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PREFACE 
 

In order to make our extensive series of lecture notes more readily available, we have 
scanned the old master copies and produced electronic versions in Portable Document 
Format. The quality of the images varies depending on the quality of the originals. The 
images have not been converted to searchable text. 
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PREFACE 
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course in the De~'artment of Surveying Engineering, the University of 

New Brunswick, Fredericton, Canada. It is a culmination of ;.1ork done 

in preparation for guest lectures on the subject given by the author 

during his sabbatical year at the following agencies and institutions: 

Centre Natjonal c:'Etudes Spatiales (GRGS), Toulouse; Centre d'Etudes et 

de Recherches Geodynamiques et Astronomiques, Grasse; Technishe Univer-

sitat Munchen; Technishe Universitat Hannover; Rijkscommissie voor 

Geodesie, Delf. The first draft of the synthesis was written in Toulouse 

and the final work was finished later in Fredericton. 

Several individuals took special interest in this project and 

submitted invaluable comments on the draft; they are Prof. W. Baarda, 

Dr. G. Blaha, Mr. J. Kouba, Dr. c. Reigber, and Dr. S. Pavd~. The writing 

of this work was made easier through the useful discussions with 

..... 
Dr. P. Vanlcek, Dr. K. Lambeck, M. M. Lefebvre, Dr. G. Balmino, 

Mr. D.B. Thomson, M. R. Blais, Mr. s. Grant, and Mr. c. Chamberlain. 

Typing of the report was so ably done by Mme. G. Raphanel, Mrs. 

D. Smith, and Mrs. S. Biggar. Proof-reading assistance came from 

Mrs. I. Paim and Messrs. S. El-Hakim, A. Mutajwaa, s. John, J. Adams and M. Dyment. 

Even though several individuals participated in various ways in 

this project, the author holds himself solely responsible for the correctness 

of the material presented herein. 

E. J. Krakiwsky 
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1. IN'rRODUCTION 

In 1795 Karl Friederich Gauss and Adrien Marie Legendre 

simultaneously, but independently, were the first to use the method 

of least squares [Gauss, 1963]. Over the years mathematicians and 

experimental scientists generalized and extended the original method, 

and made comparisons of these advances {see Table 1-1). The purpose 

of this work is to make a synthesis of these advances and studies. 

The early advancements made to the original method itself* 

•• are those of Kruger [1905], Tobey [1930], and Tienstra [1956]. In 

his textbook, Tienstra explains that a least squares problem can be 

rigorously solved in "phases" (in parts) simply by treating the 

already estimated parameters and corrected observations of a previous 

phase as quasi-observations in the subsequent phase. Other authors 

have studjed the Tienstra phase technique such as Lambeck [1962), 

Kouba [1970, 1972], Ying Chung-Chi [1970] and Nassar [1972]. 

A significant advance came from Kalman [1960]. He extended 

least squares by: 

{i) adding a second model which allows the vector of parameters 

{state vector) to vary with time; 

(ii) inserting a variance-covariance matrix on this secondary model; 

(iii) solving the problem in parts. 

* This being quite different from the generalization made by Wiener 
[1949]. 
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TaLle l-1. ADVANCES IN l.!·:A!;T SQili\RES liND TliCIF INTl·:R-COMf'!\RJ::,lNS. I 
( 1'yes'' indicates mathematical equivalence). 

~I ~ 
GAUSS- I '"-tioo o< Differential Phase of Sequential Collocation 

LEGENDRE Group [TOBEY 1930) TIENSTAA KALMAN BAYES [SCHMID & [KRA.KUP 1969; [Herein] 

1795 [KRUGER 1905) [1956] [1960] MORRISON SCHMID 1965] MORITZ 1972] 
n 

1969] 

LAMBECK [1962] • I Yes -... 
I I 

MORRISON [1969] ·-Yes • I 
KOUBA [1970] I • Yes --
YING CHUNG CHI [1970] I • Yes • Yes • 
WELLS & 

KRA.KIWSKY [1971] Yes* -... 
MORITZ {1972) & ·NO 

.. ..... '"' 

MORITZ [1973] I - -No -
I BJERHAMMAR {1973) Synthesis made of Kalman Filtering , Collocation, Wiener-Hopf estimation as special cases of a more genera 

approach. I I . I ' I 
TAPLEY & SCHUTZ [1974] 

I 
: Yes -

WELLS [1974] .... Yes - I -
..., 

---------------------- ----------- --------------- --------------- ------------- 1--------- ---------- -------------- --------------- I 
Synthesis herein I 

I 
e-ve --e I 

- Yes* .... - I - -... Yes* -- No ·- -- No ... 
..._ v .... ... -

A Yes -.. 
-~~ -------- ~- --- - --- ~-~L- -

• Only true under the condition that the state vector does not vary with time. 



It is because of this latter characteristic that the method has been 

called Kalman filtering. The following are some authors who have 

studied and employed this technique: Ott and Neder [1972]; Fail 

[lg72]; Tapley [1972]; Tapley and Schutz [1974]. Bayes made a 

s1milar contribution and is called Bayes filtering in the literature, 

e.g. Morrison [1972]. 

Schmid and Schmid [1965] showed that the least squares 

problem could be so formulated such that all variates receive weights 

ranging from zero to infinity. They proposed the notion also, that 

a least squares problem could be rigorously solved "sequentially" 

(in parts). This is achieved by updating the original estimate by a 

corrective term, the latter of which is a function of a matrix inverse 

already computed in the course of obtaining the original estimate. 

The sequen~ial procedure has been studied by such authors as: Uotila 

[1967]; Krakiwsky [1968]; and Kouba [1970]. 

The independent works of Krarup [1969; 1970] and Moritz 

[1972] lead to the modification of the original least squares. 

In this method called collocation, one not only solves for the 

parameters as before but also the signal - the second of two random 

components in the observables. The residuals (noise), the first ran­

dom component in the observables, do not play a primary role in 

collocation as in the original least squares. Moritz [1973a] has 

incorporated the idea of computation in parts in collocation and 

calls this new advancement stepwise and sequential collocation. Sev­

eral authors have studied and employed c.ollocation, e.g. S:::h warz [1973, 

1974, 1975]) Moritz [l973J; Rap9 [1974]: and Tscherriing [1974, 1975]. 
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Li~tcd in Table 1-1 are some advances to the original least 

squares of Gauss-Legendre. Several authors have compared these 

advances. Lambeck [1962] has shown the equivalence between the group 

and Tienstra phase techni~1es. Morrison [1969] has shown that the 

Kalman and Bayes filters are mathematically equivalent, but are signi-

ficantly different from the computational point of view. Kouba [1970] 

has shown the mathematical equivalence between the Tienstra phase 

and sequential techniques for the condition case (observations only) 

of geodetic adjustments. Ying Chung-Chi [1970] has shown that Tobey's 

.. 
"differential" and Kruger's "group" adjustments of geodesy are math-

ematically equivalent with the Tienstra phase technique; He works 

out numerical examples for the three methods. Wells and Krakiwsky [1971} 

show that if the concept. of .time .variation in the .parameters is 

deleted, the Kalman filter equations are completely identical to the 

sequential expressions. Moritz [1972] emphasizes fundamental differ-

ences between the original least squares and collocation, some of 

which have already been mentioned above. A comparison will be given 

later in this work. Bjerhamrner [1973]* has made a complete general-

ization of least squares where one .canfind, as.special cases, Kalman 

filtering, collocation and Wiener-Hopf estimation [Wiener 1949]. 

Tapley and Schutz [1974] make a comparison of the original least 

squares (including weighted parameters - a priori data) with Colloca-

tion, via the Kalman filtering expressions. They conclude that the 

two corresponding sets of expressions (Kalman and -:ollocation) for 

* This work will not be examined in this synthesis as it is a 
generalization of the least squares method. 
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the solution vector are egu.;.valent. In another comparison study, 

Wells [1974] shows the mathematical equivalence bf'!tween the group 

method of Kr~ger (addition of normal equations) and the sequential 

approach. 

Using the equivalences established immediately above, the 

reader may deduce equivalences. For example, using the works of 

Kouba [1970] and Ying Chung-Chi [1970] one can deduce that the 

group and sequential methods are mathematical equivalent. 

If one uses the works of Moritz [1972] and Tapley and Schutz [1974] 

one arrives at a direct contradiction for the comparison of the 

original least squares, Kalman filtering and c.vllocation. This 

contradiction has become a favorite topic for debate by other scien­

tists as well during meetings in recent years. It is because of this 

type of controversy that the author has been motivated to do this 

synthesis. 

In the synthesis we derive all the methods using the same 

standard least squares methodology and use exclusively modern matrix 

and linear algebra. By means of this rather elementary, consistent, 

and logical approach, we strive to discover .the simil.arities and 

differences between the various methods. 

This synthesis takes the following form: 

(1) the standard cases (parametric, condition, combined, weighted 

parameters) of the original least squares adjustment are reviewed 

(Section 2); 

(2) the Kalman filtering equations are derived from original least 

squares principles using the standard methodology (Section 3); 



(3) the Bayes filtering equations are shown to be equivalent to the 

Kalman filtering equations (Section 4) ; 

(4) the sequential and phase expressions are deduced respectively 

from the Kalman and Bayes filtering expressions (Section 4); 

(5) the Tienstra phase and addition of normal equation approaches are 

derived from basic least squares, and then shown to be mathemat­

ically equivalent to the sequential and phase approaches 

(Section 4); 

(6) the collocation equations are derived using the standard combined 

case equations of adjustments (Section 5); 

(7) the methods are analyzed from the fundamental and computational 

points of view (Section 6) ; 

(8) finally, the findings of the synthesis are summarized (Section 7). 



2. REVIEW OF THE STANDARD CASES OF LEAST SQUARES 

In this section we review the methods parametris, condition, 

combined, and weighted parameters - the standard cases of least 

squares adjustment. These cases have been studied by numerous 

authors, e.g. Schmid and Schmid (1965]; Uotila [1967]; Wolf [1968]; 

'"' Kouba [1970]; Wells and Krakiwsky [1971]; Vanicek and Wells [1972]. 

Derived below is a general scheme from which all the cases are 

deduced. 

The review of this material will serve to acquaint the 

reader with the notation, terminology, and methodology which is 

essential for the derivation of the Kalman filtering equations 

(Section 3),the collocation equations (Section S),and the analysis 

of the advances made to the least squares method (Section 6). 

2.1 The Least Squares Problem 

Least squares estimation is the standard method to obtain 

a unique set of values for a set of unknown parameters (X) from a 

redundant set of observables (L) through,a known mathematical model 

(F) • 

Before we treat the general situation, let us describe 

the least squares problem for the linear-explicit case, that is 

7 
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L F(X) ( 2-1) 

-L = A X (2-2) 

nxl nxu uxl 

where n observables are related to u unknown parameters through a 

design matr_ix A. We know the observables have some unknown correction 

(residuals). Denoting these by V, and the observed value of the 

observables by L, equation 2-2 becomes 

L + V A X (2-3) 
nxl nxl nxu uxl 

The least squares estimate for X is obtained under the condition that 

the quadratic form 

minimum, (2-4) 

where the weight matrix 

(2-.5) 

is related to 2 
the a priori variance factor (o ) and variance­

a 

covariance matrix of the observations. It is through the "help" of 

this condition that two equations, in addition to equation 2-3, are 

obtained, and thereby yielding least squares estimates for X and V-
~ A 

denoted by X and V, respectively. 

We now consider the general situation where our mathematical 

model of r equations is im~licit and non-linear, that is 

F(X, L) = 0 (2-6) 

that accuracy estimates exist for the observations (EL) , and the 

parameters are treated as quasi-observables (Ex). The corresponding 

weight matrices are 



2 -l p :.a I:L 0 
(2-7) 

and 
2 L:-1. p (J (2-8) 

X 0 X 

" "" 'rhe least squares estimates X and V for this general 

situation are obtained under the condition that 

minimum, (2-9) 

where X are corrections to the parameters as explained immediatel 

below. 

We chose to work with linear sets of equations thus we 

approximate our mathematical model (equation 2-6) by a linear 

Taylor series as follows: 

F(X, L) F(X, L) 
(lF 

lx,L 
(lp I + (X-X) +- (L-L) 

ax (lL X,L 
( 2-10) 

F(X, L) :~I X + aF I A + - v 0 . 
X,L ClL X,L 

(2-lOa) 

The misclosure vector 

w F (X, L) (2-11) 

rxl 

is the mathematical model evaluated with the quasi-observed values 

of the parameters (X ) and the observed values of the observables 

(L) . When F is evaluated with some approximate values of the para· 

0 
meters (X ) , we denote the misclosure vector as 

The first design matrix is 

A 

rxu 

and the second desi9n matrj~ is 

B 3F I 
3L X, L • rxn 

(2-lla) 

(2-12) 

(2-13) 
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The final value (adjusted) of the vector of parameters is 

-
X == X + X (2-14) 

Tlte final value (adjusted) of the vector of observables is 

,.. 
L = L + V . (2-15) 

The linearized mathematical model in symbolic form is 

~ 

A X + B V + W = 0 , (2-16) 
rxu uxl rxn nxl 

- -where X and V are least squares estimates making X and L also least 

squares estimates. 

2.2 ~he Least Squares Normal Equations 

'I'he least squares normal equations relating the unknown 
,.. 

quantities X and V to the known quantities A, B, W, P and P is 
X 

obtained from the variation function 

(2-17) 

" where the newly introduced unknown quantity K is the vector of r 

Lagrange correlates. To find the minimum of the two quadratic 

forms subject to the constraint function (linearized math model) 

is known as the extremal problem with constraints. The Lagrange 

method is the standard method of solving this problem. 

First the derivatives of the variation function with 

,.. " 
respect to the variates V and X are taken and set equal to zero to 

determine the extremum, minimum in this case, namely 

1 3<j> "T ... T 
2 a~ = V P + K B = 0 , (2-18) 
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(2-19) 

The transpose of the above two equations and the linear-

ized mathematical model constitute the three equations of the 

least squares normal equation system: 

P V + BT K = 0 , 
nxn nxl nxr rxl 

Px X + AT K 

uxu uxl uxr rxl 

A 

0 , 

A X + B v + w = 0 . 
rxu uxl rxn nxl rxl 

(2-20) 

The most expanded form of the least squares normal equation 

system in block matrix form is 

p 

B 0 

0 

0 

A 

p 
X 

v 0 

K + W = Q 1 (2-21) 

X 0 

with a coefficient matrix of dimensions n+r+u. A solution for the 

A A A 

vector comprising V, K, and X is possible by directly inverting the 

coefficient matrix. This is not efficient, thus a normal equation systen 

is derived where the inversions are smaller. 

We use a special elimination technique [e.g. Thompson 

1969; Wells and Krakiwsky 1971]. Given a matrix equation system 

(2-22) 
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IY'hE'!:"':: .\, R, c and D constitute the known cocffjc~_ent matrix, X and 

i.' Lh•-~ unknown V('Ctor, and U and V the known verctor, X is eliminated 

by forming a modified coefficient matrix and known vector as follows: 

[D - CA-l B]Y + [V - CA-l U] = 0 (2-23) 

(A must be non-singular) . The proof is simple and left t.o the 

reader as an exercise. 

We return to the problem at hand and first eliminate V 

from equation 2-21, where D becomes the lower two by two hyper-matrix 

of equation 2-21. 

[0] 

= 0, 

(2-24) 

(2-25) 

Then eliminate K using the same technique: 

[P 
X 

T -1 T -1 • T -1 T -1 
- A (-BP B ) A]X + 0 - A (-BP B ) W = 0, (2-26) 

0 , (2-27) 

and 
r-----------------------------------~ 

T -1 T -1 -1 T -1 T -1 
-[A (BP B ) A+ P ] A (BP B ) W . 

X 
(2-28) 

The solution for K is made using the first expression from 

equation system 2-25, namely 



(2-29) 

A 

The solution for v is made using the first expression from 

equation system 2-21, namely, 

A T" 
PV + B K = 0 I 

-1 T" I -P B K. (2-30) 

Equations 2-28, 2-29 and 2-30 rep~esent the alternative solution to 

the least squares normal equation 2-21. 

2.3 Derivation of Variance-Covariance Matrices 

In this section we derive the variance-covariance matrices 

" for the residual vector V, the parameter vector X, the final value 

of the parameter vector X, and the final value of the observable 

vector L. 

We make extensive use of the covariance law which states 

that, given a functional relationship 

Y = F (Z) (2-31) 

between two random vectors Y and z along with the variance-covariance 

matrix of z (tz), the variance-covariance matrix of Y is given by 

(2-32) 

Dividing both sides of the above equation by the a priori variance 

factor (o 2) we have the covariance law in terms of weight coefficients: 
0 

(2-33) 
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Note the following relationship t~tween the variance-

covariance (E), weight (P) and weight coefficient (Q) matrices: 

or 

2 -1 -1 
P = o E = Q 

0 

-1 p = __ l__ E 
2 

0 
0 

Q . 

Since we have formulated the least squares problem in terms of 

weights lF) we will be consistent and use the covariance law in 

terms of weight coefficients (inverse of weights) instead of 

variances-covariances. 

-Variance-Covariance Matrix for X 

We follow Krakiwsky [1968), Kouba [1970] and Wells and 

Krakiwsky [1971] in deriving the variance-covariance matrix for the 
A 

final value of the parameters X. 

According to equations 2-14 and 2-28 

A 

X = X + X , (2-34) 

(2-35) 

where we have let 

(2-36) 

Recalling equation 2-11, 

W = F(X, L), (2-37) 

we see that X is a function of two independent random variables - the 

a priori estimate of the parameters (quasi-observable) (X) , and the 

observed value of the observables (L) • 

Applying the covariance law to equation 2-34 yields 



(assuming hencrforth that X and L are statistically independent) 

A " " .... 

Q- (ax> Qx 
(ax) T + <ax> QL 

<ax> T 
X ax ax aL aL (2-38) 

A " A 

<ax> -1 ax T <ax>P-1 - T 
Q~ p <ax> + <ax) 

X ax X aL aL (2-39) 

ax I -[ATM-lA + P ]-lATM-lA -= 
ax X 

(2-40) 

since from equation 2-12 

aw aF(X, L) -= = A . ax ax 
(2-41) 

A 

ax= -[AT M-lA -1 ATM-lB + p ] 
aL X 

(2-42) 

since from equation 2-13 

aw aF(X, L) 
B -= = . 

aL aL 
(2-43) 

Before proceeding further with the derivation, it will 

A 

prove useful to derive the weight coefficient matrix for X (equation 

2-28), and to do this, we first need the weight coefficient matrix 

of w. 

Applying the covariance law to equation 2-37 yields 

Q. =(aF)Q 3FT (3F) aFT 
W ax x (ax) + aL QL (aL) ' (2-44) 

BP -i.T ·I (2-45) 

From equation 2-35 

(2-46) 

Applying the covariance law to the above equation and 

taking into account equation 2-45 
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(2-47) 

(2-49) 

and letting 

(2-50) 

(2-51) 

and expanding terms 

Q' = [N+P ]-l NP-l N[N+P ]-l + [N+P ]-l N[N+P )-l. (2-52) 
X X X X X X 

We now turn to the task of determining Q~. Substituting 
X 

equations 2-40 and 2-42 into 2-39 and using 2-50, we find 

(2-53) 

Noting that the last two terms of the above equation are identical 

to QA (equation 2-52), we can write 
X 

Q.:O 
X 

(2-55) 

· The above expression can be shown to be equivalent to the 

inverse of the coefficient matrix of the normal equation system 2-28 
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for X, tl 1t is 

Q~ 
T -1 T -1 p ]-1 = [A (BP B ) A + 

X X 

[ATM -1 -1 
= A+ p l 

X 

Q~ = [N + P ]-l . I X 
X 

To prove this we begin by factoring-out the term 

[N + P ]-l 
X 

(2-56) 

(2-57) 

(2-58) 

from equation 2-54,then multiply terms, and finally cancel like 

terms. The details are the following: 

Q~ [N+P ]-l{[N+P ]P-l- [N+P ]P-l N[N+P ]-l- NP-l 
X X X X X X X X 

[N+P ] -li 
X 

= [N+P ]-l • 
X 

Finally, we write the variance-covariance matrix as 

and the estimated variance-covariance matrix as 

~ ... 2 
E~ = o 

X 
0 

Q~ 
X 

where the estimated variance factor 

The degrees of freedom* 

... 2 
a 

0 

... T ... ~'I' ... 
V PV + X ·p X 

v 

r - u + u 
X 

X . • 

(2-59) 

(2-60) 

(2-61) 

(2-62) 

* equation 2-62 is only an approximation, see Bossler [1972] for a 
complete and rigorous treatment .• 



•.;here r i. s the n~mber o ,~ equations in F, u the number of parameters 

to be estimated, and ux the number of parameters weighted. The proof 

of equation 2-61 is beyond the scope of this work, see for example 

Hamilton [1964], Wells and Krakiwsky [1971]. 

" 
Variance-Covariance Matrix for L 
- -

We begin from the definition of the final (adjusted) obser-

vables (equation 2-15), 

" A 

L = L + V . (2-63) 

Using equations 2-29 and 2-30 

(2-64) 

(2-65) 

(2-66) 

and after using equation 2·-46 

(2-67) 

Applying the covariance law to the above equation yields 

(2-68) 

where 

" a£ 
(2-69) -= 

3L 

" 
~~ = P-lBTM-lA [ATM-lA+Px]-l ATM-lA - P-lBTM-l A (2-70) 

Substituting equations 2-69 and 2-70 in 2-68, noting equation 2-52, 

and collecting terms we get 
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Q..:. 
L 

-l -1 T -1 T -1 -1 
? + P B r-1 A Q A M BP x 

-1 T -1 -1 ATM-1 BP-1 + P B M A P 
X 

-1 T -1 -1 
- P B M BP (2-71) 

Using ·~~quatLm 2-55, the above equation can be written in terms o·f 

Q:, namely 
X 

I ~i = :-1 _+_P_-_l_s_T_M_-_l_A __ Q_;_A_T_M_-_l_B_P_-_1 ___ P_-_l_s_T_M_-_l_B_P_-_l__,· 

Weight and Coefficient Matrix for V 

A 

(2-72) 

P.xpressing v as a function of w (analogous to equation 2-35), 

and applying the covariance law, we get after considering equation 

2-58 that 

(2-73) 

The above equation corresponds to common sense, namely the variances 

of the observables after the adjustment are smaller than the vari-

ances of the observables (observations) before the adjustment since 

See equations 2-121 and 2-122 as an example. 



2.4 Generation of the Standard Cases 

Combined Case with Weighted Parameters (A, B, P, P ~ 0) 
X 

The general case of a non-linear implicit model with 

weighted parameters is known as the combined case with weighted 

parameters. It has a solution given by the following equations 

(2-28, 2-14, 2-29, 2-30, 2-45, 2-52, 2-55, 2-15, 2-61, 2-62, 2-60, 

2-72, 2-73): 

[N + 
-1 T -1 - p ] AM w (2-74) 

X 

[N + p -1 
(2-75) = - ] u I 

X 

~ ~ 

X = X + X (2-76) 

(BP-l T -1 ~ 

K B ) (AX + W) (2-77) 

-1 "' = M (AX + W) (2-78) 

-1 T ~ 

(2-79) v = - p B K 

:.. 
L = L + v (2-80) 

Q~ = [AT(BP-lBT)-lA+P ]-lAT(BP-lBT)-lAP-lAT(BP-1BT)-1A 
X X X 

[AT(BP-lBT)-lA+P ]-l 
X 

+ [AT(BP-lBT)-1 A+P J-1 N[AT(BP-lBT)-1A + P ]-l (2-81) 
X X 

= [N+P ]-1 NP-lN[N+P J-1 + [N+P 1-1 N[N+P ]-l 
X X X X X 

(2-82) 



Q.:. 
X 

Q;:_ 
L 

-1 
i-' + (' 

x ""x 

P-1 -1 T -1 ~ T -1 -1 
+ P B M AQ-A M BP 

X 

\? p v + XTPX X 
-------

v = r - u + ux 

):, 
X 

L 
x 

-
L 

L 
v 

M 

N 

u 

~ Q. 
X 

2 
Q~ 0 

0 
X 

2 
0 Q.::_ 

0 
L 

2 
Q~ 0 

0 v 

In the above expressions 

BP-1 BT 

AT --1 T -1 ATM-1A (BP B ) A 

(2-83) 

(2-84) 

(2-85) 

(2-86) 

(2-87) 

(2-88) 

(2-89) 

(2-90) 

( 2-91) 

(2-92) 

(2-93) 

(2-94) 

(2-94a) 

(2-95) 

(2-96) 

(2-97) 
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An intriguing mathematiczl fact concerning the variance-

Govariance matrices for the parameters is that the inverse of the 

coefficient matrix of the normal equations is the weight coefficient 

" 
matrix of the final (adjusted} parameters X and not of the solution 

vector X [Kouba 1970). 

If all the parameters are weighted, note that the number 

of degrees of freedom becomes equal to the number of equations. 

This is analogous to the condition case below in which all obser-

vables are weighted. This is not surprising, for in the present 

case all quantities are also weighted. Schmid and Schmid [1965] 

call this "generalized least squares". 

One should also note that the variance-covariance matrix 

of W is defined with the a priori variance factor a 2 which allows 
0 

statistical testing before the adjustment takes place, if a 2 is 
0 

'ddk h h 2 · k h . J.n ee nown. In t e case t at a ~s not nown, t en an est1.mate 
0 

may be obtained from the adjustment itself. Hamilton [1964] shows 

that in the latter case (a2 not known}, the confidence region for 
0 

" 
the adjusted parameters (X) are given in terms of the Fischer dis-

tribution, while if a 2 is known, the confidence region is 
0 

described through the multivariate Chi-squared distribution. 

Combined Case (A, B, P, P = 0} 
X 

The combined case is characterized by a non-linear 

implicit mathematical model with no weights on the parameters. 

We deduce the corresponding set of expressions from the general 

case by considering that if there are no weights then Px is 



'2 .) 

equal to zero. This implies that X is a constant vector (now 

denoted by X0 ), and its variance covariance matrix E 0 does not 
X 

exist. 
-1 

As a consequence, both P and P (Q ) are null matrices. 
X X X 

Also note that the partial derivatives of X with respect to X0 

will also be a null matrix. Upon substitution of the three null 

matrices into equations 2-9 through 2-73, we get the desired 

results: 

" 
X 

0 A 

X + X , 

" K 

= M-l (AX + {;, 

A 

v 

"' 
L 

Q~ 
L 

Q .o= w 

~2 
0 

0 

v = 

L + V 

N-1 = [AT (BP-1 BT)-1 A]-1 = Q~ 
X 

BP-l BT 
I 

::?Pv - v 

r - u , 

(2-98)* 

(2-99) 

(2-100) 

(2-101) 

(2-102) 

(2-103) 

(2-104) 

(2-105) 

(2-106) 

(2-107) 

(2-108) 

(2-109) 

(2-110) 
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L 
,, .2 

Q. = ~ .. : a 
X 0 X ){ 

(2-111) 

)= ..... 
2 

(J 12~ 0 
L L 

(2-112) 

l: .. 
2 

Q" 0 I 

v 0 v (2-113) 

"' 
2 

QvP. '-'v{'= (J 
0 

(2-114) 

We witness that the weight coefficient matrix of the 
A 

correction vector X and adjusted vector X are identical and equal 

to the inverse of the coefficient matrix of the normal equations. 

The degrees of freedom is calculated as the difference between the 

number of equations and the number of unknown parameters. 

Parametric Case (A, B -I, P, P = 0) 
X 

The parametric case is characterized by a non-linear 

explicit model. This means that the observables can be explicitly 

expressed as some non-linear function of the parameters thus the 

reason for the second design matrix be to be equal to a minus 

identity matrix. Setting B equal to -I in the combined case with no 

weights on the parameters we get the following expressions: 

" T -1 ATPW0 (2-115) X =~[A PA] , 

~ xo A 

X + X (2-116) 

A " Wo) K = P(AX + (2-117) 

A -1 "' v p K (2-118) 

~ " L L + v (2-119) 



Q~ Q~ = [ATPA}-1 (2-120) 
X 

X 

Q~ A [ATPAJ-1 AT (2-121) 
L 

-1 [ATPA]-l T 
(2-122) Q~ p - A A v 

-1 
(2-123) Q o= p 

I w 

A2 VTPV 
(2-124) (J 

0 \1 

') = r - u = n - u I (2-125) 

L.;A ~> 
2 

QA (2-126) = (J 

X X 0 X 

~A 
2 

Q;, (2-127) = (J 
0 

L L 

L:A 
2 

QA (2-128) = (J 

v 0 v 

/. 0= 2 
Q 0. (2-129) (J w 0 w 

Note that the number of equations equals the number of 

observations; this is not true for the combined case. We see that 

the weight coefficient matrix of the adjusted observables has the 

form of a propagation of errors (covariance law) from the adjusted 

parameters into these quantities. 

Condition Case (A = 0, B, P, P = 0) 
X 

The condition case is characterized by a non-linear model 

consisting of only observables, thus the first design matrix A in 

the combined case with no weights on the parameters vanishes, 

yielding: 

K = (BP-1 BT)-l W 

-1 
M W 

(2-130) 

(2-131) 
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v -1 BT K = p (2-132) 

.z. " 
L = L + v (2-133) 

Q;: 
-1 p-l8T (BP-lBT)-1 BP-l = p - , (2-134) 

L 

-1 T -1 BP-l Q.z_ = p B M , (2-135) 
v 

"2 ~Tp~ 
0' = 

0 v 
(2-136) ' 

v = r , (2-137) 

L 
2 

Q~ tJ - 0 
L L 

(2-138) 

~> 
2 

Q" = 0' . v 0 v (2-139) 

The above case can be used to solve the combined case with 

weighted parameters as follows: given 

B* V* + W 0, P* (2-140) 

where 

B* = [A l B] (2-141) 

V* =t~j (2-142) 

(2-143) 

then substitute these definitions of B* and P* into the equations 

for the condition case immediately above. Note that the design 

matrix A and weight matrix Px both pertain to the weighted parameters. 

This terminates the review of the standard cases of least 

squares adjustments. We draw heavily on these equations in the 

subsequent sections. 



3. DERIVATION OF THE KALMAN FILTER EQUATIONS 

One of the highlights of this synthesis is the derivation 

of the Kalman filter equations using the same conventional methodology 

employed in the derivation of the standard cases of least squares 

adjustment in the previous section. As a result of using the same 

methodology, we.have ready at our·finger tips a clear and relatively 

elementary manner for comparing the Kalman filter equations with 

the standard cases, and with other advances made in the least squares 

method. Our derivation below follows closely that given in [Grant 

and Krakiwsky 1974]. The reader can find alternative derivations 

in [Morrison 1969i Moritz, 1973a], while the original derivation 

is given in [Kalman 1960]. 

3.1 Definition of the Problem 

The standard least squares problem of the previous section 

differs from the present one in two ways. Firstly, we consider the 

vector of parameters (state vector)* as varying with time. Con­

sequently we must group the observations according to the same time 

epoch because of this variation. Below we introduce the Kalman 

* Kalman filter terminology. 

27 
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'!'\vo S<• · ell i t·e passes 

Primary Model Prima:ry lot>del 

path of 
vessel 

Figu·re 3-1. Four Sources of Information in Kalman Filtering 

- Land determination of xl at tl; 

- Satellite determination of x1 at t 1 ; 

-Navigation determination of x2 relative to x1 ; 

- Satellite determination of x2 at t 2 • 
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filtering problem via an obvious example in which the coordinates 

(state vector) of a moving point vary with time. There are other 

probJems in which it is not necessary to have"physical movements" 

to induce ,, variation in the state vector, that is, simply the passage 

of time is sufficient to change the state vector. 

Imagine a moving vessel seeking to accurately position 

itself (Figure 3-1). One can determine its coordinates at t 1 from 

measurements made to land (X1 and Ex1 l. Still at time t 1 , obser­

vations L1 can be made to a passing satellite and the determination 

of x1 made from the model 

Navi'Jation devices on board recording velocity can serve to 

determine the position x2 at t2 relative to xl from a function 

G (X1 , x2 , t) = 0 (3-2) 

Still at time t 2 observations L2 can be made to another passing 

satellite and the determination made through the model 

(3-3) 

There is one characteristic in common to all these four 

determinations; they are independent from one another. The problem 

of rigorously combining all four sources of information in one 

mathematical system is in essence what the Kalman filter does. 

Variance and covariances are rigorously propagated from one stage 

to the next, and at any given time, the solution (state vector) 

contains all the information up-to and including the present. You 

can even "predict" the value of state vector since you have information 

on the changing 9f the parameters with time. 



The K...,lman filtering problem is then to solve the system 

u 

-

G c x1· , x , Y , t l =o , 
2 m 

(3-4) 

for x1 and x2 . The overhead bar denotes final (adjusted) value as 

in Section 2. We make strict distinction between F 1 and F 2 , the 

primary mathematical models giving the functional relationship 

between the parameters and observables, and the secondary mathemat-

ical model G giving the functional relationship among the parameters 

themselves.·. The former model is usually referred to as the observation 

equations in adjustments, and the latter model is known in Kalman 

filtering as the dynamical model. Also note the separation of the two 

types of models according to time epochs t 1 and t 2 . In essence, F1 

and F2 are linked via G. The model errors Y will be explained later. 
m 

We will assl~e the primary models to be of the non-linear 

implicit variety. Choosing to work with linear systems of equations 

we approximate F1 and F2 by a linear Taylor series as follows: 

+ 

and 

X + 
1 

uxl 

0 , (3-6) 



:n 

( X -X ., 
2 2' 

0 , 

0 

(3-8) 

The observational vectors L1 and L2 (that is between two 

time epochs) are assumed to be statistically independent. Their 

respective weight matrices are related to the a priori variance factor 

and variance-covariance matrices by the following: 

0 2 .,.-1 
p = [., 

1 o Ll 
(3-9) 

(3-10) 

The observational residuals (corrections) are assumed to be random with 

zero mean; v1 and v2 denote the least squares estimates for these quantities 

The vectors x1 and x2 are respectively the least squares 

-estimates for the differences x1-x1 and x2-x2 , thus allowing us to write 

the following expressions for the least squares estimates of the 

complete quantities: 

It should be not;ed that the entire problem is based on one value of 

the vector of parameters- that being X~ or x1 . We will see from equation 

3-40 that X~ or x2 is related to X~ or x1 . Further, the vector of 

parameters are stipulated in Kalman filtering to have the same dimensions* 

from one time epoch (t1 ) to another epoch (t2). 

* See Section 4.2 for other possibilities regarding the dimensions 
of the vectors of parameters. 
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An independent a priori estimate of X 1 is denoted by X 1 with weight matrix 
2 -1 

Px=O'o:Exl • (3-lOa) 

In this case X1 is said to be a quasi-observable. The "observational" corrections to X1 are 

assumed to be random with zero mean. X1 denotes the least squares estimate for these 

corrections. 

We now turn to the secondary model, and begin our derivation by assuming G to be non­

linear, explicit in X2 and the model corrections Ym, and implicit in X1. Thus we write 

(3-11) 

Linearizing as before we get 

We know that 

(3-12) 

since this is how the parameters at time t2 are usually calculated. Also 

Ym=O 

since the expected value of the model corrections are assumed to be random variables with zero 

mean. After making the equivalences 

which is termed the transition matrix, and 

~ "" 
X1 -X1 =X1, 

X2 -X2=X2, 
Ym- Ym=Ym, 
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which are the least squares estimates for the differencest the secondary 

model becomes approximated by 

-G(X1 , x2, y , 
m 

The a priori 

is 

~ 

t) = - 1l xl 

uxu uxl 

weight matrix 

p 
m 

A A 

+ x2 - y = 0. ( 3-13) 
m 

uxl uxl 

associated with the model errors 

(3-13a) 

These model errors are assumed to be statistically independent from 

one application of the secondary model for a given time interval to the 

consecutive application for another time interval. 

Thus we have seen how we pass from a model in terms of the 

full value of the parameters (equation 3-11) to one in terms of the 

corrections (equation 3-13). This was done to be consistent with the 

primary models (equations 3-6 and 3-8). 

3.2 Derivation of the System of Equations 

The variation function from which we get the least squares 

normal equations and the Kalman filter equations is 

<P 
~T 

PlVI + 
~T ~ 

+ YTP y •T ,.. 
vl V2P2V2 + XlPxXl mmm 

"'rr A 

+ 2K1 (Al xl + Bl vl + Wl) 

2i<:? 
,.. ,.. 

+ {A2 x2 + B2 v2 + W2) 2 (3-14) 

Note there are four quadratic forms to be minimized, that of the two 
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;.;(·ts C'f obse~n.<ltions, one for HlOdel errors in the secondary model, and 

tll•.' L1st fur the i'l priori information on the parameters. The problem 

is to fin·~:. this mirtimum subject to the three constraint functions 

arising from the linearized mathematical models. We use the Lagrange 

method to solve the extremal problem, and thereby adding the three sets 

of unknown Lagrange correlates K1 , K2 and K3 . 

Taking the derivatives of the variation function with respect 

to the variates, and equating them to zero, yields: 

~- A 'I' 2~T 0; BT 0 2V pl + Bl = PlVl + Kl A -

l 1 
, 

3V1 
.L 

(3-15) 

d¢ ?.\~'I':? 2K_T 
A BT A 

+ B2 0; P2V2 + K2 = 0 
av :~ } 2 2 

2 

(3-16) 

.~ 2YT 2KT 
A A p = 0; p y - K3 = 0 

A m m 3 m m 
3Y 

(3-17) 

m 

~ AT 2KT -2~T ~ 0 2Xl p + Al 
ax1 

X: 1 3 

(3-18) 

AT - <P T 
A 

D xl + Kl K3 = 0 
X 1 

0; 0 . (3-19) 

These five equations along with the three linearized rnathemat-

.i..cal models make-up the least squares normal equations system in the 

"most expanded form", namely: 
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I 0 0 
T 

0 0 0 0 pl. Bl v 0 
l 

0 0 
T 

p2 0 B2 0 0 0 v2 0 

0 0 p 0 0 -I 0 0 y 0 (3-20) m m 

Bl 0 0 0 0 0 Al 0 Kl + wl 0 . 

0 B2 0 0 0 0 0 A2 K2 w2 

0 0 -I 0 0 G -<!> I K3 0 

0 0 (; A~ 0 
T p 0 0 -~~ xl X 

0 () () 0 
T 

A2 I 0 0 x2 0 

We first obtain an expression for x1 using only the obser·· 

vations r.1 in Fi and the a priori information x and P .The normal 
1 X 

equation system is obt.ained from equation 3-20 by deleting all 

matrices associated with F2 and G. The resulting system is: 

pl BT 0 V' 

:J 
l l 

Bl 0 Al K' + 0 . (3-21) 
l 

0 
T 

Al Pxj X' 
1 

0 

The above is identical to t.he combined case with weighted parameters 

-·--·------·----·-----

* Since the estimate of x1 is a result of information only in F1 , we 
designate this partial solution by ~i 
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of Section 2.4 (equation 2-21). The solution of this case is described 

by equations 2-74 to 2-94. The solution vector for the parameters is: 

X' 
l 

X' 
1 

with variance-covariance matrix 

(3-22) 

(3-24) 

In the case that the a priori information consists only of 

F1 , that is Px equals zero, then the solution is given by equations 

2-98 to 2-114. For the rarameters we have: 

X' 
1 

X' 
1 

o + X' xl 1 

with variance-covariance matrix 

(3-25) 

(3-26) 

(3-27) 

Let us now return to the most expanded form of the normal 

equations (equation 3-20) to obtain a solution for x2 using all infor­

mation contained in F1 , F2 and G. First v1 , v2 and Ym are eliminated, 

which yields the following system: 



r· 

I 
I 
! 

0 

0 

0 

-M 
2 

0 

0 

I 

-<P 

p 
X 

0 

37 

where the newly introduced quantity 

and rec.:allir~g from equation 2-36 that 

-1 T 
M = B P B 

1 1 1 l 

0 , (3-28)* 

(3-29) 

(3-29a) 

Next we prepare the normal equation system (equation 3-28) 

~ 

for the elimination of K1 and x1 by performing elementary row and 

column transformations; the result is 

I I 

~~~ ~-~~ 
I I 

0 0 0 l 1- ~ -M-~ - ~ -A! ·--------- -----

I 
T -<PT 

A 

Al I 
p 0 0 xl 0 I 

X 
I 
I 

0 -¢ 
-1 

I (\ I l 
0 o. (3-30) -P I K3 + I = 

m 

I I 
I 

0 0 AT 

I 
i 

I 0 I x2 I 0 

I 
2 

I 
-M,J L 0 0 0 A2 K2 L W2J 

A 

Elimination o! K1 yields 

* In this equation system x1 and the other parameters can be solved 
for using the complete information (that is F1 , F2 and G). 
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0 0 -M 
2 

x1 

K3 

x2 

K2 

+ 

IT 
A1 

-1 
M1 wl 

-------
0 0 . 
0 

w2 

(3-31) 

The first equation from the above hyper-matrix equation allows 

A 

one to obtain a solution for x1 , that is using all information, namely 

X' + (N +P )-l ~T K 
l 1 X 3 

(3-3la) 

~ A 

Next we eliminate x1 in order to get our desired expression for x2 • 

This yields a normal equation system containing only variates (X2 , K2 , K3) 

G,namely 

+ 0 = 0, 

(3-32) 

where 

(3-33) 

and 

(3-34) 

We now interject the definition ot the predicted value of the parameters 

A A - -The linear form is X' = ~ X' 2 1 I 
(3-35) 



··here X' is the partial solution for the param,'ters (equation 3-22, or 3 
l 

Applying th~ ccvart~nce law to the above we obtain the predicted 

variance-covariance matrix for the parameters as 

L:~ 
x' 

2 

2 
0 Q~, = 

0 
x2 

cr~ [~(Nl+Px)-1 ~T + p~l] , 

(3-36) 

where the fjrst term follows directly from the propagation of variances 

~ " -, . _, 
and covariances from x1 1nto x2 in equation 3-35, while the second 

tenn represents thE contribution from the model errors. Note that 

tl1is predicted value depends upon the weights on the observations 

T -l ) h ' ' . f . d h A1 M1 A1 , tea pr1or1 1n ormat1on Px on x1 , an t e 

model errors represented by the weights P . All of these quantities 
m 

appear in the hyper-matrix equation 3-32. 

The aim is to obtain an expression for x2 as a function of 

" matrices and vectors we know. To achieve this goal we eliminate K3 

from equation 3-32. This results in 

(3-37) 

where already from equation 3-36 we had 

(3-38) * 

and now 

(3-39) 

• X~ . I (3-40) 

* N; is defined in terms of an inverted quantity on the right hand-side 
to be consistent with equation 3-36 . 
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Nnte the following rel3tionship between the corrective quantity x; 
immedl.ut· LY above and the entire quantity x; (equation 3-35): 

' x; = x~ + x; (3-41) 

wLich is equiv.:Jlent to equation 3-35. 

~ 

The first equation in 3-37 expresses x2 as a function of 

knowt: quant.j ties and the unknown vector of Lag.range correlates K2 , 

namely 

(3-42) 

-1 and aftrr premulbplication by (N2) we get 

x2 = x· - (N 1 >-lAT i(2 2 2 2 

final step is to obtain an expression for K2 as a 

L.Jnctinn o'= kJ.0Wll quantities and substitute it in the expression immed· 

iALel\· d.iJove. From (3-37) we get the needed expression by eliminating 

(3-44) 

and 

(3-45) 

Subst~tuting (3-45) into (3-43) yields 

r---. ·---.-. -1 T I -1 T -1 A I 

L y~-= X2 ~-<N_2_> __ A_2_[.M_2_+_A_2_<_N_2_> __ A_2_l (W2 + A2X2) 
(3-46) 

In Kalman filtering theory. the expression 

;=~AT [M + A (N') -l AT)-l=G 
2 2 2 2 2 

(3-47) 

~ ------------·----
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is call(•d the gain matrix. Rewriting equation 3-46 we get 

(3-48) 

I 

'!'he variance-covariance matrix for x2 is obtained by first 

rearranging equation 3-48 so that a coefficient matrix preceeds each 

random variable (X2 and w2 in this instance) as follows: 

(3-49) 

Applying the covariance law to the above yields 

(3-50) 

Since 

( 3-51) 

o nd 

(3-52) 

(3-53) 

Substituting equation 3-53 into 3-50 and carrying out the algebra 

yields 

-1 T -1 T T 
[(N2) A2 - GA2 (N2) A2-GM2 ] G 

(3-54) 

From ( 3-47) 

(3-55) 

0 , ( 3-56) 
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which is the second term in (3-54). Thus our final expression for the 

variance-covariance matrix of the latest estimate of the parameters is 

given by 

(3-57) 

The series of expressions constituting the Kalman filtering 

equations are equations 3-40, 3-36, 3-47, 3-48 and 3-57. 

Prediction of state vector 

X' = ~ X' . 2 1 , (3-58) 

Prediction of new variance-covariance matrix 

(3-59) 

Computation of gain matrix 

(N') -1 T + A (N') -l T -1 
G = A2 [M2· A2] 2 2 2 

(3-60) 

Computation of state vector 

... A 

x2 = x' - G (W2 + A2 X2) 2 
(3-61) 

Computation of the variance-covariance matrix of state.vector 

(3-62) 

Note, if we also require a solution for x1 using all data, that is F1 , 

F2 , and G, then we simply return to equation 3-3la. 

To show the correspondence of our Kalman filtering expressions 

to those contained in the literature, e.g. [Kalman 1960], we make a 
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correspondence between the two different notations as follows: 

OUrs Kalman Ours Kalman I ---- ----
I - w z. x2 X . 

2 K k/K I 
A2 Hk r. ~- pk/k )(2 

A 

CN') -l X' (new) ~/k-1 
p 

2 2 k/k-1 

~ 

- v v, K2 no equiv-
2 i<: 

alent 

-1 
(new) Qk G (new) p 

~ m 

M2 Rk y wk m 

------· .... ~----

Let us now obtain a deeper insight into the workings of the 

Kalman expressions. First n•.1te that a priori informc;t:ion on the 

parameters is needed to start: the process. A priori information cnn 

be of two possible types: 

(i) "observed" value of x1 with an associated weight matrix 

P from an independent determination; 
X 

(ii) a determination of x1 via the information contained i1; 

These two types of informaticn can enter both two together (equations 

3-23 and 3-24); only as normal equations (F1 in 3-25, 3-26, and 3-27); 

or lastly ln terms of weights cx1 with weight matrix P x) ThL~ 

representation of these three possibilities in the Kalman expression 

&:Juation 3.-59 is respectively N1 'f: 0, Px 'f: 0; N1 ;t 0, Px = 0; 1nd 

Nl = O, Px 'f: u. 
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By studying equations 3-58 and 3-59 we discover that the 

model noise does affect the prediction of the state vector via the 

shortcomings that exist in the definition of the transition matrix 

~. The effec·t of this model noise on the predicted variance-

covariance matrix ~~ enters explicitly via the weight matrix P . x' m 
2 

Also contained in ~" is the "noise" in the observations (via P) and 
x' 

2 
in the starting values of the parameters (via P ) • We witnes~, that 

X 

to compute X' and E~, no matrix inversions are neces~;ary l>ecausc in 
2 x2 

equation 3-59 

(N') -1 
.2 

uxu 

(3-63) 

uxu 

the one matrix inversion has already been carried out in the course 

" of obtaining the solution Xi· 
For the final estimates x2 and E~ , one matrix inversion 

x2 

is required. Namely, it is the matrlx of order r 2 (number of 

equations in F2) encountered in the gain matrix (equation 3-60) in 

the term: 

[M2 + (N') -1 T -1 
A2 2 A2] (3-64) 

-1 ·r (N') -1 AT -1 
= [ B2 [' B2 + A2 ] 

2 2 2 
r 2xn2 n2xn2 n2x1:2 r 2xu uxu uxr2 

The matrix to be inverted is fully populated and for a paramr'Lric 

case is the same order as the number of uew observations being ad<icd. 

This means that if one observation is added each s~aye Ctbdt ;s in F2) 
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and F 2 f.i•·s into the parametric cnsc, the matrix to be inverted is 

of order ont2. W•'.' will return to this subject in Sections 4 and 6 

when we compare the various methods. 



4. RELATIONSHIPS AMONG KALMAN, BAYES, SEQUENTIAL AND PHASE EXPRESSIONS 

Having derived the Kalman filter equations, we now proceed 

to: 

(i) show the equivalence of the Bayes and Kalman filter equations 

by using a matrix inversion lemma; 

(ii) deduce the sequential and phase expressions respectively from 
• 

the Kalman and Bayes equations by deleting the time variation 

in the state vector (parameters); 

(iii) show the equivalence of the sequential and phase expressions by 

using the same inversion lemma as in (i) above; 

(iv) demonstrate the equivalence of the Tienstra phase and sequential 

expressions; 

(vi discuss the computational efficiency of the Kalman (sequential) 

and Bayes (phase) methods. 

The theme of this section is to show that even though the 

Kalman (sequential) and Bayes (phase) expressions are mathematically 

equivalent they are not identical from the computational point of view. 

4.1 Equivalence of Kalman and Bayes Expressions 

First we write from Morrison [1969] the Bayes filter expres-

sions in our notation: 

46 
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P~0.diction of state vector 

A 

X' 
2 

A 

<!> X' 
1 

Prediction of new variance-covariance matrix 

(4-1) 

(4-2) 

Computation of variance-covariance matrix of state vector 

(4-3) 

C0mputation of gain matrix 

-1 AT -1 
G N2 2 M2 (4-4) 

Computation of state vector 

A 

}c 
A 

x2 = - G(W2 + A2x;> 2 
(4-5) 

To show the mathematical equivalence of the Kalman and Bayes 

expressions we invoke the following inversion lemma, contained, for 

(~xample in Krakiwsky [1968], Morrison [1969], Wells [1974] : 

(4-6) 

where S and R are positive definite matrices with R being a different 

order than S, and that TTR-lT is of the same order as S. This lemma 

can be corroborated simply by showing that the matrix product 

(4-7a) 

reducP.s to an identity matrix. The above lemma is sometimes known as 

the Schurr identity or the inside out rule and has been used by other 

authors such as Tapley [1972] and Kouba [1970] to show similar equiv-

alences. 
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We need yet another matrix identity, namely that proved 

for cxamrle in Morrison (1969] and Wells [1974], and that used for 

by authors such as Schwarz (1974], and Reigber and Ilk [1975]: 

(4-7b) 

where S and R are again of different order and are positive definite 

matrices, andT is conformable for multiplication with RandS. 

If in the first identity we replace T by A2 , R by M2 and 

-1 
s by (N2) we obtain 

-1 -1 T -1 T -1 -1 = (N2) - (N2) A2 (M2+A2 (N2) A2 ] A2 (N2) (4-8) 

= (N')-l- GA (N')-1 
2 2 2 

(4-9) 

where the Kalman gain matrix 

(4-10) 

Comparing the left-hand side of (4-8) with (4-3) of the Bayes expres-

sions and the right-hand side of (4-9) with (3-62) of the Kalman 

expressions, we can conclude that the respective variance-covariance 

matrices are mathematically equivalent. 

To show the equivalence of the two state vectors (X2 ) we 

simply prove that the two gain matrices G in (3-61) and (4-5) are 

mathematically equivalent. Using the second matrix identity with the 

-1 
substitutions s by (N;2) ,T by A2 , and R by M2 , we get 

(4-11) 

that is 

G (Bayes) = G (Kalman). (4-12) 

Thus the Kalman and Bayes expressions are mathematically equivalent. 
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To obtain insight into the Bayes expressions we analyse (4-1) 

to (4-5) . Predicting the state vector X2 and its variance-covariance 

matrix ~X' requires no matrix inversion since in the matrix 
2 

[ $ ( Nl + p )-1 $T + p-1] 
x m 

uxu uxu uxu uxu uxu 
(4-13) 

the single matrix inversion (N1 + Px) was already obtained in the course 

of obtaining the original estimate Xi· In obtaining the variance-

covariance ~x , two matrix inversions in 
2 

[ N' + A~ ( B2 
-1 BT ) -1 A (4-14) 

2 p2 2 2 
uxu uxr2 r 2xn2 n2xn 2 ~xr2 r 2xu 

are necessary. First, a fully populated matrix of order r 2 is inverted 

(M2) . For the parametric case and uncorrelated observations, this 

matrix is diagonal. Then, in order to obtain N2, the matrix in 

equation 4-13 of order u has to be inverted. Finally, a fully 

populated matrix of order u is inverted. This latter matrix is also 

used in computing the estimate x2 (equation 4-5). 

For example, for uncorrelated observations and the parametric 

case, only two matrix inversions of order u are required in the Bayes 

expressions. This situation and others are compared with Kalman 

filtering and other methods in Section 6. 

4.2 Sequential Expressions from the Kalman Expressions 

The sequential expressions follow directly from Kalman 

expressions (3-58) to (3-62). In these expressions we delete all 

matrices and vectors pertaining to the time variation in the state 
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vector, nnmely ~>, P , and Y • We also drop the subscripts "1" and 
m m 

"2" of the parameters; we retain the superscript "prime" (') to 

indicate an estimate based on only partial data, that is only data in 

The predicted state vector X2 (equation 3~58) reduces to 

the initial estimate X', and is given by equation 3-23: 

The predicted variance-covariance matrix EX' (equation 3-59) reduces to 
2 

E~,and is given by equation 3-24: 
X 

(4-16) 

The computation of the gain matrix (equation 3-60) reduces to 

(4-17) 

The solution vector and variance-covariance matrix reduce to 

A A 

X = X' - G(W + A X') 2 2 
(4-18) 

and 

(4-19) 

In the literature the sequential expressions have been 

derived for the case P equals zero. Making this simplification to 
X 

the above equations we have the following expressions which are 

equivalent to those given in [Schmid and Schmid 1965; Wells and 

Krakiwsky 1971]: 

" -1 
X' = -N ul 1 

(4-20) 

Ex, 2 -1 
= a Nl 0 

(4-21) 
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( 4-22) 

(4-23) 

The number and size of matrix inversions in the s8quential 

ex[ne.s~;.i_ons <'lr~ identical to that of the Kalman filter expressions. 

(See the ccmrrnents there - Section 3) • 

~2 
We now insert a note on the estimated variance factor a . 

0 

They are different as the 

second contains all the residuals while the first contains only those 

of the first ">et Of observatio11s. Krakiwsky [1968] has derived a 

sequential expression for the quadratic form of the residuals which 

..1.llows th~ fttst quadratic form to be up-dated without recomputing 

the residudls themselves; the equation is 

;.'I' ... 
V PV 

y 

"T A: "T " (V1P1 v1 ) + A(V PV) 

\) l + \)2 

where Yl is the degrees of freedom in F1 , 

v2 is the degrees of freedom in F2 , 

"T J\ 
V PV total quadratic form of all residuals, 

(4-24) 

(4-25) 

"'T " V 1 P 1 V 1 quar"!!C.Jtic from of residuals in F 1 (combine.:', solution), 

V~P2~2 quadratic form of residuals in F2 (combined solution), 

"T ~ 
(V1P1 v1 ) quadratic form of residuals in F1 (solution with F1 only), 

"T A 
A{V PV) change in quadratic form of residuals due to residuals in 

F2 and change in the residuals in F1 due to F 2 , and is given 

by 



52 

(4-26) 

The sequential expressions above are a result of the two 

sets of models 

(4-27) 

and 

(4-28) 

Expressions for more general situations have been developed 

in [Krakiwsky 1968; Kouba 1970), which allow for common observations 

and parameters between models F1 and F2 . 

4.~ Phase Expressions from the Bayes Expressions 

The phase expressions follow directly from the Bayes expres-

sions (4-1) to (4-5). We delete all quantities pertaining to the time 

variation in the state vector, that is ell, P and Y vanish. We drop m m 

the subscripts "1" and "2" on the parameters, but retain the superscript 

"prime" ( ') to designate an estimate using only part of the data, that 

is, only in F1 • 

,The predicted state vector x; (4--:1) reduces to the initial 

estimate X', and is given by equation 3-23: 

X' = - [N + P ]-l AT M-l w1 1 X 1 1 
(4-29) 

The predicted variance-covariance matrix EX' reduces to the 
2 

initial variance-covariance matrix L and is given by (3-24) 

(4-30) 
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The Vdl"i~nce.-coVarianc~ of tile state vector reduces to 

and the state vector to 

2 -1 = a N , 
0 

(4-31) 

(4-32) 

We have retained the weight matrix P to show how a priori information 
X 

on the parameters affects the solution. Phase expressions corresponding 

to the case 1? equals z.ero are: 
X 

A -1 X' -Nl ul (4-33) 

!:.!!, L.A I 
2 -1 (4-34) cr Nl X X 0 

L" rl- T -1 -1 2 -1 
(4-35) .::: LNl +A2M2 A2:1 (j N 

' X 0 () 

" -1 T -1 " X X' N A2M2 (W2 + A X') (4-36) 
2 

The number .:md si'Z.e of matrix inversions in the above are only similar to 

the Bayes expressions (See Section 6.4). 

It is clear that the variance-covariance matrix is a result of 

the addition of two sets of normal equations. On the other hand, the 

solution vector takes on a corrective form similar to the sequential 

expression (4-22) • This is computationally different from the straight-

forward case of ~dding normal equations. That is the solution for 

Fl (X, Ll) = 0 
' 

(4-37) 

F (X, L2) = 0 
' 2 

(4-38) 

is 
A -1 -1 
X -(Nl+N2) (Ul + U2) = N u ' 

(4-39) 

EA 2 
[Nl + N ]-1 2 -1 cr cr N ' X 0 2 0 

(4-40) 
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where r.r 1 and n2 are coefficient matrices and u1 and u2 are the constant 

vector-3 of th(' l8ast squares normal equations. 

Although the form of the above expression is different from the 

phase expressions, the number and size of matrix inversions are identical 

to the phase expressions. We will, however, reserve the name 

"sununation form of normal equations" to distinguish equation 4-39 from 

the phase form in equation 4-36. 

4.4 Equivalence of Phase, Sequential and Summation Equations 

The mathematical equivalence between the phase and sequential 

expressions comes via the fact that we have deduced each from the Kalman 

and Bayes expressions and the latter have been shown to be equivalent. 

How about the equivalence of the summation form of the normal equations 

and the sequential or phase expressions? Wells [1974] has shown the 

equivalence between the summation form and the sequential equations as 

follows. 

Begin by expanding equation 4-39: 

X -(Nl + A~M;1A2 )-l (Ul + A~M;1w~) 

T -1 -1 T -1 -1 T -1 o = -(Nl + A2M2 A2) Ul - (N1 + A2M2 A2) A2M2 W2 . 

From the first matrix identity (equation 4-6) 

(Nl +AT M-1 A )-1 
2 2 2 

-1 -1 T -1 T -1 -1 
Nl Nl A2 (M2 + A2Nl A2) A2 Nl 

and from the second (equation 4-7b) 

(4-41) 

(4-42) 

(4-43) 
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(4-44) 

Substituting equations 4-43 and 4-44 into 4-42 yields 

" {N-1 - N-lAT -1 T -1 N-1} X = - (M2 + A2N1 A2) A2 ul 1 1 2 1 

-1 AT (M2 + A2 
-1 AT)-1 Wo - N Nl 1 2 2 2 

(4-45) 

-1 
-Nl ul 

-1 T 
+ Nl A2 (M2 

-1 T -1 
+ A2Nl A2) 

-1 
A2N1 Ul 

-1 T 
(M2 + A2 

N-1 AT,-1 Wo 
Nl A2 1 2 1 2 

(4-46) 

-1 AT (M2 + 
-1 AT)-1 0 

Xl). X = X - Nl A2 Nl (W2 + A2 1 2 2 
(4-47) 

From equation 4-43 

LX= cr~ [N1 +A~ M;1 A2J-l (4-48) 

(4-49) 

We thus see the mathematical equivalence of the summation form of the. 

normal equations and the sequential expressions. 

In essence, the summation form of the normal equations is the 

foundation for the "group method" [Kruger 1905], which was developed for 

classical adjustments of triangulation nets. Application of the 

summation form of the normal equations to problems in satellite geodesy 

can be found in such works as [Kaula 1966; Krakiwsky and Pope 1967; 

Wells 1974]. 
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4.5 Equivalence of the Tienstra Phase and Sequential Expressions 

The aim of this section is to apply the ideas of Tienstra to 

the same situation as in the foregoing, namely for two models with common 

parameters but different observations. The models are: 

Fl <x, Ll) = 0 , (4-50) 

A 0 
A1X + BlVl + wl = 0 , (4-51) 

F2 (X, 1:2> = 0 I (4-52) 

~ wo A2X + B2V2 + 2 = 0 . (4-53) 

Using the principles of Tienstra [1956] we first obtain a solution from 

F1 , namely 

Next we use the adjusted parameters from phase one (F1 ) 

as quasi-observations with weight matrix 

p 
X 

2 -1 
= (J 1> 

o X' 

(11-54) 

(4-55) 

(4-56) 

(4-57) 

in F2 . Since all quantities are weighted, F2 takes the linearized form 

of the condition case adjustment, 

A 

B*V* + W* = 0 I (4-58) 

where 

B* (4-59) 
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(4-60) 

(4-61) 

W* == F2 (X I' L2 ) (4-62) 

aF 

= F2 (Xo, L2) 
+ __ 2 x• 

C!Xl 
(4-63) 

0 X' = w2 + A2 . (4-64) 

The equations which describe the solution to the condition 

case adjustment were derived in Section 2. The equation for the residual 

vector is (2-132) 

-1 T A 

V = - P B K , (4-G5) 

where 

. (4-G6) 

Substituting B*, V*, P* and W* into the above yields 

K ~~1 : 0~ rA~j -1 {[A I B ] ___ ,!.___ ---- } (vf.. + 
2 2 I T 2 

0 I P2 B2 
I 

(4-67) 

(4-68) 
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The adjusted (final) quantities are 

" A 

L = L + V (4-71) 

(4-72) 

From the upper portion of the partitioned vector we get 

(4-73) 

(4-74) 

. . .. :~.: ... . '.'·. .. 'I /;..;. ~:· ~ .;.;.. ' 

the last two terms of which are identical to the 'sequ·~rit.ial expression 

(4-22) for the solution vector. 

Next we obtain an expression for the weiqht coefficienf matrix. 

Begin recalling from (2-134) that 

= 

(4-75) 

I 

-1 -1 T -1 T -1 1 -1 T ~i ·~ -1 -1 
Nl - Nl A2 [M2 +A2Nl A2] A2Nl : -Nl A2 [M2 +A2N1.,~,1\2J B2P 2 

I . . . 
-----------------------------------------------~-----~-------· 

-1 
p 2 

~1 t· .··· _;,1 1' -1 .il 
p2 B2[M2+A2Nl A21 B2P2 

,)·{;,,..;;, . ,.: ·. ''. . ~ ... \'. . / 

<4-76) 
; '····. -~. ~. i:' 

Thus we have, besides the variances, also the covariance between X and 

" ; 

L. The upper left portion of the hyper-matrix is the weight coefficient 

matrix of the adjusted parameters. It is identical to the sequential 

expression of equation 4-23. This completes our proof. 



5. COLLOCATION 

In this section two different derivations of the collocation 

equations are given. The first derivation is fundamentally the same as 

the one given in Moritz [1972] and differs only in detail. One impor-

tant detail is that we fully exploit the equations of the standard 

adjustment combined case (Section 2) in deducing the collocation 

equations - this considerably shortens the derivation. Secondly, 

weights on the parameters are included as an option ~ by duing so, we 

see the role of these weights vis-~-vis the other two sets of weights 

on the observations and signal, r•.!Spectively. Also, on~ c.:tn th1m see 

the role of these three sets of W•3ights vis-a-vis the weights un the 

secondary mathematical model of K.1lman filtering (Section 3). With a 

comprehensive knowledge of these four kinds of weights (inverse of 

variance-covariance rnatrices~*one begins to discover the similarities 

and differences among ordinary least squares, collocation, and Kalman . 
filtering. The main characteristic of the first derivation (Sections 

5.1 to 5.4) is that the measurement error or noise* does not appear 

explicitlY in the weighted. quadratic form,.·to be, minimized nor in the 

constraint function, and as such an estimate for the "noise" is n1 :. 

computed. For this reason, it is said that the "noise" docs not play a 

* This quantity is equal to minus the observatior1al residual in 
ordinary adjustments. 

2 ** o equal to one. 
0 

--- -- --·--

59 
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key role in collocation like in ordinary least squares, and as a 

consequence the two methods are fundamentally different. 

In the second derivation (Section 5.5) we formulate the 

objectives of collocation entirely as a problem in adjustments. Here 

we find that the "noise" (corrections to the observations) appears 

explicitly, does play a key role,. and is computed. 

We will discover that the corresponding expressions for 

the parameters and signal are identical in collocation ;md the adjust-

ments formulations. 

The aim of this section is only to recapitulate the method 

of collocation in the context of a synthesis of methods. For a 

comprehensive treatment of the subject see [Moritz 1972; 1973a; 1973b]. 

5.1 Collocation Mathematical Model 

We begin with the linear explicit model (equation 2-3) 

-
L = A X v (5-1) 

nxl nxu uxl nxl 

where L is the vector of n observations, V the vector of n residuals, 

A the design matrix, and X the vector of u unknown parameters. We now 

depart slightly from our notation to be consistent with Moritz. The 

above is rewritten in the form, 

X 

nxl 
A X 

nxu uxl 
+ n 

nxl 

where x is called the "measurement" and n its "noise". 

Moritz then extend~~ the above model to 

X 

nxl 
A 

nxu u:-rl 
+ S' + n , 

nxl nxl 

(5-2) 

(~-3) 
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where the newly introduced quantity S' is called the "signal". Here 

we can perhaps interpret S' as the short-coming in the mathematical 

model, that is the "inability" of the model to describe completely 

(exactly) the actual relationship among the measurements (x) and 

unknown paramet~rs (X). In other words, one could imagine that there 

is an "overflow" from the model into some sort of additional correction 

(S') to the observations. Even though this may seem plausible at first 

sight, it is the author's belief that is not what is intended in 

collocation. What is intended is to attribute the signal direct.ly 

to the observable, thereby stating that the observable (measurement) 

has two unknown errors - the signal S' and the noise n. We can 

liken the noise to a measuring error, or resolution capabilit~ and is 

thus internal to the instrument. On the other hand, the_ signal is 

thought of as being external to the instrument and related to the 

behaviour of the observable in a particular milieu - like deflections 

of the vertical in the gravity field, electronically measured distanc<:!S 

in the "polluted" atmosphere· or· in the electron charged ionosphere; or 

gravity anomalies in the gravity field. An important characteristic 

of a signal is that it is continuous throughout the domain of a par­

ticular "milieu" or "field". One of the requirements of collocation 

is that the signal has known second moments (variance-covariance 

matrix), even though the first moments (value of the signal) remain as 

unknowns to be estimated. 

The signal and its variance is not new to geodesi~tb. Since 

the 1960's we have been calculating the variance of the noise and 

variance of the signal for electronically measured distances fcom 

the formula 
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2 
ad= a+ b (distance). 

In the above, a is the resolution of the instrument (variance 

of the noise) and b is a constant in parts per million which when 

multiplied by the distance is nothing else but the variance of the 

signal. The latter is a measure of the behaviour of the observed 

distance in the troposphere. It is rather obvious that there is no 

covariance in the noise but one suspects that there would be covariance 

between the signal components of different distances since they are 

measured in the troposphere. Collocation attempts to account for this 

correlation through a fully populated variance-covariance matrix for 

the signal, while in the ordinary least squares treatmentrthe covatiances 

in the signal are first ignored, then the variance of the signal is 

combined with the variance of the noise to give one variance (o~), and 

finally a solution is made for only one correction (residual) for each 

measured distance. 

In collocation, the condition imposed on the signal is that 

it be random with zero mean. Thus the measurement x is seen to consist 

of a systematic part AX, and two random parts, S' and n. 

In his development, Moritz introduces th~ quantity 

Z = S' + n , (5-4) 

where s• denotes the signal at the observation P?ints. S will be 

reserved to denote the signal at any point in general without obser-

vations. These points (p in number) are called computatie>n points and 

it is at these points that the signJ.l is said to be "predjct~ed". 

After considerinq the aLove equation, thl~ rna in mod.•l becomes 
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-
X = AX + Z (5-5) 

and 

-Z = X - AX (5-6) 

represents the random part of observations after subtracting the 

systematic part AX. 

This stage constitutes the end of formulating the collocation 

mathematical model and the beginning of applying the conventional 

least squares methodology used throughout the previous sections. 

5.2 Collocation Least Squares Problem 

We now state the collocation least squares problem. Determine 
A 

the least squares estimate X in equation 5-3 under the condition that 

AT A 
V PV minimum (5-7) 

where the residual vector, defined to have the nature of "corrections" 

as in previous sections, 

AT 
v 

AT I AT 
[ -s : -z l (5-8) 

lx (p+n) lxp lxn 

is made up of two parts - the signal at the computation points, and the 

random part of the observations. The weight matrix 

2 
P = a 

0 

c 
ss 

c xs 

c 
sx 

c 
XX 

-1 

(5-9) 

where C is the variance-covariance matrix of the signal, C the 
SS XX 

variance-covariance matrix of ~he observable. C and C are the 
SX XS 
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covariance matrices between the signal and the observable, and where 

the a priori variance factor o2 is set to unity for convenience. 
0 

Remember that in collocation the observable has two random 

parts- the signal S 1 and the noise n (equation 5-4). Accordingly the 

covariance matrix 

c 
XX 

COV(x,x) = M {Z ZT} 

= c I I + c = c + D , s s nn 

(5-10)* 

after one assumes that the measuring error (n) has no correlation With 

the signal (S 1 ) at each observation point. Under this assumption 

and 

= CQV (51 5 1 ) 1 

C = COV (S', S) 
xs 

US-ll) 

(5-12) 

are pure signal covariances which describe the correlation between the 

signal components in the doma1n of the "observation" and "computation" 

points. 

The above minimum is to be found subject to the constraint 

function 

AX + BV + W = 0 , (5-13) 

where A is the nxu design matrix of equation 5-3; X t:he u vector df 

unknown parameters of equation 5-:i; V is the n+p vector of equarion 

5-8; and the newly introduced quantities 

* M stands for mathematical e;x:pectation - sometim :s d£~noted by E. 
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nx(n+p) 
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[ 0 l -I ] 
nxp nxn 

(5-14) 

is the second design matrix consisting of a null and minus identity 

matrix, and 

w = -x 
nxl nxl 

(5-15) 

is the vector of measurements. Iri the case that we choose to solve for 

corrections to some approximate (or observed) parameters, then 

(5-16) 

or 

W = AX - X • (5-16a) 

The purpose of introducing the null matrix in the above was to 

involve the signals S (to be predicted) in the equations without modify-

ing the original mathematical model given by equation 5-5. To 

corroborate this, we substitute B, V and W above into equation 5-13: 

AX+ rol-rJ~;J- x = o (5-17) 

AX + Z X (5-18) 

which is equation 5-5. 

5.3 Collocation Equations 

The least squares normal equations relating the unknown quan-

tities X and S to the known quantities A, x, Css' Cxx and C5 x are 

obtained from the variation function 

(5-19) 

where all quantities are defined immediately above and P is the weight 
X 
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matrix on the parameters as before. We recognize this to be the 

variation function of the standard-combined case with weighted para-

meters. The equations corresponding to the above have been derived 

in detail in Section 2 (equations 2-74 to 2-94). We now specialize 

these equations to the collocation problem. 

Solution for the Parameters 

The solution for the parameters is (equation 2-76) 

A 

X = X + X , 

where X is the vector of weicjhted parameters, while the correc tiort 

vector is given by (2-74) 

X 

In the above 

[o 1-rl 
' 

c 
XX 

Using equation 5-10 and the above, 

X = 
T -1 -1 T -1 

[A (C+D) A + P ] A (C+D) W. 
X 

(5"*21) 

(5-'23) 

Note that the variance-covariance matrix for the signal at the observa-

tion points (C) and measurement error (D) , and the weight matrix for the 

parameters (P ) enter as three separate pieces of information. Also note 
X 

that the covariance matrix C needed for the prediction of the signal xs 

does not uffect the sol u1· i.on of t.h<' parameters X since i. t doco. r'' 't 

appear in the above equation. 
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For the case of weighted parameters 

w :;; AX - X I (5-24) 

where X is the quasi-observed value of the parameters with weight matrix 

P 1 and x are the measurements. For the unweighted case 
X 

where the misclosure vector W becomes: 

W ""' -x 

or 

0 0 
W""' W ""' AX - X 

(5-25) 

(5-26) 

(5-27) 

depending upon whether one wishes to solve for the parameters themselves 

. . 1 0 or correct~ons to some approx~mate va ue X • 

Solution for the Signal at the Computation Points 

The expression for computing the signal at the computation 

points follows from the equation for the adjusted observations (equation 

2-80) and residual vector (equation 2-79), namely 

- A 

L = L + V , (5-28) 

where 

(5-29) 

and 

(5-30) 

The observed value of the signal can be taken as zero as per the con-

dition imposed upon this quantity - namely it is a random variable with 

zero mean .. Hence the solution for the signal is given by the residual 

vector. Noting that 
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and using equation 5-22 

-
L = (AX + W) 

and finally the signal is estimated from: 

§ = -c c-1 (AX + w> 
SX XX 

= -C (C+D)-l (AX+ W) 
sx 

(5-31) 

(5-32) 

(5-33) 

(5-34) 

The collocation solution does not contain an equation for Z, 

however one can get from equation 5-32 the required exp1·ession: 

2 = -c c-1 (AX + W) = -(AX+~] 
XX XX -

- ~ A 

(5...i34a) 

The problem of spliting Z into signal S' and noise n estimates is the 

subject of Section 5.5. 

Variance-Covariance Matrix for the Parameters 

The variance-covariance matrix for the final (adjusted) 

parameters 
... 
X - X + X (5:..35)· 

is, using equations 2-85, 

I>~~~> 
2 <5:..36) = a Q~ , 

X o X 

2 [AT (BP-lB'r)-lA p 1-1 (5-37) = a + 
0 X 
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where o~ is the usual a priori variance factor. Considering 

the. collocation definitions of A, B (equation 5-14), and p 

(equation 5-9 ~nd 5-10) we get 

In the case that no weights are applied to the parameters 

which is identical to the collocation equation. 

(5-38) 

(5-39) 

(5-40) 

Variance-Covariance Matrix of the Signal at the Computation Points 

We have seen above that minus the signal at a computation 

point is like an adjusted observation because an adjusted observation 

equals the observation plus the residual, and in collocation this equals 

zero (for the signal) plus, minus the signal (see equations 5-8 and 

5-28) . Thus the variance-covariance matrix for the signal follows from 

that of the adjusted observations (equation 2-86), namely 

where 

Q~ = p-1 + p-lBT(BP-lBT)-lAQ~ AT(BP-lBT)-lBP-1- p-lBT(BP-lBT)lBP-1 

L X (5-41) 

and where Q~ is given above in equat.ions 5-38 and 5-39. Since from 
X 

adjustments 

~ 

L L -t v (5-42) 
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noting L is a null vector in collocation, 

thus 

then 

(5'-44) 

It is r:~ that we are after. We now specialize equation 5-41 as before s 
by using the definitions of the various terms 

:E,.. = 
L 

c I c c 
ss I SX SX 

C-1ALATC-l [C 1, = I + ~ ] .... 
XX X XX xs I XX 

c c c 
XS I XX XX 

-~:~ -1 [C I c l <5-4 5 > c 
XX xs 1 XX 

Picking out only the upper left portion from the above hyper-matrix 

equation, one obtains 
·-

r;.z c c -1 AE~ ATC-1 C - c c-1 c (5-46) = + c s ss SX XX X XX XS sx XX xs 

= c + c (C+D) -lA l:~ AT 
ss sx 

X 

(C+D)-l c - C (C+D)-l c (5-47) 
xs SX xs 

which is identical to the collocation equation. 
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Let us now examine the expressions for the parameters 

(equation 5-25), signal equation (5-34) and their respective variance­

covariance matrices (equations 5-40 and 5-47) to determine the number, 

form and size of matrices to be inverted. The solution anrl variance­

covariance matrix for the parameters requires two matrix inversions in 

(5-48) 

The first inversion is a fully populated matrix because of the correla­

tion among the signals at the computation points and has dimensions 

equal to the number of observations. In certain applications this 

matrix can be reduced to a band matrix and then by using special inver­

sion tactics, like "compacting out the zero parts" the inversion is made 

faster, e.g. [Krakiwsky and Pope 1967; Isner 1972; Knight and Steeves 

1974]. The second inversion is of a fully populated matrix of order 

equal to the number of parameter,;. Equations 5-34 and 5-47 (p~rtaining 

to the signal) require no additional inverses to that made in the 

determination of the parameters. 

5.4 Stepwise Collocation 

We have seen that collocation equations follow directly from 

the equations of the standard-combined case of adjustments simply by 

specifying the collocation forms of the design matrices A, B, and 

•.Jeight matrix P. On the other hand, we cannot deduce thf' ~.:;quE·ntial 

collocation equations of Moritz [l973a] from the Kalman (sequenti<ll) 

expressions derived in Section 3 and 4. This is because in the latter 

development the observations of consecutive stages ar: a~~sumed to be 

uncorrelated. 
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This assumption is prohibative in collocation as the signal 

part of the observation has a continuous and complete correlation which 

must be accounted for when grouping the observations in stages. Thus 

one sees that from this point of view, collocation is a more general 

method. Below we simply state the sequential collocation equations 

from Moritz. Recall the collocation form for the solution of the 

parameters (equations 5-25 and 5-26); namely 

X • 

In sequential collocation the matrices and vectors are partitioned i11 

two, such that 

A =~j • 
X =f~j ' 

The solution for the parameters is given by 

x = x1 + P~ 1 A; c;; ~x~ c~F~~- _A2X,J 
where 

-1 [AT -1 A ]-1 pl = ell 1 1 

- -1 
A2 = A..., - e21 ell Al , 

--1 -1 - -1-T --1 
c22 J:c..., .... - c21c~1c12 + A pl A:-!] 

"-"'- 2 

(5-50) 

(5-51) 

(5-52) 

(5-53) 

(5-54) 

(5-'i')) 

(!>~Sf,) 
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and xl is the solution using only observations xl, that is 

T -1 A )-1 T -1 
xl = (Al ell Al ell xl. 1 

(5-57) 

The solution for a signal element in two steps, is given by 

-1 -1 -1-T --1 . -1 - " = sP ~+ (eP2-ePlellel2-ePlell AlPl A2)c22 (x2~e2lell~l-A2Xl) 
~------------------------------------------------------------------~(5-58) 
where the newly introduced terms are defined as 

( 5-59) 

and ~- is the signal computed using only observations x1 , that is 

(5-60) 

T 
ep is a row vector of dimensions lx(n1+n2) [Moritz 1973a]; here only one 

signal element (SP) is estimated. However, the same formu:a could be 

applied for all p signal elements (vector S) by using 

e = [C l 
SX ) S px(n1+n2 pxn1 

instead of ep. 

e s2 
pxn2 

The variance-covariance matrix for the parameters is 

where 

(5-61) 

(5-62) 

In the above sequential collocation expressions, one sees 

that one matrix inversion is necessary, namely that of c22 which has 

dimensions equal to the number of observations in the second stage. 

It is interesting to note how the correlation among all the signal 

elements is accounted fer even ~hough the full matrix 



c 
XX 

C+D 

74 

(5-63) 

is not explicitly inverted. We stress that. it is implicitly inverted 

thereby giving rise to expressions like equations 5-55 and 5-56. Thus 

we see how the correlation among the signal elements, which is 

essential for collocation, is accounted for in the sequential expres-

sions. 

5.5 Alternative Derivation of the Collocation Equations 

There are several alternative ways we can derive the colloca-

tion equations. These alternatives follow from the number of ways we 

can arrange the parameters X, signalS and S', a1~ the residuals (correc-

tion to the observations) v. This arrangement can take place in the 

form of an "association" or in terms of an "associat.ion"and a 

"combination" (see Table 5-1.). 

In the linearized mathematical model 

AX + BV + W = 0 , (5-64) 

we usually identify the term AX with the parameters (weighted or nol 

weighted) and the term BV with the observables (weighted) . This 

leaves us with the possibility of associating the signal Sand S' 

with either of the two terms - this leads to alternatives I and II 

(Table 5-l). If there are weights for t.he parameters as well we have 

alternative III - a pure condition case adjustment. Note we have not 

split the signal, say S to term AX and S' to term BV, since they are 

st:atistically dependent by n< t~1re .. 
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Table 5-l. Alternatives for the Derivation of the 

Collocation Equations. 

Alternatives term AX term BV 

(association) 

I X, S, S' v (minus noise) 

II* X v, s, S' 

III v, S, S' I X 

~--------------------- --------------- ----------------------
(association and 
combination) 

IV** X z = s+<-v>, s 

v Z, S, X 

* choice for alternative derivation of collocation equations 

** "original" collocation derivation 
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Alternatives IV and V arise as a result of combining the 

signal S' (at observation points only) with the noise (-V) into one 

quantity called Z, and first associating X with term AX, and Z and S 

with term BV, and secondly associating all quantities with term BV. 

Of course, the last alternative is only possible if weights for the 

parameters exist. 

We recognize alternative IV as being the form of the 

"original" collocation derivation given in the previous section. 'V<7c 

choose alternative II over the others for the alternative derivation for 

no other reason than that the collocation equations can be <'l.educed in 

minimum space and time. 

We begin our alternative derivation by assurninrr a non-linear 

implicit mathematical model (equation 2-6). 

F(X, L) = 0 I (5-65) 

and after linearization (equation 2-16) 

AX + B*V* + W = 0, P P* (5-66) x' 

where the asterisk (*) denotes a hyper matrix or vector. In the above 

we have the following definitions: the residual vector 

-s 

v* = -s• (5-67) 

v 

the second design matrix 

B* [0 -I -I]; (S-68) 

the misclosure vector 

w F (X, L) (5-69) 

t At this juncture we could 1avo cl1osen a non-identity corfficient matrix 
for the s_;_gnal and r;.Jise, l:ut by not doing :so we will ar.cive P.xactly at 
the collocation equa~ions. 
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the a priori weight matrix for the parameters 

-1 
E 

X 

where E is the a priori variance-covariance matrix for the parameters; 
X 

-1 

[::s• r Es E 
SS' 

0 I:ss 0 

P* 
2 

[ [ [S' 0 (5-7ltt· = (J 0 = 
0 SS' S' 

0 0 I:L 0 0 
-1 

E 
L 

where I:L is the variance-covariance matrix of the observations. Note 

that X is assumed to be statistically independent from SandS'. This 

is a reasonable assumption as the a priori estimates for the parameters 

are understood to be estimates from an other outside source of infer-

mation. 'l'he signal quantities are statistically 

dependent by nature - that is the signal is characterized by one 

covariance matrix in the domain defined by the observation and compu-

tation points. On the other hand, the measurement errors are assumed 

to be statistically independent from S and S' as they are peculiar to 

the measuring instrument. 

We also no~e that in the evaluation of w, only the observed 

value of the observables (L) and the quasi-observed valuei" of the 

parameters (X) appear; the signal components do not appear as their 

expected values (observed values) are zero by definition. 

The variation function from which the least squares estimates 

arc deduced is 

. l . 1 ° ·~· or s1.mp y approx1.mate va tes X , 

t ... , (12 . = l for sake of conve'•lencc.:. 
0 
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+ 2KT (AX + B*V* + W) . {5-72) 

There are three quadratic forms to be minimized, the first involving 

the parameters, the second the two signal components, and third thJ 

observational corrections. In this formulation we see that the obser-

vational corrections do appear explicitly in the quadratic form and 

in the constraint function. This fact has both an advantage and a 

disadvantage as we will witness below. 

Our model (equation 5-66) fits into the standard combined 

case- weighted parameters category {Section 2.4). We proceed to 

utilize the expressions contained therein {equations 2-74 through 

2-97) to obtain the collocation equations. 

A 

Solution for the Parameters X 

A 

From equation 2-74, the solution for the parameters X is 

given by 

X= -[AT(B*P*-lB*T)-lA ~ p ]-lAT(B*P*-lB*T)-1w. 
X 

{5-73) 

We specialize the above expression to the problem at hano by use of 

equations 5-67 to 5-71 and get the following: 

Es ESS' 0 

P*-1 E 
S'S 

E 
S' 0 (5-74) 

0 0 l:L 
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L LSS' 0 0 s 
B*P*-lB*T = ( 0 : -I ; -I] L: LS' -I ( S-75) 

S'S 0 

0 0 -I 

(5-76) 

Thus 

I ~ T + L L) 
-1 -1 T -1 . I = ·-[A ~ A + p ] A ( ~ ,+ Lr.,) w S' X 

(5-Tl) 

and in collocation notation 

~ T -1 -1 T -1 
X= -[A (C+D) A+ P] A (C+D) W, (5-78) 

X 

we find that the above equation is equivalent to equation 5-2 3 . 

Solution for the Signal S 

From equation 2-7~ 

~ -1 T 
V* = -P* B* K I (5-79) 

where 

( 5-80) 

Specializing the above as before we get 

~:.s Ess] 0 0 Essl 
-P*-lB*T = LS' 0 -I = LS' 

0 0 L -I LL J L 

c5-8l l 

Substituting the above, along with equation 5-76, into equ,ttions 5.qg 

and 5-80 yields 
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-s I: 
SS' 

- " -1 " 
L 0 + V* = -s' = rs, ( I:5, +LL) (AX+W) (5-Cl2) 

---
" 
v r 

L 

r·rom the first row of the above hyper-matrix equation we get an expres-

sion for the signal at the computation points, namely 

and in collocation notation 

-c 
SX 

(C+D)-l (Ai + W) I 

which is identical to equation 5-34. 

Solution for the Signal S' 

(5-H.3) 

(5-84) 

From the second row of equation (5-82) we get an expression 

for the signal at the observation points, namely 

" 
S' = -l: 

S' 
(5-85) 

and in collocation notation 

[ ~' = -c cc + o) -l <Ax + w) • (5-86) 

There- is no equivalent expression in the "original" collocation 

derivation (See equation 5-34a) • 

" Solution for the Observational Correction V 

From the third row of equation (5-82) we get an expression 

for the observational correction, namely 

.--------------------------------~ 
(5-87) 

.._ _________ ---.- ---· ________ __. 

and in collo."ation n;:,tation 
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~· = D(C + D)-l (AX+ W) • (5-88) 

There is no equivalent expression in the "original" collocation 

derivation (see equation 5-34a). We can deduce an expression for the 

combined quantity Z (equation 5-34a) by addition of equations .5-88 

and 5-86, namely 

A 

-(AX+W) I 
I 

A 

- A 

Z = S' + (-V) = (5-89) 

Variance-Covariance Matrix for the Parameters 

The variance-covariance matrix for the final (adjusted) 

parameters 
A 

A 

X = X + X (5-90 ) 

is, using equation 2-85, 

L 
2 
Q~ = 0 - 0 

X X 
( S-91 ) 

2 [AT(B*P*-lB*T)-lA + p ]-1 = 0 
0 X 

( 5-92.) 

After considering the definitions of B* and P* we get 

( 5-9j.) 

After deleting weights on parameters and changing notation we get 

whjch is identical to the collocation expression (equation 5-40). 
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Variance-Covariance Matrix for the Signal of the Computation Points 

The variance-covariance matrix for the signal components 

follows from the corresponding expression for the adjusted observables. 

The arguments why this is so have already been given in Section 5.3. 

From equation 2-s6rthe weight coefficient matrix for the adjusted 

observables is 

where Q.::. is 
X 

defined 

L* = 

Q.o 
L* 

in 

L* 

= 

and from equation 2-93 

L 
L 

equation 

+ 

Q~ s 

A 

V* 

Q.::..::. 
LS 

-

5-91. 

0 

0 

L 

QAA 

SS' 

Q AA 

i:s• 

+ 

Since 

(5-9 5) 

(5-96) 

(5-97.) 

( 5-98) 

The three diagonal terms are the variance-covariance matrices for the 

signal at the computation points, the signal at the observation points, 

and the adjusted observations, respectively. The off-d1agonal terms 

are the covariances between them. 

Let us now specialize equation 5-95 as before by using the 

definitions of the various term:;. 
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E~ LA A E s :s:s~ ~-
SL 

E .... LA LA I; .... .... - - s' S1 L L* S 1 S 
EAA I:~.:. E .... 

LS ts 1 

L 

E E 0 I 
s SS 1 2:SS 1 

= E 
S 1 S l:S' 0 + ESI (2:SI+2:L)-1Al:~AT(ESI+2:L)-1 [l:s I srs I ELl 

0 0 rL rL 

I:SS 1 

I:S 1 (ES 1 + EL)- 1 o::S'S ES 1 l:L] • (5-99) 

I:L 

From the (one, one) position of the 11'/per matrix equation we obtain 

the variance-covariance matrix for the signal of the computation points, 

·namely 

E~ = s 
-1 T -1 -1 

E + E JE I+E ) AE ... A o:: I+E ) L I - ESS' o:s,+l:L) Lsa..s (5-100) 
s ss s L X s L s s 

and in collocation notation 

(5-101) 

--------- -----------~ 

which is identical to the "original" collocation expression r <:!quation 

5-47). 

Variance-Covariance Matrix for the Signal 8 1 at the Observation Points 

From the (two, two) position of the above hyper matrix 
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which has no equivalent in the "original" collocation formulation. 

" 
Variance-Covariance Matrix for the Adjusted Observation L 

From the (three, three) position of the above hyper-matrix 

-equation we get the desired expression for L, namely 

l: + l: o:: ,H )-lA~>·AT(l.: ,HL)-1 2.: - E o: ,H )-l E I (5-103) 
L L s L X s L L s L L -

L 

which has no equivalent in the "original" collocation formulation. 

" Variance-Covariance Matrix for the Observational Corrections V 

From equations 2-8.7 and 2-94 

2 
(o = 1) 

0 

= -P-lBT(BP-lBT)-lAE~ AT(BP-lBT)-lB p-l 
X 

+ p-18T (B!?-lBT)-1 HP-1 • 

-1 
Specializing by using the definitions of B and P , we get 

"v~ -cL CEs,+ELl-lAEiAT <Es,+EL)l EL + EL <Es,+EL~ 

" 
Covariance Between Signal S and Signal §• 

(5-104) 

(5-105) 

From the (one, two) position of the hyper-matrix equation we 

get 

(5-lOl,) 

and in collocation notation 
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------...,.---------------------..., 

A A 

Covariance Between S and L. 

(5-107) 

The covariance matrix between the predicted signal S and the 

adjusted observation L follows from the (one, three) position, namely 

(5-loS) 

A -
Covariance Between S' and L 

The covariance matrix between the signal S' at the observation 
A 

poin$and the adjusted observaticnsL follows from the (two, three) 

position, namely 

Closing Remarks Regarding the Alternative Derivation 

This alternative derivation of the collocation equations 

has one basic difference from the previous derivation - that is it 

explicitly involves the observational corrections. These corrections 

appear in the minimum and constraint function of the variation function 

lc'quation 5-72) ,are solved for in equation 5-87, and have a variance-

covariance matrix given by equation 5-105 . 

When working with errorlt.:!ss data, simply delete all quantities 
A 

related to the observational corrections v, that is EL, V, Ev' L, and 

covariance matrices involving L ··~nish. This does not nffect the 

expressions. 



6. ANALYSIS OF METHODS 

In this section we analyze the standard cases of adjustment, 

the step-by-step procedures, and the method of collocation. We begin 

by recalling the various methods and discuss their derivations from a 

general point of view (Section 6.1). This is followed by a detailed 

comparison of the characteristics of, and assumptions underlying the 

methods (Section 6.2). Then the methods are labelled according to terms 

used in the literature (Section 6.3). Next the methods are compared from 

the computational point of view (Section 6.4). We close by discussing 

the methods derived herein along with related topics (Section 6.5). 

6.1 Methods 

In this section we classify the methods and trace the flow of 

their derivations. The so-called methods derived in the foregoing 

sections fall into the following three main groups (Figure 6-1): the 

standard cases of adjustments; the step-by-step procedures; and the 

collocation approach. All these methods are rigorous estimation 

procedures - no approximate methods are treated herein. 

We first derived the equations for the standard <'ascs of 

adjust.rrcnts (Section 2). 'l'hey s~rve two purposes. Firstly, in their 

derivation we demonstrated a metitodology wb.ch was used later in thr> 

86 



87 

Gauss-Legendre Least Squares 

,, 
Section 2.4 

----·--

Combined -
weights on 
parameters 

--,--------

~ 

Section 2.4 

Combined -
no weights on 
parameters 

Section 2.4 

I Parametric 

Section 2.4 

ista,dard cases 

~f" ,_,,.-------------1 Condition 

--- ------------- ,, 
Section 5 

Collocation 

---.. 

1-

~ 

.. 

!::: , -::-::::-:::: ~:: .. :----:::::::-:-----------------:::::::-:~: -----
,, 

Section 4. 

Tienstra 
phase 

Kalman 
Filtering 

1 ~ Section 4. 2 

.. .... - Bayes 
Filtering 

r Sect1.on 4.3 ,---··· 
,i 1 ~ 

Section 4.4 ~----~-~ Sequential Phase 

Summation of 
Normal equations 

I 
~ ... 

Arrows indicate sense in which derivation 
was made. 

FIGURE 6-1. Trace of the Flow of Deri·. ations 
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derivation of the Kalman filter equations. SecoPdly, the equations of 

the combined and condition cases respectively, le~d to the collocation 

and Tienstra phase equations. We do not wish to imply here that 

collocation is a special case of the combined adjustment. We stress 

that it was only the collocation equations themselves that were deduced 

from the standard-combined case adjustment equations and not the basic 

mathematical model itself. 

The second group of equations were derived for the step-by-

step procedures (Sections 3 and 4) . We began by deriving the Kalman 

filter equations from basic least squares using the standard method-

ology. Then by applying two matrix identities we were able to show the 

equivalence of the Bayes and Kalman filter equations. We stress that 

although the equations are mathematically equivalent they are not 

identical from the computational point of view. We return to this very 

important aspect in Section 6.3 below. 

The sequential and phase expressions we derived respectively 

from the Kalman and Bayes filter expressions simply by deleting matrices 

and vectors pertaining to the time variation in the parameters. The 

mathematical equivalence of the sequential and phase expressions is a 

logical consequence, since the Kalman and Bayes expressions were already 

shown to be equivalent, but again we stress they are not identical from 

the computational point of view. 

Finally, two other step by step procedures were formulate ·1, 

the Tienstra phase and addition of normal equations. '.'be Tic'nstra phase 

et1uations were deriven in two steps: first the basic math<~m;ltical 

mudel WdS fomulated usinq hi~; principLe; ald th•~r~ •·lw cquat:ic,ns th~c---mst>],,.-; 

! 
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were obtained directly from the equations of the standard-condition 

adjustment case. The sequc-mt:ial and Tienstra phase equations were 

found to be identical, thus we did not have to prove their mathematical 

equivalence. 

The summat.ion form of the normal equations was formulated as 

a direct consequence of matrix partitioning. The equation for the 

variance-covariance matrix of the parameters was found to be identical 

to the corresrxmding phase expression. The corresponding expressions 

for the summat.ion form of nonnal equations and the sequential approach 

were found to be mathematically equivalent, different in form, and 

different from the computational point of view. The mathematical 

equivalence of the two corresponding expressions for the parameters in 

the sequential and phase approaches follows as a logical consequence -·-

they are different in form and different from the computational point 

of view. 

The t.hird groLl.P of equations derived were those for the 

collocation method. Once t:he basic collocation mathematical model was 

formulat:ed, the collocation equations followed dirc~ctly from the s1:and<nr1-

combined case of adjustments. 

In this sense, collocation is identified by the unique manner 

in which the elements of the basic mathematical model are specified 

and not~ by t.he met.hodology used in deriving the equations for t.he 

•rarious solution vectors and covariance matrices. Also, we have seen 

(Section 5. 5) how t.o obtain the collocation equations by formulatinq t:he 

objectives of collocat.ion purely in adjustment tenns. This is why we 

show in Figure 6-l a direct c~nnection of collocation with ordinary 

least squares. 
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We found however, that it was not possible to derive the 

stepwise collocation equations from any of the standard adjustment 

cases, nor was it possible from the Kalman or Bayes equations. This 

is because, in collocation the signal part of the observations is 

correlated between consecutive steps, while in the other step by step 

procedures the observations (and model noise in the case of Kalman and 

Bayes filtering) are assumed to be uncorrelated between consecutive 

steps. Also, there are basic differences between stepwise collocation 

and the other step by step procedures which do not make the derivation 

of one from the other possible. We describe these differences immed~ 

iately below. 

6.2 Characteristics and Assumptions 

The characteristics of the methods derived in the foregoing 

are given in Table 6-1. Listed in the seven columns are: the symbolic 

forms of the mathematical models (F and G) representing the functional 

relationships between the observables (L ~nd x), parameters (~ and 

signal components (SandS'); the four possible quantities to be 

weighted- observations (P), parameters (P), model G (P) and signal x m 

components the weighed quadratic form to be minimized; and the 

indication whether the parameters (X) are taken to vary with time. 

Given in the rows heading each group is a series of "labels", consisting 

of a combination of the terms-adjustment, fil tcring, smooth.i ng and 

prediction. First we discuss the characteristics and theP ir. Section 

6.3 the labelling. 



TABLE 6-1. Character~stics of Dc~ived Methou~ 

I Weights Weights on Quadratic Time 
Model Weights on Weights on on ModeJ Signals form Varying 

Observations Parameters (G) Para-
meters 

Standard Cases (Adjustment) 

Condition F (L) = 0 P -- -- -- residual V --

Parametric L = F(X) P -- -- -- " --

Combined F (X, L) = 0 P -- -- -- " --

C0mbined with F(X, L) = 0 P P -- -- residuals V --
. X 

welghts parameters X 

Step by Step (Adjustment and Filtering) 

Sequential Fl (X, L1 ) = 0 P1 , P2 -- -- -- I residuals --

. F2 (X, L2 ) = 0 , V1 , v2 
I 
· Phase " " -- -- -- " --
1 I I Summa.tion " " -- __ __ " __ c:$.'1 

i Normal Equations I 

; Tienstra Phase " " __ __ __ " __ 

~-------------~----------------~------------~---------J------L---------~L------------------L--------4 
I Step by Step ~djustment, Filtering, Prediction of Parameters, Smoothing) 

~alman} F1 (X, L 1 ) = 0 'd 1 v v I K• res1 ua s 1' 2 , 
: F2 Cx, L2 ) = 0 P1 , P2 Px(option) Pm -- parameters X yes 'j 

I model errors Y 
Bayes G (X(t)) = 0 I m _ __j 
Collocation (Adjustment, Prediction, Smoothing, Filtering) ~ 

' · · :I · h · 1 1 ( • ) If d 1 signal S 1 combined I or1g1nal F(X, S 1 S 1 , x) = 0 w1t s1gna S P opt1on -- or San S t:.t~ Z s' ( . ) --l x quan 1 y = +n no1se , 
·in adjustment F(X 1 S 1 S 1 

1 L) = o1 P = E~ Px(option) -- ifor S and 5 1 residual V signals S -- 1 

I terms 1 and S 1 

j ste~wise colloca- F (X, s 1 Si 1 x ) =01 with signals S}_ -- -- for S, S i 1 S~ i signal S 1 combined --

1 
tion 1 1 s2 IL.: quantit--y z1=si+nl 

F2(XI Sl S2, x2)=0 - Z2=S2+n2 

i - - -- -
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Models 

The methods contain different types of mathematical models as 

follows. The condition case contains only observables. The parametric 

method has observables expressed explicitly as a function of the 

parameters. In the combined case the observables and the parameters 

are implicitly related. 

The sequential, phase, summation of normal equations, and 

Tienstra phase methods have two sets of models with common parameters 

and different observables. The only reason for this specific arrange­

ment of parameters and observables was to be consistent with the Kalman 

filtering formulation. 

The Kalman and Bayes filtering formulation has two groups 

of models: one implicit form (combined case) in the first step; and one 

implicit form along with a second model giving the time variation in 

the parameters in the second step. 

The original formulation of collocation has an implicit model 

relating the parameters X, two signal components Sand s•, and the 

observations (x). The noise n is combined with the signal s•. 

Expressions are given for X and S but not for S' and n. The formulation 

of collocation in adjustment terms also uses the implicit type of model. 

All three quantities S, S' and residuals V (-n) are treated explicitly 

and expressions given for their computation along with X. Stepwise 

collocation employs an implicit model partitioned into two parts 

according to the observations x1 and x2 ; the parameters X and signal S 

to be computed remain common to the two steps. Note the· s.ignal a.t the 

observation points (Si, S2) are :)artit-ioned along with the noise (n1 , n). 
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Both developments of collocation contained herein utilized 

a minus identity matrix in the second design matrix, namely equation~ S-l4 

and 5-68, e.g. 
B* == [0 : -I : -I] 

I I 

where the null, and two minus identity matrices correspond respectively 

~ 

to S, S' and V. As well, one could have non-idenlity matrices such 

as in 

[0 : B : B) 
' S I 

The latter would yield more general expressions with the same analogy 

holding that exists between the combined and parametric cases. Kouba 

[1975] has used collocation,without interpolation, in this more general 

form; Schwartz [1975] has done so as well but without the parameters X. 

We note that by including a null matrix in the first position 

of the hypermatrix B* we simply build-in an interpolation process for 

the signal S (at the computation points). These signal components do 

not enter into the solutions of X, S', and v. S is cornfJuted via its 

covariance with S' (See equations 5-83 and 5-84), namely 

s 
-1 A 

-ESS' (E 5 ,+EL) (AX+W) 

-c (c + Dl-1 (AX+W) 
SX 

s 

There is no theoretical limit on the number of signal quantities S 

that can be computed. This is why collocation has become known in some 

scientific circles as "the method that can compute an infinite number 

of parameters". We, of course should not confuse these "interpolated 

~~ A 

parameters S with the parameters X. 

One other aspect of collocation worth mentioning i!; the 

possibility of processing en .,.rlef''' data, that is discrete data procured 
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from some computational procedure as contrasted to data from a measurement 

procedure. Errorless data will have no noise component but will have 

a signal component due to its discrete distribution. This topic is 

sometimes known as least squares approximation [Van{6ek and Wells 1972]. 

This latter usage of collocation is probably the rationale in the 

original derivation of collocation for not explicitly involving the 

noise but combining it with the signalS'. Even if we include the 

noise n and signal S' as separate-explicit quantities, as in the alter-

native derivation (Section 5.5), we still can use the equations for 

processing errorless data by simply deleting all quantities and expres-

sions dealing with the observed quantities. 

Weights on Observations 

The weight matrix of the observations plays a role in all 

methods. In the standard cases the weight matrix (P) is usually 

defined as the inverse of the variance-covariance matrix, I:-l (cr2 = 1). 
L o 

In most applications I:L has a diagonal form but may be on occasions a 

banded or fully populated matrix. In the first two groups of step by 

step methods (sequential through Bayes), the observations in different 

stages are assumed to be statistically independent• In the collocation 

equations we find that I:L (D in collocation notation) is combined with 

the variance-covariance matrix of the signal S' (denoted I:8 , or C). 

Because by nature, signal quantities are statistically dependent,C is 

a fully populated matrix, as is C plus D and its inverse. Thus, we 

witness in collocation that a fully populated matrix of order equal to 

the number of observations needs to 1>e inverted. Even in stepwise 

collocation where the observed data is partitioned into groups, the 
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signal quantities in respective yroups are statistically dependent 

and the correlation is indeed taken into. account by the stepwise collo­

cation equations. 

Weights on Parameters 

The weighting of parameters was included in the combined ·...:ase 

and carried through our derivation of the Kalman and collocation 

equations for two reasons. One was to involve these weights 

explicitly so that one can see where in the expressions they enter vis­

a-vis the other weights such as on the signal, observations, and mod~l. 

Secondly, in the Kalman filtering equations a priori information is 

needed to start-off the filter process. This information can be from 

two sources: from a solution of F1 or from some independent solution 

not related to the present process, or both. Including weights on tile 

parameters in collocation makes the expressions more general. If no 

information on the parameters X is available the weight matrix is 

simply a null matrix. 

Weights on the Model 

The weighting of a model arises only in Kalman and Bayes 

filtering. It is assumed that the model ~) describing the time 

variation in the parameters is not exact. These model errors are 

assumed to have expectation zero (zero mean) and second moments given 

by a variance-covariance matrix containing no correlation betw0en 

consecutive steps. One shot:.lci note that model errors ar1· assumed tf, be 
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present only in the secondary model (G) and not in the primary model 

(F) • 

Weights on the Signal 

The weighting of the signal is intrinsic to collocation. One 

can loosely interpret the signal as a model error by imagining that 

we are unable to select the appropriate parameters X and design matrix 

A to describe the signal component of the observable. We then say 

that this is a shortcoming in the primary model. But as it turns out, 

in collocation it is hypothesized that the signal is better described 

by a variance-covariance matrix rather than by some analytical parameter-

ization. Thus we see weighting the signal in collocation as being 

something quite different from say the problem or parameterization in 

models for the purpose of eliminating systematic effects in observables. 

Collocation is then a powerful tool in processing observed data contain-

ing a known signal component of zero mean and a certain variance-

covariance matrix. Note the signal component occurs in the primary 

model (F) contrasted with the Kalman filtering model error which 

occurs in the secondary model (G) • 

At this point in our analysis, we may introduce the argument 

that Kalman filtering is identical to collocation because all one needs 

to do to show their equivalence is to substitute the time variation in 

the parameters described in the secondary model (G) , along with the 

weights on the model (p ),into the primary model F, thereby yielding 
m 

one model F as in collocation where the parameters X and weight matrix 

P are interpreted as the signa ~· and weight matrix for the signal. 
m 
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By doing this one "looses" the parameters X. Also how does one intra-

duce the signal S? Thus it is difficult to see how collocation is 

equivalent to Kalman filtering. We return to this discussion in 

another context in Section 6.5. 

Quadratic Forms 

Next we disc'.lss the quadratic form of each method. This is 

the most fundamental quantity for it is through its minimization that 

one obtains least squares estimates for the parameters and other quan-

tities. We have seen in the foregoing developments that our quadratic 

forms consist of two parts, a vector and a weight matrix. 

In the quadratic forms for the standard cases uf adjustment 

A 

the vector is defined in terms of residual vector V(corrPctions to the 

observations) and weight matrix P of the measurements, that is 

minimum • (6-1) 

The exception is the case where the parameters are weighted thus giving 

rise to a second quadratic form where the vector is defined in terms 

of the corrections to the parameters and weight matrix corresponding 

to the a priori information on the parameters, that is 

"'T ,.. ""T "' 
V PV + X P x = minimum • 

X 
(6-2) 

In the step by step procedures of sequential, phase, summation 

of normal, and Tienstra phase, two quadratic forms are minimized. Both 

are defined in terms of a vector of residuals and weight matrix for 

the mcasurelt\ents. The fundamental assumption is that there is no 
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correlation between the measurements of two consecutive steps, .thus 

allowing the quadratic form to be broken in two, that is 

(6-3) 

Thus we see that the standafd cases of adjtistinems do -not -

differ fundamentally from these step by step procedures. All are 

mathematically equivalent and rigorous, the only difference is in 

computational efficiency (see Section 6.4). 

The step-by-step procedures of Kalman and Bayes filtering 

have the following four quadratic forms: 

minimum, (6-4) 

where the first three pertain to the measurement corrections and 

parameters (an option) , while the fourth is defined in terms of the 

vector of errors in the model describing the time variation in the 

parameters and the corresponding model error weight matrix. It is 

assumed that the model errors are statistically independent between 

consecutive stages. Thus we witness that these two step by step 

procedures are fundamentally different and more general than the other 

methods mentioned immediately above. 

The quadratic form for the original collocation is fundamen-

tally different from all of the above. Disregarding weights on the 

parameters, the quadratic form is 

~TP~ = minimum (6-5) 

minimum 
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where S is the vector of signal components to be estimated at the 

computation points and z are "centred observations" defined by 

(equation 5-4) 

Z = X - AX {6-G) 

or the combined quantity 
,.. 

Z = S ' + n ( 6-6a) 

The variance-covariance matrices c: is for the signal, c for the 
SS XX 

measurements (containing two components S' and n), and C and C 
sx xs 

are covariances between the signal S and measurements. Since the 

signal and measurement errors (noise) are assumed to be statistically 

independent, these covariances originate purely from a signal source. 

For collocation to make sense, these signal covariances are always 

present. Thus we see the sharp difference between collocation and the 

other methods, for in the step by step procedJres above, the observa-

tions {and model errors) were assumed to be statistically independent 

between stages. It is because of the presence of this covariance, 

that the stepwise collocation equations could not be deduced from the 

standard cases or the Kalman filtering expressions, thus another reason 

for saying that collocation is a more general method. On the other 

hand, the Kalman· filter equatic>t1S ~_t_ be deduced from the stepwise 

collocation expressions which do not have , in their present form, the 

time variation aspect in the parameters. 

With regards to the signal quantity S, we witness that even 

though it enters into the quadratic form, it does not enter into the 

cc..nstraint function as seen bel:Jw (e'~uation 5-13) : 



1 :)() 

i\X -l 1:3\1 + w = 0 (6-7) 

AX + [0 -r{j - X = 0 (6-8) 

AX -+ -z =--x , (6-9)--

which. is the original collocation model. This fact is also true for 

the alternative derivation of collocation. On the other hand, 

however, the signal S is "involved" in the constraint function and 

its determination is made via the signal variance-covariances entered 

into the computation as already mentioned earlier. 

The quadratic form used in the alternative derivation (equa-

tion 5-72) is (after deleting weights on parameters) 

"T ~ 
+ v PV= minimum, (6-10) 

where we see that the signal quantities S, S', and corrections to the 

" observations V enter as separate quantities. Even though the above 

quadr.atic form looks somewhat different from that of the original 

collocation (equation 6-5), the same set of equations are obtained for 

the parameters X and signal S. 

To demonstrate that collocation is indeed different from 

ordinary least square methods, we compare the respective equations 

giving the solution for the parameters. For ordinary least squares we 

chose the equation of the parametric case (B = -I) with weighted 

parameters (equation 2-74) 
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(6-ll) 

and that of collocation (equation 5-23) 

A T -1 -1 T -1 
X= -[A (C+D) A+ P ] A (C+D) W. 

X 
(6-12) 

We chose the cases with weights on tre param-eters so one- cari-

see where all the various weights enter into the solutions. First we 

see that the weight matrix P on the parameters enters identically. 
X 

This is not surprising since the collocation equations were deduced 

from the standard equations. Secondly, we see that the weights on 

the observations (P) enter alone in ordinary least squares, while the 

variance-covariance of the purely measurement errors (D) enters 

together with the variance-covariance of the signal (C) in colloca-

tion. This latter fact is what gives rise to the two different 

solutions for the parameters (and the other quantities as well). 

For example Rapp [1973] and Reigber and Ilk [1975] have used both 

ordinary least squares and collocation methods in practise and have 

found significant differences in the respective solutions. 

A point worth reiterating vis-a-vis the comparison of 

original collocation, the alternative derivation of collocation, and 

ordinary least squares is that even though we were able to formulate 

collocation as a straightforward problem in adjustments, thereby 

explicitly involving the corrections to the observations in the quadratic 

form and constraint function and even solving for them, we still 

deduced the same set of equations for the parameters X and S; but 

this equivalent set of collocation equations is q~fferent from thr:! 

corresponding expression for the pa1ameters X in ordinary least squares 

as demonstrated immediately al:.vve. 
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6.3 Labelling of Methods 

We are now in a position to label the above methods by 

:::erms such as "adjustment", "filtering", "smoothing", and "prediction" 

often used in the literature. First ·:·" def:j,ne them and then apply 

them. We deal with two situations (Figure 6-2) - the parameters not 

varying with time (X t X(t)) and in the case they do (X= X(t)). 

An adjustment is said to take place when an estimate of the 

parameters and the observational residuals is made from a least 

squares solution using all the observations at once. Then the 

approximate values (or quasi-observed values) of the parameters and 

the observed value of the observables are corrected (adjusted) . 

Filtering is said to take place when an estimate of the 

parameters (X~ X(t)) is made using only part of all the available 

data in any given stage of the estimation, and then this estimate is 

up-dated as additional data is added in the subsequent steps of the 

estimation process. By estimation in steps, it is possible to 

screen (filter) observed data as it is added. 

Prediction takes place in collocation (X~ X(t)) when an 

estimate of the signal at computation points is made using all or part 

of the data. The signal S' at the observation points is said to be 

smoothed after they have been corrected. 

Smoothing is said to take place in Kalman filtering when an 

estimate for the parameters (X= X(t)) is made for sometime in the past 

using all observed data including that for the present~ that is ·work 

backwards and up date x1 due to F2 because x1 is a result of F1 only. 
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Figure 6-2. Terms: Adjus~nt~ Filtering, Prediction, and Smoothing 

"Adjustment 11 

- X solved for 
using all data 
at once 

- V also solved 
for 

- parameters and 
observations 
"corrected" 

"Smoothing" 

- X solved for 
in past using all 
data including 
the present 

"ESTIMATION" 

X 7" X(t) 

"Filtering" 

- X solved for 
using only part 
of data 

- X up-dated after 
each stage 

- "screening" of 
data 

X ::: X(t) 

"Filtering" 

- X solved for 
the present using 
all data up to and 
including the 
present 

- "screening" of 
data 

"Prediction" 
and 

"Smoothing" 

- X solved along 
with signal using 
all data 

- signal S computed 
"elsewhere" 

- signal S' 
"corrected" 

"Prediction" 

- X solved for 
in the "future" 
using data up to 
and including the 
present 
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Filtering is said to take place when an estimate for 

the parameters (X= X(t)) is made for the present using all 

observed data in the past, up to, and including the present. 

Th!= data of the "present" is allowed to affect the solution of 

th~ "past", thus allowing screening (filtering) as for the case 

(X 'I X(t)). 

Prediction is said to take place when an estimate for 

the parameters (X= X(t)), is made for the "future" using all 

data up to and including the present. This is possible because 

of the existence of the secondary model which describes the 

variation of the parameters with time. 

We have just witnessed the striking difference in the 

meanings of the terms prediction and smoothing in Kalman filter­

ing and collocation, showing yet another difference between 

these two methods. Further to this discussion we understand that 

in Kalman filtering the prediction essentially takes place at 

the observation points where the future observations will be 

made, while in collocation, prediction is made at computation 

points where the signal is sought. In Kalman filtering we could, 

however, predict the parameters X at points where there will be 

no observations and thus have no benefit from the new observations. 
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These interpolated values of the parameters begin to look like 

the signal quantities s, while the parameters that coincide with 

the observation points seem to look like the signalS'. In 

attempting to strengthen this argument we could point out that 

the variance-covariance matrix for the model errors E corresponds 
m 

to the variance-covariance matrix for the signal E5, (C5 , 5 or C 

in collocation notation). If the parameters X in Kalman filter-

ing would take on this interpretation then where are the 

parameters X themselves that would correspond to the parameters 

X in collocation( We must not forget in one case. the parameters X 

of the mathematical model are being predicted and in the other 

it is the signal S, a quantity related to the observables, that 

is being predicted. Also, one process is static - the other is 

dynamic. One can go on endlessly predicting signals .in collocation. 

In Kalman filtering, prediction of the parameters only has sense 

if new observed data is forthcoming, for the lack of data stops 

the filter. One sees some loose analogies between Kalman filtering 

and collocation but it is difficult to see the:,· a.re 

equivalent. 
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From the foregoing developments and discussions the 

following labelling is possible (see Table 6-1) : 

(i) the standard cases are adjustments (of observations and 

parameters)~ 

(ii.) the-step by step procedures of sequential, phase, swmnation of 

normal equations, and Tienstra phase are adjustments (of 

observations and parameters) and filtering (of observations); 

(iii) the step by step procedures of Kalman and Bayes are adjustments 

(of parameters), prediction and smoothing (of parameters), and 

filtering parameters (due to G) and observations; 

(iv) collocation is an adjustment (of observations and parameters) 

and a smoothing and prediction (of signal); 

(v) stepwise collocation, in addition to the characteristics of 

collocation, is filtering of observables (with two random parts, 

the signal and the noise). 

6.4 Comparison from the Computational Point of View 

We choose to compare the methods from the computational 

point of view by examining the number, form and size of matrices to 

be inverted in the respective methods. It is recognized that this is 

not an entirely complete analysis as one should also consider the 

number of multiplications, subtractions, and additions. Neverthe­

less, this will give us some indication of the computational efficiency 

of each approach. We list below the expressions giving the solution 

for the parameters for the various methods for easy reference. 
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Condition case: 

The correlates are computed from equation 2-130, namely 

K ( B 
rxn nxn nxr rxl ----..,.-

rxr 

Parametric case (equation 2-115) : 

T 
X=-[ A P w 

uxn nxn nxu uxn nxn nxl 
·---v----

uxu 

Combined case with weighted parameters (equation 2-74) : 

X 
T 

-[A (B p-1 8 T ) 
-1 

A + p -1 T 
] A (B p -1 

uxr X rxn nxn nxr rxu uxu uxr rxn nxn --v---
.. rxr 

v 
uxu 

(6-13) 

(6-14) 

BT -1 
) Ttl. (6-15) 

nxr rxl 

Sequential (equation 4-22) and Tienstra Phase (equation 4-74) : 

" X GJ N-1 AT [M A N-17\T 1-l X I) 
h - 1 2 2 + 2 ' l '"'2 (W2 + A2 

where the initial solution (equation 4-20) is 

A 

X' 

Phase (equation 4-36) : 

X 

uxu 

T 
-[A 

1 

(6-16) 

(6-16a) 

(6-17) 
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where 

X' -1 
-N u1 1 

as before. 

$ummation of normal equations (equation 4-39) 
\.> ...•. 

T 
(Bl 

-1 BT ) -1 A + AT ( B2 -[A pl 1 1 1 2 
uxr1 r 1xn1 n 1xn1 n 1xr1 r 1xu uxr2 r 2xn2 

"'----v----' 
r 1xr1 

uxu 

Kalman filtering (equations 3-60 and 3-61) : 

where 

(N') -1 
2 

uxu 
= [ ill (Nl + p ) -1 il>T + p-1] 

x m 
uxu uxu uxu uxu uxu 

uxu 

[ A (N')-1 T]-1 = 
M2 + 2 2 A2 

and where from equations 3-58 and 3-23 

X' 
2 

~x· 
1 

, 

A -1 -[AT -1 T X' = -(Nl+Px) ul = (B1Pl Bl) 1 1 
'--v---' 

.. r 1xr1 

(6-17a) 

-1 BT -1 -1 
p2 ) A2] (U1+U2}. 2 
n 2xn2 n 2xr2 r 2xu 

r 2xr2 

(6-18) 

(6-19) 

(6-20) 

(N')-1 T 1-1 
2 A2 ' 

uxu uxr2 (6-21) 

(6-21a) 

A1 + 
-1 

Px] u1. (6-2lb} 

v .. 
uxu 
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Bayes filterin2 (equations 4-4 and 4-5): 

-1 
N2 

uxu 

= [{$(Nl + Px)-1 ~T + p:l)-1 + ~~ (B2 

uxu. 

-1 
( B2 

-1 BT -1 
M2 = p2 ) 

2 
r2xn2 n2xn2 n2xr2 

, ...,. 
r 2xr2 

-1 A21 

and where x2 is obtained as previously (Kalman filtering). 

Collocation (equation 5-23) : 

X = - [ AT (C 
-1 + D) A 

-1 T -1 
+ P ) A (C+D) W. 

X 

uxl uxn nxn nxn nxu uxu 
"---v--" 

nxn 

uxu 

Stepwise collocation (equation 5-54): 

where 

-1 
pl 

uxu 

= 

---1 -1 -1 -T -1 
C22 = l c22 - c21 ell c12 + A2 pl A2 ] , 

n2xn2 n2xn2 n2xn1 n1xn1 n1 XI12 n2xu uxu uxn 2 

and where from equations 5-57 and 5-54 

,.. -1 T -1 
X = pl Al ell xl 1 

(6-22) 

(6-23) 

(6-24) 

(6-25) 

(6-26) 

(6-27) 

(6-28) 

(6-28n) 
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The number and size of the matrices to be inverted in the 

•;arious methods indicated in their respective solution vectors are 

given in Table 6-2. The choice between sizes r or n follows from 

whether one has a combined (implicit) or parametric (explicit) type 

of mathematical model. Thu asterisk (*) on the n1 or n2 indicates that 

an inversion is not necessary if the observations are uncorrelated 

wi~hin the stage. We of course have the assumption that the observa­

tions are uncorrelated between stages; the only exception to this is in 

collocation where the signal is correlated both between different 

stages and within a stage. To assist in our analysis we articulate the 

efficiencies of some methods for specific situations in Table 6-3. 

Tables 6-2 and 6-3 speak for themselves; we only emphasize 

some of the important comparisons. For the first situation in Table 

6-3 (I - combined case) we see that the sequential or Tienstra phase 

techniques require one less inversion than the phase or summation 

techniques. The Kalman filter is identical to the sequential technique. 

The Bayes technique requires two more inversions than the Kalman 

technique. 

The second situation (II - parametric case with correlated 

observations) makes no difference in the comparison of the methods -

the number of observations (n1 and n2) simply replace the number of 

equations. 

The third situation (III - parametric case uncorrelated obser­

vations) makes a difference in the comparison as several inversions of 

size n1 and n2 are not required. All techniques require one inversion 

in the initial solution. In the corrective term, the sequential or 



Table 6-2. Number and Order of Matrices to be Inverted 

Initial Solution Corrective Term 

lst 2nd I <rd I - lst 2nd 3rd 

Condition r 

I 
Pararn<C:tric n* u 

Combined 
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. 1 I . I 
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1 Phase r _ or n:" u I r 2 or n 2* I . 
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- ! : ~ I. i 
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' n l u I ! 
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j Stepwise l Collocation I I I 

r - number of equations; n - number of observations; 
u - number of parameters; 
* this inversion not needed if observations are uncorrelated. 
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Table 6-3. Efficiencies of Methods for Specific Situations 

Initial Solution Corrective Term 
L 

l I 2 I 3 1 2 3 I 

I. Combined Case - correlated or uncorrelated observations within stage 

Sequential and rl u r2 
Tienstra Phase ; 

l Phase rl u r2 u 

I Summation I ! rl u r2 ~ u 

i Kalman rl u r2 i 
I Bayes rl u r2 u u I 
! I 

I 

II. Parametric Case - correlated observations \·lith in stage 

I Sequential and 
I 

nl u n2 I l Tienstra Phase I 
Phase nl u n2 

I 
i.l I 

Summation I I nl u n2 : u 

Kalman nl u n2 
I I I 

I 

.-' 

r J 

Bayes nl u n2 u u 

III. Parametric Case - uncorrelated observations within stage 

Sequential and -- u n2 I Tien:;;tra Phase 
I 

I Phase -- u -- u 
I 

Sunnnation -- u 
__ , u 

I I 

Kalman -- u n2 

Bayes -- u -- u u 

I - L--------- -- --------- ~~ -- ----
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Tienstra phase require only one inversion of size n2 while in the 

phase and summation forms only one inversion of the size u is needed. 

Thus the most efficient method then depends upon the relative sizes 

of the u and n2 matrices. In comparing the Kalman and Bayes techniques 

we see that our comparison hinges upon which is a greater effort -

one inversion of size n2 or two ot ·size u each. 

In the case that the number of new observations Cn2) or 

equations (r2) is less than the number of parameters (u) , it is only 

the sequential or Tienstra phase techniques that are more efficient 

than redoing a simultaneous solution over again the required number 

of times. In fact, the phase or summation approaches are identical 

to a repeated simultaneous solution from a computational point of 

view as the tables indicate the same number and size of matrices are to 

be inverted. 

For collocation the problem of inverting a matrix of order 

equal to the number of observables (signals) is present because of 

the correlated signal. We see that stepwise collocation is formulated 

in an analogous way to the sequential and Tienstra phase adjust-

.ments as the corrective term involves the inversion of a matrix of 

order equal to the number of new observations added. This may seem 

curious as the two cases are significantly different from the point 

of view of the correlation in the observables (signal components) 

from one step to the next. However, one can be assured that the full 

variance-covariance matrix of the signal is being implicitly inverted 

in the case of collocation, and thereby increasing the number of 

multiplications, additions and subtraction operations over that 
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pre::::ent in the Kalman (sequential. •cXl'··essions. The advantage* of 

stepwise collocation over ordinary collocation may not be as great 

cs that for sequential or Tienstra phase methods over the non step 

by step methods because of the correlation in the signal. Stepwise 

collocation is very useful when one cannot invert the variance-

covariance matrix of the signal all at once because of limited 

computer storage. Also it is useful for screening of data. 

6.5 The Derived Methods and Related Topics 

In this section we discuss miscellaneous topics which are 

marginally related to the methods developed herein, yet are close 

enough to be of importance. In Figure 6-3, we illustrate some of 

these related topics along with the methods already developed. 

Variations to the least squares method are grouped according to: 

cases; weighting; combinations; partitioning; time and model errors; 

and collocation. We have already discussed the cases of adjustments 

in sufficient detail. As far as variations arising from weighting 

is concerned, there are two interesting aspects, one dealing with 

change in weights on the observations and the other concerning weight-

ing of a subset of parameters . 

In Feddeev and Feddeeva [1963] one can find expressions 

which give the correction to the parameters due to making a change 

in the weights on the parameters without recomputing the entire 

problem over again. One can be assured that changing the scale of 

the weight matrices (P and P ) will not change the solution, but 
X 

changing the individual variances will have an effect. The neglection 

of covariance in the observables has been studied by, for example, 

* from the computational point of view 
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':agnuss and Meguire [1962] in general terms, and by Schwarz [1969] 

for a specific problem in satellite geodesy. 

Blaha [1974] has studied the problem of applying weights to 

nr1ne, all, or a subset of the parilmet:ers X; further, he considered 

another set of parameters X with an associated variance~covariance 

matrix L- · L- was used exclusively for the purpose of error propa-
x X 

qation into other parameters X without changing the values of 

X . This study differs fundamentally from our developments herein as 

each time the parameters had a variance-covariance matrix, they were 

included in the quadratic form and corrections made to them. Blaha's 

work has application in the densifi_cation of geodetic networks where 

the coordinates of super-control points are held fixed and their 

variances and covariances are propagated into the densified points. 

In our scheme, one can imagine this being achieved by the following 

combination of mathematical model technique: 

(adjustment model) F (X, L) 

(error propagation F (X, L, X) 0 . 
model) 

Reigber and Ilk [1975] have found that the collocation 

equations can be derived from the combination of mathematical 

models: 

Fl (X, L) 0, p 

F 2 (X) =0, Px 
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They show that the equation for the solution vector X using the 

weighted constraint approach is identical to the equation for the 

signal in collocation, when in collocation the parameters (X) are 

not present. 

The combination of mathematical model technique has yet 

another interesting application, this time in terrestrial geodesy. 

Thomson [1970] has showed that a geodetic network adjusted by the 

condition method can be rigorously combined with a second network 

adjusted by the parametric method by use of the combined case model of 

adjustments. This means that one does not have to redo the adjustment 

of the two networks from the beginning, but can simply take the 

design matrices and misclosure vectors from the two respective 

adjustments and affectuate a rigorous-combined adjustment. In 

symbolic form the above is represented by the following two mathe-

matical models: 

A basic assumption in collocation was that the expected 

value of the signal be zero. In some applications this assumption 

is easily met while in other applications it is not. For this 

reason we may find it useful to employ least squares approximation 

~v [e.g. Van1cek and Wells 1972] to overcome this rather limiting 

prerequisite on the signal component. 

When considering the task of introducing a priori knowledge 

on the parameters X, one enters int.o \vhole new area called Bayesian 



118 

estimation. We have only touched upon the subject herein from the 

least squares adjustmt~nt point of view. The reader may wish to 

refer to a more exhaustive treatment of this subject [e.g. Bossler 

197 2]. 



7. SfJMMARY 

We group our findings under three categories: derivations; 

equivalences; and usage. 

Derivations 

1. The standard cases of adjustment serve as a basis from which one 

can derive directly the Tienstra phase equations (using condition 

case equations - Section 4,5) and the collocation equations 

(using the combined case- Section 5); 

2. The Kalman filter equations can be derived from basic least 

squares using the conventional methodology used in deriving the 

standard adjustment cases (Section 3); 

3. The sequential equations follow directly from the Kalman filtering 

equation (Section 4.2); 

4. The phase equations follow directly from the Bayes filter equations 

(Section 4.3); 

5. The stepwise collocation equations could not be deduced from the 

equations of the standard methods nor from the Kalman filter 

equations because of the correlation in the signal (Section 5.4); 

119 
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!_!:qui vale~c·~S 

6. The Bayes and Kalman filter equations are shown to be mathematically 

equivalent but different from the computational point of view 

(Sections 4.1 and 6.4); 

7. The Tienstra phase equations are mathematically equivalent to, 

and identical with, the sequential equations (Section 4.5); 

8. The Tienstra phase, sequential, phase and summation form of 

normal equations are all mathematically equivalent (Section 4) 

but in certain cases are different from the computational point 

of view (Section 6.4); 

9. The Kalman (sequential, Tienstra phase) equations are better 

suited to the situation when a fewer number of observations, rela­

tive to the number of parameters, are added in the new stage, while 

the Bayes (phase) equations are better suited to the situation when 

more observations, relative to the original number of parameters, 

are added per new stage(for parametric case, uncorrelated 

observations) (Section 6.4). 

Usage 

10. When observations have only measurement errors and only one 

solution is needed, then solution by the standard cases of 

adjustments is adequate (Section 2-4); 

11. When observables have both signal (correlated) and measurement 

error components, then a solution by the collocation method 

is advisable (Section 6.2). 
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1.2. When observables have only a 1neasurement error component which is 

uncorrelated between stages, and several solutions are required, 

then the sequential, phase methods, and summation equations are 

most suitable (Sections 4.2, 4.3, 4.4); 

13. When we have (12) immediately above and the parameters vary with 

t1me, then the Kalman and Bayes methods are most suitable (Sections 

3 and 4.1); 

14. When the observations contain signal and measurement errors and 

several solutions are required, then stepwise collocation may be 

used but due to the correlation in the signal, savings from the 

computation point of view are not that great because of the many 

operations that are necessary in carrying the signal correlation 

through to the final result (Section 6.4). Stepwise collocation 

is useful for screening of data and when a direct inversion of 

the variance-covariance matrix of the signal is not possible due 

to the lack of sufficient computer storage. 

Closing Remarks 

In this synthesis, a concerted effort was expended to discover 

the similarities and differences among the various methods by deriving 

them under the same cover using a common methodology. In those cases 

where equivalences were proved mathematically, the record is clear. 

~owever, for cases such as between Kalman filtering and stepwise collo-

cation where no proof of equivalence was possible herein, reasons were 

given (Section 6.2) why the author only believes these methods are 

different. The author would appreciate learning from the reader of any 

proofs of equivalences not contained in this work. ·Furthermore, as the 

author did not concentrate on proving lack of equivalence, the knowl¢dge 

of thE;! existence of ~y such proofs would ai.$8:.~2·PPPf~cia"t::e~< .. 
;-.,~. .- .· -· ·· r~--- , ... -1 _- .. _·.:-:'._,-.. _~ ...... ,.," •• -,'>.<\ _-- :".>··~------ ..... ~:-?·''-; ,_:.'_: .. --. 
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