can get rid of the translation components éxo,éyo,ﬁz
that we shall not be interested in. Ffor this purpose, let us multiply
the equation (*) by A" from the left, the equation (*%) by A;‘ from the

left and subtract {*%) from (*). Ve get:

8¢ l5¢ .
-1 ! / g Ea] ) |02
A Ceal - AT 8 ="'y - A B
| ‘ °© el #Gf] © Ofsf
SH SH_ |
- i coo0

This equation can be rewritten as

o r6¢o\ (o)
P S it
(6 = AA T 8A i F (8 - AA B )| !
| \ o o| 0 "0 ise]
Lo , y [
[OH L5Hy \

[=c]
>ﬂ

5¢
i Sa
6H i

Let us recall, at this stage, the definition of the geoidal

e e

deflection components and the ellipsoidal height H. We know -that
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£

I

£' + AL = @ - ¢ + A

H=N+h.

n

=n' + an = {A-2) cos ¢ + 4n 5

Here the quantities ¢, A, h (astronomic coordinates) and A%,An (curvature

corrections) have nothing to do with the reference ellipsoid and will

therefore not be influenced by the change of the ellipsoid.

therefore write:

6 = ~8¢, on =

=8k cos &,

SN

We can

= &H,

Substituting these results back into the transformation equation above

we get finally:

e o
8E 8E ..

! . ° B 16&]
| 61 ‘ = ¢ |on + D !
PP PR
LoN | SN, | -

where C and D can be found to equal:

~%~(sin¢o cos¢ -
cos¢osin¢cos(h-ko))

é{cos¢osin(l~ko)

(sin¢osin¢+ cos¢_

cos¢cos(A"AO))

. 2 .
¢ocos¢+ cos¢051n ¢Osan¢cos(A lo)

cosp, coso+ sing  sing cos(A-Ao), - sind stn(A-AO),
€= |sins, S|n(A-l0), cos (A-AO),
i—a@os¢osin¢+ sin¢0cos¢cos(A—AOH,-acos¢sin(k*lo),
' -l{sin¢ cos¢-cosd_singcos(A-1 ) “sind
a o o ‘o'’
-2 cos@sin¢- sin%)
D = l-coscb sin(A-) ) cos ¢ sin {A-1) 5in2¢
a 0 o’ 0 o] 0
o o 3
(s|n®051n¢+cos¢ocos¢cos(A AO) 1), sin

. . 2
¢, 5ingtcosd sin ¢Ocos(A AO)

P2 s .
+ sin ¢0 25;n¢os;n¢
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This formula bears the name of Vening-Meinesz, who was among the first
to derive it, and it is one of the most important formulae in geodesy.
it relates the changes of the deflection components (surface or geoidal)
and gecidal undulations to the changes of the reference ellipsoid

represented by 6&0,6n0,6N0,6a,6f as we set originally to derive.

6.7.2) Determination of the local optimum reference ellipsoid

The deflections of vertical (and the geoidal undulations) provide
us with the geometric relationship between the two surfaces -- the
reference eliipsoid and the geoid. They can therefore be used for two
different purposes: i) assuming the reference ellipsoid known, to
determine the geoid. We have treated this problem in 6.5 and 6.6 already.

ii) assuming the geoid, to determine the best fitting (optimun)
reference ellipsoid,

The optimum reference ellipsoid for a certain area can be defined
in a variety of possible ways. The two most widely used definitions of
optimum ellipsoids are:

1) the best fitting in the sense that it minimizes the sum of
squares of geoidal deflections known in the area;

2) the best fitting in the sense that it minimizes the sum of
saquares of geoidal undulations determined in the area.

Nbviously, in both cases, the formulae developed in 6.7.1 will come useful.

For the first optimum ellipsoid, we can write

i U . I
ey fel Jer] . [fs&:(_j . [sal e
L= + 7 =0, | + D +
fn ln !6n! R i &n R §f n
L . Lo i o - R
SN
e
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where E,ﬁ are the ''new' deflection components obtained from the 'oid"
£,n component after changing the 'old' ellipsoid (go,no,No,a,f) to the
fhew'! el lipsoid (€O+6£ )N, +6n ,N +6N ,a+8a, f+8f) and E , ER are the
reduced matriég ﬁ from § 6.7.1 containing the first two rows only (we

are not dealing with &N in this case!). Denoting the first row of C by

E} and the first row of D by D we can write write

- 650 [Ga
E+ 685 =2¢C * | + £
! éno ! | &F
[
&N
— e S
and similarly
T [
‘l ’ 550 ]
l 5 . |6a
fn + 6n = Cz 6n0 + 02 + n

§f
L__ SN 1
. O S

e ———

From these linear observation equations we can determine the adjusted

incrementségo,éno,éNo,Ga,Gf that render the expression

T
{ 2 e, + g2+ (g + 60 )7
i=]

minimum. Then the best fitting reference ellipsoid for the area is obtained

by adding the adjusted increments to the ''old' ellipsoid parameters.
It is not difficult to see that if the optimum reference ellipsoid

in the sense of the second definition is wanted we can write imwediately

and proceed to get the adjusted increments minimizing the expression

n 2
T (N + &N)
j=1
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It is worth noting that for a Iimited area the two mentioned
optimum ellipsoids will not be the same. For a limited area one has to be
also aware of the fact that &N and Sa are almost linearly dependent {due
to the almost spherical shape of the ellipsoid sought) and the matrix of
normal equations for the adjusted increments is likely to be poorly

conditioned.

6.7.3} Determination of the mean earth ellipsoid

The same technique; i.e., the minimization of either
z (Ni + GNi)2 or {(E+6E)2 + (n+6n)2}, can be applied to the whole
earth in order to determine the best fitting ellipsoid to the whole

globe. Such an ellipsoid is usually called the mean earth or absolute

ellipsoid. It has been shown that for the whole earth, the two above
conditions are equivalent and yield therefore the same ellipscoid.

The guestion may arise now as to whether the ''gravimetric geoid',
given by the Stoke's formula can be used for the purpose of determining
the mean earth ellipsoid as well. The answer to this question is positive.
In this approach we generally define the mean earth ellipsoid as such an
ellipsoid that shares with the geoid the mass M, the potential WO, angular
velocity w and the "difference' of the principal moments of inertia

c - (A + B). It has again been shown that these physical quantities not

1
2
only determine one ellipsoid only but alse that this ellipsoid is identical
with the one defined by the adjustment process as described above.

An interesting and often used alternative way of determining the
mean earth ellipsoid is the use of both the gravimetric and the astro-
deflections (reduced to the geoid). They should obviously be the same
theoretically, If the astro-deflections were computed on the mean earth

ellipsoid. Due to the fact, that they are usually computed on the local

reference ellipsoid and due to the inevitable errors, thought random, the
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two deflections do not coincide. This idea can be thus exploited to
formulate the adjustment model seeking the corrections to the parameters

of the used reference ellipsoid that would minimize the expression

L [(e-60)2 + (n-n%)?)

where &,n are the astro-deflection and £*,n* are the gravimetric deflection
components. Theoretically, the ellipsoid arrived at using this technique,

should again be the same as the previous two.

7) Miscellaneous topics

7.1) Reduction of observed horizontal angles to the reference ellipsoid

As we know already, our horizontal and vertical networks are
referred to two different surfaces. While the vertical network (heights)
are related to the geoid or quasi-geoid, the horizontal network is referred
to the used reference ellipsoid. The heights can theoretically be
related to the ellipsoid if we know the heights of the geoid {quasi-
geoid) above the ellipsoid; i.e., the gecidal (quasi-geoidal) undulations.
Hence, in order to be able to talk about relative positions of individual
points in three-dimensional space, we have to know the relative position
of the geoid with respect to the ellipsoid or vice versa.

in order to be able to treat both the networks on the ellipsoid
we have to project the individual points from the surface 6? the earth to
the ellipsoid first. This can be done using one of the projections
described in §6.2. At the same time we have to project onto the ellipsoid
even the individual observed elements, the horizontal angles and the

distances, to be able to compute the positions of the trigonometric points,
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whose astronomic coordinates are not observed, on the ellipsoid. In this
paragraph we shall show, how to project (reduce) the horizontal angles.
To reduce an observed horizontal angle from the terrain to the
ellipsoid, we can use the formula developed in 86,4 for the relationship
between the astronomic and geodetic azimuths, it is conceivable that the

observed angle Q can be expressed as the difference of two astronomic

azimuths
| Q= A] - A2
S while the reduced angle on
[
/ the ellipsoid as the difference
/v
. Pt bet h di
/”<§>j1' f etween the corresponding
B ! geodetic azimuths
j
T, ' w= o, - o
- u:“‘nﬂ-'* Tz 1 2
J:E:“thé—»"“' Vo, Hence, denoting by Awm the
difference 0 - w we can write:
Aw = (P«1 - AZ) - (a} - az)
= Ay ) o Ay )

(A = A) sing + (£' sin o n' cos ai) cotg Z, - {A - ) sin ¢ ~

- 1 H |
(¢! sin o, + n' cos az) cotg 22

Substituting here the expressions (8§ 6.4) for &' and n'
£t = 8' cos k , -n' = @' sinx
we get

Aw = B! (cosxsinal—sinxcosu1) cotg 21"9'(COSKSinH2" sianosaz) cotg 22

Aw= 0' [sin(a,-«) cotg Z,- sin{a,~«) cotg Z 1
] 1 i 2 2
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where
-x = arctg n'/t!
is the azimuth of the astro~deflection 6!,

In order to get some feeling for the magnitudes involved let

us consider an angle 2 observed in high mountains where we have gt = 20",
= ° = - @ - - = °
ay = 4se, a, = bs®, « = 0, Z, Z, = 100°. Ve get
bw = 20" * 2 " sin L5° cotg 100° = -40' ' 0.707 ° 0.176

124

_5“

7.2) Reduction of observed distances to the reference ellipsoid

In order to be able to derive

. the reduction formulae, let us
1

AR

t draw the diagram depicting the

A problem we shall be dealing with.
f

!&B fn the diagram, p is the observed

H 1 el

{

distance and HA’ H, are the

}
o B
G,
. " ‘f fti eliipsoidal heights, Por S, are
PR 1

}{l H the chord and ellipsoidal distances
! Vb '
- 2%

between the two projections Ao’ 80

|
/I, {
' of Aand B. ¥ |s the plane

Uy angle of the projections of the

TR0 two normals into the projection

N plane, given by three points: A,B,0,

. (‘,J:.» ' ! : . 0

;‘ t .

/ 0 being the center of OA’ OB' RA’RB
are the radii of curvature of the
ellipsoidal section AB,given by

' .2 2 .
0 cos “A . sin uA 0 cos g X sin aB
R M N * R, H N

A A A B B B
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Here Gp,0p are the azimuths of the ellipsoidal section at A and B, M,N
are the principal radii of curvature.

Denot ing AOS by Rl and BOS by Ré we can write from the triangle SAB:

A

o2 = (L + H) 4 (Ry

2
8 HB)

— i
2(RA + HA) (R‘B + HB) cos .

Expressing cos ¥ as | - 2 sin2 we obtain

N

o2 = [(RY + H,) = (Ry + H)I® b (RY + H,) (Ry + Hy) sin” &,

Applying the same approach to the triangle SAOBO we get

2 - t - op 2 ini a2 1
o [RA RB] + hRARB sin® 7 .
and
2 VoL 2
20 po = [Ry = Ryl
sin 9% TTLRIR]

AB

This result can be substituted back into the formula for 92

Denoting R} - Ré by AR' and HA - HB by AH we get

A
2 2 o2 - ot
0% = [AR' + AH]” + ”OT'“R“T"'" (Rp + Hp) (Ry + Hg)
AB
H H
R L Y S LS B SR Ry R
o R R
A B
i = - ‘:w = - E:—“—
Denoting the mean of RA’RB by R, and GRA RA RA OAS, SRB RB RB Q§
we obtain
+ ey ] f
RA RB RA + RB + SRA + SRB
fel
- 1 [ 1
2R RA + RA AR' + SRA + éRB
= } AR 1
2R RB + AR+ RB + aRA + SRy,
Hence . BR, + SR
R o ARL_TA B
A 2 2
&R, + &R
B
Rl=R"AR A B

B 7 2
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R, + &R
, A B AR
T
aking 5 << >
we get
. AR ! AR
and
1
H + — AH H - — AH
of = (Rt + %+ (o7 - art?) (1 4 PRIURE
R + AR R - AR

with H denoting the mean of HA‘HB and AH denoting their difference. After
some development, the product of the last two terms becomes approximately

1 2

R R

We can see that the same result is obtained for

6RA + 6RB AR
>>
2 2
as well as
6RA + 6RB AR
7]
2 o2

Substituting this approximation back into the expression for 0 2 we obtain

?
92 o~ AR‘2 + 2AR'AH + AHZ + Dg (1 + 2 g& - ARV (1 + 2 20
o (o w s AR (28H - opat B
=0, (1 + ZR) + AHS + AR' (2AH - 24AR =)

2 H 2 .
=0 (O + 2§J + AHS 4+ 2AR'AH.

\ . . 2
Hence, we can finally write the eguation for o5

[p 2 - 02 - AH2 - 2AR'AH
o H
(]+2-é-)

e ——— —

where AR' for short distance o is usually so small that it can be

neglected altogether,
We can notice that ﬁz - AH2 represents the square of the horizontal

distance, say Di' Disregarding AR'. we can write
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o

0

H H

p=\/ o, (1 - g )
© ¥+2% H

[ I ST

which is the approximate formula used in practice for reducing short

horizontal distances.

For the ellipsoidal distance s _, we get approximately

Mo

But ¢ can be expressed from the earlier formuia for sin as

. pi - AR'2
o= 2 arcsinw/-———§—w~
4R

Therefore

. N LV ATy
s, © 2R arc sin [ZR v (po AR')]

T T Ty T "
o : o _ 1 4R

S, ~ 2R arc sin [ﬁﬁ'(] y )]

_po R

As an example, let us take a distance p of 20 km measured by an

EDM device between two points on the same meridian on latitutde ¢ = 45°.

Let HA = 200 m, HB = 800 m. We first neglect AR' and get
4, 2 2.2 a 7
2 . (2.107)° - {(6:107) 2 8 _36.10 _ Cya
Py = 5 m" o= 4,100 (1 ——7—79 (1 1.56 + 10
| 5.10 410
+ 2
6.5-10
. 0% (1 -9 to"h) (1 - 1.56 10'“) me |

- -1
Hence P, =P (1 - 4.5 10 l’) (1 ~0.78 10 *) m and the '‘slope' and

f'ellipsoid' corrections come to 9 m and 1.56 m respectively.
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7.3) Triangulated heights

Leaving refraction aside, the
zenith distances Cpo tg are what

we get from the observations on

where the formula for

component of BA in the

formula can be written

the surface of the earth. On the
other hand, the angles ZA’ ZB

are the quantities we should like
to get that would enable us to
determine the difference in
ellipsoidal heights of the two
points A and B.

Let us deal with short
distances S, only, for which we
can write RA =~ RB % R with
sufficient precision, and regard

5, @s being a spherical arc.

First, we can write:

= i - i
LT Ot (EA cos aye = ny sin qAB)

£, Was derived in § 6.5, since €p is evidently the

azimuth Grp of the line AB. Completely analogous

for B. Note the sign of the term in brackets. It

originates from the definition of the sense of £',n' and in the diagram

above both €p and €g would be negative,

Once the quantities ZA and ZB are determined we can evaluate the

difference HB - HA as a function of both ZA and ZB' Applying the tangent

law to the triangle SAB and considering R =R, = R we get:

A B
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(180°—zA-180°+28)1

)

| o_ o_ .
(R+HA-R-HB) tg[i(l80 ZA+'80 zB)] (R+H +R+HB) tgl

A

or

] —_— .
(HA-HB) tq [5(360 7y zB)] = (2R+HA+HB) tg —

Here evidently 180° - (i + ZB) = 1) = sO/R so that we can rewrite the

equatlion as

$

(H, - H.) tg (90° + -2 ) = 2(R + H) tg B “a

A B 2R 5
with H denoting the mean of HA and HB'
5 s
i - 2 ° 9

We can now substitute cotg 3w for tg (90° + SR )

and obtain
5 Z -7
- - s B A
Hy = Hy 2(R + H) tag 5k 19—

Since so/(zR) is a very small angle, we can develop the first tan%ﬁnt into

power series:

s o .1 %0 3 o So2
tg 0 = st x (52)” + 0= o (14 e 4 )
7R 2R 3 2R 2R IZRZ

Substituting this back into our equation for the height difference we get

S 2 Z - 7
-H, = Hy o 0 B ‘A
Hg = Ha 2R{1 + R) 5K (1 + 7 ) tg .
— e e e e T T -Adz“"— e s
5 7 -7
- " H o B A

Hence, using the zenith distances we are theoretically able to
determine directly the heights above the ellipsoid. Unfortunately, the
observed zenith distances are very sensitive to atmospheric refraction -- .
the major problem in geodetic observations -- and the precision of triangulated
heights is still very low., Vehement research is going on in this area.

The newest concept being to get away from the necessity to determine the

astro-deflections and the refraction corrections by using redundant

observations.
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7.4) “Three-dimensiona!“adjustmqungf geodetic networks

Recently, some interest of the geodetic community has been
directed towards the so-called 'three-dimensional'' approach to the geodetic
problems., This approach was advocated already by Bruns, at the end of
15-th century, and in the fifties of our century Pevived by Hotine.

The whole ldea of the three-dimensional treatment is that of
using the three-dimensional Eucleidian space rather than the curved
two-dimensional space--the ellipsoid. Using this approach, each point of

the network is given by a three-tuple of coordinates, either X,Y,Z.

(Geocentric Cartesian) or é,\,H (geodetic). In order té be able to
reconcile the astronomic observations with the terrestrial we have to be
able to express also the local astronomical verticals (tangent to the
local plumb-lines). This is usually done by means of two direction

parameters, either directly ¢ and A or ¢! and n'.

Onee this is done, we can formulate the equations for astronomic
azimuth A, zenith distance r taken with respect to the local astro-vertical
and the cord distance p between any two points of the network. Providing
we have enough observations of the actual quantities A,z,p and the
horizontal angles wij = Ai - Aj we can formulate the parametric
adjustment for the unknown increments dx,dy,dz, dé, dA or dé,dr,dH,dd, dA.
Then the spatial positions of the individual points and their plumb=~line
directions can be determined. The ways to formulate the models and

to adjust them are numerous and it was not considered the aim of this
write-up to tackle them.

If both adjustments; ie., the"three—dimensionaf'and the one
using the reference ellipsoid, are formulated properly, they should yield
the same results. They é}e mathematically equivalent. From the numerica!

‘
point of view, however, one might be preferred to the other because of

less labor involved. The difference between the two is that they use
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the reference ellipsoid either explicitly or implicitly or not at all and this

difference is reflected in the formuiae,

7.5) Discussion of various methods for geoid determination

So far, we have met three different methods for geoid determination:
i) gravimetric, using Stokes' formula dealing with gravity anomalies
(see § 3.17);

ii) astro-geodetic, using the astro-deflections of vertical (see § 6.5);

iii) astro-gravimetric, using the astro-deflections and the gravity

anomalies (see § 6.6).

We have also seen that the first method furnishes the geoid
related to the mean-earth ellipsoid; i.e., ellipsoid determined in this
case by normal gravity up to a scale factor. {(The scale factor of thus
determined ellipsoid has to be supplied from other sources.) On the other
hand, the gravimetric geoid is concentric with the mean-earth ellipsoid

and known therefore as absolute geoid.

The second and the third methods give the geoid related to the
used, usually local, reference ellipsoid and the geoid is hence known as

relative geoid. The scale of the relative geoid is evaulated properly.

The disadvantage of the relative geoid however is that its precision
decreases with the distance from the point of origin, where the relative
position of the two surfaces (geoid and reference ellipsoid) Is assumed.
If we knew the relation of the local ellipsoid with respect to the mean-
earth ellipsoid we could transform the relative geoid to the absolute

geoid and vice-versa. :
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The gravimetric {absolute) geoid has the inherent incertitude
of the order of + 5 to 10 m, in the best case. The incertitude is due to
two main factors. First, the gravity anomalies are not yet known uniformly
well all over the globe. The gravity observations in various regions like
seas and polar areas are very scarce. Second, the Stokes' formula is only
a spherical approximation; f.e., it cannot be expected to give any better
precision than + N 3 10_3.

On the other hand, the astro-levelling and even more so the
astro-gravimetric levelling are more precise. The precision is, of
course, a function of the coverage of the area by astro-deflection
points and the gravity points (in case of the second technique).
Theoretically, the precision can be better than + 1 m. The major
hindrance here is the necessity to correct the astro-deflections for
the curvature of the actual plumb-line.

In recent vears the gravimetric determination was given a
boost by the satellites. The idea of using the satellite information
for the determination of the absolute geoid is basedon the possibility
to interpret the satellite orbit perturbations in terms of gravity
disturbances of the gravity field above the earth. These disturbances
can then be transmitted to the mean-earth ellipsoid and converted into
disturbing potential and ultimately into gecidal heights. The satellite
orbit Information ean be used in two different ways; either on its own
or in conjunction with the terrestrial gravity data. Hence we can have
two more distinctly different modes for absolute geoid determination:
iv) satellite determination;

v) combined determination.
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From the two last methods, the former suffers from the effect
of the aitiéude of the satellites used. At the éltitude of the satellite
orbit the 'details' of the terrestrial gravity field are becoming
undistinguishable and we are not able to resolve the geoid to any detail.
it is basically the same problem as trying to determine the shape of an
underground deposit from the gravity profiles on the surface, a problem
encountered in applied geophysics. Speaking in terms of spherical
harmonics, the satellite determination can supply only a few fow-degree
harmonics.

The combined solution is hence preferable in sofar
that the advantage of the global coverage by satellites is supplemented
by the terrestrial information on the detailed structure at least in

the surveyed areas. Itcan therefore be regarded as theoretically better.
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