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PREFACE

In order to make our extensive series of lecture notes more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.



TABLE OT CONY~NTS

Page
L. INTRODUCTION ......... e e e e e et e ettt e e .. 1
2. REVIEW OF THE STANDARD CASES OF LEAST SQUARES ........... 7
2.1 The Least Sguares Problem ..... Cree et ceeea 7
2.2 The Least Squares Normal Equations .................. 10
2.3 Derivation of Variance-Covariance Matrices .......... 13
2.4 Generation of the Standard Cases ...... Cece e aeaea 20
3. DERIVATION OF THE KALMAN FILTER EQUATIONS ....ccveeeeenen . 27
3.1 Definition of the Problem ................. e 27
3.2 Derivation of the System of Equations ........ et 33
3.3 The Kalman Expressions ................. et s e e s PP 35
4. RELATIONSHIPS AMONG KALMAN, BAYES, SEQUENTIAL AND PHASE
EXPRESSIONS . cuiveeeccosessoeonsaccnsscssoanscssnsns sesenacs 46
4.1 Equivalence of Kalman and Bayes EXpressions ......... 46
4.2 Sequential Expressions from the Kalman Expressions .. 49
4.3 Phase Expressions from the Bayes Expressions ....... . 52
4.4 Equivalence of Phase, Sequential and Summation
EQUALIONS &ttt teeetneeenenceeoeeseensansassaanacnsans 54
4.5 Equivalence of the Tienstra Phase and Sequential
EXPreSSIONS wveeeereeneaeacancannns et eseee e . 56
5. COLLOCATION ..vcoceoesascccsconocscsaneaccasocsoosssacoss 59
5.1 Collocation Mathematical Model .......cccevveccocnsses 60
5.2 Collocation Least Squares Problem .....cceuveeescecons 63
5.3 Collocation Equations ......... Ctecsccassessaeseenane 65
5.4 Stepwise Collocation ...... ceeeceseeceec et neenenns 71
5.5 Alternative Derivation of the Collocation Equations . 74
6. ANALYSIS OF METHODS .ttt vevcoesanseccscacsonsensssssannsos 86
6.1 MethOodS ...vieireenencoeenononsesoaceccnsnsosoaanaeanes 86
6.2 Characteristics and ASSUMPLIONS cevevcevreoococansnas 90
6.3 Labelling of MethodS ....cceeeverececcccncnn e reee e 102
6.4 Comparison from the Computational Point of View ..... 106
6.5 The Derived Methods and Related TOpPiCS ...ceveeecesnn 114

7. SUMMARY ......... ceeveaaanes e ceceeoone ceeesaseans 119

REFERENCES ..... e eeeeccesreceseeacs s e eca0aeas cecesaavne 122



PREFACE
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Dr. G. Blaha, Mr. J. Kouba, Dr. C. Reigber, and Dr. S. Pavde. The writing
of this work was made easier through the useful discussions with
Dr. P. Vanféék, Dr. K. Lambeck, M. M. Lefebvre, Dr. G. Balmino,
Mr. D.B. Thomson, M. R. Blais, Mr. S. Grant, and Mr. C. Chamberlain.
Typing of the report was so ably done by Mme. G. Raphanel, Mrs.
D. Smith, and Mrs.‘S. Biggar. Proof-reading assistance came from
Mrs. I. Paim and Messrs. S. El-Hakim, A. Mutajwaa, S. 5ohn, J. Adams and M. Dyment.
Even though several individuals participated in various ways in
this project, the author holds himself solely responsible for the correctness

of the material presented herein.

E. J. Krakiwsky
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1. INTRODUCTION

In 1795 Karl Friederich Gauss and Adrien Marie Legendre
simultaneously, but independently, were the first to use the method

of least squares [Gauss, 1963]. Over the years mathematicians and

experimental scientists generalized and extended the original method,
and made comparisons of these advances (see Table 1-1). The purpose
of this work is to make a synthesis of these advances and studies.
The early advancements made to the original method itself¥*
are those of Krﬁber [1905], Tobey [1930], and Tienstra [1956]. 1In
his textbook, Tienstra explains that a least squares problem can be
rigorously solved in "phases" (in parts) simply by treating the
already estimated parameters and corrected observations of a previous
phase as quasi-observations in the subsequent phase. Other authors

have studied the Tienstra phase technique such as Lambeck [1962],

Kouba [1970, 1972], Ying Chung-Chi [1970] ahd Nassar [1972].
A significant advance came from Kalman [1960]. He extended
least squares by:
(i) adding a second model which allows the vector of parameters
(state vector) to vary with time;
(11) inserting a variance-covariance matrix on this secondary model;

(iii) solving the problem in parts.

* This being quite different from the generalization made by Wiener
[1949].




Table 1-1.

("yes" indicates

mathematical equivalence).

ADVANCES IN LEAST SQUARES AND THLIR INTER-COMPARICONS.

Advance
GAUSS- Summation or Differential Phase of Sequential Collocation Phase
LEGENDRE Group [TOBEY 1930] TIENSTRA KALMAN BAYES [SCHMID & [KRAKUP 1969; [Herein]
Comparison 1795 [KRUGER 1905] f1956) (1960)  [(MORRISON  |SCHMID 1965] MORITZ 1972]
1969]
LAMBECK [1962] ® Yes @
MORRISON [1969} ® — Yes| ——@
KOUBA [1970] L 2 Yes L]
YING CHUNG CHI [1970] [ Yes 4 Yes 9
WELLS &
KRAKIWSKY ([1971]) & Yes* @
MORITZ [1972]) . ‘No —9
MORITZ ([1973] [ No L
BJERHAMMAR [1973] Synthesis made of Kalman Filtering , Collocation, Wiener-Hopf estimation as special cases of a more general|
approach.
TAPLEY & SCHUTZ [1974]) ® es : ]
WELLS [1974] [ & Yes @
- - - - - - —— - - }— -------- b - - ——— - - - - - . - - — -~ - -
Synthesis herein
®— Ye5 —@
@ Yes* L
® Yes* 2
[ 2 No -@ No -@
@ Yes &
L Yes

* Only true under the condition that the state vector does not vary with time.




1t iz because of this latter characteristic that the method has been

called Kalman filtering. The following are some authors who have

studied and employed this technique: Ott and Meder [1972]; Fail
[1972]; Tapley [1972]; Tapley and Schutz [1974]. Bayes made a

similar contribution and is called Bayes filtering in the literature,

e.g. Morrison [1972].

Schmid and Schmid [1965] showed that the least squares
problem could be so formulated such that all variates receive weights
ranging from zero to infinity. They proposed the notion also, that
a least squares problem could be rigorously solved "sequentially"

(in parts). This is achieved by updating the original estimate by a
corrective term, the latter of which is a function of a matrix invetse
already computed in the course of obtaining the original estimate.

The sequential procedure has been studied by such authors as: Uotila

[1967]; Krakiwsky [1968]; and Kouba [1970].

The independent works of Krarup [1969; 1970] and Moritz
[1972] lead to the modification of the original least squares.
In this method called collocation, one not only solves for the
parameters as before but also the signal - the second of two random
components in the observables. The residuals (noise), the first ran-
dom component in the observables, do not play a primary role in
collocation as in the original least squares. Moxitz [1973a] has
incorporated the idea of computation in parts in collocation and

calls this new advancement stepwise and sequential collocation. Sev-

eral authors have studied and employed Collocation, e.g. Shwarz [1973,

1974, 1975}; Moritz [1973); Rapo (1974]; and Tscherning [1974, 1975].



Listed in Table 1-1 are some advances to the original least
squares of Gauss-Legendre. Several authors have compared these
advances. Lambeck [1962] has shown the equivalence between the group
and Tienstra phase techniques. Morrison [1969] has shbwn that the
Kalman and Bayes filters are mathématically,equivalent, but are signi-
ficantly differeﬁt from the computational point of view. Kouba [1970] -
has shown thc mathematical equivalence between the Tienstra phase
and sequential techniques for the condition case (observations onlf)
of geodetic adjustments. Ying Chung-Chi [19701 has shown that Tobey's
"differential" and Krﬁger's "group" adjustments of geodesy are math-
ematically equivalent with the Tienstra phase technique; He works
outknumerical examples for the three methods. Wells and Krakiwsky [1971]
show that if the concept of time wariation in the parameters is
deleted, the Kalman filter equations are completely identical to the
sequential expressions. Moritz [1972] emphasizes fundamental differ-
ences between the original least squares and Collocation, some of
which‘have already been mentioned above. A comparison will be giveh
later in this work. Bjeihammer [19731* has made a complete general-
ization of least squares where one can £find, asuséecial cases, Xalman
filtering, collocation and Wiener-Hopf estimation ([Wiener 1949].
Tapley and Schutz [1974] make a comparison of the original least
squares (including weigh£ed parameters - a priori data) with Colloca-
tion, via the Kalman filtering expressions. They conclude that the

two corresponding sets of expressions (Kalman and collocation) for

* This work will not be examined in this synthesis as it is a
generalization of the least squares method.




the solution vector are eguivalent. In another comparison study,

Wells [1974] shows the mathematical equivalence between the group

method of Krﬁger (addition of normal equations) and the sequential

approach.

Using the equivalences established immediately above, the
reader may deduce equivalences. For example, using the works of
Kouba [1970] and Ying Chung-Chi [1970] one can deduce that the
group and sequential methods are mathematical equivalent.

If one uses the works of Moritz [1972] and Tapley and Schutz [1974)

one arrives at a direct contradiction for the comparison of the

original least squares, Kalman filtering and collocation. This
contradiction has become a favorite topic for debate by other scien-
tists as well during meetings in recent years. It is because of this
type of controversy that the author has been motivated to do this
synthesis.

In the synthesis we derive all the methods using the same
standard least squares methodology and use exclusively modern matrix
and linear algebra. By means of this rather elementary, consistent,
and logical approach, we strive to discover the similarities and
differences between the various methods.

This synthesis takes the following form:

(1) the standard cases (parametric, condition, combined, weighted
parameters) of the original least squares adjustment are reviewed
(Section 2);

(2) the Kalman filtering equations are derived from original least

squares principles using the standard methodology (Section 3);



(3)

(5)

(6)

(7)

&

the Bayes filtering equations are shown to be equivalent to the
Kalman filtering equations (Section 4);

the sequential and phase expressions are deduced respectively
from the Kalman and Bayes filtering expressions (Section 4);

the Tienstra phase and addition of normal equation approaches are
derived from basic least squares, and then shown to be mathemat-
ically equivalent to the sequential and phase approaches

(Section 4);

the collocation equations are derived using the standard combined
case equations of adjustments (Section 5);

the methods are analyzed from the fundamentél and computational
points of view (Section 6);

firally, the findings of the synthesis are summarized (Section 7).



2. REVIEW OF THE STANDARD CASES OF LEAST SQUARES

In this section we review the methods parametrizc, condition,
combined, and weighted parameters - the standard cases of least
squares adjustment. These cases have been studied by numerous
authors, e.g. Schmid and Schmid [1965]; Uotila [1967]; Wolf [1968];
Kouba ([1970]; Wells and Krakiwsky [1971]; Van{;ek and Wells [1972].
Derived below is a general scheme from which all the cases are
deduced.

The review of this material will serve to acquaint the
reader with the notation, terminology, and methodology which is
essential for the derivétion of the Kalman filtering equations
(Section 3), the collocation equations (Section 5),and the analysis

of the advances made to the least squares method (Section 6).

2.1 The Least Squares Problem

Least squares estimation is the standard method to obtain

a unique set of values for a set of unknown parameters (X) from a

redundant set of observables (L) through a known mathematical model

(7).
Before we treat the general situation, let us describe

the least squares problem for the linear-explicit case, that is




L = F(X) , (2-1)

L A X , (2-2)

nxl nxu uxl
where n observables are related to u ﬁnknown parameters through a
design matrix A. We know the observables have some unknown correction
(residuals). Denoting these by'V, and the observed value of the

observables by L, equation 2-2 becomes

L + V = A X . (2-3)
nx1l nx1l nxu uxl

The least squares estimate for X is obtained under the condition that

the quadratic form

~ ~

VTPV = minimum, (2-4)
where the wecight matrix
2 —
P =gyt (2-5)
o L
is related to the a priori variance factor (02) and variance-

covariance matrix of the observations. It is through the "help" of
this condition that two equations, in addition to equation 2-3, are
obtained, and thereby yielding least squares estimates for X and V -
denoted by § and G, respectively.

We now consider the general situation where our mathematical

model of r equations is imglicit and non-linear, that is

F(X, L) =0 , (2-6)
that accuracy estimates exist for the observations (ZL), and the
parameters are treated as quasi-observables (Ix). The corresponding

weight matrices are



p=atpt, (2-7)
o L
and
p =% 5 L. (2-8)
X o x

A ~
The least squares estimates X and V for this general
situation are obtained under the condition that

(VIpY + XTPXX) = minimum, - (2-9)

where X are corrections to the parameters as explained immediatel

below.

We chose to work with linear sets of equations thus we
approximate our mathematical model (equation 2-6) by a linear

Taylor series as follows:

L= = oF - -
F(X, I) = F(X, L) + — (X-X) + — (L-L) (2-10)
X |X,L oL |X,L
OF | - F ~
= F(X, L) + — X + — vV =0 . (2-10a)
X | X,L oL | X, L
The misclosure vector
W =F (X, L) (2-11)
rxl

is the mathematical model evaluated with the quasi-observed values
of the parameters (X ) and the observed values of the observables
(L). When F is evaluated with some approximate values of the para-

le) .
meters (X ), we denote the misclosure vector as

e} (e}
W =F(X, L) . (2-11a)
The firs* design matrix is
oF
A = — (2-12)
rxu oX |X, L

and the second design matrix is

9F
B = —

rxn 3L

. (2-13)

X, L
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The final value (adjusted) of the vector of parameters is

X - ¥4+ % (2-14)
The final value (adjusted) of the vector of observables is
i =L+ V. (2-15)
The linearized mathematical model in symbolic form is
A X +B V +wW=0, (2-16)

rxu uxl rxn nxl

where X and V are least squares estimates making X and L also least

squares estimates.

2.2 The Least Squares Normal Equations

The least squares normal equations relating the unknown
quantities X and V to the known quantities A, B, W, P and Px is
obtained from the variation function

6 = VIBU + RTPXR + 28T A% + 8O + W), (2-17)

where the newly introduced unknown quantity K is the vector of r
Lagrange correlates. To find the minimum of the two quadratic
forms subject to the constraint function (linearized math model)

is known as the extremal problem with constraints. The Lagrange

method is the standard method of solving this problem.
First the derivatives of the variation function with
respect to the variates V and X are taken and set equal to zero to

determine the extremum, minimum in this case, namely

%9 =P +KB=0, (2-18)

1
2
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e G PRI S (2-19)

N |

The transpose of the above two equations and the linear-
ized mathematical model constitute the three equations of the

least squares normal equation system:

p U +BL K =0,

nxn nxl nxr rxl

P, X +a K =o0, (2-20)

uxu uxl uxr rxl

~ ~

A X + B vV + W =20.
rxu uxl rxn nxl rxl

The most expanded form of the least squares normal equation

system in block matrix form is

v 5" o | [v] [o]

B 0 A Kl+lwl=0, (2-21)
o aY p X 0
L X_] L. .

with a coefficient matrix of dimensions n+r+u. A solution for the
vector comprising G, ﬁ, and X is possible by directliy inverting the
coefficient matrix. This is not efficient, thus a normal equation systen
is derived where the inversions are smaller.

We use a special elimination technique [e.g. Thompson

1969; Wells and Krakiwsky 1971]. Given a matrix equation system

A : B X U

-7--1 -1+ 1= o, (2-22)
[
|

C D Y \Y%
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where A, B, ¢ and D constitute the known cocfficient matrix, X and
Y the unknown vector, and U and V the known vector, X is eliminated

by forming a modified coefficient matrix and known vector as follows:

(D - CA_l BlY + [V - CA--l U] =0 (2-23)

(A must be non-singular). The proof is simple and left to the
reader as an exercise.
We return to the problem at hand and first eliminate \
from equation 2-21, where D becomes the lower two by two hyper-matrix

of equation 2-21.

0 A s lp™t T o1 [® W s |t (o]
- + - = Q,
AT P, 0 0 0
(2-24)
-t T a K [— Q}
) R - 0. (2-25)
A P XJ L 0
X
Then eliminate ﬁ,using the same technique:
T - - F'S - —
[PX - A" (-BP lBT) lA]X +0 - Al (-BP lBT) by o= 0, (2-26)
it ep t BTyt a4 P X+ AT ety tw=0, (2-27)
and
¥ = -7 e )t a ¢ 1>x]"l AT @ eT)y oy . (2-28)

The solution for K is made using the first expression from

equation system 2-25, namely

1

e Bk + AR +w =0,



Iﬁf( = e ) tak +w . (2-29)

The solution for V is made using the first expression from

equation system 2-21, namely,

A TA
PV + B K =0,

v = -p 18Tk, (2-30)

Equations 2-28, 2-29 and 2-30 represent the alternative solution to

the least squares normal equation 2-21.

2.3 Derivation of Variance-Covariance Matrices

In this section we derive the variance-covariance matrices

for the residual vector V, the parameter vector X, the final value

~

of the parameter vector X, and the final value of the observable

~

vector i.

We make extensive use of the covariance law which states

that, given a functional relationship
Y = F(2) (2-31)
between two random vectors Y and Z along with the variance-covariance

matrix of Z (ZZ), the variance-covariance matrix of Y is given by

JF T

z (EE) . (2-32)

oF
Ly = (az

Dividing both sides of the above equation by the a priori variance

factor (Gi) we have the covariance law in terms of weight coefficients:

_dF oF, T
Qy = (§§0 QZ (52) . (2-33)
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Note the following relationship k~tween the variance-

covariance (), weight (P) and weight coefficient (Q) matrices:

or

1

Pr=—1I=0.
[0}

(o]

Since we have formulated the least squares problem in terms of
weights (P) we will be consistent and use the covariance law in
terms of weight coefficients (inverse of weights) instead of

variances-covariances.

Variance-Covariance Matrix for X

We follow Krakiwsky [1968], Kouba [1970] and Wells and
Krakiwsky [1971] in deriving the variance-covariance matrix for the

final value of the parameters X.

According to equations 2-14 and 2-28

X=X+X, (2-34)
X =x%- (AT M ta + Px]'lATM"lw, (2-35)

where we have let
M=ppt gl . (2-36)

Recalling equation 2-11,
W= F(xl L) ’ (2_37)
we see that X is a function of two independent random variables - the

a priori estimate of the parameters (quasi-observable) (X), and the

observed value of the observables (L).

Applying the covariance law to equation 2-34 yields



(assuming henccforth that X and L are statistically independent)

~

I

90X 9K, T 3% 2. T
Q; (5§) Qx (siﬁ + (SE) QL

(EE’ ' (2-38)
A 8§ -1 B§ 3§ -1 ai T
0 = (ggﬁ (5§0 + (SZ?P (Szﬂ . (2-39)
X _ T -1 1.7 -1
52 =1 -[A"™ "A + Px] A'M A (2-40)
since from equation 2-12
oW _ J9F(X, L) _ a
5% - 3w A . (2-41)
Bi _ T -1 -1 T -1
3L A" M "A + Px] A M B (2-42)
since from equation 2-13
oW _ dF(X, L) _ 5
9L dL :

(2-43)
Before proceeding further with the derivation, it will

prove useful to derive the weight coefficient matrix for X (equation

2-28), and to do this, we first need the weight coefficient matrix
of W.

Applying the covariance law to equation 2-37 yields

~ _(OF F, T  F 9F, T
% =5x0% G tGP%

(EE) ' (2-44)
Q, = A P;l AT + p BT, v (2-45)
From equation 2-35 ’
X = - [ATM A + Px]"l i i

(2-46)
Applying the covariance law to the above equation and
taking into account equation 2-45



. 3% 5%, T
= (22 22 -
% aw)Qw (aw) . (2-47)
- {—(ATM—1A+P_]-lATM-l}(AP_l AT+ BT - (AT taer 1T RATMHT
X X X
(2-48)
o~ = M tasr 1A T ap"t aTamn A (AT lasp 17t (2-49)
X X X X
and letting
N=a mla, (2-50)
_ -1 T -1, -1 T -1 -1
Qp = [N+P 1 7 A'™M " (AP, A™+M) M "A [N + P_] (2-51)
and expanding terms
. -1 -1 -1 -1 -1 _
Qx = [N+Px] NP N[N+Px] + [N+PX] N[N+Px] .l (2-52)

We now turn to the task of determining Qi. Substituting
equations 2-40 and 2-42 into 2-39 and using 2-50, we find

-1 -1 -1 ,T
{r - (N+Px] N}Px {I—[N+Px] N}

]

Q

X

{-[N+Px]—lATM_lB}P_l{—[N+Px]-lATM—lB}T

+

!

. -1, -1 -
{1-[n+p ] h}px {z-N{w+p ]

1. T

(4P 177A m g p71pT

B P B M'lA(N+Px]'1

+

(2-53)

o1 p-1 1
X X

[l

N P 171 - w+p 1 iweT
X . X X

1 1 1

1 -
N[N+Px] . (2-54)

+

- ..l - -
[N+Px] pr N[N+Px] + [N+Px]

Noting that the last two terms of the above equation are identical

to Q; (equation 2-52), we can write

A -1 ~ -1
2 = + -
QX PX Qx PX

N NP ] Tomnep 1Y NpL (2-55)
X X X

The above expression can be shown to be equivalent to the

inverse of the coefficient matrix of the normal equation system 2-28
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for i, that is

[AT(BP—lBT)—l 1

0z = A+ P] . (2-56)
= Mt oA« px]'l , (2-57)
-1
0. = m+r 17t (2-58)
X

To prove this we begin by factoring-out the term

-1
[N + Px]

from equation 2-54, then multiply terms, and finally cancel like

terms. The details are the following:

02 = b 1 T{mv+p_ 197t - np 17t wiwep 17t - wplt
X X X X X X X X
-1 -1 -1
+ NP_N [N+Px] + N[N+Px] 1,
= e 1Y (e terone Inmwer 170 - nmwer 1 7H
X X X X X
~wp o ne iy mep 17w e 173,
X X X X

e 1711 = mep 171
X X

Finally, we write the variance=-covariance matrix as

=g Q% , (2-59)

o1

=g~ Q2 , (2-60)

LR
(o]
»®

where the estimated variance factor

2 'VTPV + XTP X
G = X .- (2-61)
o v
The degrees of freedom*
v=r-u+u , (2-62)
x

* equation 2-62 is only an approximation, see Bossler [1972] for a
complete and rigorous treatment.



1s

where r 1is the number of equations in F, u the number of parameters
to be estimated, and uy, the number of parameters weighted. The proof
of equation 2-61 is beyond the scope of this work, see for example

Hamilton [1964], Wells and Krakiwsky [1971].

A
Variance-Covariance Matrix for L

We begin from the definition of the final (adjusted) obser-

vables (equation 2-15),

L=L+V. (2-63)

Using equations 2-29 and 2-30

L=1-p 8Tk (2-64)
=1 -2 T Ak + w (2-65)
= t-p Lp M tax-p T lw, (2-66)
and after using equation 2-46
L= e BT A (aTM la 4 Px]_lATM—lw -p Tt w . (2-67)

Applying the covariance law to the above equation yields

_ 51 3L T 3L, T
=509 Gp +<ax> 0, D (2-68)
where
%% = 1+p T 1A [ATM_1A+PX]-1 AT te-p7tgTM B, (2-69)
%§-= p 1Tn 1A [ATM_1A+PX]_1 aTwta - p7igTwt A . (2-70)

Substituting equations 2-69 and 2-70 in 2-68, noting equation 2-52,

and collecting terms we get
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0. = o b 4 p T A Q. aTn tpp?
L %
+ o 18Tt A p;l ATyt et
- p L Tyt A(ATM—1A+PX)~1 ATM—IAP;I aTw tppt
— - -— - - - T-— -
- p 1Ty lAle 2™t a@aTM lA+px) L ATy igpt
T Tl I (2=71)

Using wquation 2-55, the above equation can be written in terms of

Q2, namely
X

=p L 4 p Tyt A 02 ™M™

i 0r lgp™l _ p7 1Ty ipp~t | (2-72)
L X

Weight and Coefficient Matrix for V

Expressing G as a function of W (analogous to equation 2-35),

and applying the covariance law, we get after considering equation

2-58 that

0 = plgTn tep ! - p71pTM Tt A 0r ATM
X

1 1l

BP ~ , (2=73)

li

Q —Q: °
L L

The above equation corresponds to common sense, namely the variances
of the observables after the adjustment are smaller than the vari-

ances of the observables (observations) before the adjustment since

Q_::Q_Q"'
I L v

See equations 2-121 and 2-122 as an example.
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2.4 Generation of the Standard Cases

Combined Case with Weighted Parameters (A, B, P, Px # 0)

The general case of a non-linear implicit model with
weighted parameters is known as the combined case with weighted
parameters. It has a solution given by the following equations
(2-28, 2-14, 2-29, 2-30, 2-45, 2-52, 2-55, 2-15, 2-61, 2-62, 2-60,
2-72, 2-73):

-1 - - e -
—-aT e BNl a4 P ] LaT e Tyl u

>

1 T -1

= - [N + Px]° AM W (2-74)
-1
=-IN+P] U, (2-75)
X=X +X, (2-76)
g = @t BT) (ax + w) (2-77)
...1 ~
=M~ (AX + W) . (2-78)
v=-ptglg, (2-79)
L=1L+V, (2-80)
Q = [AT(BP_lBT)'1A+Px1“lAT(BP—lBT) lAP aT (gp 18T) la
(aT (BP lsT) lzu—px]'l
+ al(sp 1pT)t A+Px]—l NiaT B 18Ty 1A + Px]—l (2-81)

-1 -1 -1 -1 -1
[N+Px] pr N[N+Px] + [N+Px] N[N+Px] . (2-82)



[o})
[\

U

1l

H

1

2

3

Aa+vP 1
X

pL g AT p 1Al (pp 18Ty " ta(aT (sp 18Ty L

X X X

- - - T - - -

[AT(BP lBT) lA + Px] 1 A" (BP lBT) 1 A le

- - — —l_
ply O~ - P 1 N[N + P_] 1 [N + P_] "NP 1
X X X X X X

T -1.T - -1 -1
e st a+p 1 s w1t

X X
pt 4 p7ipTyt AQ;ATM-lBP~l - ppTutep 7,
p T tep 7t - p e ta g AT MTB P,
X

ap ' aT 4t BT,

v p

. “op A
V+XPXX

In the above expressions

gp L g7,
AT (e 1pT) 7!
AT (sp~1pT) 71

A

W

]

T -
A M

T -
A" M

1

1

A,

W .

1

(2-83)
(2-84)
(2-85)
(2-86)
(2-87)

(2-88)

(2-89)
(2-90)
(2-91)
(2-92)
(2-93)
(2-94)

(2-94a)

(2-95)

(2-96)

(2-97)



An intriguing mathematicel fact concerning the variance-
covariance matrices for the parameters is that the inverse of the
coefficient matrix of the normal equations is the weight coefficient
matrix of the final (adjusted) parameters § and not of the solution
vector % [Kouba 1970].

If all the parameters are weighted, note that the number
of degrees of freedom becomes equal to the number of equations.
This is analogous to the condition case below in which all obser-
vables are weighted. This is not surprising, for in the present
case all quantities are also weighted. Schmid and Schmid [1965]
call this "generalized least squares".

One should also note that the variance-covariance matrix
of W is defined with the a priori variance factor 02 which allows
statistical testing before the adjustment takes place, if oi is
indeed known. In the case that og is not known, then an estimate
may be obtained from the adjustment itself. Hamilton [1964] shows
that in the latter case (oi not known), the confidence region for
the adjusted parameters (§) are given in terms of the Fischer dis-
tribution, while if Gi is known, the confidence region is

described through the multivariate Chi-squared distribution.

Combined Case (A, B, P, Px = 0)

The combined case is characterized by a non-linear
implicit mathematical model with no weights on the parameters.
We deduce the corresponding set of expressions from the general

case by considering that if there are no weights then Px is



equal to zero. This implies that X is a constant vector (now
denoted bv XO), and its variance covariance matrix Zxo does not
exist. As a consequence, both Px and P;l (Qx) are null matrices.
Also note that the partial derivatives of ; with respect to x°
will also be a null matrix. Upon substitution of the three null

matrices into equations 2-9 through 2-73, we get the desired

results :
% =- T 8Ty tart aTee ! BT WO (2-98) *
--ntuy, (2-99)
2 o -
X=X + X, (2-100)
& = B B (ax + W) (2-101)
=Mt oax+ W, (2-102)
v=--pteTk, (2-103)
L=1L+V, (2-104)
op =N =t @t et At =g, (2-105)
X
- - -1 - -1 - - - -
QQ = P 1 + P lBTM A N lATM lBP 1 - P 1BTM lBP 1 v (2-106)
L
0 = p T ep ™t - p71RTM Y A 7 AT leR 7t (2-107)
-1
00= B2 " BT, (2-108)
AT A
52 - VBV (2-109)
o Vv
v=yr-au, (2-110)

*»wC = F (x°, L)



L. =L, =00 , (2-111)
¢ - o x
<5
ha Oé Ya (2-112)
L L

2
I,o= 0. Q5 (2-113)
. 2 _
L.wo— OO Qwo. (2 114)

We witness that the weight coefficient matrix of the
correction vector X and adjusted vector § are identical and equal
to the inverse of the coefficient matrix of the normal equations.
The degrees of freedom is calculated as the difference between the

number of equations and the number of unknown parameters.

Parametric Case (A, B = -I, P, Px = 0)

The parametric case is characterized by a non-linear
explicit model. This means that the observables can be explicitly
expressed as some non-linear function of the parameters thus the
reason for the second design matrix be to be equal to a minus
identity matrix. Setting B equal to -I in the combined case with no

weights on the parameters we get the following expressions:

X =-(a"pA] T Alpw° , (2-115)
pad o ~

X=X + X, (2-116)
~ ~ [e)

K =P(AX + W) , (2-117)
~ -1 -~

V=P K, (2~118)

L=L+V, (2-119)



0- = 9. = (aA"ea]"t (2-120)
X X
0. =a a1t AT, (2-121)
0 = Pt~ a aTeal”t AT, (2-122)
0 o= P71 (2-123)
W !
. A "
of = LEV : (2-124)
o A\
V=Y-u=n-=-u, (2-125)
. 2
Ya = La = 0% O~ , (2-126)
X X o "x
2
Ya =0, Q0 s (2-127)
L
2
Lr =0_ Q~r , (2-128)
O
7.o= 6% go. (2-129)
W o W

Note that the number of equations equals the number of
observations; this is not true for the combined case. We see that
the weight coefficient matrix of the adjusted observables has the
form of a propagation of errors (covariance law) from the adjusted

parameters into these quantities.

Condition Case (A = 0, B, P, Px = 0)

The condition case is characterized by a non-linear model
consisting of only observables, thus the first design matrix A in
the combined case with no weights on the parameters vanishes,
yielding:

it 8Ty (2-130)

Vel
Il

=M W ’ (2-131)
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v=-ptelg, (2-132)
L=L+V, (2-133)
0. =2t - p7gT mp7tgTy 7t el , (2-134)

0, =Pt B M1, (2-135)
v
ATA
G2 -Yev (2-136)
o] Vv
v=r, (2-137)
2
R (2-138)
L
I. = o° On (2-139)
v o *v °

The above case can be used to solve the combined case with

weighted parameters as follows: given

B* V¥ + W = 0, P¥ (2-140)

where

B* = (A | B] , (2-141)

(2-142)

= ’ (2"143)

el

*

I

]

]

!
———p -

then substitute these definitions of B* and P* into the equations

for the condition case immediately above. Note that the design

matrix A and weight matrix Px both pertain to the weighted parameters.
This terminates the review of the standard cases of least

squares adjustments. We draw heavily on these equations in the

subsequent sections.



3. DERIVATION OF THE KALMAN FILTER EQUATIONS

One of the highlights of this synthesis is the derivation
of the Kalman filter equations using the same conventional methodology
employed in the derivation of the standard cases of least squares
adjustment in the previous section. As a result of using the same
methodology, we have ready at our finger tips a clear and relatively
elementary manner for comparing the Kalman filter equations with
the standard cases, and with other advances made in the least squares
method. Our derivation below follows closely that given in [Grant
and Krakiwsky 1974)]. The reader can find alternative derivations
in [Morrison 1969; Moritz, 1973a], while the original derivation

is given in [Kalman 1960].

3.1 Definition of the Problem

The standard least squares problem of the previous section
differs from the present one in two ways. Firstly, we consider the
vector of parameters (state vector)* as varying with time. Con-
sequently we must group the observations according to the same time

epoch because of this variation. Below we introduce the Kalman

* Kalman filter terminology.

27
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Two sa-.ellite  passes

2
tl
Primary Model Primary Model
o,
Ly 2
Fl(Xl,Ll)=0 F2(X2, L2) =0

path of
vessel

informatiop -
n ?-condary Model

G (Xl, X2, Ym, t) =0

Figure 3-1. Four Sources of Information in Kalman Filtering

- Land determination of'Xl at tl;

Satellite determination of Xl at t.;

1

5 relative to Xl;

Satellite determination of X2 at t2.

Navigation determination of X
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filtering problem via an obvious example in which the coordinates
(state vector) of a moving point vary with time. There are other
problems in which it is not necessary to have"physical movements"
to induce a variation in the state vector, that is,simply the passage
of time is sufficient to change the state vector.

Imagine a moving vessel seeking to accurately position

itself (Figure 3-1). One can determine its coordinates at t, from

1
measurements made to land (Xl and le). Still at time tl, obser-
vations Ll can be made to a passing satellite and the determination
of Xl made from the model

F (xl, Ll) =0 . (3-1)

Navigation devices on board recording velocity can serve to
determine the position X2 at t2 relative to Xl from a function

G (xl, X t)y =0 . (3-2)

2!
Still at time t2 observations L2 can be made to another passing

satellite and the determination made through the model

F, (Xz' L2) =0 . (3-3)

There is one characteristic in common to all these four
determinations; they are independent from one another. The problem
of rigorously combining all four sources of information in one
mathematical system is in essence what the Kalman filter does.
Variance and covariances are rigorously propagated from one stage
to the next, and at any given time, the solution (state vector)
contains all the information up-to and including the present. You
can even "predict" the value of state vector since you have information

on the changing of the parameters with time.



The Krlman filtering problem is then to solve the system

of equations

rl Fl (Xl, Ll) =0, tl

r, F2 (X2, L2) =0, . (3-4)
B _ 2

u G (X, X, ¥ ,£)=0,

for il and §2' The overhead bar denotes final (adjusted) value as

in Section 2. We make strict distinction between F, and F the

1 2!

primary mathematical models giving the functional relationship

between the parameters and observables, and the secondary mathemat-

ical model G giving the functional relationship among the parameters
themselves.. The former model is usually referred to as the observation
equations in adjustments, and the latter model is known in Kalman
filtering as the dynamical model. Also note the separation of the two

types of models according to time epochs tl and t2. In essence, Fl

and F_ are linked via ¢. The model errors ?m will be explained later.

We will assume the primary models to be of the non-linear

implicit variety. Choosing to work with linear systems of equations

we approximate F. and F_ by a linear Taylor series as follows:

1 2
o oF _ BFl _
Fl(xl, Ll)= Fl(Xl, Ll) + ;g— . (X ~xl) + ;E—-x . (Ll—Ll) = 0,
177171 1171 (3-5)
=W, + A ;1 + By 61 =0, (3-6)
r.xl rlxu uxl rlxnl nlxl

and
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y* B QFD; N
F (X ) = F 0, L) b (K, =X, + (L,-L,) = 0
3X2 XZ'L? oL X2,L2
- - (3-7)
= + X. + V. =0, -
W2 A2 X2 82 5 (3-8)
r2xl r2xu uxl rzxn2 n.x1

The observational vectors Ll and L2 (that is between two

time epochs) are assumed to be statistically independent. Their

respective weight matrices are related to the a priori variance factor

and variance-covariance matrices by the following:

2 -1

Pl = Oo ZL , (3-9)
1
2 -1
P2 = Go ZL2 . (3-10)

The observational residuals (corrections) are assumed to be random with

A A

zero mean; V_-and V_ denote the least squares estimates for these quantities

1 2

The vectors Xl and X2 are respectively the least squares

estimates for the differences X,-X. and X_-X thus allowing us to write

171 2 727
the following expressions for the least squares estimates of the

complete quantities:

Xl = Xl + Xl ’

X2 = X2 + X2 .

It should be noted that the entire problem is based on one value of

the vector of parameters - that being Xi or Xl' We will see from equation
3-40 that Xz or X2 is related to Xi or Xl. Further, the vector of

parameters are stipulated in Kalman filtering to have the same dimensions¥*

from one time epoch (tl) to another epoch (t2).

* See Section 4.2 for other possibilities regarding the dimensions
of the vectors of parameters.
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An independent a priori estimate of X is denoted by X1 with weight matrix

2 -1
P.=0.%. . (3-102)

0™ xq
In this case X is said to be a quasi-observable. The "observational” corrections to X are
assumed to be random with zero mean. X; denotes the least squares estimate for these
corrections.
We now turn to the secondary model, and begin our derivation by assuming G to be non-
linear, explicit in )—(2 and the model corrections ?m, and implicit in )_(1. Thus we write

GX}, Xy, Yo, )=X5-F4X,,0)- Y, =0. (3-11)

Linearizing as before we get

G&I’ Xz an, t)’—‘Xz'l‘ (5—(2 - )_(?)
dF — —
= [F{X;, ) +—a—_)§: x, &KXl Yo~ o Yo =0.

We know that
X2 =F3 (X1, 1) (3-12)
since this is how the parameters at time tp are usually calculated. Also
Yn=0
since the expected value of the model corrections are assumed to be random variables with zero

mean. After making the equivalences

o
E:

X

1

which is termed the transition matrix, and

Xl -X1=§Zl,
Xz -X2=)’Z2,
?m 'Ym=?m,
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which are the least squares estimates for the differences,the secondary

model becomes approximated by

G(Xl' X2, Ym, t) = - 9 Xl + X2 - Ym =0 (3-13)

uxu uxl uxl uxl
The a priori weight matrix associated with the model errors
is
P =0 L . (3-13a)

These model errors are assumed to be statistically independent from
one application of the secondary model for a given time interval to the
consecutive application for another time interval.

Thus we have seen how we pass from a model in terms of the
full value of the parameters (equation 3-11) to one in terms of the
corrections (equation 3-13). This was done to be consistent with the

primary models (equations 3-6 and 3-8).

3.2 Derivation of the System of Equations

The variation function from which We get the least squares

normal equations and the Kalman filter equations is

AT ~ AT~ A A ,
= vV, o+ + +
¢ Vl P 1 V2P2V2 YumYm X

it

=

~ ”~ +
+ 2K (Al Xl + B1 Vl Wl)

N3 =

+ 2K

N

X. + V. o+
By X, + By V) + W) (3-14)

/\T ~ N ~
+ - - .
2K3 (X2 ¢ Xl Ym)

Note there are four gquadratic forms to be minimized, that of the two
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sets of observations, one for wodel errors in the secondary model, and
the last for the a priori information on the parameters. The problem
is to find this minimum subject to the three constraint functions
arising from the linearized mathematical models. We use the Lagrange
method to solve the extremal problem, and thereby adding the three sets

A - A~

of unknown Lagrange correlates Kl' K2 and K3.

Taking the derivatives of the variation function with respect

to the variates, and equating them to zero, yields:

-B—Q- = ’A'I‘ + AT = - A" . ) = -

- ZVl Pl 2Kl Bl 0; Pl\/l + Bl Kl 0 ; (3-15)
v

1
'd(b _ .\7 AT _ ~ T ~ - . _

" 2\2? + 2K2 B2 = 0; P2V2 + B2 K2 0 ; (3-16)
oV

2
9 _ 9T e mkT-0;, P ¥ -k =o0; (3-17)

~ m m 3 m m 3
oY

m
3% _ 3T 4 2kTa -2kT o =0 ;

1 1M1
ax,
(3-18)
. T T~

o oX. o+ -0 =0

x 1T ALK K3 =0
—_—— = A+ 2 = 0; + = . -
* 2K, A, K, =0 A, K, + Ky =0 (3-19)

These five equations along with the three linearized mathemat-
ical models make-up the least squares normal equations system in the

"most expanded form", namely:
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_ - o
p 0 0 BT 0 0 0 0 J 0
1 1 1
0 P 0 0 BT 0 0 0 Q 0
2 2 2
0 0 P 0 0 -I 0 0 Y 0 (3-20)
m m
) = .
B, 0 C 0 0 0 Al 0 Kl + wl 0
0 B2 0 0 0 0 0 A, K2 W,
0 0 -T 0 0 o] - I K3 0
T T -
0 0 C A 0 - P 0 0
1 b X 1
. -
0 0 0 0 A2 1 0 0 X 0
L—. es— — 2_.... —— et

3.3 The Kalman Expressions

We first obtain an expression for X. using only the obser-

1

vations Ll in Fi and the a priori information X1 and Px.The normal

equation system is obtained from equation 3-20 by deleting all

matrices associated with F, and G. The resulting system is:

F'P BT o-_1 [ o] o |
1 1 1
1 + - . -—
B, o A K Wl =0 (3-21)

X 1 °
- J L L

The above is identical to the combined case with weighted parameters

* Since the estimate of X, is a result of information only in Fl, we

designate this partial solution by ﬁi
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of Section 2.4 (equation 2-21). The solution of this case is described

by eauations 2-74 to 2-94. The solution vector for the parameters is:

Xl = X, + Xl ’ (3-22)

. -1.7 -1 -1 -1.7T. -1 _
X! = lA (B P B ) A1+Px] Al(BlPl Bl) Wy, oo (3-23)

with variance-covariance matrix

L. = o° [AY (B, P lB yla +p 7L (3-24)
) 1 1 X

x»

/
1
In the case that the a priori information consists only of

F that is Px equals zero, then the solution is given by equations

l ’

2-98 to 2-114. For the parameters we have:

v o O 1 -
xl = xl + xl ' ‘(3 25)
oL T -1 -1 -1 -1.T -1 _
X! = [Al (B P B ) Al] A (B Pl B ) Wl ’ (3-26)

2 T -1 7. "1
L. = T. = Al 3-27
L ' o [Al (Blp1 Bl) 1 ( )

Let us now return to the most expanded form of the normal

equations (equation 3-20) to obtain a solution for X2 using all infor-

mation contained in Fl, F2 and G. First Gl' 62 and ?m are eliminated,

which yields the following system:
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r M . T r— 7
=M b ( K
' . 0 ) A 0 N W,
| o -1, 0 0 A, K, W,
| _ R
0 0 -Pp ! ~d I K + 0 =0, (3-28) *
| m 3
’ ~
T
A 0 -9 P
! . < 0 X 0
' T ~
L— 0 A2 1 0 0 X9 0
) p— L . I
where the newly introduced quantity
_ -1 T
M2 = BZ P2 82 ' (3-29)
and recalling from equation 2-36 that
- T
M, = B P 1 B . (3-29a)

Next we prepare the normal equation system (equation 3-28)

for the elimination of Kl and il by performing elementary row and

column transformations; the result is

— | - . —
-M, | A 0 0 0 K W
10 1 1
...... O T | e e ] e o o e ]
T ‘ T ~
AL, B 0 0 0 X, 0
i
‘ ~
0, -0 »t g 0 K + 0 | = 0. (3-30)
[} m 3
‘ |
¢ T ~
0 0 T
! 0 A, X, 0
|
l ~
0 | 0 ) A, M, K, | W,
- i e L e l-— pr—

Elimination »f K, vyields

* In this equation system X. and the other parameters can be solved

for using the complete information (that is Fl, F2 and G).
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~ ' b N ‘— —
T -l l T ~ -1
AY M - 0 X A. M. "W
1 Al F& ; ¢ 0 1 111
e e e T TTT T T T T === oo
- | -p I 0 K. | + 0 =0
! m 3
I T °
0 | I 0 A2 x2 0
] ~
0 : 0 A, -—M2 K2 w2
L ] J I L _

(3-31)
The first equation from the above hyper-matrix equation allows

one to obtain a solution for %1, that is using all information, namely

s -1 T »
X, = X1 + (N1+Px) ® K3 . (3-31a)

A . . 5
Next we eliminate Xl in order to get our desired expression for X

2

A A ~

This yields a normal equation system containing only variates (X2, K2, K3)
related to the current set of models F, and G, namely
r— 1 = ~— .
- [® (N, + P ¢>T+p"1]: i 07 12_1 o(n, + P ) tu
1 X ml ’ 3 L__E__l
- ToTTTo oo T ' T ~
1 . 0 A, Xy |+ 0 = 0,
|
\ ~
0 ! A -M K W
- ; 2 2_J | %_ | 2 B
(3-32)
where
T -1
= M , —
Nl \Al 1 Al (3-33)
and
u, = AL MW
A T S T ) (3-34)

We now interject the definition of the predicted value of the parameters

A Zh
at t2 as X2 - F3 (Xlr t)
The linear form is Ky= 0 X, | (3-35)



“here ii is the partial solution for the paramcters (equation 3-22, or 3
Applving the covariance law to the above we obtain the predicted

variance-covariance matrix for the parameters as

.2 2 -1 2 -1 T -1
L;' = co Q., = oo (N2) = Go [¢(N1+Px) " + Pm 1,

2 2 (3-36)

x

where the first term follows directly from the propagation of variances
and covariances from ii into ﬁé in equation 3-35, while the second
term represents the contribution from the model errors. Note that

this predicted value depends upon the weights on the observations

., (P, in N, = AT M—l A ), the a priori information P_ on X
1 X

= 1 1 Y 1 and the

ll
model errors represented by the weights Pm. All of these quantities

appear in the hyper-matrix equation 3-32.

~

The aim is to obtain an expression for X2 as a function of

matrices and vectors we know. To achieve this goal we eliminate K3

from e€quation 3-32. This results in

N! Ag %2 r——Né X
2y =0, (3-37)
A, M, X, v,

where already from equation 3-36 we had

L -1 T -1.-1 - *
N2 = [¢(N1+Px) " + gn ] ; (3-38)
and now
% = -0 n+p) tu (3-39)
2 1 x 1
X, = ) xl . (3-40)

* N! is defined in terms of an inverted quantity on the right hand-side
to be consistent with equation 3-36 .
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~

Note the following relationship between the corrective quantity X

e

2

immediat: 1y above and the entire quantity ié (equation 3-35):
:'In o T " ' o 2
= <+ = = X 4+ =
X2 X X ? X, + ¢Xl @(Xl Xl) % X

5 5 1 (3-41)

L]
l [2
wl.ich is eguivalent to equation 3-35.

The first equation in 3-37 expresses 22 as a function of

a

knowr: quantities and the unknown vector of Lagrange correlates Kz,

namely
1

o T » [T T -
N2 X2 + A2 K2 - N2 X2 =0, (3-42)

and aftcr premoultiplication by (Né)»l we get

- (NE)_lAT K. . (3-23)

X, = X - Ky

2 2

T f£inal step is to obtain an expression for K2 as a

function of known quantities and substitute it in the expression immed-

iately above. From (3-37) we get the needed expression by eliminating

~

XZ' name Ly
w1l T, N S R _
| M2 AZ(NZ) AZ] K2 + W2 + A2 (N2) N2 X2 =0 , (3-44)
and
- - vo=1 T.-1 ) -
K2 = [M2 + A2(N2) A2] (w2 + A2 xz) 7 (3-45)
Substituting (3-45) into (3-43) yields
i ''-1 T -l T.-1 )
LN =) - + 3-4
Moo= Xy m (N T AL (M, 4 AN, T AL T (W, 4 AX)) | (3-46)
In Kalman filtering theory, the expression
) l T v -1 T "l N p
= -47
(N)) A, M, + A, (N2) A2] G (3-47)
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is called the gain matrix. Rewriting equation 3-46 we get

A

- '
=X, -G (W, + A
X 2 ( 2

2 X2) . (3-48)

2

The variance-covariance matrix for Xé is obtained by first

rearranging equation 3-48 so that a coefficient matrix preceeds each

random variable (Xé and W_ in this instance) as follows:

2

X2 = (I - GAZ) X2 - GW2 . (3-49)

Applying the covariance law to the above yields

0~ = (I - GA)Q~, (I - GA)T +GQ_ G . (3-50)
X 2" "x 2 W
2 2 2
Since
o _ o -
w2 = F2 (Xz, L2) (3-51)
and
oF oF
2 2 T ’
Q.o =7 |,0 Q (—| .0 ) (3-52)
WZ BLZ X2,L2 L2 3L2 X2,L2
-1 T

= B, P B, =M, . (3-53)

Substituting ecquation 3-53 into 3-50 and carrying out the algebra

yields
_ -1 N WL T w1 T T
Q§2 = [(Nz) - GA, (NZ) ] [(Nz) A, GA2(N2) A, GM2] G
(3-54)
From (3-47)
~ -l Ty Nl B _
G [M2 + A2(N2) A2] (N.) A2 , (3-55)
w1 T -1 T _
- GMZ‘- GA2 (N2) A2 + (N2) A2 =0, (3-56)
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which is the second term in (3-54). Thus our final expression for the

variance-covariance matrix of the latest estimate of the parameters is

given by

" 2 - 2 T
I =g Qi = co [(Nz)

2 2

1 1

- GA2(N2) 1 . (3-57)

The series of expressions constituting the Kalman filtering

equations are equations 3-40, 3-36, 3-47, 3-48 and 3-57,

Prediction of state vector
o = . -
X5 ) X] (3-58)
Prediction of new variance-covariance matrix
2 2 R 2 -1, 7T -1
' = = = o -
zié o, Q&:,z co(Nz) o, [¢(N1+Px) " + Pm 1: (3-59)
i
Computation of gain matrix
_ -1 T Wl T.=1 -
G = (Nz) A2[M2v+ AZ(NZ) A2] ; (3-60)
Computation of state vector
A~ _ A' _ A' ) _
X2 X2 G (W2 + A2 Xz) ; (3-61)
‘Computation of the variance-covariance matrix of state vector
2 _ 2 w1 S T _
Ziz = oo Q},22 o [(Nz) GA2 (N2) 1. (3-62)

~

Note, if we also require a solution for X, using all data, that is F

1 1’

F2, and G, then we simply return to equation 3-3la.
To show the correspondence of our Kalman filtering expressions

to those contained in the literature, e.g. [Kalman 1960], we make a
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correspondence between the two different notations as follows:

Ours Kalman Ours Kalman
- W .
2 ZK X2 Xk/)g
xh
Ba " % Pk
%' (new) (‘N')-l : P
2 K /k-1 2 K/k-1
- V2 Vk K2 no ngulv—
alent
P-l (new) 0 G (new)
m k Kk
M2 Rk Ym Wk
i

Let us now obtain a deeper insight into the workings of the
Kalman expressions. First note that a priori information on the
parameters is needed to start the process. A priori information can
be of two possible types:

(i) "observed" value of Xl with an associated weight matrix

Px from an independent determination;

(1i) a determination of Xl via the information contained in

Fl.
These two types of informaticn can enter both two together (equations

3-23 and 3-24); only as normel equations (F, in 3-25, 3-26, and 3-27);

1

or lastly in terms of weights (X; with weight matrix PX) The
representation of these three possibilities in the Kalman expression

ejJuation 3-59 is respectively Nl # 0, Px # 0; N, # 0O, PX = 0; nd

1

Nl = 0, Px # 0.
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By studying equations 3-58 and 3-59 we discover that the
model noise does affect the prediction of the state vector via the
shortcomings that exist in the definition of the transition matrix
¢. The effect of this model noise on the predicted variance-

covariance matrix I~ , enters explicitly via the weight matrix Pm.

]
*2
Also contained in Z;, is the "noise" in the observations (via P) and
2
in the starting values of the parameters (via Px). We witness that

to compute xé and L., no matrix inversions are necessary because in
X

equation 3-59

T + p Ly, (3-63)
m

the one matrix inversion has already been carried out in the course

of obtaining the solution ﬁi.

For the final estimates X2 and Z§ , one matrix inversion
2
is required. Namely, it is the matrix of order r, {(number of

equations in Fz) encountered in the gain matrix (equation 3-60) in

the term:

w1l To-1 _
[M2 + A:‘) (N2) A2] (3-64)
-1 T S B S | o
= | 132 r2 82 + I\2 (N2) A2 ] . (3-613)
r2xn2 n2xn2 nzxrz r2xu uxu uxr2

The matrix to be inverted is fully populated and for a paramrtiric
case is the same order as the number of new observations being added.

This means that if one observation is added each srtage (that s in Fz)
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and F2 fi*es into the parametric case, the matrix to be inverted is

of order one. We will return to this subject in Sections 4 and 6

when we compare the various methods.



4. RELATIONSHIPS AMONG KALMAN, BAYES, SEQUENTIAL AND PHASE EXPRESSIONS

to:

(i)

(ii)

(iii)

(iv)

Having derived the Kalman filter equations, we now proceed

show the eguivalence of the Bayes and Kalman filter equations
by using a matrix inversion lemma;

deduce the §equential and phase expressions respectively from
the Kalman and Bayes equations by deleting the time variation
in the state vector (parameters);

show the equivalence of the sequential and phase expressions by
using the same inversion lemma as in (i) above;

demonstrate the equivalence of the Tienstra phase and sequential
expressions;

discuss the computational efficiency of the Kalman (sequential)
and Bayes (phase) methods.

The theme of this section is to show that even though the

Kalman (sequential) and Bayes (phase) expressions are mathematically

equivalent they are not identical from the computational point of view.

4.1 Equivalence of Kalman and Bayes Expressions

First we write from Morrison [1969] the Bayes filter expres-

sions in our notation:

46
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Prediction of state vector

~

X! = ' 4-1
X o] Xl ( )

N -

Prediction of new variance-covariance matrix

+P) 6 +P 1 ; (4-2)

TAo=c¢° (N)) T = g7 [o(N
fe) fo) 1 X m

Computation of variance-covariance matrix of state vector

z§2 = oi N;l = 05 [N} + Ag M;lAZ]"l ; (4-3)
Computation of gain matrix

G = N;l Ag M;l ; (4-4)
Computation of state vector

X, = ié - G(W, + Azﬁé) ) (4-5)

To show the mathematical equivalence of the Kalman and Bayes
expressions we invoke the following inversion lemma, contained, for
cxample in Krakiwsky [1968], Morrison [1969], Wells ([1974]:

st e T Rl = 5 - st (rersTh) los, (4-6)

where S and R are positive definite matrices with R being a different
order than S, and that TTR—lT is of the same order as S. This lemma
can be corroborated simply by showing that the matrix product

st + TRy (s - stT (R + TSTT)-ITS) (4-7a)

reduces to an identity matrix. The above lemma is sometimes known as
the Schurr identity or the inside out rule and has been used by other
authors such as Tapley [1972] and Kouba [1970] to show similar equiv-

alences.
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We need yet another matrix identity, namely that proved
tor example in Morrison [1969] and Wells (1974], and that used for
by authors such as Schwarz [1974], and Reigber and Ilk [1975]:

(st + TR I 7 pTR7Y - srT (R + rsTr) 7L, (4-7b)

where S and R are again of different order and are positive definite
matrices, and T is conformable for multiplication with R and S.

If in the first identity we replace T by A2, R by M2 and

S by (Né) 1 we obtain

, T,~1,.-1 _ -1 -1 T 1T -1 Wl o,
NS + A2M2 Al = (N2) (N2) A2[M2+A2(N2) A2] A2(N2) (4-8)
-1 -1 '

— [] - 1 -
= (Nz) GA2 (NZ) , (4-9)
where the Kalman gain matrix
-1 .7 -1.T.-1
= M ' -
G (Nz) A2 [M2 + A2 (NZ) A2] . (4-10)

Comparing the left-~hand side of (4-8) with (4-3) of the Bayes expres-
sions and the right-hand side of (4-9) with (3-62) of the Kalman
expressions, we can conclude that the respective variance-covariance
matrices are mathematically equivalent.

To show the equivalence of the two state vectors (22) we
simply prove that the two gain matrices G in (3-61) and (4-5) are

mathematically equivalent. Using the second matrix identity with the

substitutions S by (Né)—%l‘by Ay and R by M2, we get
T -1 -1 T -1 to-1 -1.T,-1
] + — ' -
Ny + AR LT AMT = ()T AT MR (N3) A1 (4-11)
that is
G (Bayes) = G (Kalman). (4-12)

Thus the Kalman and Bayes expressions are mathematically equivalent.
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To obtain insight into the Bayes expressions we analyse (4-1)

to (4-5). Predicting the state vector ié and its variance-covariance

matrix Zgs requires no matrix inversion since in the matrix
2

S -1 .7 -1 _
(Nz) —[(D(N1+Px) o + P 7], (4-13)

m
uxu uxu uxu uxu uxu uxu

the single matrix inversion (N, + Px) was already obtained in the course

1
of obtaining the original estimate ﬁi. In obtaining the variance-
covariance Zk , two matrix inversions in
2
[Ny A (B p;l Bg )L A, ] (4-14)
uxi  uxr, r,Xn, n,Xn, rbxr2 r,Xu

are necessary. First, a fully populated matrix of order r, is inverted

(Mz). For the parametric case and uncorrelated observations, this

matrix is diagonal. Then, in order to obtain Né, the matrix in
equation 4-13 of order u has to be inverted. Finally, a fully
populated matrix of order u is inverted. This latter matrix is also

used in computing the estimate X {equation 4-5).

2
For example, for uncorrelated observations and the parametric
case, only two matrix inversions of order u are required in the Bayes

expressions. This situation and others are compared with Kalman

filtering and other methods in Section 6.

4.2 Sequential Expressions from the Kalman Expressions

The sequential expressions follow directly from Kalman
expressions (3-58) to (3-62). 1In these expressions we delete all

matrices and vectors pertaining to the time variation in the state



vector, namely 9, Pm’ and Ym. We also drop the subscripts "1" and
"2" of the parameters; we retain the superscript "prime" (') to
indicate an estimate based on only partial data, that is only data in

Fl.

The predicted state vector ﬁé (equation 3-58) reduces to

the initial estimate X', and is given by equation 3-23:

s -1.T -1
1= o . -
X [Nl + Px] AlMl wl (4-15)

The predicted variance-covariance matrix I;, (equation 3-59) reduces to
2
L2,and is given by equation 3-24:
X
2 -1
A = + . -
T o, [Nl Px] (4-16)

-
X

The computation of the gain matrix (equation 3-60) reduces to

-1

LT 1 gl ) (4-17)

G = (N1+Px) AZ [M2+A2(N1+Px) A

The solution vector and variance-covariance matrix reduce to

A~

X = X' ~ G(W, + A X") (4-18)

2
and
1 1

2 -1 _ - -
I = oy [0¥R) GA, (N +P )7 7] . (4-19)

In the literature the sequential expressions have been
derived for the case Px equals zero. Making this simplification to
the above equations we have the following expressions which are
equivalent to those given in [Schmid and Schmid 1965; Wells and

Krakiwsky 1971]:

A -1
Voo ; 4-20
X Nl Ul ( )
2 -1 e
zﬁ, = o Nl : (4-21)




_l T _.1 'I‘ ._1 e} ~
= LR X! . {4 -
X X Nl A2 (M2 + A2N1 Az) (W2 + AZA ) 4-22)
2 -1 -1.T -1 -1 —1
= - + . -
Rﬁ Ub [Nl Nl A2 (M A2Nl A ) A2 1 ] (4-23)

The number and size of matrix inversions in the sequential
expr@ssions are identical to that of the Kalman filter expressions.
(See the comments there - Section 3).

We now insert a note on the estimated variance factor 62.
We may get twe estimates (3§)1 and (82)2. They are different as the
second eontains all the residuals while the first contains only those
of the first set of observations. Krakiwsky [1968] has derived a
sequential expression for the quadratic form of the residuals which

allows the first quadratic form to be up-dated without recomputing

the residuals themselves; the equation is

NT A Ar[| A
) 2] +
2 0Te VIV Y VR,
(o0 Yy = = (4-24)
) \'s v, tv
1 2
A A Am A
WP vy + awTev)
1711
T ) (4-25)
1tV

where Vj is the degrees of freedom in F

l’
Vz is the degrees of freedom in F

2!
AT A . .
VPV total quadratic form of all residuals,

A

A
l lVl cquacratic from of residvals in Fl (combhined solution),
T A .

2 2V quadratic form of residuals in F2 (combined solution),
/\T ~

(VIP Vl) quadratic form of residuals in Fl (solution with F

1F1 only),

1

A A
A(VTPV) change in quadratic form of residuals due to residuals in

F2 and change in the residuals in Fl due to Fz, and is given

by
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-1 T
~N A2) (w2+A

Ny X' . ‘ (4-26)

T T ST T
AV pY) = (w2+(x )A2) (M2+A 5

The sequential expressions above are a result of the two

sets of models

(4-27)

g
%
3
u
o

and

(4—285

&
=
£
i
o

5 .

Expressions for more general situations have been developed
in [Krakiwsky 1968; Kouba 1970]), which allow for common observations
and parameters between models F, and F_.

1 2

4.3 Phase Expressions from the Bayes Expressions

The phase expressions follow directly from the Bayes expres-
sions (4-1) to (4-5). We delete all guantities pertaining to the time
variation in the state vector, that is ¢, Pm and Ym vanish. We drop
the subscripts "1" and "2" on the parameters, but retain the superscript
"prime" (') to designate an estimate using only part of the data, that
is, only in Fl'
The predicted state vector ié (4-1) reduces to the initial

~

estimate X', and is given by equation 3-23:

X' = - N, + Px]—l AT Mt w . (4-29)

The prédicted variance-covariance matrix Zi' reduces to the
2
initial variance-covariance matrix I, and is given by (3-24)
x'

_ 2 -1
[—*Z§, o [N, + Px] . (4-30)
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The variancé-covariance of the state vector reduces to

Ty la 17t = 6? Nt (4-31)
2 fe)

2
L= + +
z Ub [(N1 Px) A2 5

X

and the state vector to

. .
X = X' - N_lATM'l(w2 + A

oM, X'). (4-32)

2

We have retained the weight matrix Px to show how a priori information
on the parameters affects the solution. Phase expressions corresponding

to the case Px equals zero are:

A -1
X' = -N[U (4-33)
ST o Nt (4-34)
zQ = ci LNl+A§M;1A23—l = oi N—l , (4-35)
X = X' - N—lAgM;l (W, + Azi') . (4-36)

The number and size of matrix inversions in the above are only similar to
the Bayes expréssions (See Section 6.4).

It is clear that the variance-covariance matrix is a result of
the addition of two sets of normal equations. On the other hand, the
solution vector takes on a corrective form similar to the sequential
expression (4-22). This is computationally different from the straight-

forward case of udding normal equations. That is the solution for

Fl (X, Ll) =0, (4-37)
FZ (XI LZ) =0 ’ (4—38)
is
Q = - (N, +N )_l (U, + U.) = N_l U (4-39)
s 12 1 2 '

2 - 2 - '
Z& = co [Nl + NZ] = co N , (4-40)
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where Nl and N2 are coefficient matrices and Ul and U2 are the constant
vectors of the least squares normal equations.

Although the form of the above expression is different from the
phase expressions, the number and size of matrix inversions are identical
to the phase expressions. We will, however, reserve the name

"summation form of normal equations" todistinguish equation 4-39 from

the phase form in equation 4-36.

4.4 Equivalence of Phase, Sequential and Summation Equations

The mathematical equivalence between the phase and sequential
expressions comes via the fact that we have deduced each from the Kalman
and Bayes expressions and the latter have been shown to be equivalent.
How about the equivalence of the summation form of the normal equations
and the sequential or phase expressions? Wells [1974] has shown the
equivalence between the summation form and the sequential equations as
follows.

Begin by expanding equation 4-39:
1

>

-1 T -1 o0
Az) (Ul + A2M2 W2) (4-41)

>
Il

T..
- +
(N, A M,
_l T_
- +
AZ) Ul (Nl A2M2

1 -1.T -1 o
A2) A2M2 w2 . (4-42)

[

T -1
- +
(N, + A M,

From the first matrix identity (equation 4-6)

-1 -1
5 Ay) (4-43)

-1 -1 T -1 T -1 -1
= Nl N1 A2 (M2 + A2Nl AZ) A2 N1 v

T
+
(Nl A2 M

and from the second (equation 4-7b)
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R T N N L AN 'al) L (4-aa)
Substituting equations 4-43 and 4-44 into 4-42 yields
X = - {Nll - NIlAg (M, + AZN;lAg)—l ) Nil} Yy
- N;l Ag (M, + A, Nzl Ag)_l wg , (4-45)
= —Nllul + NzlAg (M, + AZN;lAg)_l A2N;1U1
- NIl Ag (M, + B, Il Ai)’l w; , (4-46)
X = ;‘1 - N;l Ag (M, + A, Il Ag)_l W)+ n, X)) (4-47)
From equation 4-43
Iy = 0(2) [N, + Ag M;l Azl_l (4-48)
= 02 [N;l - N'l'lAg (M, + AENIlA';)—l Alel]. (4-49)

We thus see the mathematical equivalence of the summation forwm of the
normal equations and the sequential expressions.

In essence, the summation form of the normal equations is the
foundation for the "group method" [Kruger 1905], which was developed for
classical adjustments of triangulation nets. Application of the
summation form of the normal equations to problems in satellite geodesy
can be found in such works as [Kaula 1966; Krakiwsky and Pope 1967;

Wells 1974].
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4.5 Equivalence of the Tienstra Phase and Sequential Expressions

The aim of this section is to apply the ideas of Tienstra to
the same situation as in the foregoing, namely for two models with common

parameters but different observations. The models are:

Fl (X, Ll) =0, (4-50)
AX+BV. +w =0 (4-51)

1 11 1 ’

F, (X, iz) =0, (4-52)
AX + BV, +uW =0 (4-53)

2 272 2 :

Using the principles of Tienstra [L956] we first obtain a solution from

Fl, namely
o -1 ;
V- , q4-+
X N] U1 (4-54)
2 -1
o = N . 4-55
2 o N, ( )

X' =X + X', (4-56)

P = o L2 = o0 (07 N.7) = N (4-57)
in_an Since all quantities are weighted, F, takes the linearized form

of the condition case adjustment,

B*VU* + W* = 0O , (4-58)
where

(4-59)
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. X!
Uk = faz- (4-60)
P, O [-Nl 0
p'k = = ’ (4"61)
0 P, 0 P,
b
* = ] _
W F, (X', L,) (4-62)
oF,
=F, (X, L L) + —= X', (4-63)
Xm
= wO + A i‘ (4-64)
-2 2 :

The equations which describe the solution to the condition
case adjustment were derived in Section 2. The equation for the residual

vector is (2-132)

v=-ptelg, (4-65)
where
x = s+ BT) 7L w°. (4-66)

Substituting B*, V*, P* and W* into the above yields

. Nzlr 0 Ag -1
K= {[a, B,] -——-}-—- -2+ ARy (4-67)
: P2 82
-1 -1 T.-1 o °
= + U -
(a, N, AL + B, P, 32] (W, A, X' (4-68)
A~ -]t
n sx' Nllc 0 Ag g )
V¥ = lmmem| = - femedeeeof -2 (AN, "AC+M, 1 (w?+A X') (4-69)
g o P-l BT 271 2 2 2
2 2 2
1 -1 T,~-1 , 0 °
N. A M SRN, A2] (w2 + A, X"
G 1 7.1 "o T |- (4-70)
P_."B [M2+A2N1 A2] (w2 + A2 X"y
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The adjusted (final) quantities are

(4-71)
— (4-72)
From the upper portion of the partitioned vector we get
2 o ~ ~ .
X =X + X' + 8Xx' (4-73)
) w1 _ o L, T -1 .T.-1 o Sy -
X+ X Nl A2 [M2 + A2Nl A2] (w2 + A2X ) (4-74)

the last two terms of which are identical to thekséﬁﬁéﬁgial expréssion

(4-22) for the solution vector.

Next we obtain an expression for the weight coefficient matrix.

Begin recalling from (2-134) that

0. =t -2t BT @t 8Tl et (4-75)
..1‘ _1| T
N3O N : 0 A, -1.T. -1
o _ L T | Mj+A_N_"A]
= "Il s e B 1
]
0 : P2 0 | P2 82 J
- ' '
-1 _-1.T -1.T -1 ! -1.T 1 T -1
N - N,"A_[M_+ v~ +
1 TNy By IMyHRLN AL AN ! N, A, M, Ale ] :szz
=] e e e e s e e o o e e e e e o P ittt - e Yo o e e e .
| .
-1.T -1.T. -1 -1, -1 -1 _£1
- + - P
P2 32 [M2 A2N1 A2] A2N1 : P 5 P2 B2IM2+A2N1 Azl 82?2

(4-76)
Thus we have, besides the variances, also the coﬁéiianée between X and
L. The upper left portion of the hyper—matrlx is the welqht coeff1c1ent

matrix of the adjusted parameters. It is 1dentlcal to the sequential

expression of equation 4-23, This completes our proof.



5. COLLOCATION

In this section two different derivations of fhe collocation
equations are given. The first derivation is fundamentally the same as
the one given in Moritz ([1972] and differs only in detail. One impor-
tant detail is that we fully exploif the equations of the standard
adjustment combined case (Section 2) in deducing the collocation
equations ~ this considerably shortens the derivation. Secondly,
weights on the parameters are includea as an option = by doing so, we
see the role of these weights vis-a-vis the other two sets of weights
on the observations and signal, respectively. Also, one can then see
the role of these three sets of wzights vis-a-vis the weights on the
secondary mathematical model of Kalman filtering (Section 3). With a
comprehensive knowledge of these four kinds of weights (inverse of
variance-covariance matrices¥*one begins to discover the similarities
and differences among ordinary least squares, collocation, and Kalman
filtering. The main characteristic of the first derivation (Sections
5.1 to 5.4) is that the measurement error or noise* does not appear
explicitly in the weighted quadratic form:to be minimized nor in the
constraint function, and as such an estimate for the "noise" is nc.!.

computed. For this reason, it is said that the "noise" does not play

* This quantity is equal to minus the observational residual in
ordinary adjustments.

2
* % % equal to one.

[}
\0
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key role in collocation like in ordinary least squares, and as a
consequence the two methods are fundamentally different.

In the second derivation (Section 5.5) we formulate the
objectives of collocation entirely as a problem in adjustments. Here
we find that the "noise" (corrections to the observations) appears
explicitly, does play a key role, and is computed.

We will discover that the corresponding expressions for
the parameters and signal are identical in collocation and the adjust-
ments formulations.

The aim of this section is only to recapitulate the method
of collocation in the context of a synthesis of methods. For a

comprehensive treatment of the subject see [Moritz 1972; 1973a; 1973b].

5.1 Collocation Mathematical Model

We begin with the linear explicit model (equation 2-3)

L= A X - V , (5-1)
nxl nxu uxl nx1l

where L is the vector of n observations, V the vector of n residuals,
A the design matrix, and X the vector of u unknown parameters. We now
depart slightly from our notation to be consistent with Moritz. The

above is rewritten in the form,

Xx = A X +n , (5-2)
nxl nxu uxl nxl

where x is called the "measurement" and n its "noise".

Moritz then extends the above model to

x = A S +8' 4n, (5=3)
nxl nxu uvl nxl nx1
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where the newly introduced quantity S' is called the "signal". Here

we can perhaps interpret S' as the short-coming in the mathematical

model, that is the "inability" of the model to describe completely
(exactly) the actual relationship among the measurements (x) and
unknown parameters (X). In other words, one could imagine that there
is an "overflow" from the model into some sort of additional correction
(S') to the observations. Even though this may seem plausible at first
sight, it is the author's belief that is not what is intended in
collocation. What is intended is to attribute the signal directly
to the observable, thereby stating that the observable (measurement)
has two unknown errors - the signal S' and the noise n. We can
liken the noise to a measuring error, or resolution capability, and is
thus internal to the instrument. On the other hand, the signal is
thougit: of as being external to the instrument and related to the
behaviour of the observable in a particular milieu - like deflections
of the vertical in the gravity field, electronically measured distances
in the "polluted" atmosphere or in the electron charged ionosphere; or
gravity anomalies in the gravity field. An important characteristic
of a signal is that it is continuous throughout the domain of a par-
ticular "milieu" or "field". One of the requirements of collocation
is that the signal has known second moments (variance-covariance
matrix), even though the first moments (value of the signal) remain as
unknowns to be estimated.

The signal and its variance is not new to geodesists. Since
the 1960's we have been calculating the variance of the noise and
variance of the signal for electronically measured distances from

the formula
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os = a + b (distance).

In the above, a is the resolution of the instrument (variance
of the noise} and b is a constant in parts per million which when
multiplied by the distance is nothing else but the variance of the
signal. The latter is a measure of the behaviour of the observed
distance in the troposphere. It is rather obvious that there is no
covariance in the noise but one suspects that there would be covariance
between the signal components of different distances since they are
measured in the troposphere. Collocation attempts to account for this
correlation through a fully populated variance-covariance matrix for
the signal, while in the ordinary least squares treatments the covériances
in the signal are first ignored, then the variance of the signal is
combined with the variance of the noise to give one variance (0;), and
finally a solution is made foi only one correction (residual) for each
measured distance.

In collocation, the condition imposed on the signal is that
it be random with zero mean. Thus the measurement x is seen to consist

of a systematic part AX, and two random parts, S' and n.

In his development, Moritz introduces the¢ quantity

Z=S8"+n, (5-4)

where S' denotes the signal at the observation points. S will bhe

reserved to denote the signal at any point in general without obser-

vations. These points (p in number) are called computation points and

it is at these points that thc signal is said to be "predicted".

After considering the akbove eguation, the main model becomes
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X = AX + 2 (5-5)

and

Z = x - AX (5-6)
represents the random part of observations after subtracting the
systematic part AX.

This stage constitutes the end of formulating the collocation

mathematical model and the beginning of applying the conventional

least squares methodology used throughout the previous sections.

5.2 Collocation Least Squares Problem

We now state the collocation least squares problem. Determine

~

the least squares estimate X in equation 5-3 under the condition that

~ ~

V PV = minimum , (5-7)
where the residual vector, defined to have the nature of "corrections"

as in previous sections,

vi = [-sT E—ZT] (5-8)
1x (p+n) lxp lxn

is made up of two parts - the signal at the computation points, and the

random part of the observations. The weight matrix

— —
C C 1
SSs SX
2
P =290 ' (5-9)
[@]
C C o
XS XX
L —

where CSs is the variance-covariance matrix of the signal, CXx the

variance-covariance matrix of rhe observable. Csx and st are the
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covariance matrices between the signal and the observable, and where

the a priori variance factor oi is set to unity for convenience.
Remember that in collocation the observable has two random

parts - the signal S' and the noise n (equation 5-4). Accordingly the

covariance matrix

covix,x) =M {z ZT} =M {(S' + n) (s'T + nT)}

(@]
il

XX

T T T
M {s' S'T +ns' +S'"n +nn} (5-10) *

]

M{s' $'7} + M {ns'T}+M{S n}+M{nn}

=Cc,,+C _=C+pD,
sS'Ss nn

after one assumes that the measuring error (n) has no correlation with

the signal (S') at each observation point. Under this assumption

c . =M {27} =M {s(s' + 7T} =M (s5'"} + M {sn"}
=M {ss'"} | (5-11)
= CovV (s, s') ,
and
C ., = COV (s', S) (5-12)

are pure signal covariances which describe the correlation between the
signal c¢omponents in the domain of the "observation" and "computation"
points.
The above minimum is to be found subject to the constraint
function
AX + BV + W =20, . (5-13)
where A is the nxu design matrix of equation 5-3; X the u vector of

unknown parameters of equation 5-3; V is the n+p vector cf cyuarion

5-8; and the newly introduced quantities

* M stands for mathematical expectation - sometim:s denoted by E.
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B =[01]-1I] (5-14)
nx (n+p) nXxp nxn

is the second design matrix consisting of a null and minus identity
matrix, and

W = -x (5-15)
nxl nxl

is the vector of measurements. In the case that we choose to solve for

corrections to some approximate (or observed) parameters, then

W° = AX°®° - x , (5-16)
or
W=2AX - x . (5-16a)
The purpose of introducing the null matrix in the above was to
involve the signals S (to be predicted) in the equations without modify-
ing the original mathematical model given by equation 5-5. To

corroborate this, we substitute B, V and W above into equation 5-13:

-S .
AX + [0{-I]1p---|~-x =0 (5-17)
-Z
AX + Z = x (5-18)

which is equation 5-5.

5.3 Collocation Equations

The least squares normal equations relating the unknown quan-

tities X and S to the known quantities A, x, C__, C and C are
ss XX SX

obtained from the variation function

~ ~ ~ ~

¢ = VTPV + X PXX + 2KT (AX + BV + W) , (5~-19)

where all quantities are defined immediately above and Px is the weight
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matrix on the parameters as before. We recognize this to be the

variation function of the standard-combined case with weighted para-
meters. The equations corresponding to the above have been derived
in detail in Section 2 (equations 2-74 to 2-94). We now specialize

these equations to the collocation problem.

Solution for the Parameters

The solution for the parameters is (equation 2-76)

=X +X, (5220)

ol

where X is the vector of weighted parameters, while the correction

vector is given by (2-74)

-1 7T -1 . -1 .7 -1.T -
X = - [AT(BP B) A + Px] A (BP la ) lw. (5+21)
In the above
C C 0
-1_T
e T = oty | 5% S h.]=c L (5-22)
c c -1 x
Xs XX
Using equation 5-10 and the above,
1
~ ]
- -1 - H .
X = - [AT(C+D) lA + Px] AT(C+D) 1W. J (5=23)

Note that the variance-covariance matrix for the signal at the observa-
tion points (C) and measurement error (D), and the weight matrix fo? the
parameters (Px) enter as three separate pieces of information. Also note
that the covariance matrix CXS needea for the prediction of the sighal
does not affect the solution of the parameters X since it does rot

appear in the above equation. -
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For the case of weighted parameters
W= AX - x , (5-24)
where X is the quasi-observed value of the parameters with weight matrix

Px’ and x are the measurements. For the unweighted case

~ _ 1T _
X = - [AT(C+D) lA] lA (C+D) lw , (5-25)
where the misclosure vector W becomes:
W= -x |, (5-26)
or
w=u=2ax° - x (5-27)

depending upon whether one wishes to solve for the parameters themselves

. . o
or corrections to some approximate value X .

Solution for the Signal at the Computation Points

The expression for computing the signal at the computation
points follows from the equation for the adjusted observations (equation

2-80) and residual vector (equation 2-79), namely

L=L+V, (5-28)
where
v=-ptgTg (5-29)
and
K =.(gp % BT)"l (BX + W) . (5-30)

The observed value of the signal can be taken as zero as per the con-
dition imposed upon this quantity -~ namely it is a random variable with
zero mean.. Hence the solution for the signal is given by the residual

vector. Noting that



68

c Cc 0 C .
- s
-p lBT - - s sx = sx , (5-31)
Cxs Cxx| |7 | Cxx
and using equation 5-22
= -5 Cox| -1 .-
L=0+ y=|.]|-= _ cxx (AX + W) , (5-32)
-2
XX

and finally the signal is estimated from:

2 _ -1 5 -
g = -cSx cxx (AX + W) (5=33)
_l ~ ) .
= —Csx (C+D) (AX + W) . (5=34)

The collocation solution does not contain an equation for 2,

however one can get from equation 5-32 the required expression:

: —l ~ "~ .
Z = -cxxcxx (AX + W) = =(AX + W) :] (5-34a)

~

The problem of spliting 2 into signal s and noise n estimates is the

subject of Section 5.5.

Variance-Covariance Matrix for the Parameters

The variance-covariance matrix for the final (adjusted)
parameters
§ = X+ X (5=35)
is, using equations 2-851
Is = o2 Q=2 , (5:3€)
X o

oz (AT (ep 1N 1A 4 ) (5-37)



69

2 . S .
where o, 1s the usual a priori variance factor. Considering
the.collocation definitions of A, B (equation 5-14), and P

(equation 5-9 and 5-10) .we get

I, = oi 0. (5-38)
X X
L, =0 AT(c4p) ta + b 17t . (5-39)
= o ' X
X
In the case that no weights are applied to the parameters
1.2, =00 AT (o) AT, (5-40)
X X

which is identical to the collocation equation.

Variance-Covariance Matrix of the Signal at the Computation Points

We have seen above that minus the signal at a computation
point is like an adjusted observation because an adjusted observation
equals the observation plus the residual, and in collocation this equals
zero (for the signal) plus, minus the signal (see equations 5-8 and
5-28) . Thus the variance-covariance matrix for the signal follows from

that of the adjusted observations (equation 2~36), namely

Z,\=O QA’
L %L
where
- -1_T - -1._T -1_T-1
Q. =P Ly p T (e t8T) lAQ: al(ap B y tep 7o e e T (mp e T e
L X (5-41)
and where Q. is given above in equations 5-38 and 5-39. Since from
X
adjustments

(sl B3
it
[

1V, (5-42)
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noting L is a null vector in collocation,

thus

[l b
"
@

R -3
+ V= |~-- ) (5=43)

[-9

-2

then

[€p! 34

{
|

Q = ..——:--- R (5"44)
(

[N
v

It is Zg that we are after. We now specialize equation 5-41 as before

by using the definitions of the various terms

. R
£, =|—- '— -
L L2201 Iz
boltes )tz
CSS ' CSX CSX
1
=l__ + clALA%:lm V' C
|" = - XX i XX XS XX
o o o
XS XX XX
sx -1 -~
-l—=| C [c..i1c..1. (5-45)
. c XX XS XX
XX

Picking out only the upper left portion from the above hyper-matrix

equation, one obtains

t2=c +c clrar. actc -c ¢l (5-46)
S SS SX XX i XX XS sSX XX XS
— T - -
=c +¢c @omtarn alcmtec -c @ te | (5-47)
sS sX § XS SX XS -

which is identical to the collocation equation.
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Let us now examine the expressions for the parameters
(equation 5-25), signal equation (5-34) and their respective variance-
covariance matrices (equations 5-40 and 5-47) to determine the number,
form and size of matrices to be inverted. The solution and variance-
covariance matrix for the parameters requires two matrix inversiong in

(al (c+p) ta;7t . (5-48)

The first inversion is a fully populated matrix because of the correla-
tion among the signals at the computation points and has dimensions
equal to the number of observations. 1In certain applications this
matrix can be reduced to a band matrix and then by using special inver-
sion tactics, like "compacting out the zero parts" the inversion is made
faster, e.g. [Krakiwsky and Pope 1967; Isner 1972; Knight and Steeves
1974]. The second inversion is of a fully populated matrix of order
equal to the number of parameters. Equations 5-34 and 5-47 (pertaining
to the signal) require no additional inverses to that made in the

determination of the parameters.

5.4 Stepwise Collocation

We have seen that collocation equations follow directly from
the equations of the standard-combined case of adjustments simply by
specifving the collocation forms of the design matrices A, B, and
weight matrix P. On the other hand, we cannot deduce the coquential
collocation equations of Moritz [1973a] from the Kalman (sequential)
expressions derived in Section 3 and 4. This is because in the latter
development the observations of consecutive stages ar: assumed to be

uncorrelated.
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This assumption is prohibative in collocation as the signal
part of the observation has a continuous and complete correlation which
must be accounted for when grouping the observations in stages. Thus
one sees that from this point of view, collocation is a more general
method. Below we simply state the sequential collocation eqguations
from Moritz. Recall the collocation form for the solution of the
parameters (equations 5-25 and 5-26); namely

x = [atct a7t aTet

X . ’ (h=-49)
XX XX

In sequential collocation the matrices and vectors are partitioned in

two, such that

N
1
A =f--d, (5-=50)

1\?

.

X

Cxx el D T . (5-52)

Cat Cp

The solution for the parameters is given by

-1 =T =-1 NS |

~

= + - ‘—Al -
X=X, + P70 R Co (xy - Cy O X - AX) (5-53)
where
-1 T -1 -1
Pl [Al Cll A1] , (5-54)
A=A c.. ¢t , (5-55)
2 2 21 "11 ™1
el - qe.. -c ¢l v A TR (5-56)
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and X, is the solution using only observations xl, that is

1
: T -1 -1 T -1
= . -57
X, = (&) €7 A)) T Ay C1 % (5-57)
The solution for a signal element in two steps, is given by
- - -1 -1 -1=T —--1 , -1 - A
= + (C_.,-C - A P A - - ’
Sp 7 AT Cp % % P R, By Oy A ) |
where the newly introduced terms are defined as
T \ _
Cp = {cpl: CPZ] , (5-59)
and él is the signal computed using only observations Xy, that 1is
S, =c., CFo(x, - AX) (5-60)
Sl Pl T11 1 1717

T . . .
C_. is a row vector of dimensions 1lx(n

P +n2) [Moritz 1973a)]; here only one

1

A

signal element (SP) is estimated. However, the same formula could be

applied for all psignal elements (vector S) by using

+n )= [Cﬁl ' ng
2 px 1 PXA

]

C
H=x
pxiny 2

instead of CP.

The variance-covariance matrix for the parameters is

L B
Zx = ZX Pl A

-y ol (5-61)

T =
2 C22 21

where

Z)"( = P . (5-62)

In the above sequential collocation expressions, one sees
that one matrix inversion is necessary, namely that of 522 which has
dimensions equal to the number of observations in the second stage.

It is interesting to note how the correlation among all the signal

elements is accounted fcr even though the full matrix
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+ = c = (5-63)
XX c+D ¢ C c

(@]
il

is not explicitly inverted. We stress that it is implicitly inverted
thereby giving rise to expressions like equations 5-55 and 5-56. Thus
we see how the correlation among the signal elements, which is

essential for collocation, is accounted for in the sequential expres-

sions.

5.5 Alternative Derivation of the Collocation Equations

There are several alternative ways we can derive the colioca-
tion equations. These alternatives follow from the number of ways we
can arrange the parameters X, signal S and S', aid the residuals (correc-
tion to the observations) V. This arrangement can take place in the
form of an "association" or in terms of an "association"and a
"combination" (see Table 5-1).

In the linearized mathematical model

AX + BV + W =0, (5-64)
we usually identify the term AX with the parameters (weighted or not
weighted) and the term BV with the observables (weighted). This
leaves us with the possibility of associating the signal S and S'
with either of the two terms - this leads to alternatives I and II
(Table 5-1). If there are weights for the parameters as well we have
alternative III - a pure condition case adjustment. Note we have not
split the'signal} say S to term AX and S' to term BV, since they are

statistically dependent by n&ture.
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Table 5-1. Alternatives for the Derivation of the

Collocation Equations.

Alternatives term AX term BV
(association)
I X, s, s V (minus noise)
II* X v, S, S'
IIT v, S, s', X
_____________________ e e e

(association and

combination)
TU** X 7 = S%(-V), S
v Z, 5, X

* choice for alternative derivation of collocation equations

** "original" collocation derivation
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Alternatives IV and V arise as a result of combining the
signal S' (at observation points only) with the noise (-V) into one
quantity called Z, and first associating X with term AX, and Z and S
with term BV, and secondly associating all guantities with term BV.

Of course, the last alfernative is only possible if weights for the
parameters exist.

We recognize alternative IV as being the form of the
"original" collocation derivation given in the previous section. We
choose alternative II over the others for the alternative derivation for
no other reason than that the collocation equations can be deduced in
minimum space and time.

We begin our alternative derivation by assumincg a non-linear
implicit mathematical model (equation 2-6).

F(X, L) = 0, (5-65)
and after linearization (equation 2-16)
AX + BYVX + W =0, P, P* (5-66)

where the asterisk (*) denotes a hyper matrix or vector. 1In the above

we have the following definitions: the residual vector

~

-S
vk = |-st]| ; (5-67)
v
the second design matrix
B* = [0\ -I-1}; (5-68)

the misclosure vector

=
0
g
=
£

(5-69)

© At this juncture we could iave chosen a non-identity coefficient matrix

for the signal and noise,lut by not doing so we will arrive exactly at
the collocation equac.ions.
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the a priori weight matrix for the parameters

P =06 L =13 (5-70)""
5 ,

where Zx is the a priori variance-covariance matrix for the parameters;

— -1 r -1 ]
z:S Z:SS' 0 ES ZSS' 0
2 .i..f.
* = z z = L 0 , 5-71
P Go sst Lg 0 s ZS' ( )
-1
0 0 z 0 0 z
L E— e L._J

where ZL is the variance-covariance matrix of the observations. Note
that X is assumed to be statistically independent from S and S'. This
is a reasonable assumption as the a priori estimates for the parameters
are understood to be estimates from an other outside source of infor-
mation. The signal quantities are statistically

dependent by nature - that is the signal is characterized by one
covariance matrix in the domain defined by the observation and compu—
tation points. On the other hand, tﬁe measurement errors are assumed
to be statistically independent from S and S' as they are peculiar to
the measuring instrument.

We also note that in the evaluation of W, only the observed
value of the observables (L) and the quasi-observed valuei of the
parameters (X) appear; the signal components do hot appear as their
expected values (observed values) are zero by definition.

The variation function from which the lcast squares estimates

arc deduced is

. . o o
+ or simply approximate valies X, thus W

2 .
e ao = 1 for sake of conve:ience.
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+ 2K~ (AX + B*V* + W) .
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-1 ~

S ZSS' s T
~ |+ VPV

s's s s’

(5-72)

There are three quadratic forms to be minimized, the first involving

the parameters, the second the two signal components, and third thé

observational corrections.

In this formulation we see that the obser-

vational corrections do appear explicitly in the quadratic form and

in the constraint function.

This fact has both an advantage and a

disadvantage as we will witness below.

Our model (equation 5-66) fits into the standard combirned

case ~ weighted parameters category (Section 2.4). We proceed to

utilize the expressions contained therein (equations 2-74 through

2-97) to obtain the collocation equations.

Solution for the Parameters ﬁ

From equation 2-74, the solution for the parameters X is

given by

1 1

~ — T —
§ = - (T (grpx lpxT)

A+ P ]
X

lAT(B*P*—lB*T)_lw. (5-73)

We specialize the above expression to the problem at hand by use of

equations 5-67 to 5~71 and get the following:

D R
L X ; -74
grg Tgr O (5-74)
0 0 3
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XS ZSS' 0 _9
prp* 1psT = (0t -1 -1) [z ) -1 | ; (5-75)
S's S' 0 .
0 ‘ -
0 ZL I
(srpx 1p+T) 7t = x4z )] (5-76)
S L
Thus
: T -1 -1.T -1
X = - +Zz o+ 5-77
(a (ZS, L) A+PX] A (YS. EL) W, ( )
and in collocation notation
. T -1 -1 7T -1 o ;
X = -[A"(C+D) = A + px] A (C+D) " W J (5-78)
we find that the above equation is equivalent to equation 5-23 .
Solution for the Signal §
From equation 2-792
- -1 T~ :
V* = -p* © B* K , (5-79)
where
K = B+ L B+l (ax + W) (5-80)
- Specializing the above as before we get
r— - - r—E -
ZS ZSS' 0 0 ss'!
1_ .7 ;
-pP* * = - —I = R -
P* "B Zgig Zgr| O L (5-81)
0 0 ) -I z
L L
b —-J P b e

Substituting the above, along with equation 5-76, into equations 5=79

and 5-80 yields
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— . -
- ¥
i I ]S
L=0+0%=]|-5"= ZS, (§#+ZL)_1(A§+W) . (5~-82)
v £
J LT

From the first row of the above hyper-matrix equation we get an expres-

sion for the signal at the computation points, namely

ol -1 ~
= - L + + -83)
S ZSS' ( gt ZL) (AX w) , (5
and in collocation notation
S = -csx (C+D)_l (AX + W) , (5-84)

which is identical to equation 5-34.

Solution for the Signal S'

From the second row of equation (5-82) we get an expression

for the signal at the observation points, namely

wnH

-1 N
'~ -85
ZS' (ZS+ZL) (AX+W) , (5-85)

and in collocation notation

1

S' = -C (C + D) ~ (AX + W) . (5-86)

There is no equivalent expression in the "original" collocation

derivation (See equation 5-34a).

Solution for the Observational Correction v

From the third row of equation (5-82) we get an expression

for the observational correction, namely

~ . . 1 ~
vV = XL (is‘ + Lx) (AX + W) , (5-87)

and in collo-ation notation
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1

V=bc+D) Y ax +w . (5-88)

There is no equivalent expression in the "original" collocation
derivation (see equation 5-34a). We can deduce an expression for the

combined quantity Z (equation 5-34a) by addition of equations 588

and 5-86, namely

A

= S' 4 (=V) = -(C+D) (C+D) "L (AR+W) = - (AR+W) . (5-89)

N

Variance-Covariance Matrix for the Parameters

The variance-covariance matrix for the final (adjusted)

parameters
X =%+ X (5-90)
is, using equation 2-85,
I, = 02 Q. : (5-91)
X X
= oi (aT (grpr1p+T) T1p 4 PX]_l . (5-92.)

After considering the definitions of B* and P* we get

L. =0% A, +z) A+t (5-93)
§ [e) S L X

After deleting weights on parameters and changing notation we get

L. = og T a1t (5-%4)

X

which is identical to the collocation expression (equation 5-40) .
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Variance-Covariance Matrix for the Signal of the Computation Points

The variance-covariance matrix for the signal components

follows from the corresponding expression for the adjusted observables.

The arguments why this is so have already been given in Section 5.3.

From equation 2786 /the weight coefficient matrix for the adjusted

observables is

-1 -1 T -1_.T -1

Q. = p* 4+ P* TRB* (B*P* "B*")

-1_.T

- px “B* (B*p*_l

B*T)—l

where Q, is defined in equation 5-91.

0]

s Ss*
Q=

np
[3 M

A A A

LS LS’

B*P*

X

A Q. AT (B*p*”

Since

0
n 1>

O
jaul 34

ol 14

L= |

-5
-5

i

A

\Y

1

TR

1

B*p*

1

(5-95)

(5-96)

(5-97)

(5-98)

The three diagonal terms are the variance-covariance matrices for the

signal at the computation points, the signal at the observation points,

and the adjusted observations, respectively.

are the covariances between them.

The off~diagonal terms

Let us now specialize equation 5-95 as before by using the

definitions of the various terms.
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rzg E%%- ZA:
= SL
Z: = Z: o Z: EA a
L* S's s’ S'L
a2 iy 5.
_-LS 1. I _J
r; b 5— ——z ]
S SS! SS'
=tz oz ol+| .l sy taraTa s ) ml 5w
s's 's! S s' L § s' L S's’s''L
L? 0 ZL zL
po— - -
.
-1
- Zs' (zs, + EL) [Zs's ZS, ZL] . (5-99)
ZL
e o

From the (one, one) position of the hyper matrix equation we obtain

the variance-covariance matrix for the signal of the computation points,

‘namely
£2 = r o+ 3 (5 4+ tarate +zo s -5 L+ rr o |5-100)
S ) ss''s! L ; S' L S'S SSs'! S! L Stg
and in collocation notation
sa=c +c (cp)y tar. aTemy t e -c (@ te (5-1C1)
S sSs sX i XS SX XS

which is identical to the "original" collocation expression f{(wequation

5-47).

Variance—-Covariance Matrix for the Signal S' at the Observation Points

From the (two, two) position of the above hyper matrix

equation we get the desired expression for s', namely

-1 T .y X - X 1
= 7 7, z > A X . X - + B
z§, Ls' + ZS,(LS,+LL) AZiA (?S,+ L) Zs' LS,(LS, LL) ZS.
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which has no equivalent in the "original" collocation formulation.

Variance-Covariance Matrix for the Adjusted Observation L

From the (three, three) position of the above hyper-matrix

._l T ! -1 -1
A =N ~ - E +2. ’
zi Lt R et AZiA (Bgu¥Ey) i L Fgrth)

which has no equivalent in the "original" collocation formulation.

equation we get the desired expression for i, namely

(5-103)

Variance-Covariance Matrix for the Observational Corrections V

From equations 2-87 and 2-94

2 2
ZV—OOQV’ (00—1)
= -p 18 (e 18T) taz, AT l8T) tp p7t
X
+ 78T (Bp71sT) Tt et (5-104)
Specializing by using the definitions of B and P , we get
! -1 (5-105)

- -1 . T - : .
L (B +2) AL (B 4D )T I I (B #E) L

v L %

Covariance Between Signal S and Signal é'

From the (one, two) position of the hyper-matrix equation we

get
2z 1 T -1 -1
o, = + e + - N z ’
g5 T Iggr tlgg (TgutE) AYRA (Tgo¥ip) iy = Tgg, (g ¥ly) T2g,
(5—1()(1)

and in collocation notation
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Toes = C + C (C+D)—l AZ:AT (C+D)—1C - C (C+D)'l c . (5-107)
sSX X SX

~

Covariance Between S and L.

The covariance matrix between the predicted signal S and the

adjusted observation L follows from the (one, three) position, namely

1 1

_l _ — _
$I ) TR - I (gt D | (5-108)

T
~AT (L
AZ~A" ( L

Dan = I, (E0,42)) 22T (2,

_ '
SL SS

a 2
Covariance Between S' and L

The covariance matrix between the signal S' at the observation
points and the adjusted observatims [ follows from the (two, three)

position, namely

-1 T e 1 _ - -109
AL~A (ZS|+uL) L z (Z '+ZL) L_.| (5-109)

= Ig (BgtEp) 2 L~ Yst '*s

S'L

Closing Remarks Regarding the Alternative Derivation

This alternative derivation of the collocation equations
has one basic difference from the previous derivation - that is it
explicitly involves the observational corrections. These corrections
appear in the minimum and constraint function of the variation function
(cquation 5-72) ,are solved for in equation 5-87, and have a variance-
covariance matrix given by equation 5-105.

When working with errorless data, simply delete'all quantities

related to the observational corrections V, that is ZL, ﬁ, Z&, i, and

~

covariance matrices involving L vanish. This does not affect the

expressions.



6. ANALYSIS OF METHODS

In this section we analyze the standard cases of adjustment,
the step-by-~step procedures, and the method of collocation. We begin
by recalling the various methods and discuss their derivations from a
general point of view (Section 6.1). This is followed by a detailed
comparison of the characteristics of, and assumptions underlying the
methods (Section 6.2). Then the methods are labelled according to terms
used in the literature (Section 6.3). Next the methods are compared from
the computational point of view (Section 6.4). We close by discussing

the methods derived herein along with related topics (Section 6,5).

6.1 Methods

In this section we classify the methods and trace the flow of
their derivations. The so-called methods derived in the foregoing
sections fall into the following three main groups (Figure 6-1): the
standard cases of adjustments; the step-by-step procedures; and the
collocation approach. All these methods are rigorous estimation
procedures - no approximate methods are treated herein.

We first derived the equations for the standard.vases of
adjustments (Section 2).  They serve two burposes. Firstly, in their

derivation we demonstrated a metuodology wlhiich was uvsed later in the

36
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Gauss-Legendre Least Squares
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Combined -
no weights on |___
Section 2.4 parameters
Section 2.4
Combined -
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Section 2.4
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Stahdard cases

Section 5
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Step by step procpdurgs Section 3 Section 4.1
! Kalman < - Bayes
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Section 4.4 ' > Sequential Phase
|

Summation of

Normal eguations . . . . . .
q Arrows indicate sense in which derivation

was made.

FIGURE 6-1. Trace of the Flow of Deri-ations
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derivation of the Kalman filter equations. Seconrdly, the equations of
the combined and condition cases respectively, lead to the collocation
and Tienstra phase equations. We do not wish to implyvhere that
collocation is a épecial case of the combined adjustment. We stress
that it was only the collocation equations themselves that were deduced

from the standard-combined case adjustment equations and not the basic

mathematical model itself.

The second group of equations were derived for the step-by-
step procedures (Sections 3 and 4). We began by deriving the Kalman
filter equations from basic least squares using the standard method-
ology. Then by applying two matrix identities we were able to show the
equivalence of the Bayes and Kalman filter equations. We stress that
although the equations are mathematically equivalent they are not
identical from the computational point of view. We return to this very
important aspect in Section 6.3 below.

The sequential and phase expressions we'derived respectively
from the Kalman and Bayes filter expressions simply by deleting matrices
and vectors pertaining to the time variation in the parameters. The
mathematical equivalence of the sequential and phase expressions is a
logical conseauence, since the Kalman and Bayes expressions were already
shown to be equivalent, but again we stress they are not identical from
the computational point of view.

Finally, two other step by step procedures were formulatci,
the Tienstra phase and addition of normal equations. ‘''he Tienstra phasc
eyquations were derived in two steps: first the basic mathematical

model was fomulated using his principle; %Pd ther the equaticns themselv
/
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were obtained directly from the equations of the standard-condition
adjustment case. The sequential and Tienstra phase equations were
found to be identical, thus we did not have to prove their mathematical
equivalence.

The summation form of the normal equations was formulated as
a direct consequence of matrix partitioning. The equation for the
variance-covariance matrix of the parameters was found to be identical
to the corresponding phase expression. The corresponding expressions
for the summation form of normal equations and the sequential approach
we?e found to be mathematicallv equivalent, different in form, and
different from the computational point of view. The mathematical
equivalence of the two corresponding expressions for the parameters in
the sequential and phase approaches follows as a logical consequence --
they are different in form and different from the computational point
of view.

The third group of equations derived were those for the
collocation method. Once the basic collocation mathematical model was
formulated, the collocation equations followed directly from the standard-
combined case of adjustments.

In this sense, collocation is identified by the unique manner
in which the elements of the basic mathematical model are specified
and not by the methodology used in deriving the equations for the
various solution vectors and covariance matrices. Also, we have seen
(Section 5.5) how to obtain the collocation equations by formulating the
objectives of collocation purely in adjustment terms. This is why we
show in Figure 6-1 a direct connection of collocation with ordinary

least squares.
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We found however, that it was not possible to derive the
stepwise collocation equations from any of the standard adjustment
cases, nor was it possible from the Kalman or Bayes equations. This
is because, in collocation the signal part of the observations is
correlated between consecutive steps, while in the other step by step
procedures the observations (and model noise in the case of Kalman and
Bayes filtering) are assumed to be uncorrelated between consecutive
steps. Also, there are basic differences between stepwise collocation
and the other step by step procedures which do not make the derivation
of one from the other possible. We describe these differences immed-

iately below.

6.2 Characteristics and Assumptions

The characteristics of the methods derived in the foregoing
are given in Table 6-1. Listed in the seven columns are: the symbolic
forms of the mathematical models (F and G) representing the functional
relationships between the observables (L «nd x), parameters (X and
signal components (S and S'); the four possible quantities to be
weighted - observations (P), parameters (Px), model G (Pm) and signal
components ; the weighed quadratic form to be minimized; and the
indication whether the parameters (X) are taken to vary with time.
Given in the rows heading each group is a series of "labels", consisting
of a combination of the terms-adjustment, filtering, smoothing and
prediction. First we discuss the characteristics and ther ir Section

6.3 the labelling.



TABLE 6-1.

Character.stics of Decived Methoas

I

Weight4 Weights on | Quadratic Time
Model Weights on Weights on fon Modek  Signals form Varying
Observations Parameters (@) Para-
meters
Standard Cases (Adjustment)
Condition F (L) =0 P -- - -= residual V -
Parametric L = F(X) P -- -- - " -
Combined F(X, L) =0 P -= - - " -
Crmbined with F(X, L) =0 P Px - -- residuals V -=
weights parameters X
Step by Step (Adjustment and Filtering)
;Sequential Fl(X, Ll) = Pl' P2 - - - residuals -
i
. = , V
| FZ(X' L2) Vl 2
Phase " " — = —_ " _
Summation i " - - - " --
Normal Equations
, Tienstra Phase " " - - - " -
-
Step by Step (Bdjustment, Filtering, Prediction of Parameters, Smoothing)
Kalman F1(x' Ll) = residuals V_V
FZ(X’ L2) = Pl' P2 Px(optlon) Pm - parameters X yes
model errors Y
Rayes G (X(t)) =0 m

Collocation (Adjustment, Prediction, Smoothing, Filtering)

—

original

in adjustment
terms

sterwise colloca-

tion

F(X, s, 8', x)

F(X, s,
F (X, S, s{,

FZ(Xr S, sér

s', L)

1] ]
QO

xl)=0‘

=0
x2)

P =23
l

52

with signal S'

with signals S

H

1

P_ (option)
X

P ti
x(op ion)

for S and S'

for S and S'

for s, s!, S

1

1
~
<

signal S,combined
quantity Z=S+n(noise)
residual V signals S
and S'

signal S,combined
guantlty zl=Si+nl

eyl
22—S2+n2
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Models

The methods contain different types of mathematical models as
follows. The condition case contains only observables. The parametric
method has observables expressed explicitly as a function of the
parameters. In the combined case the observables and the parameters
are implicitly related.

The sequential, phase, summation of normal equations, and
Tienstra phase methods have two sets of models with common parameters
and different observables. The only reason for this specific arrange-
ment of parameters and observables was to be consistent with the Kalman
filtering formulation.

The Kalman and Bayes filtering formulation has two groups
of models: one implicit form (combined case) in the first step; and one
implicit form along with a second model giving the time variation in
the parameters in the second step.

The original formulation of collocation has an implicit model
relating the parameters X, two signal components S and S', and the
observations (x). The noise n is combined with the signal S'.
Expressions are given for X and S but not for S' and n. The formulation
of collocation in adjustment terms also uses the implicit type of model.
All three quantities S, S' and residuals V (-n) are treated explicitly
and expressions given for their computation along with X. Stepwise
collocation employs an implicit model partitioned into two parts

according to the observations x, and x the parameters X and signal S

1 27

to be computed remain common to.the two steps. Note the signal at the

observation points (S!, sé) are vpartitrioned along with the noise (nl, n?).
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Both developments of collocation contained herein utilized
a minus identity matrix in the second design matrix, namely equations 5-14
and 5-68, e.qg. ,

B* = [OE-—I:-I] ,

where the null, and two minus identity matrices correspond respectively

~

to S, é‘ and %. As well, one could have non-identity matrices such
as in
B* = [0, BSE B] .

The latter would yield more general expressions with the same analogy
holding that exists between the combined and parametric cases. Kouba
[1975] has used collocation, without interpolation, in this more general
form; Schwartz [1975] has done so as well but without the parameters X.

We note that by including a null matrix in the first position
of the hypermatrix B* we simply build-in an interpolation process for
the signal S (at the computation points). These signal components do

not enter into the solutions of X, S', and V. S is computed via its

covariance with S' (See equations 5-83 and 5-84), namely

“egr

wnp
1

) R
+ ,
(ZS. LL) (AX+W)

nb
1t

-C  (C + D)_l(A§+w)
sSX

A

There is no theoretical limit on the number of signal quantities §
that can be computed. This is why collocation has become known in some
scientific circles as "the method that can compute an infinite number
of parameters". We, of course should not confuse these "interpolated
parameters"é with the parameters X.

One other aspect of collocation worth mentioning i: the

possibility of processing errorless data, that is discrete data procured
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from some computational procedure as contrasted to data from a measurement
procedure. Errorless data will have no noise component but will have

a signal component due to its discrete distribution. This topic is
sometimes known as least squares approximation [Vanféék and Wells 1972].
This latter usage of collocation is probably the rationale in the
original derivation of collocation for not explicitly involving the

noise but combining it with the signal S'. Even if we include the

noise n and signal S' as separate-explicit quantities, as in the alter-
native derivation (Section 5.5), we still can use the equations for
processing errorless data by simply deleting all quantities and expres-

sions dealing with the observed quantities.

Weights on Observations

The weight matrix of the observations plays a role in all
methods. In the standard cases the weight matrix (P) is usually
defined as the inverse of the variance-covariance matrix, Z;l (di =1).
In most applications ZL has a diagonal form but may be on occasions a
banded or fully populated matrix. In the first two groups of step by
step methods (sequential through Bayes), the observations in different
stages are assumed to be statistically independent. In the collocation
equations we find that ZL (D in collocation notation) is combined with
the variance-covariance matrix of the signal S' (denoted ZS' or C).
Recause by nature, signal quantities are statistically dependent, C is
a fully populated matrix, as is C plus D and its inverse. Thus, we
witness in collocation that a fully populated matrix of order equal to
the number of observations needs to bhe inverted. Even in stepwise

collocation where the observed data is partitioned into groups, the
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signal quantities in respective ygroups are statistically dependent
and the correlation is indeed taken into account by the stepwise collo-

cation equations.

Weights on Parameters

The weighting of‘paraméters was included in the combined case
and carried through our derivation of the Kalman and collocation
equations for two reasons. One was to involve these weights
explicitly so that one can see where in the expressions they enter vis-
a-vis the other weights such as on the signal, observations, and model.
Secondly, in the Kalman filtering equations a priori information is
needed to start-off the filter process.' This information can be from
two sources: from a solution of F1 or from some independent solution
not related to the present process, or both. Including weights on the
parameters in collocation makes the expressions more general. If no

information on the parameters X is available the weight matrix is

simply a null matrix.

Weights on the Model

The weighting of a model arises only in Kalman and Bayes
filtering. It is assﬁmed that the model (g) describing the time
variation in the parameters is not exact. These model errors are
assumed to have expectation zero (zero mean) and second moments given
by a variance-covariance matrix containing no correlation between

consecutive steps. One should note that model errors arc assumed to be



96

present only in the secondary model (G) and not in the primary model

(F).

Weights on the Signal

The weighting of the signal is intrinsic to collocation. One
can loosely interpret the signal‘as a model error by imagining that
we are unable to select the appropriate parameters X and design matrix
A to describe the signal component of the observable. We then say
that this is a shortcoming in the primary model. But as it turns out,
in collocation it is hypothesized that the signal is better described
by a variance~covariance matrix rather than by some analytical parameter-
ization. Thus we see weighting the signal in collocation as being
something quite different from say the problem or parameterization in
models for the purpose of eliminating systematic effects in observables.
Collocation is then a powerful tool in processing observed data contain-
ing a known signal component of zero mean and a certain variance-
covariance matrix. Note the signal component occurs in the primary
model (F) contrasted with the Kalman filtering model error which
occurs in the secondary model (G).

At this point in our analysis, we may introduce the argument
that Kalman filtering is identical to collocation because all one needs
to do to show their equivalence is to substitute the time variation in
the parameters described in the secondary model (G), along with the
weights on the model (Pm),into the primary model F, thereby vyielding
one model F as in collocation where the parameters X and weight matrix

Pm are interpreted as the signa &' and weight matrix for the signal.
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By doing this one "looses" the parameters X. Also how does one intro-
duce the signal S? Thus it is difficult to see how collocation is
equivalent to Kalman filtering. We return to this discussion in

another context in Section 6.5.

Quadratic Forms

Next we discuss the quadratic form of each method. This is
the most fundamental quantity for it is through its minimization that
one obtains least squares estimates for the parameters and other quan-
tities. We have seen in the foregoing developments that our quadratic
forms consist of two parts, a vector and a weight matrix.

In the quadratic forms for the standard cases of adjustment
the vector is defined in terms of residual vector G(corroctions to the
observations) and weight matrix P of the measurements, that is

&TPG = minimum - (6-1)
The exception is the case where the parameters are weighted’thus giving
rise to a second quadratic form where the vector is defined in terms
of the corrections to the parameters and weight matrix corresponding
to the a priori information on the parameters, that is

T 2 ~T ° ..
VPV 4+ X'P Xx= minimum . (6-2)
X

In the step by step procedures of sequential, phase, summation
of normal, and Tienstra phase, two quadratic forms are minimized. Both
are defined in terms of a vector of residuals and weight matrix for

the mcasurements. The fundamental assumption is that there is no
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correlation between the measurements of two consecutive steps, thus

allowing the quadratic form to be broken in two, that is

0% A, :
1P1V1 + V2P2V2 = minimum . (6-3)

Thus we see that the standayd cases of adjustments do not.
differ fundamentally from these step by step procedures. All are
mathematically equivalent and rigorous, the only difference is in
computational efficiency (see Section 6.4).

The step-by-step procedures of Kalman and Bayes filtering

have the following four quadratic forms:

V.P.V, + V.P V., + X X + Y
151V VR, P

T
m

ngm = minimumn, (6-4)
where the first three pertain to the measurement corrections and
parameters (an option), while the fourth is defined in terms of the
vector of errors in the model describing the time variation in the
parameters and the corresponding model error weight matrix. It is
assumed that the model errors are statistically independent between
consecutive stages. Thus we witness that these two step by step
procedures are fundamentally different and more general than the other
methods mentioned immediately above.

The quadratic form for the original collocation is fundamen-

tally different from all of the above. Disregarding weights on the

parameters, the quadratic form is

~

vipy = minimum (6-5)

T-1

[:éTE %f] Css Csx
C C
XS

XX, B

S

Il

minimum ,
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where S is the vector of signal components to be estimated at the
computation points and Z are "centred observations" defined by

(equation 5-4)

N

N
o

x - AX , (6=6)

or the combined gquantity

A~

Z

i
wn
+
ol

(6~-6a)
The variance-covariance matrices Css is for the signal, CXX for the
measurements (containing two components S' and n), and CSx and st
are covariances between the signal S and measurements. Since the
signal and measurement errors (noise) are assumed to be statistically
independent, these covariances originate purely from a signal source.
For collocation to make sense, these signal covariances are always
present. Thus we see the sharp difference between collocation and the
other methods, for in the step by step procedures above, the observa-
tions (and model errors) were assumed to be statistically independent
between stages. It is because of the presence of this covariance,
that the stepwise collocation equations could notbbe deduced from the
standard cases or the Kalman filtering expressions, thus another reason
for saying that collocation is a more general method. On the other
hand, the Kalman filter equations cannot be deduced from the stepwise
collocation expressions which do not havc, in their present form, the
time variation aspect in the parameters.

With regards to the signal quantity S, we witness that even
though it enters into the quadratic form, it does not enter into the

constraint function as scen below (eduation 5-13):
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~

AX 4 BV + W = 0 (6-7)

-5

ax + [0 -I]|l--] - x=0 (6-8)
-z
CAX 4+ Z =x , (6-9)"

which is the original collocation model. This fact is also true for
the alternative derivation of collocation. On the other hand,
however, the signal S is "involved" in the constraint function and
its determination is made via the signal variance-covariances entered
into the computation as already mentioned earlier.

The quadratic form used in the alternative derivation (equa-

tion 5-72) is (after deleting weights on parameters)

A~

~ T S SS — i e
S'] + V'PV= minimum, (6-10)

7 5 st

where we see that the signal quantities S, §', and corrections to the
observations V enter as separate quantities. Even though the above
quadratic form looks somewhat different from that of the original
collocation (equation 6-5), the same set of equations are obtained for
the parameters % and signal é.

To demonstrate that collocation is indeed different from
ordinary least square methods, we compare the respective equations
giving the solution for‘the parameters. For ordinary least squares we

chose the equation of the parametric case (B = -I) with weighted

parameters (equation 2-74)
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X = —[ATPA + }?x]—1 ATPW (6-11)
and that of collocation (equation 5-23)
X = -(aT(c+D) A + PX]_lAT(C+D)—lW. (6-12)

We chose the cases with weights on the parameters so one ¢€an
see where all the various weights enter into the solutions. First we
see that the weight matrix Px on the parameters enters identically.
‘This is not surprising since the collocation equations were deduced
from the standard equations. Secondly, we see that the weights on
the observations (P) enter alone in ordinary least squares, while the
variance-covariance of the purely measurement errors (D) enters
together with the variance-covariance of the signal (C) in colloca-
tion. This latter fact is what gives rise to the two different
solutions for the parameters (and the other quantities as\well).

For example Rapp [1973] and Reigber and Ilk [1975] have used both
ordinary least squares and collocation methods iﬁ practise and have
found significant differences in the respective solutions.

A point worth reiterating vis-a-vis the comparison of
original collocation, the alternative derivation of collocation, and
ordinary least squares is that even though we were able to formulate
collocation as a straightforward problem in adjustments, thereby
explicitly involving the corrections to the observations in the quadratic
form and constraint function and even solving for them, we still
deduced the same set of equations for the parameters ; and é; but
this equivalent set of collocation equations is different from the
corresponding expression for the paiameters X in ordinary least squares

as demonstrated immediately akove.



6.3 Labelling of Methods

We are now in a position to label the above methods by
terms such as "adjustment", "filtering", "smoothing", and "prediction"
_ often used“}pmthe literature. First ~ define them and then apply
them. We deal with two situations (Figure 6-2) - the parameters not
varying with time (X # X(t)) and in the case they do (X = X(t)).

An adjustment is said to take place when an estimate of the
parameters and the observational residuals is made from a least
squares solution using all the observations at once. Then the
approximate values (or quasi-observed values) of the parameters and
the observed value of the observables are corrected (adjusted).

Filtering is said to take place when an estimate of the
parameters (X # X(t)) is made using only part of all the available
data in any given stage of the estimation, and then this estimate is
up-dated as additional data is added in the subsequent steps of the
estimation process. By estimation in steps, it is possible to
screen (filter) observed data as it is added.

Prediction takes place in collocation (X # X(t)) when an
estimate of the signal at computation points is made using all or part
of the data. The signal S' at the observation points is said to be
smoothed after they have been corrected.

Smoothing is said to take place in Kalman filtering when an
estimate for the parameters (X = X(t)) is made for sometime in the past
using all observed data including that for the present; that is work

backwards and up date Xl due to F2 because Xl is a result of Fl only.
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Filtering is said to take place when an estimate for
the parameters (X = X(t)) is made for the present using all
observed data in the past, up to, and including the present.

The data of the "present“ is allowednko éffeét.ﬁhe solutionm§f
the "past", thus allowing screening (filtering) as for the case
(X # X(t)).

Prediction is said to take place when an estimate for
the parameters (X = X(t)), is made for the "future" using all
data up to and including the present. This is possible because
of the existence of the secondary model which describes the
variation of the parameters with time.

We have just witnessed the striking difference in the
meanings of the terms prediction and smoothing in Kalman filter-
ing and collocation, showing yet another difference between
these two methods. Further to this discussion we understand that
in Kalman filtering the prediction essentially takes place at
the observation points where the future observations will be
made, while in collocation, prediction is made at computation
points where the signal is sought. In Kalman filtering we could,
however, predict the parameters X at points where there will be

no observations and thus have no benefit from the new observations.
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These interpolated values of the parameters begin to look like

the signal quantities S, while the parameters that coincide with
the observation points seem to look like the signal S'. 1In
attempting t; strehgthen this argument  we could pointvout'that
the variance-covariance matrix for the model errors Zm corresponds
to the variance-covariance matrix for the signal ZS'(CS'S or C

in collocation notation). If the parameters X in Kalman filter-
ing would take on this interpretation then where are the

parameters X themselves that would correspond to the parameters

X in collocation? We must not forget in one case the parameters X
of the mathematical model are being predicted and in the other

it is the signal S, a quantity related to the observables, that

is being predicted. Also, one process is static -~ the other is
dynamic. One can go on endlessly predicting signals in collocation.
In Kalman filtering, prediction of the parameters only has sense

if new observed data is forthcoming, for the lack of data stops

the filter. One sees some loose analogies between Kalman filtering

and collocation but it is difficult to see they are

equivalent.
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From the foregoing developments and discussions the
following labellingvis possible (see Table 6-1):
(i) the standard cases are adjustments (of observations and
parameters) ;

(iii"ﬁhe”éiep'By step érbbédures of sequential, phase, summation of
normal equations, and Tienstra phase are adjustments (of
observations and parameters) and filtering (of observations);

(iii) the step by step procedures of Kalman and Bayes are adjustments
(of parameters), prediction and smoothing (of parameters), and
filtering parameters (due to G) and observations;

(iv) collocation is an adjustment (of observations and parameters)
and a smoothing and prediction (of signal);

(v) stepwise collocation, in addition to the characteristics of
collocation, is filtering of observables (with two random parts,

the signal and the noise).

6.4 Comparison from the Computational Point of View

We choose to compare the methods from the computational
point of view by examining the number, form and size of matrices to
be inverted in the respective methods. It is recognized that this is
not an entirely complete analysis as one should also consider the
number of multiplications, subtractions, and additions. Neverthe-
less, this will give us some indication of the computatiomal efficiency
of each approach. We list below the expressions giving the solution

for the parameters for the various methods for easy reference.
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Condition case:

The correlates are computed from equation 2-=130, namely
k=(8 ptEN) g, (6-13)
rxn nxn nxr rxl
\-—-—-———V——-——/
rXY
Parametric case (equation 2-115):
x=-1a" »p a1%aT p w (6-14)
uxXn nxn nxu uxn nxn nxl
e ——
uxu
Combined case with weighted parameters (equation 2-74):
- - - - - -1
x=-m 3 Pttt oA s P LT ® o7t eT )y, (6-15)
Uxy rxn nxn nxr rxu Uuxl UuUXr rxn nxn nxr rxl
\...__v__../
N rXr
~
uxu
Sequential (equation 4-22) and Tienstra Phase (equation 4-74):
: -1 T -l - s
= X' - + ! + !
X =X N A (M, A, Ny A2]1(W2 A, X')
) -1 T -1 7 -1 .7 -1 A
= X' - N A i P + A N . '
p By DBy Py Bo Ay N AT T, ea, XD,
uxl uxu UXT, I, XN DXN NXr, Y, Xu Uxu uxr, r2xl r,xu uxl
(6-16)
where the initial solution (equation 4-20) is
> -1 T -1_T -1 -1
v = - -
X Nl Ul [Al (BlP1 Blz All Ul (6-16a)
: \;~xr_
- 1771
N
uxu
Phase (equation 4-36):
o -1 T -1 T
X = X' - N A2M2 (W2+A2X),
= X' —[NL+A3(B?P;BE)—I’Azj—l A,L,(sz;lBg)_l(w;rA?;(') ' (6-17)
22 2 2 2 2 272
Y XY, XY
2772 Y 22

[N

£<

u
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where
X' = =N~ U (6-17a)
as before.

Summation of normal equations (equation 4-39)

~

o . e e ,_l‘ﬁ,d — e e e e
X =-(N +N,) " (U +0U)

T -1 T -1 T -1 T -1 -1
== e + .
a, (B Py B) ) A A, ( B, P, B, ) "A)] T(U;+Uy)
uxr, rlxnl nyxn, n,xr, L XU UXr, r,Xn, n,Xn, n,Xr, r,xu
\-—-—_V_.__..____J -~ v S
r Xr; r xr,
N S
~—
uxu (6-18)
Kalman filtering (equations 3-60 and 3-61) :
- . -1.T -1 T -1 5
- [ 1 1 ' —
X2 X2 (N2) A2 [M2 + A2(N2)4 AZ] (W2 + A2X2) ' (6-19)
where
Wt =re o o+pteT el (6-20)
2 1 X m
uxu uxu uxi uxu uxu uxu
- -~
'
uxu
— T— - - -
oo+, a1 s e, et BT wa o @antaTot,
2 22 2 X% 2 %r 2 2 2 (6-21)
I,XD, NoXn, n,Xr, r,Xu uxu uxr.,
[N >4
—~V
r,Xr,
and where from equations 3-58 and 3-23
(- *3] -
x2 @Xl ’ (6-21a)
2 -1 T -1 T -1
V= + - A. + P . 6-21b
X1 (Nl Px) v, [Al (BlPl Bl) 1 x] Uy ( )
\_\/_l
R S .
W

uxu
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Bayes filtering (equations 4-4 and 4-5):

Sy _ g1 T -1 o _
X2 = X2 N2 A2 M2 (W2 + A2 X2) 1] (6-22)
-1 -1 T -1, -1 T -1 T -1 -1
= + -
N2 [ié(Nl + Px) d Pm ), + 5? (B2 P2 52) AZJ , (6-23)
Xu uxu . T Xr.
u ——aen 2 2 N . - - - o
-1 1 T -1
M2 ( 32 P2 52 ) . (6-24)
r,xn, n2xn2 n,xr,
N ~ o
T, Xr,
and where ﬁé is obtained as previously (Kalman filtering).
Collocation (equation 5-23):
X=-(a"( +pta + le-l At (c+p) "t W, (6-25)
uxl UxXn NXn nxn nxu  uxu
\...__V...__./
nxn
N— ~ o
uxu
Stepwise collocation (equation 5-54):
e -1-T=-1 -1 -
= + P."A_C - - -
X=X 1 2%, (x2 Cyy cll %) A2 xl) ) (6-26)
where
-1 T -1 -1
= B A . -
Pl ( Al Cll 1 ) (6-27)
uxu uxny nlxnl nlxu
1 -1 = -1 =T -1
= - + P -
Ca [C =% G Cp2 By By 1 (6-28)
nzan n,xn, nzxnl nlxnl ny X, n,Xu uxu uxn,
and where from eguations 5-57 and 5-54
% =ptalc? (6-28a)

158 B S ®



The number and size of the matrices to be inverted in the
various methods indicated in their respective solution vectors are
given in Table 6~2. The choice between sizes r or n follows from
whether one has a combined (implicit) or parametric (explicit) type
of mathematical model. The asterisk (*) on the n, or n, indicates that
an inversion is not necessary if the observations are uncorrelated
within the stage. We of course have the assumption that the observa-
tions are uncorrelated between stages; the only ekception to this is in
collocation where the signal is correlated both between different
stages and within a stage. To assist in our analysis we articulate the
efficiencies of some methods for specific situations in Table 6-3.

Tables 6~2 and 6-3 speak for themselves; we only emphasize
some of the important comparisons. For the first situation in Table
6-3 (I - combined case) we see that the sequential or Tienstra phase
techniques require one less inversion than the phase or summation
techniques. The Kalman filter is identical to the sequential technique.
The Bayes technique requires two more inversions than the Kalman
technique.

The second situation (II - parametric case with correlated
observations) makes no difference in the comparison of the methods -
the number of observations (nl and n2) simply replace the number of
equations.

The third situation (III ~ parametric case uncorrelated obser-
vations) makes a difference in the comparison as several inversions of
size n. and n, are not required. All techniques require one inversion

1 2

in the initial solution. .In the corrective term, the sequential or



Table 6-2.

Number and Order of Matrices to be Inverted

Initial Solution

Corrective Term

1st 2nd 3rd 1st 2nd 3rd
Condition r
¢ Parametric n* u
Combined r u i
Sequential ) r. or n¥* ! u r., or n
. i 1 | 2 2
Tienstra Phase :
P S * *
Phase rl or nl u r2 or n u
i !
t'on * *
Summatil i rl or n i r2 or n2 u
]
| !
] nan i o *
gKalma | rl r n1 } u r2 or n2
Bayes i rl or n¥* u r2 or n* u u
, .
: ! | |
I | H T
. i | i
Collocation : n ! u 5
| .» |
Stepwise ny u ' n,
Collocation

r - number of equations; n - number of observations;
u - number of parameters;

* this inversion not needed if observations are uncorrelated.

11T



Table

6-3.

Efficiencies of Methods for Specific Situations

Initial Solution

Corrective Term

1

2

3

2

3

I. Combined Case

- correlated or uncorrelated observations within stage

Sequential and rl u r,
Tienstra Phase
Phase ry u £, u
. {
Summation rl u r2f
Kalman rl u r,
Bayes rl u r2 u u
II. Parametric Case - correlated observations within stage i
4
i
Sequential and nl u n,
Tienstra Phase
Phase ny u n, a
. 1
Summatio u n
umma n n, 2!
Kalman nl u n,
Bayes nl u n2 u u
III. Parametric Case - uncorrelated observations within stage
Sequential and - u n,
Tienstra Phase
Phase -- u - u
{
Summation - u —-:
Kalman -- u n,
Bayes - u - u u

S
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Tienstra phase require only one inversion of size n, while in the
phase and summation forms only one inversion of the size u is needed.
Thus the most efficient method then depends upon the relative sizes
of the u and n, matrices, In comparing the Kalman and Bayes techniques
we see thé? our E?T?a{?son hinges'upon which is a greater'efqutv—_
one inversion of size n, or two of 'size u each.

In the case that the number of new observations (nz) or
equations (rz) is less than the number of parameters (u), it isvonly
the sequential or Tienstra phase techniques that are more efficient
than redoing a simultaneous solution over again the required number
of times. In fact, the phase or summation approaches are identical
to a repeated simultaneous solution from a computational point of
view as the tables indicate the same number and size of matrices are to
be inverted.

For collocation the problem of inverting a matrix of order
equal to the number of observables (signals) is present because of
the correlated signal. We see that stepwise collocation is formulated
in an analogous way to the sequential and Tienstra phase adjust-
ments as the corrective term involves the inversion of a matrix of
order equal to the number of new observations added. This may seem
curious as the two cases are significantly different from the point
of view of the correlation in the observables (signal components)
from one step to the next. However, one can be assured that the full
variance-covariance matrix of the signal is being implicitly inverted

in the case of collocation, and thereby increasing the number of

multiplications, additions and subtraction operations over that



present in the Kalman (sequcntial. »xp.-essions. The advantage* of
stenwise collocation over ordinary collocation may not be as great
&s that for sequential or Tienstra phase methods over the non step
by step methods because of the correlation in the signal. Stepwise

collocation is very useful when one cannot invert the variance-

covariance matrix of the signal all at once because of limited

computer storage. Also it is useful for screening of data.

6.5 The Derived Methods and Related Topics

In this section we discuss miscellaneous topics which are
marginally related to the methods developed herein, yet are close
enough to be of importance. In Figure 6-3, we illustrate some of
these related topics along with the methods already developed.
Variations to the least squares method are grouped according to:
cases; weighting; combinations; partitioning; time and model errors;
and collocation. We have already discussed the cases of adjustments
in sufficient detail. As far as variations arising from weighting
is concerned, there are two interesting aspects, one dealing with
change in weights on the observations and the other concerning weight-
ing of a subset of parameters.

In Feddeev and Feddeeva [1963] one can find expressions
which give the correction to the parameters due to making a change
in the weights on the parameters without recomputing the entire
problem over again. One can be assured that changing the scale of
the weight matrices (P and Px) will not change the solution, but
changing the individual variances will have an effect. The neglection

of covariance in the observables has been studied by, for example,

* from the computational point of view
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Magnuss and Meguire [1962] in general terms, and by Schwarz [1969]
for a specific problem in satellite geodesy.

Blaha [1974] has studied the problem of applying weights to
none, all, or a subset of the paramcters X; further, he gonside;edi
another set of parameters X with an associated variance-covariance
matrix Zi . Zi was used exclusively for the purpose of error propa-
gation into other parameters X without changing the values of
i . This study differs fundamentally from our developments herein as
each time the parameters had a variance-covariance matrix, they were
included in the quadratic form and corrections made to them. Blaha's
work has application in the densification of geodetic networks where
the coordinates of super-control points are held fixed and their
variances and covariances are propagated into the densified points.
In our scheme, one can imagine this being achieved by the following
combination of mathematical model technique-

[0]

(adjustment model) F (X, L) = 0, P, P {[: :}

\ X

(error propagation F (X, L, X) =0
model)

Reigber and Ilk [1975] have found that the collocation
equations can be derived from the combination of mathematical
models:

Fl(X, L) =0, P

F,(X) =0, P_ .
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They show that the equation for the solution vector X using the
weighted constraint approach is identical to the equation for the
signal in collocation, when in collocation the parameters (X) are

not present.

" The combination of mathematical model teéhﬁiqﬁemhas y;t
another interesting application, this time in terrestrial geodesy.
Thomson [1970] has showed that a geodetic network adjusted by the
condition method can be rigorously combined with a second network
adjusted by the parametric method by use of the combined case model of
adjustments. This means that one does not have to redo the adjustment
of the two networks from the beginning, but can simply take the
design matrices and misclosure vectors from the two respective
adjustments and affectuate a rigorous—combined adjustment. In
symbolic form the above is represented by the following two mathe-
matical models:

F, (X, L)) =0, P,

F(Ll,L)‘—‘O,P

2 2 1’ "2

A basic assumption in collocation was that the expected
value of the signal be zero. 1In some applications this assumption
is easily met while in other applications it is not. For this
reason we may find it useful to employ least squares approximation
[e.g. Vani&ek and Wells 1972] to overcome this rather limiting
prerequisite on the signal component.

When considering the task of introducing a priori knowledge

on the parameters X, one enters into whole new area called Bayesian



estimation. We have only touched upon the subject herein from the
least squares adjustment point of view. The reader may wish to
refer to a more exhaustive treatment of this subject [e.g. Bossler

1972].



7. SUMMARY

We group our findings under three categories: derivations;

equivalences; and usage.

Derivations

1. The standard cases of adjustment serve as a basis from which one
can derive directly the Tienstra phase equations (using condition
case equations - Section 4.5) and the collocation equations
(using the combined case - Section 5);

2. The Kalman filter equations can be derived from basic least
squares using the conventional methodology used in deriving the
standard adjustment cases (Section 3);

3. The sequential equations follow directly from the Kalman filtering
equation (Section 4.2);

4. The phase equations follow directly from the Bayes filter equations
(Section 4.3);

5. The stepwise collocation equations could not be deduced from the
equations of the standard methods nor from the Kalman filter

equations because of the correlation in the signal (Section 5.4) ;

119
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Equivalencas

6. The Bayes and Kalman filter equations are shown to be mathematically
equivalent but different from the computational point of view
(Sections 4.1 and 6.4);

7. The Tienstra phase equations are mathematically equivalent to,
and identical with, the sequential equations (Section 4.5);

8. The Tienstra phase, sequential, phase and summation form of
normal equations are all mathematically equivalent (Section 4)
but in certain.cases are different from the computational point
of view (Section 6.4);

9. The Kalman (sequential, Tienstra phase) equations are better
suited to the situation when a fewer number of observations, rela-
tive to the numbervof parameters, are added in the new stage, while
the Bayes (phase) equations are better suited to the situation when
more observations, relative to the original number of parameters,
are added per new stage (for parametric case, uncorrelated

observations) (Section 6.4).

Usage

10. When observations have only measurement errors and only one
solution is needed, then solution by the standard cases of
adjustments is adequate (Section 2-4);

11. when observables have both signal (correlated) and measurement
error components, then a solution by the collocation method

is advisable (Section 6.2).
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12. When observables have only a measurement error component which is
uncorrelated between stages, and several solutions are required,
then the sequential, phase methods, and summation equations are
most suitable (Sections 4.2, 4.3, 4.4);

13. When we have (12) immediately above and the parameters vary with
time, then the Kalman and Bayes methods are most suitable (Sections
3 and 4.1);

14. when the observations contain signal and measurement errors and
several solutions are required, then stepwise collocation may be
used but due to the correlation in the signal, savings from the
computation point of view are not that great because of the many
operations that are necessary in carrying the signal correlation
through to the final result (Section 6.4). Stepwise collocation
is useful for screening of data and when a direct inversion of
the variance-covariance matrix of the signal is not possible due

to the lack of sufficient computer storage.

Closing Remarks

In this synthesis, a concerted effort was expended to discover
the similarities and differences among the various methods by deriving
them under the same cover using a common methodology. In those cases

where equivalences were proved mathematically, the record is clear.

However, for cases such as between Kalman filtering and stepwise collo-
cation wheré no proof of equivalence was possible herein, reasons were
given (Section 6.2) why the author only believes these methods are
different. The author would appreciate learniﬁg from the reader of any

proofs of eQuivalences not contained in this wotk."Furthermore, as the

author did not concentrate on proving lack of equivalence, the'knowlpdge

gfgthg_ex;stgn§e!o§jaqy-such proofs would7éléoibé éﬁﬁ#@éiﬁﬁé ’
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