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PREFACE 
 

In order to make our extensive series of lecture notes more readily available, we have 
scanned the old master copies and produced electronic versions in Portable Document 
Format. The quality of the images varies depending on the quality of the originals. The 
images have not been converted to searchable text. 



FORWARD 

These lecture notes have been written to support the lectures 

in aerotriangulation at UNB. They should be regarded just as such and 

can by no means be considered complete. For most approaches examples 

have been selected while many other formulations are mentioned or even 

neglected. This selection was based partly on the availability of 

programmes to our students and is not intended as classification. 

i 

W. Faig 
Summer 1976 
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I. Introduction 

1.1 Purpose and Definition of Aerotriangulation 

There are basically two definitions, a classical one and a more 

modern one. 

Classical: Aerotriangulation means the determination of ground control 

coordinates by photogrammetric means thereby reducing the terrestrial 

survey work for photo-control. 

With the advent of electronic computers and sophisticated numerical 

procedures this definition is somewhat enlarged and does not ~apply 

for p~~oviding control for ,photog:rammetric mapping. 

Modern~ Photogrammetric methods of determining the coordinates of points 

covering larger areas. 

This means large point nets. 

1.2 Applications of Aerotriangulation 

1) Provide control for photogrammetric purposes for both small scale 

and large scale maps. 

a) small scale mapping: 

whole countries scales 1:50,000 or so 

required accuracy 1 t 5 m 

b) large scale mapping 1:1,000 · 1:10,000 

required accuracy 0.1 ; 1 m 

2) Point densification for geodetic, surveying and cadastral purposes 

(3rd & 4th order nets) 

3) Satellite photogrammetry; determination of satellite orbits; world 

net ,(H.H. Schmidt) 

1 
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1.3 Some Remarks Concerning the History of Aerotriangulation. 

Approximately in 1905 the idea of radial triangulation appeared. 

The first numerical attempts have to be credited to Sebastian 

Finsterwalder at around 1910. After World ·war I spacial aerotriangulation 

was introduced (Nfs:ltri had a patent in 1919). Up until 1935 analogue 

experiments continue (Multiplex!) From then on the idea of base-

change in plotters was utilized for larger projects, mainly in Germany 

(Zeiss) & Holland. 

The real break through for aerotriangulation came with the 

computer (1950's). Some of the key-names associated with aerotriangulation 

are: Gotthardt~ Scht~t·~· Sc:hmidt~;·Brown~ Ackermann. 

Although I shall present to you the graphical mechanical approach 

spanning graphical radial triangulation to Jerie's Analogue Computer 

very briefly, it should be stated now, that these methods are mainly 

historical, although still used. 

1.4 Overview of Methods of Aerotriangulation 

It is obvious, that every step means loss of accuracy. Therefore 

the bundle adjustment with simultaneous solution is theoretically the 

approach which gives the highest accuracy. However, the block adjustment 

with independent models follows closely. 
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1.5 Some Reviewing Remarks on Basic Analytical Photogrammetry. 

Analytical Photogrammetry means numerical evaluation of the 

content of photographic images. Being a point by point approach, it 

does not replace analogue photogrammetry but rather complt1ments it. 

Although aerotriangulation is its main application, it is not the 

only one. 

Unlike in analogue work, where it is possible to reproduce the 

physical situation (Porro-Koppe-Principle),the physical situation 

would have to be modelled mathematically. The quality of any numerical 

evaluation depends on how well the mathematical model describes the 

physical situation. 

In the case of photography, the mathematical model is the concept 

of central pnvjection which has the following characteristics: 

projection centre is a point 

light propagates according to geometric optics (straight rays) 

the image plane is perpendicular to the axis of the system 

We all know that these assumptions are not fulfilled. 

- no matter how small the projection centre is (e.g. diaphragm closed), 

it consists of an infinite number of points. 

- light propagates dually in electromagnetic waves and photons, 

therefore changes in the space to be pf;!netrated (e.g. density changes) 

result in directional changes. (e.g. light passing through glass 

(lenses) changes direction}. 

- the image plane is neither plane nor perpendicular to the system axis. 
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. ·. There goes our mathematical model. A better model would mean that 

each camera has to be modelled separately, which would result in a 

special evaluation method for each type of photography - which:is 

ridiculous. 

Therefore we keep the model as it is and adjust our photography 

such that it fits the model. This process is called 11 IMAGE REFINEMENT'! 

Togethere with the basic data for central projection (principal point 

in terms of image coordinates~&:camera constant) the image refinement 

parameters are included with the data of interior orientation. 

These data are: 

- camera constant (linear dependency with radial lens distortion) 

- a newly defined principal point 

- radial lens distortion (symmetric) 

- decentering lens distortion, usually bhoken down into a symmetric 

radial and tangential components 

- film distortion & image plane .deformation 

- refraction 

Contrary to other beliefs, the earth curvature correction is not 

part of image refinement, in fact it is non existent if geocentric 

coordinates are,used. 

The first four data of interior orientation are obtained by 

camera calibration (goniometer measurements or · multi~ll imators etc.) 

in the laboratory. 

Film distortion can best be detected with the aid of a re~eau grid, 

and refraction is a function of flying height, temperature, pressure and 
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humidity at the time of photography. The phenomenon of refraction 

has been thoroughly investigated in connection with geodetic astronomy 

and is presented there. 

If, for one reason or a~other some information for the image 

refinement is not available, nothing can be done, but one has to be 

aware that less accurate results are to be expected. 

After the photogrammetric data are prepared to suit our mathematical 

model, computations can proceed. Considering the light rays in vector 

form (P; and TIP;} we come to the most fundamental and most important 

equation, the COLLINEARITY EQUATION. With it any photographic situation 

can be described and it is the base of single photo orientation (often 

called space resection) which may or may not include the parameters of 

interior orientation as unknowns. 

If we want to combine two photographic images to a stereomodel, 

the concept of relative orientation is needed, which mathematically is 

described by a very important condition, the COPLANARITY CONDITION. 

This condition just states, that the two sets of collinearity 

equationsdescribing image rays of the same point and different photographs 

span one plane, with other words, the rays intersect (space intersection). 

The formation of model coordinates is then just the ap.pl'ication 

of the coplanarity condition to all points in question. 

This leads to a model which is similar to the actual situation 

out located somewhere in space. The absolute orientation has the purpose 

to bring it down to earth, which means application of 
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- a scale factor 

- a space shift (usually in terms of the three components of the three 

axes of our 3D-space) 

- a space rotation {also in terms. of three rotations around the same 

coordinate axes) 

For aerotriangulation we often have relatively oriented models in 

space usually transformed into one common system, e.g. the system of 

1st model (u•, v•, w• instead of x•, y•, f). 

To form a strip, a scale, transfer is performed by comparison of 

one or more common distances. Having a common projection centre, it 

is theoretically sufficient to compare one elevation only. After the 

strip is formed, it can be absolutely oriented as a unit. 

Of course, it is not necessary to mathematically follow the 

analogue steps of forming models etc. In this case the coplanarity 

condition is not explicitly needed, however the intersection of rays 

is still to be maintained (optimization). Modern solutions using the 

photographic image as a unit perform a total transformation to the 

ground. (simultaneous adj. , bundle approach). 

This again indicates the need for ground control, which can be 

in different coordinate systems. Finally, the need and concept of 

interior orientation remains and cannot be separated from exterior 

orientation unless in the laboratory. 
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2. Graphical and Mechanical Methods of Aerotriangulation 

2.1 J3asj __ ~ _ _lgea of Radi~L_Tri ~_gJ:.!l aq on 
Consider vertical photographs, then the principal point of the 

photograph is also the image of the nadir point. A set of angles from 

this point would exactly correspond to actually measured angles on the 

ground. Using several such sets from continuous photographs a triangu­

lation chain can be established with the principal points as radial 

centres and freely chosen points in the overlap area of 3 pictures. 

Practically this is done by transforming the principal point 

of the neighbouring pictures onto the photograph. It is important to 

be quite careful, because the exact identification of the points 

influences directly the accuracy of the result. Then the sets are 

usually drawn onto transparent paper for each photograph and placed such, 

that the directions between principal points coincide. 
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At the beginning the distance between the first two centres 

can be chosen randomly. However, from then on it is fixed, since 

always the rays of 3 pictures intersect in one point. 

If for the whole strip 2 control points are known, the scale 

of the lay-out and the direction can absolutely be determined, and 

with it we have all the corner points as points in the terrestr5.al 

system. If we have several adjacent strips with side lap, the 

solution becomes quite good, since a fair amount of overdetermination 

occurs. Besides the principal point, also the nadir point or the 

isocentre can be used as radial centres. Usually we do not have exact 

vertical photography. The selection of one of the other points is based 

on the height differences in the terrain and on the tilt of the photography. 

Usually approximations for these points are obtained from the 

photographic picture of a level bubble at the time of exposure. A 

more exact determination (e.g. tilt analysis) is not economical for 

this purpose. 
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2.2 Methods of Radial Triangulation 

2.2.1 Graphical Method 

The directions are directly plotted from the aerial photographs 

onto transparent paper. Then the system is laid out onto a base map 

which includes the coordinate axes and the control points. The method 

is quite cumbersome for large nets, especially due to difficulties in 

adjusting the error indicating figures. The accuracy is not very high. 

2.2.2 Numerical Methods of Radial Tri.angulation 

Depending on whether the principal point (or the fiducial 

centre), the nadir point or the isocentre are used, several methods can 

be distinguished. The adjustment is based on the side condition, as 

used in terrestrial triangulation. 

Although the directions can be measured to + lc using a 

radial triangulator .. , e.g. Wild RTl which utilizes angular measurements 

with stereo viewing, the directions have remaining errors of several c 

due to tilt of the photography. It is left to you to determine the 

accuracy. 

2.2.3 Slotted Templets 

This is a purely mechanical adjustment. Using heavy cardboard 

or similar material, the radial centres are punched ~s circular holes, 

the directions as slots. The directions to existing control are also 

cut as slots. On a base plan, onto which the control points were plotted, 

the templets are laid out and connected with studs. The control points 

stay fixed (pricked or nailed down) while the other studs can move such as 

to minimize the stress in the lay-out. Their fixed position is marked 

through the centre of the stud (pricked). 
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Since this is the mechanical equivalent to a least squares 

adjustment, it shows that strips have a rather weak stability (towards 

the side) in the centre unless they are controlled in this area. By 

using parallel strips, the centre becomes strengthened, and less control 

is necessary to support the block. 

r The instrument used for centering is called Radialsecator 

(e.g. RSI- Zeiss which allows scales between 1:2 and 2:1 and tilt 

correction up to 30%). The slots are 50 mm long and 4 mm wide. 

With good material an accuracy of 1% of the horizontal 

distances can be obtained, which is sufficient for rectification. The 

advantage of this method is its simplicity. Limitations are the border 

of the working space. 

2.2.4 Stereo Templets 

A further step leads from slotted templets to stereo templets. 

A stereo templet consists of two slotted templets of the same stereo 

model, which includes the same selected four corner points. However 

opposite corners are chosen for centre points. 
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The stereo model has to be relatively oriented (otherwise it 

would not be a stereo model) and approx. absolutely oriented. The scale 

is still free for small changes. The layout of stereo templets follows 

the one of slotted templets. 

Stereo templets can also cover 2-3 models if they are analogue 

and obtained together, e.g. at multiplex. 

2.2.5 Jerie's ITC-Analogue Computer 

The mechanical analogue block adjustment, as developed at the 

ITC in Delft is a further development of the stereo templet method. In 

this case, a photogrammetric block is divided into near square sections. 

For each section double templets are cut, which represent the panimetry 

of four tie points with the other sections and possibly additional points 

within the section. 
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The templets are not directly connected but by the use of 

multiplets, which are 4 springloaded buttons on a carrier which can be 

shifted in direction of the coordinate axes. Therefore, the carrier 

can always move to such a 'POSition where the resultant vector of all 

forces is equa 1 to zero. After fixing a doub-1 e ! .. temp let onto the buttons, 

the carrier will move to the adjusted point position. At the same time 

the double templets will shift such that they fit best to the conditions 

(due to resultant forces). In the final phase all sections of the block 

will be at a position which representsthe results of a rigorous adjustment. 

In order to determine the transformation elements required for 

the connection of the sections, Jerie uses the residuals to the preliminary 

orientation with high magnification. Therefore all transformation 

parameters are obtained with magnification and can be graphically obtained. 

Then a new numerical orientation is performed. By repeating the procedure 

with again a magnification the accuracy can be increased without limits. 

Due to uncertaincies in the longitudinal tilt, the same principle 

cannot be applied to vertical adjustment. Therefore a three dimensional 

arrangement has to be used in order to simulate elastic deformations of 

a body in space. At the IGN (Institute Geographique National) in Paris 

such a system utilizing plastic supports has been developed. 
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3. Methods of Strip Triangulation and Instrumentation 

/<h 

3.1 The Pr-it:_1_slple of Continuou~--~!n,~ilev_EEr Extension with Scale Transfer 

The idea is to reconstruct the exposure situation. 

lst model: rel. & abs. orientation 

2nd model: 4epen~ent pair relative orientation 

using KIII' byiii 

<PIII' bziii 

WIII 

The problem is bx. This is initially randomly chosen ( ... in figure), 

then the point or points common to models 1 and 2 are set to have the 

same elevation by changing bx. 

Ih_e_r.~fQre __ : Strip triangulation is nothing else but a continuous 

application of cantilever extension (dependent pair relative orientation) 

and scale transfer (base components). 

If there were no error propagation, this would be just perfect 

(e.g. Multiplex). 

Scale transfer is basically the comparison of a distance in 

both models with changing of the ba~e length until the distance is the 

same in both models. 
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Any two points in the common overlap area of the two models 

can be chosen. By selecting one rather unique common point (the 

projection centre) only one other point is necessary because the z­

values are directly comparable distances. 

The base is shifted until the elevations are the same. 

tr I . 
I ! 
l 1 
I I 

~7 
I 

l ! 

Since the base extends primarily in x-direction, this means basically a bx-

strip. However, the other base components have to be changed in the same 

ratio. 

Example: Shift 3rd multiplex projector until there is no more x-parallax 

on the measuring table, which has its elevation from the previous model. 

This parallax can be either objective or subjective: 

Objective: Subjective: 

?x 
The eye recognizes the object 

in stereo, but sees two floating 

marks. 
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If you use elevations for scale transfer, make sure that the 

counter remains connected and the same! 

If a plane-distance is used, well defined points have to be 

utilized. 

3.2 Triangulation Instruments 

1934 Multiplex was the first triangulation instrument. It is 

however, a low order instrument, as you all know from previous experience. 

"lst order" plotters for aerotriangulation use in effect the same principle 

but with only two projectors. This means base change and image change. 

left right 

CD ® 

base in 

\ 

base out 

change of viewing 
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Then 

base in {normal viewing) 

base out (changed viewing) 

Since z is fixed, the same reference height is maintained for scale 

transfer. The problem lies in x/y-coordinates. 

to x: Measure the point in lst model and record value, then disconnect 

x-counter, orient the 2nd model with elements of photo 3, perform 

scale transfer. Then set measuring mark onto point and connect 

x-counter. 

~: There are two opinions: 

a) do not disconnect y-counter 

b) disconnect the y-counter in same manner as the x-counter. 

Both ways are correct, if the base component bx is exactly 

parallel to the x-axis of the plotter. Otherwise secondary errors 

are introduced if opinion a) is taken. It also can be used as 

instrumental check. 

------··-e> )( 

'* geoid (ref. for elevations) 
Ellipsoid (ref. for planimetry) 
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for longer strips: 

z ~ H 

therefore, earth curvature is considered an error. It is quite obvious, 

that for a longer strip the b2-range is soon insufficient. 

A similar problem occurs, if the 1st model was not or 

incorrectly absolutely oriented, then the b2 range is also quickly 

insufficient. The b2 limitation is therefore the main reason for an 

absolute orientation of the first model. 

What can be done? ---. b2 shifts 

b2 shift means also change in height reading. 

change height counter after scale transfer (change b2 and zl) 

""~>- Start with a high b2 -val ue 

-"-~Start with an initial <j>-rotation (thendep. pair rel. or.) 

This will cause wrong height readings and lead to projection corrections. 
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Another possibility is to break the strip 

~~ has to be measured resp. set in the instrument. 

e.g. Turn a 2g ~-rotation,but the dials are not always that reliable. 

Better compute x-shift using ~ and elevation. Then shift x by 

introducing ~x and turn with ¢ screw until points coincide. 

The best way is aero-levelling, which means working with a 

fixed and constant z. 

~~ is the convergence due to earth curvature (~ 1 c/km base length) 

Similar considerations might be necessary for the by range 

(e.g. in'itial K-setting or by-shift!) 
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3.3 Strip Triangulation with Plotters Without Ba~e:chaoge 

: 

~·· 

Since .the rotational 

centre is fixed, only a 

H movement is possible. 

Problem: The absolute orientation of the right projector has to be 

reconstructed in the left projector. 

This would be not much of a problem if there were base 

components. 

Just use a cross-level, and in this case level plate with 

~ and ~ or (wl and WR) 

Since the rotational centre is a fixed instrumental point, a 8Z0 -value 

has to be introduced to compensate the parallel shift. 

This is an iteration, since b2 will only be obtained after scale transfer, 

when using Z. If the scale transfer utilized a planimetric distance, then 

8Z0 can be directly computed. 

Further to this cumbersome approach: Additional instrumental 

errors have to be considered (both projectors are not exactly the same). 

Since the A-8 does not have base components the instrumental 

base cannot be rotated but is a straight line along the strip. Therefore 

if the flight line looks like this: 
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system by a series of Helmert transformations. 

Following this, it is better to use ipdependent models 

and completely compute the strips, even in elevation. 

3.4 Precision Comparators 

Jena 1818 Stereo Comparator 

Accuracy: + 10 em for .X' andy' 

~ 3 em for px, py 

(several observations) 

Working sequence: 

1) placing and clam_iping of photo plates 

2) fix eye base obtain a parallax free image of the floating marks 

in the measuring plane 

3) Make fiducial lines parallel to instrument axes (k -rotation) 
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4) Read or set the numerical values for fiducial centre (representing 

principal pt.) 

5) Drive to image point in left photo, using x• andy' motions 

6) Obtain stereo coverage by moving right photo with Px and Py 

7) Read or register,:'X', y•, px, py. 
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Although comparators are very easy in principle and use, they 

demand a great mechanical effort. The following conditions have to be 

fu1fi 11 ed. 

1) Straight and easy movement of all carriers 

2) Parallelity of axes for left and right photos 

3} Perpendicularity of x and y axes 

4) Image plane has to be parallel to axes 

5) Parallelity of lead screws and measuring spindles to image motions 

6) Precision division of scales and of spindles 

Comparators are calibrated with the use of grid plates, 

which have to be more accurate! 

Most stereo comparators follow the same construction principle 

with higher magnification etc. such as 

~lil d STK-1 

OMI comparator 

SOM comparator 

Hilger and Watts comparator 

The Zeiss Oberkochen PSK has newer construction principles and is much 

more compact 

The photoplates (1) are clamped unto precision glass-grid 

plates (2) which are vertical. 

The grid enables the coordination of image points in units 

of its grid, which is 5 mm. 
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x. 

Abb. 10. Schema der linken Hiilfte des Priir.isions-Stereokornparat<>rs von Zeiss (Werk­
zeickntt11{1 Carl Zei88, Oberkochen). 

(from: Schwi defsky "Photogrammetri e") 

Since both measuring diapositive and grid plate are made 

from glass, temperature changes do not effect the accuracy (illumination!!) 

The fine measurement is done with the aid of a fine scale (4) onto which 

both photo and grid is imaged through the optical system (3). In the 

same optical plane the floating mark (better measuring mark, since the 

comparator can be used mono and stereo) is positioned. 

Two measuring spindles via level;-s (6)and (7) can move the 

measuring scale in x andy directions until grid line and measuring 

scale march coincide. Large gear transmissions permit reading to 1 ~m, 

which is mechanically possible since the maximal way is 5 ~m. 

8 to 16 x magnification is possible. 
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There are also a series of mono comparators, most of which again 

fol1ow the basic carrier prindple as discussed. 

Just a few words to the 

NRC - mono Comparator 

(built by Space-Optics and sold by Wild) 

The Model 102 Monocomparator accepts either glass plate diapositives 

or film in up to 911 x 911 format. 

Measurement of image points in X and Y coordinates are made with 

respect to precision scribed measuring marks on a glass plate. The 

measuring marks are spaced at 20 mm intervals in a 12i1' x l2'11·'i matrix. 

The photo is positioned with respect to a specific measuring mark location 

by slewing the grid plate and photo on an air supported carriage. The 

precision coordinates are measured with respect to the referenced 

measuring mark by two short precision lead screws with 20 mm of travel. 

A measurement consists of a macro movement of the grid plate and a micro 

adjustment of the lead screw. Air supply to the carriage is controlled 

by a foot pedal. The lead screws are moved by finger touch measuring 

disks. The X and Y coordinates are continuously displayed and are recorded 

on any digital storage device such as punched card or paper tape. 

Identification numbers may be inserted along with the X":and Y coordinates. 
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The design concept of the Model 102 Monocomparator uniquely 

combines high accuracy with high productivity. 

Those factors which contribute to accuracy are: 

Short lead screws (20 m) 

Precision glass measuring mark plate 

Selected materials with uniform thermal coefficient of expansion 

and high thermal conductivity 

Adherence to Abbe•s principle 

The Monocomparator has an overall accuracy of~ 2.5 micro­

metres and a repeatability of measurement in the order of+ micrometre. 
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A special construction is the DBA- Monocomparator which 

utilizes the measurement of distances. 

(Multilaterative Comparator) 

By changing the plate into all 4 possible positions. the point is 

determined by 4 dista.oces. The overdetermination permits self­

calibration (det. of comparator parameters by LS-adjustment). A 

program for obtaining photo coordinates (and necessary camp. parameters), 

is supplied by DBA. 

Theory of Operation {according to DBA) 

The theoretical basis for the comparator is best illustrated 

with the aid of Fig. 1 which shows the four measurements rlj' r 2j' 

r3j' r4j of a point xj' yj. It will be noted that in ,the actual 

measuring process, the pivot of the measuring arm remains stationary 

while the plate is measured in four different positions. This is 

precisely geometrically equivalent to a process in which the plate itself 

remains stationary while the pivot assumes four different positions. 

The actual measurements rij are from the zero mark of the scale to the 

point rather than from the pivot to the point. To convert the measurements 

to radial distances from pivots, one must specify the radial and tangential 

offsets (a, s) of the pivot relative to the zero mark. c c If x1, yi denote 

the coordinates of the pivot corresponding to position i of the plate 
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(i = 1, 2, 3, 4), one can write the following four observational 

equations relating the measured values rij and the desired coordinates 

xj' Y j: 

(rlj + a)2 + 13'2 = (xj - X~)2 + (yj - y~)2 

(r2j + a)2 + ~,2 = (xj - x~)2 + (yj - y~)2 

2 2 c)2 ( c)2 (r3j + a) + ~) = (xj - x3 + Yj - Y4 

(r4j + a)2 + ~2 = (xj - x~)2 + (yj - y~)2 

These equations recognize that since there is in reality only one pivot 

and measuring arm, a common a and1j apply to all four positions of the 

plate. If the ten parameters of the comparator (i.e. a and!!~! plus four 

sets of x:, y: were exactly known, we could regard the above system as 
1 1 

involving four equations in the two unknowns xj' yj. Accordingly, the 

process of coordinate determination in this case owuld reduce to a 

straightforward, four station, two-dimensional least squares trilateration 

In practice, the parameters of the comparator are not known to 

sufficient accu~acy to warrant their enforcement. It follows that 

they must be determined as part of the overall reduction. This becomes 

possible if one resorts to a solution that recovers the parameters of the 

comparator while simultaneously executing the trilateration of all 

measured points. Inasmuch as one is free to enforce any set of parameters 

that is sufficient to define;·uniquely the coordinate system being employed 

three of the eight coordinates.of the pivots can be eliminated through 

the exercise of this prerogative. In Figure 1 we have elected to define 

they axis as the line passing through pivots 1 and 3 thereby making 
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x~ = x~ = 0. Similarly, the x axis (and hence also the origin) is 

established by the particular line perpendicular to the· y axis that 

renders the y coordinates of pivots 2 and 4 of equal magnitude but 

opposite sign (thus y~ =. -y~}. This choice of coordinate system has 

the merit of placing the origin near the center of the plate. 

By virtue of the definition of the coordinate system, only 

seven independent parameters of the comparator need be recovered. · If 

n distinct points are measured on the plate, the above equations may 

be considered to constitute a system of 4n equations involving as 

unknowns the seven parameters of the comparator plus the 2n coordinates 

of the measured points .. When n > 4, there will exist more observational 

equations than unknowns, and a least squares adjustment leading to a 

2n + 7 by 2n + 7 system of normal equations ~an be performed. Although 

the size of the normal equations increases 1 inearly \'lith the number n 

of measured points, their solution presents no difficulties, even on 

a small computer. This is because they possess a patterned coefficient 

matrix that can be exploited to collapse the system to one of order 

7 x 7, involving only the parameters of the comparator. Once these have 

been determined, as independent, four station, least squares trilateration · 

can be performed to establish the coordinates of each point. Details of 

the data reduction are to be found in the reference cited below.* 

* Reference: D. Brown, 11 Computational Tradeoffs in the Design of a 
One Micron Plate Comparator'', presented to 1967 Semi-Annual Convention 
of American Society of Photogrammetry, St. Louis, r~o. , Oct. 2-5-. 
Available upon request from DBA systems, Inc~ 
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Suffice it to say here, that the internal contradiction resulting from 

the redundancy of 1ttle~1neasuring process can be exploited to effect an 

accurate calibration of the parameters of the comparator for the 

particular plate being measured. Hence, the designation of the instrument 

as a self~calibrating multilaterative comparator. 

The Computer Program 

A fortran source program is provided with the comparator 

to reduce raw measurements to comparator coordinates. The program is 

designed so that a minimum of modification is required to adapt it 

to almost any computer. One version is designed specifically to run 

on a minimal computer configuration such as an IBM 1130 with card 

input. Another version is designed for medium to large scale computers. 

Both feature automatic editing and rigorous error propagation. Typical 

running time on an IBM 360/50 for the reduction of a plate containing 

25 measured images is well under 30 seconds. 

In addition to producing the final coordinates and standard 

deviations of the measured points, the program generates.the four 

measuring residuals for each point and the rms closure of trilateration. 

The residuals provide a truly meaningful indication of total measuring 

accuracy, and the rms error of the residuals, representing as it does 

a rms error of closure, provides a particularly suitable criterion for 

quality control. 



31 

y 

n 

Figure 1: Jllustrating Geometrical Equivalent of Multilatera~ivJ 
·Comparator. 

3.5 Point Selection, Transfer, Marki~g, Targetting etc. 

The adequate preparation of the available photography for 

aerotriangulation purposes is very important. The prime requirement 

for aerotriangulation is that the photographs overlap. Usually a 

60% overlap is available (often 90% in flight and then every 2nd 

photo is discarded). The overlap between strips is 20 - 30%, sometimes 

60%. 

1) Layout 

Contact prints of the whole strip (or block) are laid out 

and examined for overlap areas {thinning of 90% overlap, gaps?) 

deformations (large ones will show), general information, e.g. scale, 

topography etc. 
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2) Selection of triangulatron·pprnts in the·overlap areas 
< ' a: ' 

- pass points = common points in three or more consecutive photographs 

within the strip (pass from model to model) 

- tie points = points located in common overlap area between strips. 

Usually the tie points are also pass points. This however, 

requires a regular strip and block pattern. 

The pass points are selected such that they are located in 

the vicinity of the V. Grubei~'Jrb.twts:,, used commonly for relative orien­

tation. This means 6 points per model. 

If the strip is measured in stereo (e.g. analogue triang., indep. 

models on plotter, stereo comparator), then only three points per 

photo have to be marked, whereas·· for mono comparator measurements, 

Bine points per photo are required (except for lst and last in strip, 

which req. 6} 

f , ... ~. 
:O 

~ ® 
0 0 

Stereo 
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The tie points, which are often passpoints, should be selected in 

the centre of the common overlap area (relief displacement etc!) 

Since the stereo models are not created across the strips 

it is necessary: to mark tie points in· bOth strips! . 

More than 30% side lap strengthens the vertical behaviour 

of a block, and with 60% the principal points are included as tie 

points also. 

The points selected are usually natural terrain points, 

because they provide the highest accuracy. However, the following 

has to be kept~~n mind: 

-do not choose a point on top of houses, trees etc., if not absolutely 

necessary. It is easier to: 

- measure ground points, such as 

road and/or railroad intersections or junctions. dunctions of ditches 

or other characteristic line features~ Detail points, e.g. rocks, 

small bushes, high contrasts edges or corners of shadows (again high 

light/dark contrast in photography +be aware of time lapse between 

strips!) 

3) Marking of points 

a) ~1anua 1 

- Circle the area on the contact print with easily recognizable marker 

- Provide a sketch of the-details of the area surrounding the selected 

point (often on back of so-called "control" print) 

- describe point, if necessary (e.g. 11 top step 11 ) 
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' 

' J~nction of Ditches 
South of Road 
Near old Barn 

It is important for the operator, that all pass and tie points are 

marked as well as existing ground control. The latter is often 

specially coded according to its nature (e.g. hor. or vertical or 

both). 

b) Mechani ca 1 

There are several instruments of point marking, e.g. 

Wild PUG 

Zeiss (Ober~ochen} Snap Marker 

Kern PMGl 

Zeiss (Jena) TRANSMARK 

They range f,rom quite simple and punching a hole into the 

emulsion to quite sophisticated and burning a hole using laser light. 

Stereo markers such as the PUG have to be used in order 

to correctly identify points for mono.-comparator work. In this case 

the hole is drilled. 

c) Targetting (Pre-signalization) 

For highest accuracy, all photogrammetric triangulation 

points should be targetted on the ground. This eliminates the error 

contributed by point transfer which can be several ~m. Targetting 
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is usually done for those points for wh'ich coordinates are desired 

(e.g. control densification by photogrammetric means,cadastral 

surveys, construction projects,urban mapping) whereas pass· and 

tie points are usually not pretargetted. Pretargetting requires 

field work and has to be done only a few days before photography in 

order to keep the loss of targets down (people interference). The 

important thing is to create a ~ood light/dark contrast. 

The simplest way is using paint (crosses on highways, 

or direct painting of survey menumell'l't~J. Card board, plastic or 

fabric targets are also in use. 

Examples for targets 
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It is quite obvious, that the target size has to match the scale of 

photography (resolution, identif.) Target should be 50- 100 vm 

on photo~raph with the central part being at least 25 - 30 vm in 

diameter. 

Except when there are not many characteristic surface 

features, pretargetting is not used for topographic mapping. 

Sometimes a lower reconnaissance flight and 35 mm film is 

used to obtain detail pictures of the surroundings of points. These 

pictures are then used to identify the points in the small scale 

compilation photography. (Correlation with Zoon- Transfer Scope 

[Bausch and Lomb]). 
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4. Error Theory of Strip Triangulation 

4.1 General Assomptions 

Error theory is always the base of adjustment. Although 

each model is deformed due to errors in interior and exterior 

ori en tat ion this simplified theory propagates that a 11 errors are 

caused by transfer from model to model. The assumption is justified 

because the actual model deformations for aerial photogrammetry are 

in the magnitude of 1 - 10% of the transfer errors as empirically 

determined. 

This means basically, that the 7 elements of transfer are 

associated with errors, namely: 

Scale transfer error ilS. (i = 1 ' 2 ... (n - l ) ) 
1 

Azimuth - transfer error M. 
1 

because of (n-1) 

Long itud ina l transfer error M· connection for 
1 

lateral tilt transfer error llW. n - models 
1 

x-shift error tJ.X. 
1 

y·~shift error ll y. 
1 

z-shift error £l Z; 

4.2 Vermeir•s Simplified Theory of Transfer Errors 

Vermeir (ITC) considers only the errors in ils, ~¢, ilw 

ila and neglects the shift errors, since they are small. The strip 

axis is used! Consider~ng azimuth errors, the deformation of the 

strip axis is as follows: 
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numerically: 

!sA ··(!)·. = 6A (j) = 6A (j) 

6A (!) = 6A (f) + 6a1 = 6A (j)+ 6a1 

6A Q) = 6A ® + 6a2 = &A Q)+ &a1 + 6a2 

- - - - - - - - - - - - - - -
6A i = 6ACi:v + 6ai-l = 6A(D+ 6a1 + Lla2 + ... + 6ai-l 

therefore: 
i=l 

Similarly for ~- tilt: 

1 11l 

1 (f!t:) 
! 

\Y.-:: r;.. ~"!.. 

-~:...:.._---It-_ ~ ~® 
--· ··-- ~·lr't-··--··---···· .. ·····'··········-······ .. ··-.. ····· .. ·····•··········· ·············-·····---·· ····-··+-···--·-···-······················1-···---··-· .. ····------.~>- x 

A ~ ~Af, 2 3 4 5 

<D 



this leads to: 

and also for~- tilt: 

Scale transfer errors: 

t 
I 
L _____ -i- - - - ·-
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I 
I 

I I 

- --=-- -_:' _j 



therefore 
i -1 

[1$ CD = b.S Q) + \l~l 
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ilS 
\) 

4.3 Coordtnate Errors in Stri~ AXis 
"" . < 

Now we can consider coordinate errors: 

= ily 
0 

L\y 1 = L1y 0 + b CD ilA G)= L1y 0 + b Q) ilA <D I 
i.. I 

t1y2 = l1Y1 + ~ ([JilA @= t1y0 + b (J)l1A(D+
1 
b(g~~ 

_ _ _ _ _ _ _ _ _ _ _ _ _ l _ ~A(!)+ ila1 

t1y1 = L\y1 _1 + b(DM{n= L1y0 + b Q)LlACD+ I b@l'l'@ + ••. + 'CD Ll'tD 

. . . initial errors .I transfer errors 
i l 

l'lY; = l1Y0 + ~~l b@ ilA@ 

= l'l y 
0 

b ::: constant! 

i 
r 

Jl=l 
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i ]l-1 
tJ.y 1• = !:iY + X. tiA .(j)+ b .. L: r .. 0 1 .... - v=l .v"'l 

tJ.a . 
\1 

This is the famous double summation of random errors, which 

leads to a systematic behaviour, as will be shown later. 

There is another way of representing the same error: 

Since this formula represents directly the same as the previous one, 

the double summation characteristics are still there, only hidden! 

Similarly: 
i 

/:iX. = !J.X + l: 
1 0 }.1=1 

= l:ix + x. 
0 1 

i }l-1 

bQStJ.S® 

I 
l:iSCD+1 b .l: 2: 

}.1=1 ·v==l 

I i -1 
= tJ.x0 + .x,. !:iS CD +1 r •· (.x. - x ,1 

v= 1 , '> J tJ.s ~ 



and 
i 

= 6Zb + .. L: 
u=l 

42 

= ~z. + .x. 
0 1 

i p-1 
Mrp+l b L: .!: ~<jl 

\.!) p=l '1/=1 )) 
I i _, 

= 1../!,0 + X; M.;(i) +I· L (.x ... X. )M 
v=l 1 v .v 

initial deformation 

error due to transfer error 

Before covering the off axis errors, I would like to say 

a few words about double summation. 

4.4 Double Summation 

If one considers, for example the azimuth error ~a as a 

random error Ea, then their accumulated effect in'·the llth model 

wi 11 be: 

E = E l + E 2 + ... + E . ap a a a 1 }.1-

}.l-1 
= L: 

:v'=l 

These single errors Ea. in turn, Gr~qte a lateral error. 
1 

. . . + E .) = b Y1 
i 

.L: 
p=l 

E . 
Yll 

\4e hav~ ~rrors which are obtained by double summation of a series of 

random errors. 
i 

a. = .L·· 
1 v=l · 

Generally: 
v~l · 

L: €. = ( i -1 :~ + ( i - 2 J 
1 

) 
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and this series has certain systematic characteristics. This was 

first discovered by Gotthardt (1944- rolling dice) and Roelofs (1949 

drawing lots) with the aid of statistical experiments. Moritz (1960) 

gives a theoretical explanation based on the fact, that all xi are 

strongly correlated by the s;· 

Here are three pract"ical examples taken from Finsterwalder 

Hoffmann Photograrnmetrie, p. 370. 

1
_' b~i~=-;;~~~~~-EI~~-

1 + 3 -+- 3 + 3 _ !) - 9 __ 9 --- 7 1 --7 -- 7 
2 + 1 + 4 + 7 - 6 ---15 -- 24 + 4 ---3 --10 
3 -12 - 8 1 + 8 - 7 - 31 + 8 ·Hi - 5 
4 + s: - 5 6 - 2 - n -- 40 + 2 +7 + 2 
5 + 3 -- 2 8 -j-15 -1- 6 -- 34 ·- 3 +4 + 6 
6 + 3 + 1 - 7 + 3 + n - 2;:; -- 9 -- .'j + 1 
7 + 4 + 5 --· 2 -- 3 + 6 19 + 1 --4 -- 3 
8 ·-· 7 --· 2 4 + 6 + 12 -· 7 + 5 + 1 ·- 2 
9 -- 7 -- 9 -- t3 +11 +23 + 16 + a -H + 2 

10 - 8 ---17 -- 30 . 0 +23 + 39 -- 4 0 + 2 
1l 0 - 17 --- 4 7 - 6 + 17 + 56 - 2 -·- 2 0 
12 -- 4 --21 - 68 + 3 +-20 + 76 + 6 ·1-4 + 4 
13 + 1 --20 - 88 +10 +30 +106 -·- 9 --5 -- 1 
14 + 5 ---15 ---10:3 - 2 +28 +134 + 8 --2 --- 3 
15 0 -15 --118 --12 +16 +150 +10 ·f-8 + 5 
16 ... 5 --20 --1:m ---10 + 6 +156 - 7 -t-1 + 6 
17 + 5 --15 ---Hi3 ·- 8 ·-· 2 +154 --10 ---9 -- 3 
18 + 3 --12 -165 +11 + 9 +163 + 5 --4 --- 7 
19 -- 9 --21 --186 -- 2 + 7 -j-170 +10 +6 
20-1 -22 --208 -7 0 +170 --5 +1 0 
H --· 1 --23 ---231 -· 3 -- 3 + 167 
22 ·- 3 --26 . --257 --- 2 -· 5 + 162 
23 -- 7 ---33 ---2!)0 + 2 -- :{ -t-15!) 
24 . - 9 --42 ---332 - 7 ---10 ·t-149 

2~--=---=~~--- --=~~=-------~~---~~-~-+ 146__j _________________ __ 
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It is evident, that the two error series are random, but 

show systematic character after double summation. 

This is a statistical statement, as can be shown with a 3rd 

series, which remains random! 

4.5 Off Axis Points and.Their Coordinate Errors 

a} Scale Error: 

Errors in y and z (the x-error has already been considered 

for the nadir points) 
i-1 

t:.y. = y. ~:.~= y.{t:.SJl + E t:.s ) 
1 1 (!) 1 Ur v= 1 v 

i -1 
t:.z • = z . 6~ = z . ( t:.S:p + E t:.s ) 

1 1 \!) 1 \.!.-I v= 1 v 
" . 

b) Azimuth error: 
i-1 

t:.fv.:\ = -y. (t:.A"' + E 
(!) 1 - \.!) \.) = 1 

t:.z. = 0 . , 

c) Longitudinal error: 

t:.x. 
1 

l:!y. 
1 

i·l 
= Zi M>Q) = Zi (6~f.j\ + E 

I..!) v= 1 
= 0 .. 

t:.a ) 
'\) 

8¢1 ) 
\.) 



45 

d) Lateral error: 

i -1 
t.y1• = -z. 6fq::;. = -z. (Aq,'\ + r Aw ) 

1 (!_,1 l -zv v= 1 \) 

i-l 
AZ • = y • M4--f1 = y • ( Mf~ + E Aw ) 

1 1 Q) 1 H I -1 V ....... v-

All these influences combined give the following errors in x, y, z 

for a point in model i, when the origin of the coordinate system is 

close to the 1st projection centre and the x-axis follows the direction 

of flight: 

I · , · 1 • ., · ,_ 1- ,~ 
I 

AX= AX0 + XAS;;- YAAj;+ ZA~l + E (x-x )AS - y :E Aa + Z E A$ + r 
~ ~) ~} I _,. \) \) -1 \) -1 \) X v- v- v-

'1 ., - ., I ,_ 1- l-

AY= AY0 + YAi.1D' + XAJlr,)- ZM~f'+ yEAS + E (x-x )Aa - z E Aw + r 
· \.!..- \!J 

1 
v=l "' v=l "' "' v=l "' J y 

AZ = AZ + 
0 

initial errors 

Now we simplify again: 

= AS = 2 

Therefore 
i -1 

i-1 i-1 i-1 
z r A s r (x-x )A~ + y r Aw + r 
v=l "' v=l "' "' v=l "' z 

transfer errors 

= AS 

= Aa 

pointing 
error during 
measurement 

E (x-x.) As"' for a constant As becomes: 
v=l 1 
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i _, 

~ (x-xi)6sv = (x-x1}6s1 + (x-x2)6s2 + ...... + (x-xi_1)6si-l 
:v=l 

= [(i-l)x- (x1 + x2 + ..... + xi_1)]6s 

and if we consider b~ ~ b: 
x.(i-1) 

= [(i-l)x- 12 ]6s = 
x. 

(i-1) (x- r) 6s 

Now, if we just consider the nadir points, then x ~ x. 
1 

i -1 . 1 
~ (x-x.) 65 = l:_x 65 
-1 1 2 v-

x. 
However: i ~ ~ ~ ~ (i = number of models) and for longer strips we can 

set (i-1) ~ i, therefore: 

i-l 6S 2 
~ (x-x;) 6s = 2b x = 6x (major influence!) 

v=l 

This means, that if we have a constant scale error, the influence is 

in form of a parabola. 

The single summation will give: 
i -1 
~ 6av = 6a1 + 6a2 + ........ + Aai-l 

v=l 

with 6a1 = 6a2 = .... = 6a 
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= ( i -1) L\a 

z L\a x 
b 

The single summation results in a linear behaviour. Therefore: 

LlS 2 M M_ 
LlX = LlXO + xilrj)- yMID + Zll't1) + 2b X - b xy + b xz + r X 

L\a 2 ils L\w 
L\y = L\y0 + YL'i\1) +XL\~- ZMtj)+ 2b X + b xy - b xz + ry 

L\Z = L\z 0 + zil~f)- XL\~)+ yl\~-* i - ~w xy + L\~ xz + r z. 

If we want to establish a general equation, we can set: 

L\X = ao L\yo = bl\ L\z0 = co __ o d 

L\~:~1) = al ill}j) = bl Mj = cl Ll~D = dl 

L\S M_ 
b2 Llql = 

2b = a2 2b - 12b c2 

And now we have: 

L\x = a0 + a1x - b1y + c1z + a2x2 - 2b2xy + 2c2xz 

2 
L\y = b0 + b1x + a1y - d1z + b2x + 2a2xy - 2d2xz 

2 ilz = c0 - c1x + d1y + a1z_- c2x 2d2xy + 2a2xz 

L\w -
d2 2b -

These functions are not independent, except for the axis where y = z = 0. 

However, we have now some equations which are independent of the models. 

Before, the strip deformations were functions of x, y, z and i!! 

For flat terrain, z =canst.: 
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2 
~Y = b0 + b1x + a1y + b2x + 2a2xy 

~z = c0 + c1 + d1y + c2x2 + :d2xy 

Now we make them all plus and omit the 2 since the general coefficients 

are different. 

112 

Transfer errors 1st summation 

~s, ~a, ~cp, ~w ---~ ~S. ~A. M. ~r~. 
1 1 1 1 

for b-t~>O J 

Now we can reverse the whole procedure 

1st differentiation 

~x, ~y, ~z 

We had: 

2nd summation 

~x, ~Y, !J.,z 

JI 

2nd derivative 
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!J.X = a0 + a1x + a2x2 + - y(bl + b2x + ... ) + z(c1 + 2c2x + .. ) 

!J.y = b0 + b1x + b i + 2 + y(al + 2a2x + ... ) - z(d1 + 2d2x + .. ) 

!J.Z = co + clx + 
2 c2x + + y(dl + (2)d2x + .. ) + z(a1 + 2a2x + .. ) 

dtJ.y . dtJ.z . 
!J. !J. _ y( aXlS) + z( aXlS) 
x = xaxis dx dx 

dtJ.x . 
tJ.y = tJ.y + y( ax1s) z(tJ.n ) axis dx - (x) 

dtJ.x . 
A A + (An ) + z( ax1s) uZ = uZ . Y o~•( ) dx aXlS X 

Compare this with original coefficients: 

!J.X = !J.XA - ytJ.A(x) + Z!J.~(x) -
tJ.y = tJ.yA + ytJ.S(x) - ztJ.n(x) 
~ WIIIMIU11IIIIIII!Iillijt 

= 0 for z =canst.! 

(up to 10% of flying height). 

These are independent polynomials, the others are derivatives. 

So far we have only talked about random errors. There are 

also systematic ones, caused by instrument errors, distortions, etc. 

as well as by earth curvature, refraction, etc. 

Historically systematic errors were approximated by a 2nd order 

polynomial. Since the strip deformations appeared to have similar 

behaviour, it was assumed that the main error sources were systematic. 

This lead to intensiv e instrument checks. Today it is obvious that 

systematic errors and random errors with systematic characteristics due 

to double summation are superimposed. The initial doubting came, when 
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triangulation with the C8 and radial triangulation showed similar 

behaviour, although they are the result of extremely different procedures 

and instruments. 

Before going to actual strip adjustments, a few words on the 

magnitude of the errors: 

while 

cr~x 

cr ~s '\ 
I 
I 
\ r 
j 

cr~s ~ 0.1 - 0.2 %0 

cr~a = cr~t = cr~w = lc (same cl~im 0.5c) 

increase proportional with /x3 

increase proportional with /x 

According to Ackermann: 

where 

- = ~. 
X b' Y- = 'j_, 

b' 
- z ( z = b normed quantities) 

There are strong correlations between x. y., and z. as well as with other 
1 ' 1 1 

points. In addition a measuring error of ~ 10 vm in the image scale has 

to be considered. 
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5. Strip Adjustment with Polynomials 

5.1 General Remarks 

Orig·inally, strip adjustment was a non linear interpolation 

procedure. This depends strongly on the number. and distribution of 

control points. The problem is, to approximate the real errors as good 

as possible. 

Let us assume, we know the deformation: 

A 
I 
! 

One tries to determine the plausible deformation, using these known 

points. The deformation is considered to be steady. Such a curve can 

for example be obtained using a plastic ruler which gives you a better 

curve than any numerically determined one. However, there is the 

additional problem of measuring errors in the known points. 
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'"'"'''""'"""""'"" 

What is better? 

One thing is quite obvious that points close together might 

cause large errors. 

/j 
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_ ............ , ..... "'""""""""''"'""""'""'"""-...................... - .............................. ---................................. 1--•·---.. -· .... ·----... -·ild-~ 
f.- loh~er --·~ 

!"; rZ)c ,.,~ 

Extreme case: one model! 

There has to be a certain restriction to the degree of the polynomial. 
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5.2 The U.S. Coast & Geodetic Survev Method, as Example 

Extract from: Aerotriangulation Strip Adjustment 

by M. Keller and G.C. Tewinkel 
U:S. Coast .and Geodetic Survey 

AEROTRIANGULATION is a photogrammetric technique for 

deriving ground coordinates of objects from a set of overlapping aerial 

photographs that show images both of those objects and also of a 

relatively sparse distribution of other objects whose coordinates are 

known from previous classical measurements on the ground. Provisional 

photogrammetric coordinates of objects can be determined by at least 

two general methods: 

(1) through the use of a high-order photogrammetric plotting instrument, 

or 

{2) through analytic computations based on observed coordinates of 

images on the photographs. 

The discussion pertains specifically to both cases. In each instance, 

the photogrammetric strip coordinates of points comprise a thick, 

three-dimensional ribbon in space generally not referred specifically 

to any ground surveyed system of points. 

Finally, the strip coordinates, in order for them to be useful, 

must be related to the ground system through the application of poly­

nomial transformations in a curve-fitting procedure to adjust the 

photogrammetric strip coordinates to agree with known ground surveyed 

coordinates. This fitting technique is called Strip Adjustment. The 

polynomials are nonlinear because of the systematic .accumulation of errors 

throughout the strip. The application of least squares provides a 

logical analysis of redundant data. 
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This paper comprises a documented computer program concerned 

only with the transformation and adjustment of the strip coordinates 

of points to fit ground control data. 

Technical Bulletins No. 11 and No. 102 presented the principal 

formulation still being applied in the Coast and Geodetic Survey, and 

No. 21 3 included an application of those ideas. The present bulletin 

includes helpful modifications which have been added since the dates 

of the original releases, combines the ideas of the three former 

bulletins into a single operation, adapts the program for either 

instrumental or analytica aerotriangulation, and embodies a systematic 

technique for correcting horizontal coordinates for the local inclina­

tions of the strip. 

This program is considered to be the first of a series of two 

or three new programs for analytic aerotriangulation. Chronologically, 

this program will be used as the third step in the provisional adjustment 

of strips. The other two programs will consist of 

(1) the reduction of observed image coordaintes and 

(2) relative orientation, including the assembly of the oriented data. 

The three programs will comprise a complete practical set for analytic 

strip aerotriangulation for use on a medium size computer. 

1 Aerotriangulation adjustment of instrument data by computational methods 
by W.O. Harris, Technical Bulletin No. 1, Coast and Geodetic Survey, 
January 1958. 

2vertical adjustment of instrument aerotriangulation by computational 
methods by W.O. Harris, Technical Bulletin No. 10, Coast and Geodetic 
Survey, September 1959. 

3 Analytic aerotriangulation by W.O. Harris, G.C. Tewinkel and C.A. 
Whitten, Technical Bulletin No. 21, Coast and Geodetic Survey, Corrected 
July 1963. 
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INTRODUCTION 

The adjustment of aerotriangulated strips has been the 

subject of numerous articles and publications for a few decades, as 

indicated presently by the references. The articles agree in general 

that the equations for transforming photogrammetric coordinates into 

ground coordinates can be expressed by polynomials which need to be at 

least second degree. Schut4 and Mikhail 5 show that a conformal trans-

formation in three dimensions is not possible if the degree is greater 

than one, although a conformal transformation in a plane is not limited 

as to degree. Inasmuch as an ideal solution of the three-dimensional 

problem does not seem to exist, photogrammetrists have been free to 

devise approximate, quasi-ideal, and impirical solutions that seem to 

give practical and usable solutions to their problems. Several examples 

are cited. 

The Coast Survey formulas applied herein are: 

x• = x - ~z(3hx2 + 2ix + j ) + ax3 + bx2 + ex - 2dxy - ey + f 

y• = y - ~z{kx2 + ~x + m) + 3ax2y + 2bxy + cy + dx2 + ex + g 

z• = z[l + {3hx2 + 2ix + j)2 + {kx2 + ~m + m2]112 + hx3 + ix2 + 

. k 2 JX + x y + my + n . 

(The x, y coordinates refer to the axis-of-flight system after the 

application of Equations 22 and 23). Schut4 states the following 

conformal relations for horizontal coordinates to third degree: 

4 Development of programs for strip and block adjustment by the 
National Research Council of Canada by G.H. Schut, Photogrammetric 
Engineering, Vol. 30, No. 2, page 284, 1964. 

5 Simultaneous three-dimensional transformation of higher degrees by 
E.M. Mikhail, Photogrammetric Engineering, Vol. 30, No. 4, page 588, 
1964. 
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. 2 2 3 2 2 3 x• = x + a1 + a3x - a4y + a5(x -y ) + 2a6xy + a7(x -3xy )-a8(3x y-y ) + 

y• = y + a2 + a4x + a3y + a6(x2-y2)+2a5xy + a7(3x2y-y3) + a8 (x3-3xy~~)+ 
Webb and Perry6 used 

x• = x + a3x2 + b3x + c3xy + d3xz + e3 

y• = Y + a4x2 + b4xy + c4y + d4 

z• = z + a5x2 + b5xy + c5xy + d5y + e5x + f 5 . 

The following equations in a plane appear in Schwidefsky•s textbook: 

y• = y + a2x3 + b2x2 + 3a1x2y + 2b1xy . 

Arthur8 of the Ordnance Survey of Britain published: 

x• = x + a1 + a4x + a6z - a7y + l/2a8x2 + a10xz - a11 xy 

2 y• = Y + a2 + a4y + a5z + a7x + a8xy + a9xz + l/2a11 x 

z• = z + a3 + a4z - a5y - a6x + a8xy - l/2y10x 2 

(3) 

(4) 

(5) 

Norwicki and Born9 suggest variable degree polynomials depending on the 

special conditions relative to the number and distribution of control 

points. The study included sixth degree. 

6 Forest Service procedure for stereotriangulation adjustment by 
elevtronic computer by S.E. Webb and O.R. Perry, Photogrammetric 
Engineering, Vol. 25, No. 3, page 404, 1959. 

7 An outline of photogrammetry by K. Schwidefsky, Pitman Publishing 
Corp., p. 272, 1959. 

8 Recent developments in analytic aerial triangulation at the Ordnance 
Survey by D.W.G. Arthur, Photogrammetric Record, Vol. 3, No. 14, page 120, 
1959. 

9rmproved stereotriangulation adjustments with electronic computers by 
A.L. Norwicki and C.J. Born, Photogrammetric Engineering, Vol. 26, No. 4, 
page 599, 1960. 
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The unusual terms in the Coast Survey formulas are designed 

to compensate for the local tilts of the strip: otherwise these 

formulas are not greatly different from the others. Justifications 

for their existence is given in the next section. 

It may be appropriate at this stage to state the precision 

toward which this study is directed. Accuracies of a few feet have 

been experienced where the flight altitude is 20,000 feet; fractions 

of a foot are significa~t. Consequently, this program is prepared 

so as to preserve thousandths of a foot for round-off reasons even 

though the small distances are not ordinarily significant in themselves. 

Thus the fine precision being sought causes one to consider carefully 

the type of transformation being applied lest the transformation itself 

add systematic errors due to excessive constraint or relaxation. 

The best root-mean-square accuracy that can be expected using 

the piecemeal, provisional Coast Survey analytic solution is probably 

in the neighbourhood of l/10,000 to 1/20,000 of the flight altitude 

where film is used in the aerial camera; that is, 1 foot if the 

altitude is 10,000 feet. If glass plates are used in the camera, and 

if the results are refined by a subsequent block adjustment technique, 

present results suggest that l/50,000 can be approached; that is, about 

2 1/2 inches if the altitude is 10,000 feet. 
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BASIS FOR THE FORMULATION 

Analysis·af the·curve Forms 

The basis for the Coast Survey formulation is essentially 

that of Brandt10 and Price11 and is restated here for the sake of 

completeness. 

Considering the abscissa direction first, the 11 new11 or 

correct value x• (referred to the axis-of-flight coordinate system) 

for a point on the centerline (axis of flight) of a strip of aero-

triangulation is considered to be composed of the 11 old 11 value plus a 

correction ex: 

x• = x + c 
X 

(which also serves to define ex = x• - x}. The correction is expressed 

by means of a polynomial of third degree in terms of the 11 0ld 11 

coordinate: 

x• = x + ax3 + bx2 + ex + f . (6} 

Similarly, the new y-coordinate of a point on the centerline is expressed 

using a quadratic polynomial: 

y• = y + dx2 + ex + g (7} 

also in terms of the abscissa x inasmuch as the magnitude of the 

correction is obviously related to the distance from the beginning of 

the strip. 

Adequate theoretical and operational justification exists for 

assuming that the x and z equations need to be cubic whereas the y-

10 Resume of aerial triangulation adjustment at the Army Map Service by 
R.S. Brandt, Photogrammetric Engineering Vol. 17, No. 4, page 806, 1951. 

11 some analysis and adjustment methods in planimetric aerial triangulation 
by C.W. Price, Photogrammetric Engineering, Vol. 19, No.4, page 627, 
1953. 
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equation does not need to be more than quadratic, but it was the 

experience of Coast Survey photogrammetrists based on having performed 

perhaps a hundred or more graphic solutions prior to the use of the 

computer that led to the final conclusions. The x-curve was almost 

never symmetrical (a quadratic curve could by symmetrical) inasmuch as 

the second half invariably had a greater degree of curvature than the 

firsthalf. A third degree correction polynomial adequately removed the 

discrepancy whereas the quadratic form left a residual error too large 

to be acceptable, although the situation could not be completely 

explained through a theoretical analysis. However, the y-curve was 

both smaller in magnitude and more nearly symmetrical. The graphic 

z-curves also were perceptably greater than second degree and the 

theoretical reasons seemed to be even more convincing. 

Considering the y-curve for a moment, it is emphasized that 

Equation 7 applies to points on the centerline of the strip (fig. 1). 

The point m on the centerline needs to be corrected by moving it ton, 

and the magnitude of the correction is given by the equation. However, 

the point p on the edge of the strip needs to be corrected in two 

directions: 

(l) one component pq is equal to the correction mn at m, and 

(2) the second component is rq in the x-direction. 

In the right triangle mps, the angle at m is given by the first derivative 

of the equation of they-curve, which is the centerline (Equation 7): 

tan e = (2d) x + e. 

Then 

ps = mp tan e. 
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But mp is the ordinate y of the point: 

qr = ps = y[(2d)x + e] . (8) 

The complete x-equation is therefore composed of both equations 6 and 8: 

x• = x + ax3 + bx2 + ex - (2d) xy - ey + f (9) 

where the minus signs derive from the analytic definition of the 

direction of the slope; i.e., the relative direction of rq. 

The complete y-equation is formed through a comparable 

analysis: 

y• = y + 3ax2y + 2bxy + cy + dx2 + ex + g. ( 10) 

Equation 6 depicts a lengthwise stretching or compressing of the strip. 

The term (3ax2y + 2bxy + cy) in Equation 10 is the effect of the local 

stretch or compression in the y-direction both as a function of the 

abscissa x of point in the strip and also as a function of the distance 

y that the point is off the centerline. 

The vertical dimension is explained by a similar analysis. 

The basic equation is the cubic form 

''[' 
l', ·i' 

' ' t., 
I; 1/ ~ ' ' \ ' I} ' '\ II 

---~ ·----r-~ { 

:... ' -!...":'r---

"' Mu...:.imum Ordinate, CYBOW 

Fig. 1. -Sketch of the center line of they or azimuth curve illustrating 
the derivation of a component x-correction for a point not on the center 
line. The definition of the term maximum ordinate or CYBOW is also 
indicated. 

z• = z + hx3 + ix2 + jx + kx2y + txy +my+ n 

which can be considered as composed of the sum of the two principal 

geometric parts 

( 11) 

( 12) 

( 13) 
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The first part {equation 12) is sometimes called the 11BZ-

curve 11 • This curve is the projection of the center line of the strip 

onto the xz-plane. The second part (Equation 13) has been described 

as "twist" and as "cross tilt ... The latter is considered to be quadratic, 

again based largely on experience gained from the graphic analyses of 

many strips, inasmuch as the graphic curves invariably were not straight 

lines. If they were linear, the effect would resemble a helix of 

constant pitch, like a screw thread, but the quadratic form fits most 

situations more closely. The terms in Equation 13 have as their common 

factor the ordinate y of the point so that the farther the point is off 

the axis of the strip, the greater is the correction. 

T-he Slope Corrections 

If y is factored out of Equation 13, 

(kx2 + tx + m)y . ( 14) 

it is obvious that the parenthetical expression represents the slope of 

the strip perpendicular to the centerline: 

tan w = kx2 + tx + m ( 15) 

Moreover, the first derivative of Equation 12 is the instantaneous slope 

of the BZ-curve in the direction of the strip: 

tan ~ = d/dx (hx3 + ix2 + jx) = 3hx2 + 2fx + j . ( 16) 

Thus equations 15 and 16 depict the slopes of the strip 11 ribbon 11 in the 

x andy directions at any given abscissa x. Then the resultant tilt~ 

(deviation from the vertical) of the normal to the strip is given by 
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Fig. 2 - Sketch of the center line vertical BZ-curve illustrating how 
the local inclination of the curve causes a component horizontal 
correction in the x-direction. 

(17) 

which, inasmuch as ~and ware both small angles, is approximated with 

sufficient accuracy for practical operations by 

secT= (1 + tan2 ~ +tan w) 112 ( 18) 

In aerotriangulation, both in instrumental and in the Coast 

Survey analytic systems, the observed or computed coordinates of points 

are related to the initial rectangular axes of the strip at the first 

model or first photograph rather than the curved centerline of the strip 

(fig. 2). Consequently, the base and top of an elevated object have 

different horizontal coordinates. In the figure, the base a has the 

abscissa of point b whereas the top has the abscissa of point c. The 

previous photogrammetric solution yields the abscissa of c and the ele-

vation ~z. which introduce a discrepancy ~x equal to the distance from 

b to c: 

~x = ~z tan ~ = ~z (3hx2 + 2ix + j). ( 19) 

The value is subtracted from the abscissa of c as a correction indicated 

in the first formula of Equation 1. 

In a similar manner, the correction of the ordinate is: 

~Y = ~z tan w = 6z(kx2 + ~x + m) (20) 
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as ·indicated in the second formula of Equation 1. 

The z-correct·ion is probably of minor consequence; neverthe­

less, it is also applied. The photogrammetric elevation is too small 

and needs to be increased by multip"lying it by the secant of the 

resultant inclination T of the line perpendicular to the surface of 

the str-ip. The term is applied in the third formula of Equation 1. 

T\!_q__ Pre1 imin?-..r:t3ffine Transformati~-~ 

In Equations 1 it was tactily assumed both that 

(1) the directions of the x, y, z axes were essentially parallel to the 

x', y', z' axes, and also that 

(2) the x-axis represented the centerline or axis of flight of the 

photogrammetric strip. 

Both of these cond-itions are violated in practice; consequent-ly, two 

preliminary affine transformat·ions are utilized for rotation, trans­

lation, and scale change. Inasmuch as these conditions need not be 

exactly adhered to, unique transformations are utilized so as to impose 

asfew fixed conditions as possible and to simplify the computations 

for determ·ining the constants of the transformation equations. 

Perhaps an exp'lanation is in order as to the reasons for 

assuming that these conditions are necessary. The systematic errors 

depicted by the polynomials of Equation 1 are direction-sensitive 

inasmuch as they are propagated as functions of the length of the strip, 

or the number of photographs in the strip, or simply the abscissa of a 

po·int in the strip. However, the photogrammetric direction of the strip 

(axis of flight) is not known with sufficient accuracy until after 

the strip has been aerotriangulated, at which time the easiest way to 

obtain the desired coor·dinates is to transform them by means of a 

computer rather than to reobserve them. 
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Secondly, whereas the photogrammetric strip (model) coordinates 

may progress in any direction of the compass, the ground coordinates are 

oriented with +X eastward. But the X-coordinates must also be 

reoriented into the axis-of-flight direction, which possibly would 

be unnecessary if all strips were flown north-south or east-west. Again, 

it is fairly easy to rotate, scale and translate the ground coordinate 

system into the axis-of-flight system with an electronic computer. 

Finally, after the correction Equations 1 have all been 

applied to the coordinates of a point, it is necessary to convert the 

coordinates back into the ground system by applying the inverse of the 

second affine transformation above so that the resulting coordinates 

are meaningful and useful in surveying and mapping work. 

Model Coordinates to Axis-of-Flight System 

By 11 model 11 coordinates is meant the form of the data from a 

stereoplanigraph bridge. A comparable form results from the preliminary 

computer solution of the Coast Survey analytic aerotriangulation. 

Let the model coordinates of a point near the center of the 

initial model be x1, y1, and near the center of the terminal model be 

x2, y2. The axis of flight is arbitrarily defined as passing through 

these two points. This axis of flight is to be the new x-axis: the 

new ordinates of both the above points are therefore zeros. The origin 

of the axis of flight is defined as midway between these initial and 

terminal points in order to reduce the numerical magnitude of the x­

coordinates, which has added importance inasmuch as the x-coordinates 

_are squared and cubed as indicated in Equation 1. The distanceD 
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between the initial and terminal points is given by analytic geometry 

to be 

Consequently, the coordinates of the initial and terminal points in 

the axis-of-flight system are 

x• - -1 l/2 D, yl = 0 

x2 = + l/2 D, Y2 = 0 

(21) 

The axis-of-flight coordinates of other points can be computed 

using the following set of affine transformation formulas (which comprise 

a special form of the more general Equation 25 discussed later): 

x• = a1x - b1y + c1 

(22) 

a, =' -flx/D 

b, = lly/D 

c, = -a1 x1 + blyl l/20 (23) 

dl = -a1 x1 - alyl 

Equations 22 constitute simply a rotation and translation of 

the 11 model 11 coordinates into the 11 axis-of-flight 11 coordinates maintain-

ing the same original model scale. The coefficients a1 .•... d1 are 

the constants for the transformation: their values are determined once 

only. 
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Ground Horizontal Coordinates Into the Axis-of-Flight System, and the 

Inverse 

The coordinates of horizontal ground control stations also 

need to be transformed into the same axis-of-flight system. The 

transformation is based on only two of the stations, one near the 

initial end of the strip and one near the terminal end. In the 

program, the coordinates of the two stations are listed as the first 

and the last ones used in the adjustment. Two sets of coordinates are 

given for each point: one set is in the form of model coordinates 

x1 ... y2 and the other set in the ground survey system as x1 ... v2. 

The first step is to transform the model values x1, etc., 

into the axis-of-flight system by applying Equations 22 and then 

applying the slope corrections as indicated by Equations 19 and 20. 

If xl ... Y2 are the axis-of-flight coordinates of the initial and 

terminal control stations, the following differences can be expressed: 

(24) 

(~X is called OGX in the Fortran program Statements 12+4 and 80+3). The 

square of the axis-of-flight distance o2 between the terminal model 

control points is 

02 = ~x·2 + ~y·2 . 

The same type of affine transformations as Equation 22 is 

applied to the axis-of-flight coordinates to convert them into the 

ground system of coordinates (Statements 70+1 and 70+2 in the Fortran 

program) which is applied to all new (bridge) points as the last stage of 

the computation after implementing the corrections of Equation 1: 
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(25) 

If the values of xl' etc., and x1, etc. are substituted into Equations 

25, one obtains four simultaneous linear equations in which four constant 

coefficients a20 •.... d20 are the only unknowns. The solution of the 

equations gives 

a20 = (~X . ~x· + ~y • ~y')/02 

b20 = (~Y . ~x· - ~x . ~y')/02 

c20 = Xl - a20 xl + b2oYl 

Equations 25 embody a change in scale in addition to rotation and 

translation. 

The inverse form of Equations 25 shows the corresponding 

transformation of ground coordinates into axis-of-flight values: 

x' = a21X + b21Y- c21 

y' = -b2lx + a21Y- d21 

The values of the four new constants can be computed from those of 

Equations 25 by applying the following relations: 
2 2 d '* = 1 I ( a20 + b20 ) 

a21 = a20 d* 

b21 = b20 d* 

c21 = (a20 c20 + b20 d20)d* 

d21 = (a20 d20 - b20 c20)d* 

(26) 

(27) 

(28) 

The evaluation of all eight of the constants of Equations 25 and 27 are 

indicated after Statement 80 of the Fortran program. 
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It is noted that (a~0 + b~0 ) 112 expresses the scale change 

included in the transformation. 

It should be noted that the application of transformation 

Equations 27 is such that no discrepancy ex or cy exists or remains at 

the two end horizontal control points on which the transformation is 

based. Consequently, if the two polynomial curves are plotted, they 

will both cross the zero line, or x-axis, at the location of these 

two control stations. (Fig. 1) 

Normally each curve describes a sweeping arc joining these 

two end points. Midway between the end points they-curve will be at 

its greatest distance from the x-axis, indicating that the correction 

is maximum. One is assured of this feature because the equation is 

quadratic and is symmetrical with respect to they-axis. Moreover 

Equations 22 have already been applied so that the origin of the 

observed coordinate system is at the center of the strip. Consequently 

the maximum height of the curve is where it crosses the y-axis which 

is where x = 0. If in Equation 10 x is set equal to zero, then the 

height of the curve is given simply by cy = g. The value g may be 

called the 11 maximum ordinate 11 which is symbolized in the program as 

CYBOW. This quantity is a diagnostic term whose magnitude as deter­

mined through experience normally does not exceed certain practical 

limits unless a blunder occurs in some of the data. 

Similarly, from Equation 9 the CXBOW is ex = f. Inasmuch as 

the x-curve is cubic, it is not symmetrical and the value f is not 

the maximum. Nevertheless, f is sufficiently near the maximum that it 

still is useful for detecting a gross blunder. 
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Preliminary Vertical Affine Transform 

The value of z is derived from the photogrammetric analysis 

and its exact relation to the ground system of measurement is not known 

until later. The following transformation and its inverse relating the 

two systems are stated and explained: 

z' = z + Z/s 
0 

z = s(~' - ~ } 0 . 

(29) 

(In Fortran notation, z0 is designated as EINDEX. These equations occur 

in the Fortran program as Statements 31+1 and 70+3}. The instrument or 

photogrammetric model elevation of a point in the axis-of-flight system 

is symbolized as z' whereas Z refers to the ground elevation, s is· the 

horizontal (as well as vertical} scale factor that relates the magnitudes 

of z' and Z, and z0 is an index elevation, or translation term. Thus 

Equation 29 implies simply dilation (scale) and translation. The scale 

factor is determined after Equation 24 above: 

(30} 

(Statement 12+5 in the Fortran program). Obviously the scale factor 

is normally a number greater than 1, such as 10,000, and is the number 

for multiplying instrument or model dimensions to convert them into 

equivalent ground dimensions. 

The index elevation z0 is defined as an average value for a 

list of control points: 



71 

(Fortran statement 14+2). Thus the index is the difference between 

the average of the instrument elevations and the average of the corres-

ponding ground elevations that have been scaled into the instrument 

units. The index serves not only as a translational element between 

the two systems, but also confines the adjustment to the actual zone 

of elevations rather than simply applying the adjustment to a set of 

abstract numbers which in practice would each ordinarily be of 

considerably greater magnitude than its corresponding elevation. 

The Solution of Simultaneous Equations 

The first two formulas of Equation 1 give rise to two 

simultaneous observation equations for each horizontal control point 

in which the unknowns are the seven constants a ..... g. (The third 

formula gives rise to a single observation equation of a different 

set for each vertical control point where the unknowns consist of 

seven additional constants h ... n). Four or more horizontal stations 

result in eight or more observation equations in seven unknowns. A 

least-squares solution applies in which seven normal equations are 

first formed from the set of observation equations by classical methods 

and then solved uniquely using a routine commonly applied in Coast 

Survey geodetic work. The routine consists principally of Gaussian 

elimination incorporating the square-root technique. The system is 

described in detail in Technical Bulletin 21. 12 (See also Hildebrand. 13 ) 

13 Introduction to Numerical Analysis by F.B. Hildebrand, McGraw-Hill 
Book Company, Inc., page 431, 1956. 

12 See note 3 above. 
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If a set of m observation equations have the form 

(31) 

each coefficient of the set of corresponding normal equations can be 

stated as 

m i = 1 n 
b .. = l: a. a.' 

1J k=l 1' J j = ; (n+l) (32) 

in which i, j are the row and column numbers of the coefficient, m is 

the number of observation equations and n is the number of unknowns 

(as well as the number of normal equations). (Statement 23 of the 

Fortran program shown in Table 8). Inasmuch as the normal equation 

system is symmetric with respect to its principal diagonal, the terms 

below the diagonal are not computed nor are the spaces in the matrix 

used. 

An auxiliary c-matrix is formed from the normal equation 

b-matrix in the forward concept of the solution. For the terms in 

the first row 

c . . = b . . I ( b . . ) 1 I 2 • j = 1 .. . ( n+ 1 ) 
1J 1J 11 

(33) 

The formula for the diagonal terms is stated explicitly although it is 

essentially identical to that for the general terms: 

( i -1) 
c1 .• =[b .. - l: (ck.) 2]112, i = 2 ..... n . 

'1 , k=l 1 
{34) 

The general term is 
( i=l) 

c. · = b. . l: c. kc.. (c .. ) 112 , 
1 J 1 J k= 1 1 1 J 1 1 

i = 2 n 

j=(i+l) ... (n+l) (35) 
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This completes the forward solution. It is accomplished by the Fortran 

Statements following number 23 through 99, which apply the formulas in 

a different order than stated here in order to exploit the facilities of 

the DO and IF instructions of the program language. Again, terms below 

the diagonal are not computed. The terms are stored in the same spaces 

as the normal equations, that is, cij is stored in the space formerly 

occupied by bij inasmuch as the latter is no longer needed. 

The final back concept of the solution d is given by: 

(36) 

(n-1) 
di n+l = (ci n+l- z: c._1 +l c.n)/c .. , i = n-1, n-2, n-3 ... 1.(37) , , k=l 1 ,n 1 11 

(Statements 96 through 91 of Table 8). These are the new values in 

the last column that comprise the 11 answers 11 to the solution. Again 

they are stored in the same matrix space as the corresponding b and c 

terms. The coefficients of the observation equations are symbolized 

as A in the program whereas the b, c and d terms have the common 

designation EN. 
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6. Aerotriangulation with Independent Models 

6.1 General Remarks 

Numerous photogrammetrists and agencies have developed semi­

analytical aerotriangulation methods and/or procedures. Most of them 

were not developed to full operational capacity, while others are 

incorporated into everyday production. Besides differences in 

mathematical approaches, especially in setting up rotational matrices 

and solving large systems of equations, there are either approximate 

solutions using polynomial adjustments or similar approaches or 

rigorous adjustments. Viewing the situation from the Canadian angle, 

I would like to discuss the NRC, EMR and Stuttgart methods - better 

known by the names of the people directly connected with them, namely 

Schut, Blais and Ackermann. 

The basic ide a is common to a 11 methods. As the name 

indicates, each model is measured independently, which means that no 

absolute orientation is necessary. The model coordinates x, y, z of 

all the points are measured in the machine - or model coordinate 

system. A base change is not necessary, which makes the modern precision 

plotters (e.g. Kern PG2, PG3, Wild AB, AlO, Zeiss Planimat etc.) 

suitable for this method. This means that practically the same accuracy 

can be obtained with less expensive instruments. One important fact 

that has to be kept in mind, is that the two projection centres are 

needed for the model connection and therefore to be measured and 

included in the list of model coordinates. 

The connection of the models to strip- or block formations is 

then performed analytically within a least squares adjustment. 
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If only planimetric information is desired tie- or pass 

points in the model corners are theoretically sufficient for model 

connection. Additional tie points will strengthen the solution and 

increase the accuracy. For three dimensional blocks it is essential 

to also use the projection centres as pass points because of an 

otherwise undetermined ~-tilt between adjacent models. 

;~ --- --- - - r\ ~--........ r- - - -- --r 
'I ' II \ 'I \ II \ 
I \ I \ \ 
I \ II \ ,, \ II 

:I '/ I I 
i / I I; 12 I :; A L D f ________ _j/ ___ , __ _ 

~--___./ 

Before going into the details of the already mentioned 

methods, I would like to name a few other approaches, just to give 

you an idea of their varieties. 

Inghilleri and Galetto (Italy) - rigorous solution with the following 

three steps: 
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1) Determination of projection centres {LS adj. of space resection) 

2) Relative orientation refinement {measurement of residual y-parallaxes -

projective equations to refine models (angular elements only!) 

directional tangents in space). 

3) Successive model linking (7 parameter solution). This method 

reduces the operator time by nearly a factor two, while increasing 

the computer time to perform step 2). 

4) Strip Adjustment with any available program. 

Weissman (Israel) -This is a development based on Inghilleri/Galetto•s 

approach with using a 3D-coordinate transformation reduced to the • 
centre of gravity for model linkage. Again the method ends at the 

strip formation stage and requires a strip or block adjustment afterwards. 

Thompson (London, England) - has a different approach to the model 

linkage. He compares the vertices of triangles formed in two 

different models. These triangles are defined by the projection 

centre and two points located symmetrically with respect to the 

principal point so that their x-coordinates are zero. The unique 

feature of Thompson's method is the direct solution for 6 elements 

of the rotational matrix using linear equations. The remaining three 

may then be determined using orthogonality relationships. Thompson's 

approach was somewhat modified by Roelof (Delft, Holland). 



77 

6.2 Determination of Projection Centre Coordinates 

There are several methods of determining projection centres. 

Several plotters, especially the ones where the projection centre 

coordinates change due to relative orientation, have special arrange­

ments for simple determination. 

Avoiding unnecessary duplication with your laboratory sheets, 

I would like to mention that most of the methods utilized fall into 

one of the following categories: 

- space resection 

grid measurements in two planes 

- direct observations with vertical space rods 

- similarity transformation. 

Since the first three are either self explanatory or explained in the 

lab sheet, I would like to present the last one as proposed by Dr. 

Ebner for use with PAT-M. 

In this case, the projection centre coordinates are determined 

by stereo grid measurements. For this purpose, grid plates are centered 

very carefully in the left and right plate carriers. Then a relative 

orienation is performed. Afterwards the grid points 1-6 are measured 

and recorded. Using a spacial similarity transformation a true grid 

model is fonmed by the grid width "a" and the mean calibrated principal 

distance "c" is transformed onto the recorded grid model. The 

desired projection centres are then the transformed points 7 and 8 

of the true grid model. 
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An advantage of this method is that the accuracy of the instrument can 

easily be derived from the residuals of the x, y, z-coordinates of the 

6 grid points. 

6.3 The NRC-Approach {Schut) 

6.3.1 Formation of Strips from Independent Models 

The model coordinate system of the first model is retained as 

the strip system. Subsequently, each following model in succession can 

be transformed to that system by connecting it to the preceeding model, 

using the following steps: 

1) translation to make the coordinates of the common projection centre 

the same as in preceeding model 

2) rotation which makes orientation of vectors from common projection 

centre to common points the same 

3) scaling to give those vectors equal length. 

Prior to Thompson's work, the coefficients of transformation 

for space rotation were non-linear functions of the rotation parameters 

and usually solved via an iteration process. 



79 

Based on Thompson's knowledge, that by proper selection of 

the parameters, linear equations are possible, Schut derived his own 

rotational equations. He was able to derive a set of four linear 

equations which are homogeneous with respect to four parameters. 

However, the derivation by means of matrix algebra leads directly 

only to three of them, and quaternion algebra is little known. 

The best way of writing these formulae is as a transformation 

in a four dimensional space by means of 4x4 matrices. Then they can 

be obtained by matrix algebra. 

The rectangular coordinate systems x, y, z have their origins 

in the common projection centre and a fourth variable t is associated 

with x, y and z. These four parameters are arranged in a special way 

as the elements of a matrix T: 

t -x -y -z 

T - X t -z y 

y z t -X 

z -y X t 

Similarly the elements a, b, c, d are arranged as the elements of a 

matrix D: 

d -a -b -c 

D = a d -c b 

b c d -a 

c -b a d 

Any matrix arranged this way has the following characteristics: 
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Both column and row vectors are mutually orthogonal and have the 

same length. The determinant of the matrix is equal to the 4th 

power of the length of these vectors, therefore, except if all 

parameters are zero, the matrix is non singular. The product of two 

matrices of this type will be another matrix of this type, so is 

the inverse. Now the 0 matrices are restricted such, that their 

vectors have unit length: 

101 = (d2 + a2 + b2 + c2)2 = +1 

and 

0-1 = OT 

Considering the four parameters ofT as the coordinates of 

a point in 40-space and the matrix 0 as a transformation matrix, the 

elements of the first column of their product matrix are the coordinates 

after rotation: 

or in longhand: 

since 

T1 = OT 

t• = dt- ax by - cz 

x• = at+ dx cy + bz 

y• = bt + ex + dy - az 

z• = ct- bx + ay + dz 

IT • I = IT I (due to I 0 I = + 1 ) 

the vectors keep their length and therefore the scale is preserved and 

we have a pure rotation in 40-space. However these equations have the 

undesired property that the transformed coordinates are not only 

functions of x, y and z but also of t which is undefined. 
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Another transformation {also a rotation) would be 

T' = D TD 1 2 

by premultiplication with DT we get 

oi r1 = ro2 

and in terms of the f'irst column elements: 

I 

dlt + a x' 
1 

+ b y• 1 + c z' 1 = td2 - xa2 - yb2 - zc2 

-a t' + d x' + c y' - b z' = xd2 + ta2 - zb2 + yc2 1 1 1 1 

-b t' 1 c x' - 1 + dly• + a z' 1 = yd2 + za2 + tb2 - xc2 

c t' - 1 + b x' 1 a y' - 1 + d z' 1 = zd2 - ya2 + xb2 + tc2 

We wish to select only those for which x•, y', z' are independent 

of t. 

If in 3D-space we require that x• and y• are independent of 

z, it implies a rotation around the z-axis, therefore, this selection 

implies a rotation around the t-axis, which means 

t' = t. 

By inspection it was found out that this independence is obtained if 

D2 = oi. The the original transformation becomes 

T' = DTDT 

giving the fall owing linear equations 

(x'-x)a + (y'-y)b+ {z'-z)c = 0 

(z'+z)b + (y'+y)c + (x'-x)d = 0 

(z'+z)a - (x'+x)c + {y'-y)d = 0 

-(y'+y)a + {x'+x)b + (z'+z)d = 0 
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Since t remains unchanged, the rotation is restricted to the x, y, T 

subspace of the 4-D space. The latter equations are therefore used 

for the computation of the parameters of the rotation 

T' = DTDT . 

The connection of a model of a strip to the previous model 

requires the coordinates of the common projection centre and of at 

least 2 other points. From the reduced coordinates of each point 

(to common proj. centre) four linear equations can be obtained. A 

least squares adjustment is used to solve for the rotational parameters 

a, b, c and d. In this case, the normal equations become very simple 

functions of those linear equations. The elements sij of the normal 

equations become: 

s11 = E [(x'-x) 2 + (y'+y) 2 + (z'+z) 2] 

s22 = E [(x'+x)2 + (y'-y)2 + (z'+z)2] 

s33 = E [(x'+x)2 + (y'+y)2 + (z'-z)2] 

s44 = E [(x'-x) 2 + (y'-y) 2 + (z'-z)2] 

s12 = s21 = -2Eyx• + y•x 

s13 = s31 = -2Exz• + x•z 

S - s = -2Ezy• + z'y 23 - 32 

s14 = s41 = 2Ezy• z'y 

s24 = s42 = 2Exz• x•z 

S - s - 2Eyx• - y•x 34 - 43 -
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From the normal equations only the ratio of the four parameters can 

be determined. Therefore, one is set equal to 1 and the others are 

obtained by solving the equations. 

If d = 1 then a and b become finite, since they are related 

to longitudinal and transversal tilts. The parameter c is related to 

a rotation in the horizontal plane and becomes infinitely large for 

a rotation of 180°. In this case, c = 1 would have to be chosen. 

With this the following simple algorithm can be used: 

$I ::::: 
33 

Then 

d :::: and c = I I I 
- 534 s33 

or c = 1 and d = I I I -s34 544 

and b == -(s' d + 24 s23c)ls22 

a = -(s14d + s13c + s12b)ls11 

Now all the elements of Dare known and the rotation can 

be performed for each roint according to 

T1 = DTDT . 
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Since this involves a newT-matrix for each point and 

therefore many computational operations, it is better to transform 

all coordinates as follows: 

where II. == scale factor and R, as expressed in terms of D: 

d2+ 2 b2 2 
\ 

2ab - 2cd 2ac + 2bd \ a - -c l\ 

2 2 2 2 l 
1 

R "' 2ab + 2cd 2bc + 2ad \ d -a +b -c I 
.d2+a2;b2+c2. 

d2-a2-b2+c2 
I 

2ac - 2bd 2bc + 2ad l 
and x~, y~ and z~ are the coordinates of the common projection centre 

in the model to which the correction is made. 

The adjustment of a strip is performed in three steps: 

'I) Simi"larity transformation (scaling, rotating and translating 

strip with the aid of specified ground control points) 

2) Height adjustment 

3) Planimetric adjustment. 

The block adjustment is an iterative solution in which each strip 

in turn is transformed. For computational purposes, both systems 

(ground-coordinates and strip coordinates) are shifted such that the 

origin lies inside the strip, e.g. first control pain~ 
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1) Similarity transformation 

Since translations are considered at a later stage, the 

similarity transformation can be written as: 

f x4 \ I x \ 

y4 1= AI y I 

\ z4 I \ z 1 

( 1) 

The subscript 11 411 denotes the fact that this rot. matrix is built up 

in four steps, while A is this rotational matrix multiplied by a scale 

factor. 

These step by step procedures to determine the rotation 

starts with a similarity transformation of the x andy coordinates. 

Using complex numbers, this transformation can be expressed 

as 

(2) 

and separating real and imaginary terms, while multiplying z with the 

obtained scale factor, we get 

(2 I) 

where 

A. = 

or in matrix notation 
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0 

0 (211) 

The second step is a levelling of the strip 

where 

1 . 1 2 1 2 1 --b +-c - 2 b1c1 4 1 4 1 -b, 

R = 1 1 + l b2 - l c2 
2 - 2 b1c1 4 1 4 1 -cl (3) 

\ bl cl 1 - l b2 
4 1 

- l c2 
4 1 

The matrix R2 were orthogonal except for the omittance of 
1 2 . 1 2 a factor 1 + 4 b1 + 4 c1, which means that with this rotation a small 

scale change takes place. 

b1 and c1 correct for longitudinal and transversal tilts. 

They are computed .from linear formulae extracted from the previous 

matrix by neglecting squared and mixed terms. Therefore, for large 

tilts, the levelling is only approximate, a fact which is corrected 

in the final height adjustment. 

Now again a planimetric similarity transformation takes place 

(4) 
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where R3 is constructed in the same manner than R1. This is to give 

the strip the correct scale for the final height adjustment and is 

needed for large tilts and to correct for the scale change introduced 

Finally, if a correction for longitudinal curvature or 

torsion is to be applied, the x~y,z origin has to be placed mid way 
.,~'"""'' 

between two points which define the strip axis. This has to be done 

at the initial stage when shifting coordinate systems. After all the 

mentioned transformations, the origin remains the same, but the strip 

is rotated around the z-axis to get these two points into the x/z plane, 

which means that the new coordinates are related ot the axis of 

flight. 

x4. x3 

y4: = R4 y3 

z4 z3 

with 
l cos I a sin a 0 

R4 =vi: cos a 0 (5) 

0 1 

cos a = 
x3 

and sin a = 
y3 

I 2+y2+i fx"2+y2+i' 
x3 3 3 3 3 3 

.. 

With this the similarity transformation is complete: 

(6) 
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2) !i_~i__gll t Adj us tmen t_ 

2 x5 = x4 - z4b1 - 2x4z4b2 - 3x4z4b3 
I 

- • 1 ••• 

2_ 
Y5 = Y4 - 24cl - x4z4c2 - x4z4c3 -

l .... l ... (7) 

2 3 
z5 = z4 + x4bl + x4b2 + x4b3 + 

+ y4cl + x4y4c2 + x~y4c3 + .... 1 + (x~ + y~)dl 
1 
, earth curvature 
I correction 

b1 and c1 serve for final tilt corrections. The other b and c 

terms serve for curvature and torsion corrrections. 

3) planimetric Adjustme~t 

At this stage the system has to be returned to the ground 

coordinate system from the flight-axis system. 

sin a Yr.· 
- ::> (8) 

Then the p"lanimetric adjustment, again disregarding the translations, 

is performed 

(x7 + iy7) - (x6 + iy6) + (e3 + ie4)(x6 + iy6) 

+ {e5 + ie6)(x6 + iy6)2 

+ (e7 + ie8)(x6 + iy6)3 + 

(9) 

So far the translations e1 and e2 in the planimetric trans­

formations and a1 in the he·ight computations have been omitted. They 

are computed however together with the coefficients of these formulae. 

Then, instead of employing them to the transformation formulae, they 

are added to the ground control system directly after computation. 

Therefore the ground control origin shifts during the procedure. 
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As a final step~ they are all added: 

xtr = x7 + cE + eF .. ) + e~4) + e~9) 

Ytr = Y7 + eN + e~2") + &~) + e~9) 

z = z + c + a( 3) + a(?) 
tr 5 H 1 1 

t 
transformed initial shifts in easting, 

northing and height. 

For the parameter computation, each control pt. supplies 

one or more condition equations, stating that the transformed strip 

coordinates should be equal to the known ground coordinates. If the 

same program is used for block adjustment, each tie point provides 

three additional conditions, stating that the transformed coordinates 

should be equal to those of an earlier transformed overlapping strip. 

The following correction equations are: for planimetry: 

(e1+ie2) + (x+iy) (e3+ie4) + (x+iy) 2(e5+ie6) + ..... 

for he_ig_hts_: 

a1 + xb-1 

+ ycl 

= (E - iN) - (X + iy) 
\ ......•... ,('"'""'""'' 

orig. ground coords. 

2 3 
+ X b2 + X b3 + 

+ xyc2 + /yc3 + . . .. == H - Z - ( / + y2) d1 

Although this program package is generally associated with 

the name Ackermann, I waul d 1 ike to attach two other names as well, 

namely Ebner and Klein. 



these include 
the 7 unknown 
orientation 
parameters 
for model j. 
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Ackermann, as director of the Stuttgart University Institute 

for Photogrammetry was the initiator of this program and supplied the 

theoretical background. Ebner performed numerous detail investigations 

into photogrammetric problems and supplied the final formualtion, 

while Klein wrote and optimized the computer program. The name stands 

for ~rogram Aerial Triangulation, independent Models. 

Mathematical Formulation 

The mathematical system is based on the relationship between 

the terrain point i and its measured model coordinates in the model j. 

Each model is subjected to a similarity transformation during the 

block adjustment process which performs it simultaneously for all 

models, taking tie- and control points into account appropriately. 

The following non-linear observation equations are used: 

v \ (X\ xo X 

v:) = ->...R. Yo + y (1 a) 
J J \:t vz ij zo j z i 

where 
T (x y z)ij = vector of model coordinates of point i in model j. 

(X Y Z) ~ = vector of unknown ground coordinates of point i. 

(vx v v )T = vector of corrections associated with the transformed 
y z ij 

point i in model j. 
T (X0 Y0 Z0 )j = origin of model coordinate system j. 

>..j =scale factor for model j. 

Rj =orthogonal rotation matrix for model j. 
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A modified version of the Rodrigues - Caylay matrix is used 

as the rotatinnal matrix Rj: 

/1 + l/4(a2-b2-c2) 

Rj = t( c + l/2 ab 

\ -b + l/2 ac 

where 

-c + 1/2 ab 

+ l/4(-a2+b2-c2) 

a + l/2 be 

k = 1 + } (a2+b2+c 2) 

b + 1/2 ac \ 

-a+ l/2 be \(lb) 

l+l/4(-a2-b2+c2)) 

and a, b, c = three independent rotation parameters. 

As already mentioned, there are 7 unknown parameters per 

model (a, b, c, ~. X0 , Y0 , Z0 ) and 3 unknown coordinates per terrain 

point. 

The observed model coordinates (x, y, z)ij can be weighted. 

The following weight coefficient matrix, scaled to terrain units can 

be introduced: 

Qxx Qxy : \ Q(ij)(ij) = Qyx Qyy ( 1 c) 

0 0 az) 
Since the model coord·i nates are treated as uncorrelated, 

Q ( i j )( kt ) = 0 . 

For computational reasons "it is not practical to weight each indivi-

dual point. Therefore one set of weight coefficients ·is used for al"l 

model points, another one for the projection centers. 

The coordinates of the ground control points are not 

ncessarily kept fixed during the adjustment. This means that these 

coordinates are also treated as observations which leads to an addi-

tional set of observation equations, namely 
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\ 

' c i XC X \ I vx '~ 

\ c I 
I 

- - Yc + 

:J 
(2) v j y I 

J 

cj zcj i vz . 1 
l 

where 

(X Y Z )~ = vector of terrestrial coordinates of control point i c c c 1 

(Vc Vc Vc)~ = vector of corrections associated with the terrestrial 
X Y Z 1 

coordinates of control point i 

(X Y z)1 = vector of unknown terrain coordinates of (control) 

point i. 

This last vector ties equations (2) with equations (la). 

The terrestrial coordinates of the ground control points 

are again weighted according to equation (lc). It is, however, 

possible to assign different weights to each individual control 

point, which is desirable, since some are horizontal control points 

or vertical ones or both. 

The observation equations (la) are linearized with the aid 

of approximate values. For the rotation parameters a, b, c an initial 

zero value is used as approximation. The linearized error equations 

are then: 

\ I I t / ' 
I VX\ 0 -z y -x da \. 

-(:::) +(:) 
f X\ I 

l I \ l vy \ 
., -I y I = z 0 -x -y ::I (3) 

I 
\ z/ ij \v ; .. -y X 0 z z' 1J dZ0 j Z; i 

dA /j 

The symbols have the same meaning as in (la). da, db, de and dA 

represent increments to the parameters a, b, c and A. x, y, z are 

the model coordinates as measured. 



93 

Since the linearization is based on approximate values, an 

iterative process is used for solving the problem. Therefore, x, y, z 

will become the corrected model coordinates of the previous iteration. 

The block adjustment program which is directly based on 

equations (2) and (3) is called PAT-M7 (J:.rogram .(lerial Iriangulation, 

·independent Mode"Js ]_parameter transformations). The programming of 

this system is presently not yet optimized. Instead the version PAT-M43 

was first completed, which iterates sequential horizontal and vertical 

adjustments, applying 4-parameter - and 3-parameter transformations 

respectively. By doing this, the computer time is reduced by a factor 

of 3. In order to accomplish that, equations (2) and (3) have to be 

replaced. 

For the horizontal block adjustment, the following observation 

equations are used: 

- for photogrammetrica lly measured model coordinates: 

v X -y 

..( :J. 
xo X 

X + (4a) - -
vy ij y X Yo j y ; 1 J \ J 

and for ground control points: 

c 
vx XC X 

- .. + (4b) c c 
vy ; y 

i 
y 

In order to avoid confusion with equation (lb) the rotational 

parameters in equation (4a) are noted as a and 6. 

The weight coefficients are the same as in the planimetric 

part of equation (lc). 
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The equations correspond with the 11 Anblock 11 approach, which in 

this case has the special advantage of being linear functions of the 

unknowns (a, 6, X0 , Y0 )j and {X, Y);. Therefore no approximations and 

no iterations if the models have been levelled beforehand are necessary. 

The projection centres are not included in the determination of 

the horizontal transformation parameters, because of disturbing effects 

on the convergence of the plan-height iteration cycle. 

The observation equations for the vertical adjustment are non-

linear. Their linearized form is for model tie points: 

-· (-y x) .. 
lJ 

da 

db j 

for height control points 

and for the projection centres: 

lC 0 -z \ X I d 
VPC \ a 

::: z 0 I 
y 1 r d : 

lC J b,: j 
-y X I •• z ij "l.J 

- (dZ ). + (Z). - (z) .. 
0 J 1 lJ 

-(Zc). + (Z). 
1 1 

0 \ X X 

\ 0 + y y I 
l 
i! 

dZ I . 
0 J 

z z ij 

(5a) 

(5b) 

(5c) 

The increments da and db refer to the same parameters a, b as in 

equations (lb) and (3). The weighting again corresponds to equation (lc). 

The program PAT-M43 starts with a horizontal adjustment which 

does not require any approx·imations. With the measured model coordinates 

a rigorous least squares solution using equations (4a) and (4b) leads to 

the transformation parameters (a, 6, X0 , Y0 ). Subsequently all the 

horizontal coordinates of each model are transformed with these parameters 

while the heights are corrected for scale. 
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These 11 new11 model coordinates are entered into the vertical 

adjustment utilizing equations (5a-c). A straightforward least square 

solution results in the increments (da, db, dz0 )j for the respective 

transformation parameters, which are then used to transform the model 

coordinates rigorously with the complete spacial similarity transfor­

mation formula. 

The model coordinates (x, y, z)ij refer therefore always to 

the latest stage of transformation, which means that an iteration process 

can be restarted after any iteration. 

Each iteration repeats the plan-height sequence of adjustment 

until sufficient convergence is reached. This occurs usually after 

three steps. Then the final terrain coordinates for the unknown points 

are computed together with residual errors at tie and control points. 

6.5 The E.M.R. Program (Blais) 

This approach is a 7 parameter simultaneous solution and in 

concept quite closely related to PAT-M-7. It has the big advantage, 

that it is free of charge for Canadian users. There are several restric­

tions and original assumptions, namely: The photogrammetric data for 

each stereo model is assumed to have been corrected for all known 

systematic errors, e.g. earth curvature, lens distortion, refraction. 

This means the photogrammetric model data are assumed to be affected 

only by uncorrelated random errors. 

The ground control coordinates are assumed error free for 

adjustment purposes. (Manual removal of questionable ground control 

is necessary!) 
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Since the transformation parameters are non-1 inear, initial 

approximations are necessary. Unlike PAT-M, this is not an iteration 

procedure, therefore better approximations of the rotational angles are 

required. Blais specifies 2-3 degrees, which is not always the case, 

especially in K! He therefore suggests an initial correction using 

an azimuth reading of the air base on the flight index map. (2-3 

degrees is even then quite difficult to achieve). These restrictions 

are somewhat overcome by the fact that the output file has the same 

format as the input file. Another run with the output of the previous 

one would then be needed. 

The basic equations for the transformation are: 

X = ax + by - cz + e 

Y = ay - bx - dz + f 

Z = az + ex + dy + g 

where X, Y, Z are the terrestrial coordinates, x, y, z the model 

coordinates and a-g, 7 unknown parameters. With some mathematical 

manipulations this leads to 

I X\ X 
I i I ~ 
' y ~ l i = R Y 
\ J 
\ z t z 

e 

+ f 

g 

where R is a rotational matrix, e.g. one like the one used in PAT-M-7. 

Since it is rather sensitive to the magnitude of the rotations -

which is not critical in case of an iteration approach - Blais used a 

somewhat different formulation for his program SPACE-M. Again his 

initial equations are: 
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X ·- ax + by - cz + e 

y :::: ay ..;, bx - dz + f 

z ::: az + ex + dy + g 

ground 
system (x, y, z) = model coordinates 

First a planimetr-ic similarity is considered: 

X = ax + BY + s 
Y = ay By + n 

The scale in this case is 

A = ~~'2"'~··;·2·a 

while the rotation angle 

-B 
K == arc tan -· 

Q', 

(counter clockwise about z-axis). 

(1) 

Next he considers a plane, approximately parallel to the x, y-

plane: 

z = yx +oy + ~ 
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The two levelling angles are (as measured from x, y- plane) 

¢ - arc tan y (around y-axis) 

w = arc tan 8 (around x-axis) 

In the 30 x, Y~ z space these inclinations of the x/y plane lead to: 

Z = z + X + 8y rotated 
which has the following (linearized) effects on x andy: 

xrot. = x - yz 

Y = y - 8Z rot. 

as obtained us·ing the orthogonal-ity of the x, y, z-system. Using 

these facts and the linear approximation of the scale: 
)"'""'""ru,,._.,. .. ,..,.., . .,.,.~._,""'"~ 

~~2 + s2 ::: a. 

he sets: 

K = arc tan -b/a 

¢ = arc tan c/"A 

w = arc tan d/A. 

Normally, the scale would be estimated from a 3D-volume change. however 

Blais indicated that the planimetric scale factor is advantageous. He 

also applies the rotations in the order ¢, w, K and obtains the following 

transformat·i on: 

x• Kl -K '2 0 0 0 <P, 0 -<P2 X e•. 

y -- ( a2+b2) l/2 • 1<:,2 Kl 0 wl -w2 0 1 0 y + fl 

z 0 0 1 w2 wl I <P2 0 cr, z, g'; 

where the subscripts 1 and 2 correspond to the cosine and sine of the 

angle respectively. 
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These functions have not to be used explicitly, since 

Kl = COS K = a/A 

K2 = sin K = -b/J.. 

<P, = cos <P = a/Kl (a2+b2+c2)1/2 

<P2 = sin <P = c<jl1 

(1)1 = cos (!) = a/Kl (i+b2+d2) 1/2 

The observation equations for a control point (X, Y, Z) with the 

photogrammetric model coordinates (x., y., z.) in the ith model are 
1 1 1 

X = a.x. 
1 1 

+ b.y. 
1 1 

- c.z. 
1 1 

+ e. 
1 

y = a.y. - b.x. - d.z. +f. (2) 
1 1 1 1 1 1 1 

z = a.z. + c.x. + d.y. + g. 
1 1 1 1 1 1 1 

If the control is horizontal only, z obtains zero weight while for a 

vertical control point X and Y obtain zero weight. Unknown tie or 

pass points, appearing in models j and k have the equations 

X' = ajxj + b.y. c.z. + e. 
J J J J J 

y• = a.y. - b.x. d.z. +f. (3) 
J J J J J J J 

z· = a.z. + c.x. + d.y. + g. 
J J J J J J J 

and also 

X' = I 
y• = t similar with subscript k at all parameters. 

i 

z· = J 
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6.6 Comparison of the Three Approaches 

a) Availability: 

Schut•s program is generally available and suitable for 

medium size (even smaller) computers. It is free of charge. 

PAT-M-43 costs approximately $15,000 to $20,000 and is 

available and tested for both IBM and CDC computer systems. EMR 

and LRIS possess copies, the latter being installed at U.N.B. with 

the Department of Surveying Engineering having user rights. Any 

federal or provincial projects can be executed while the copyright 

does not permit the use of the program for private industry. 

SPACE-M is principally available for all Canadian users 

free of charge. Presently only a CDC version is available, however, 

a conversion to the IBM system is planned. 

Both PAT-M and SPACE-M require large computers! 

b) Control Requirements and Accuracies 

If there is a dense ground control, there is virtually no 

difference in accuracy. This, however is not really the purpose of 

aerotriangulation. For proper use, Schut•s approach requires control 

in every strip, both vertical and horizontal. 

To give you an indication on what can happen, I shall present 

you some results obtained by EMR, using the Calgary Test block and 

also some of my own experiences. The accuracy and results of Schut•s 

approach vary with the degree of polynomial, while with PAT-M and 

SPACE-M one set of results is obtained. Schut•s results are also very 

dependent on the control of the first strip! 
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EMR published some results on the Calgary Test Block: 

This is a block of 142 models of wide angle photography at 

1:27,500 scale flown over a mixed rural and urban area. Measurements 

were made on a Wild STK-1 Stereocomparator and independent models 

formed analytically. There are 19 horizontal control points and 376 

vertical control points distributed fairly evenly in the 9 lines of 

15-16 models. 

The different control configurations were done with the 

three adjustment programs: 

APAAT - G. Schut•s polynomial adjustment of strips; 

PAT-M - Stuttgart planimetric-levelling adjustment of independent models; 

SPACE-M- the author•s spatial adjustment of independent models. 

The independent models were corrected for systematic errors (earth 

curvature, atmospheric refraction and lens distortion) and in the 

case of APAAT, the strips formed analytically before the adjustment. 

The control configurations are shown graphically using the model index 

with the symbols: 

A.- horizontal control point 

6- vertical control point 

and any unused control point is a check point. 

First, the results of adjustments with all the horizontal and 

vertical control points included are given. Then, for all other 

control configurations, only four horizontal control points were used, 

one in each corner of the block. The results of 3 adjustments using 

4, 3 and 2 cross-chains of vertical control are given on the following 
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pages. It should be noted in the cases of 3 and 2 cross-chains, that 

in two cases there are two adjacent strips that do not contain any 

vertical control points. In practice, this situation is unacceptable 

unless the tie points between the two strips are laterally staggered 

since there is no condition to control the lateral tilt in each strip. 

The fact that the results are good in our case is due to the presence 

of this condition. 

I 
~ 
l 

CALGARY TEST BLOCK 

ALL CONTROL INCLUDED 

PAT- t~ 

SPACE-M 

APAAT (Schut) 

1 .40 m 

1.18 m 

1. 57 m 

1.76 m 

1. 38 m 

1. 91 m 

0.33 m 

0.53 m 

0.76 m 
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CALGARY TEST BLOCK 

L1 1L\SD S OF V:E RT I CAL CO:\TROL 

• • • A • ' 4 • • 9 
I• 

• • -... -
1 .... • -- .. • • 

• .... ... - ~~f -
5 • •• 

• - .. • '\... 

Lines • . -- -

•• - ... - • > 

- ... .... - - --• 4 • • • • 1 

1 5 10 15 Models 

CHE K POINfS IN X Y Z: 

PAT-H 4.'71 m 0.85 m 

4.72 m 0.$5 m 

APAAT 10.76 ill 7.02 :m 0.99 m 
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CALGAR: TEST BLC~K 

3 BANDS OF VERTICAL ~~ONTROL 

PAT-}J 4.80 m 4.71 m 

SPACE -·H 4.72 rn 5.00 m 

APAAT 10.76 m 7.01 m 

1.13 m 

1.08 m 

1.04 m 

I' :I 
u 
I 

l t,l lli ., 
~J ,, 
j' 

. I .. 
i 

I 
l 
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L ~ n :::-

. l 05 

VERTICAL CONTROL At EKDS OF LINES 

-,u.' 

Ct ...... 

J ! 

() 

k 
(;;, 

i· 

l 
'· 

·'""" 

PAT H ~ . 79 m l) . 72 rn. 7 " 04 

SI'.ACE H !+ ., ') 
l:l . I ... 5 . 00 m 1. 75 

10 75 7 02 1!! "' f') '') 

APAAT . T.1 . .J.:, ' 
,) .. ~ 

* Depends lar9ely on control situation in 1st line (here 2 + 4) sequential 
Procedure. 

m 

m. 

m * 



106 

("../ 
U'i \.,(.'} 

h' 
~.: C) ('•...1. 

~) 

V1 
\!) ;'J ~.~ ("·~ 

<. () 

l.(\ 
c: 

r---. 

f'•, 
-....o 
.:.j 

!(\ 1'"•, 
0 

C) () ("V''\ , \\ 

t .. c:> 

l.1~·" 
() 

0"\ r·-.. CCI 
(/'\ 01 z 

:,c; ()"} :::::> 
I .j .• ~ C' 0 0 (• .. I , .... (), +> 

~:--1.. C(o (}"\ r·,t··~ n:J 
tL >··., ()"·, 

-o 
.c: (') C:" Q) 
.J~.·J t:: 

U'\ .,.... 
lt\ <'Cl 

.!-) 
··;! ..C! 

(!) 0 

> .. N G) VJ 
<:.i +> 
·!~> r--.. ··'-0 '.0 ....-

:::s 
C'\ \ .. J) VJ 
t"V'') \,[) Lr~. Q) 

t/l 0::: 
C. (''·" \.(\ If\ t,('\ 

C',l 
.. :j" 

{\J 
0 '\.CJ '.,.:() \,() 

'> ··-~·- ·""~·-·· ··-·-"""~-··· .. ~·· 
(j) o:J I""• ~-~. 

':;:') '"' 
() ("..! (''•.I 

L. 
I'\) L(\ !Y"t 

-,~ .. ) C) C' 
c 
f\) C1 
-~-j 

VJ .. ::f' c~ C) 

(~) 

,, C'-} ('J 
(.) VI (\) CX) ('-.J \.,.') l"''·~ 

L .f.) > 
GJ •l·oJ c 

.. .q c 
t;; 0 0 L. \.(', (") t.n f·- CJ ... :"J ...... 
:.1 u D .. 0 ('~ 

c: r··· 

0 0) C,') C) 0 0 C> C> 
,.s.,) c·) C) 0 C) C1 0 
0 ro ~"'..J r-.1 ('' c.; CJ C"> 

.. c:- u 
CL (/) r··., f"·- r"- C> 

"" 



107 

For rigorous solutions the following basic rules can be 

given: 

Horizontal Control: Use control at the perimeter only.! Control 

points inside the area do not improve the solution. Points in the 

four corners are usually sufficient; it is better however to have a 

control point at about every 8 base lengths. 

Verti.cal Control: Although this question is still under investigation, 

I would like to mention that there is relatively little differences 

between Schut and PAT-M while SPACE-M appears to show some advantages 

in relatively ill-conditioned blocks. 

Generally, rather dense cross-chains_ every 4-6 base-lengths 

are needed. An additional perimeter point provides significant improve-

ment, while more than one provides no further improvement. 

c) Generality: 

With the above mentioned additions, PAT-M provides the most 

general approach. Even in its present form, it is much more general 

than both Schut and SPACE-M. It is independent of the strip, can 

accommodate cross~strips and flights of different dates, scales and 

directions which both is impossible with the other approaches. There 

are other restrictions as well, which are quite important for producti"on 

work. 

d) Auxiliary Vertical Control 

Both SPACE-M and PAT-M (APR-version) incorporate lake 

surfaces as additional vertical control. In addition, PAT-M (APR­

version) can handle Statoscope and APR data as well. 

The following publication from The Canadian Surveyor 1972, 
~ 

provides the necessary details: 

"Combined Block Ad,justment of APR - Data and Independent Photogrammetric 
•.. 

Models" by F. Ackermann, H. Ebner and H. Klein, Stuttg.art University. 
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7. Bundle Adjustment 

7.1 General Remarks 

This is the most general method and is based on the measure-

ment of image coordinates utilizing stereo- or mono comparators (+point 

transfer devide). The image points together with the .. projecti on centres 

{given in the photo system by principal point and camera constant) 

define the bundles for each photograph. The orientation of all 

bundles relatively to each other and in relation to terrestrial control 

points is performed simultaneously by least squares. Using observation 

equations, the following non-linear error equations appear: 

where 

[x, T y] .. = 
1J 

[vx, T 
vy]ij = 

= c . . -
x\ 

! 
vx ( x!"i.) 

. J - -
V • • Y/Z . · -ylJ •lJ y i ,. 

I 

-
X X; - X 

0. j 
-y = R. y. - y 

J 1 0 • 

- J 
z zi - z o .. 

J 

vector of image coordinates of point 

reduced to principal point 

correction vector 

i in 

cj = camera constant for bundle j 
T [x. y. z.] = vector of terrain coordinates of point i 

1 1 1 

(1) 

(2) 

photo j 

T [x0 j Y0 j z0 j] = vector of terrain coordinates of projection centre j 

Rj =orthogonal rotational matrix for bundle j. 
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When using the Rodriguez matrix for R., it has the advantage that 
J 

there are no trig. functions {see PAT-M), instead there are the three 

parameters 

a, b, c. 

These error equations are formed for all measured points. 

The unknowns are the six orientation parameters aj' bj' cj' xoj' Yoj' 

z0 j for each bundle j and the terrain coordinates of all points i. 

Since these error equations are non-linear, linearization 

and iteration is required. There are again several bundle adjustment 

programs available. Ackermann's Institute in Stuttgart has PAT-B; 

D.C. Brown uses his own approach, which I believe, was one of the 

pioneer programs, the major breakthrough coming with skillful 

partitioning and forming of the normal equation matrix and its inversion. 

As an example, I would like to present to you the NOAA (formerly USCGS) 

approach, since it is readily avai'lable. It is published by Keller 

and Tewinkel as "Block Analytic Aerotriangulation". 

7.2 USCGS- Block Analytic Aerotriangulation 

This program uses as input refined image coordinates and 

provisional object coordinates. These provisional object coordinates 

are obtained after three initial steps: 

1) Three photo orientations 

2) Strip adjustment with polynomials 

3) Coordinate transformation, taking into account the earth 

curvature. 
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The actual adjustment however is not influenced by the polynomial 

formulae used in step 2). 

In step 1) the sequence of the input cards is tested. 

Multiple readings of image coordinates are averaged and tested for 

blunders. Then the image coordinates are corrected for symmetric 

and asymetric radial distortion, dimensional instability of the film 

and atmospheric refraction. Comparator calibration results can also 

be incorporated. Then each photo is oriented relative to the previous 

two in a strip and arbitrary model coordinates are formed. Residuals 

are analysed with automatic blunder rejection. The colinearity 

condition is imposed such that discrepancies of the observed image 

coordinates are minimized. 

The three photo units are called triplets. Their use has 

been advocated but with the exception of the USCGS did not gain much 

recognition. 

In step 2) the triplet coordinates of objects are transformed 

into the ground coordinate system by application of polynomial formulae, 

as discussed in chapter 5.2. The purpose of this is to obtain 

approximations for the subsequent adjustment. 

In step 3) the approximate coordinates; which are usually 

in a state plane coordinate system or an equivalent are transformed 

into geocentric system. This is done in two steps, namely from X, Y, 

H, to¢, A, Hand then X, Y, Z. After the block adjustment, these 

geocentric coordinates are transformed back into state plane coordinates, 

again via geographic coordinates. The block adjustment is basi;cally a 
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11 Simultaneous resection 11 , which is used to determine the three linear 

elements of position and the three angular elements of orientation of 

the exposure camera. Again, as in the triplet approach, the colinearity 

equations are applied, in this case simultaneously for all photos. 

The following colinearity equations are used: 

~ = (X-X0 )a11 + (Y-Y0 )a12 + (Z-Z0 )a13 

z (X-Xo)a31 + (Y-Yo)a32 + (Z-Zo)a33 

y = (X-Xo)a21 + (Y-Yo)a22 + (Z-Zo)a23 

z (X-Xo)a31 + (Y-Yo)a32 + (Z-Zo)a33 

( 1 ) 

x andy are measured image coordinates; z the calibrated focal length 

(camera constant); X, Y, Z ground coordinates; X0 , Y0 , Z0 unknown 

coordinates of exposure station and the a-values represent direction 

cosines, indicating the relative angular orientation of image and 

ground coordinate axes. 

I a11 al2 al3 \ 

A = l ::~ ~:~22 a \ = fct. of <f>, w, K (2) 
23 ) 

a32 a33 · 

In equation (1) x, y, z are considered known, with x andy 

being subject to random errors of observation, while z is considered to 

be a fixed constant. All the other terms (w, <f>, K, X0 , Y0 , Z0 , X, Y, Z) 

are unknowns to be determined. Only X, Y, Z ground coordinates of an 

obj,ect are of prime interest, while the other terms are necessary 

intermediate values. Step 2) provides approximate values for the 

desired ground coordinates while step 1) provides approximations for 

the six exterior orientation values of the bundle. Equations (1) 

are linearized to: 
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(pl2~w+pl3~~+pl4~K-Pl5~Xo-Pl6~Yo-pl7~Zo+pl5~X+pl6~Y+pl7~Z}q = -pll/q 

(p22~w+p23~~+p24~K-P25~Xo-p26~Yo-p27~Zo+p25~X+p26~Y+p27~Z)/q = -p21/q 
( 3) 

where the coefficients P;j are defined in determinant notation in Table 1: 

Table 1 

X 

Pn = 

z 

X z 
1 

y z 
pl3 = p23 = aA1 aA3 ioA aA3 I 2 a(B acfB ~w acfB 

\ X 
z I y z 

pl4 = \ aA1 aA3 p24 = I aA2 aA3 
~~ ~ ~~ ~ ' OK ,, 

X 
l z ! y z 

pl5 = , all a31 p25 = a31 ! a21 
I 

X z y z 
pl6 = a12 a32 

p26 = I a22 a32 
I 
' 

X z iY z 
P17 = p27 = l 

al3 a33 1 a23 a33 
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The term .9_ is defined as: 

X - X0 

q - A3B = [a3la32a33] y yo 

z - zo 

The terms on the right sides of Equation 3 are the residuals v and v . 
_25. _1_ 

The partial derivative terms shown in Table 1 are defined 

with reference to Equation 2 as follows: 

I 0 -sin w sin K+cos w sin ¢ cos K cos w sin K+sin w sin ¢ cos K 

3w 
0 -sin w cos K-cos w sin ¢ sin K cos w cos K-sin w sin ¢ sin K 

0 -cos w cos ¢ -sin w cos ¢ 

0 -al3 al2 

== 0 -a23 a22 

0 -a33 a32 

-sin ¢ COS K sin w cos ¢ COS K -cos w cos ¢ COS K 

aA = sin ¢ sin K -sin w cos ¢ sin K cos (!) cos ¢ sin K 
3¢ 

cos rp sin r1l sin ¢ -cos w sin ¢ 

-cos ¢ sin J( cos w cos K-Sin W sin ¢ sin K s"in K cos K+COSw sin ¢ 

a A -cos ¢ -cos sin J<-sin sin ¢ cos -sin sin K+COSr!l sin¢ ··---· - cos K w w K w 
di( 

0 0 0 

a2l a22 a23 

·- -all -al2 -al3 (4a) 

0 0 0 

s·in K 

COSK 
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The subscript, as in (aA1/aw)B and (aA1 /a~)B represents 

the matrix notation for the scalar product 

x-xo \l 
V-Y 0 . 

Z-Z J 
0 t 

{4b) 

Since the linearization is based on approximation, an iterative 

process is applied which terminates when ~w, ~~' ~K are all less than 

10-5 radian ("' 211 ). 

First, however, resections are performed for each photograph 

to determine initial approximations for w, ~' K, X0 , Y0 , Z0 for each 

photograph based on approx. coordinates of 18 object points. The 

error equation is a shorter form of equation (3): 

(pl2~00 + P13~~ + P14~w P15~Xo P16~yo P17~Zo)/q = -pll/q 

(5) 

{p22~00 + P23~~ + P24~w - P25~Xo - P26~Yo - P27~Zo)/q = -p21/q 

The p .. and q are the same as in equation (3). 
lJ 

After completion of the resection routine, the block adjust-

ment observation equations are formed utilizing the resection data which 

are already in the computer memory. 

The equations are solved by a modified Gauss-Cholesky 

elimination approach. 

There are two types of weights: 

1st for image coordinates as a fct. of the distance from the centre 

of the photograph due to the fact that resolution degrades with 

radial distance. 

2nd control points. 
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The X, Y, Z ground coordinates of object points based on measured 

image coordinates, camera stations and orientation for two (or more) 

photographs and computed by intersection. 

The colinearity equation (1) can also be expressed as 

or 

X Z 

= 0 

(A3·B)x- (A(B)z = 0 

(A4•B)y-(A2·B)Z =0 

A photo residual v is defined as 

vx = xobs. - xcomp. 

( = Pn ) 

The computed coordinates are obtained according to (6) as: 

x = z(A1• B)/(A3• B) 

y = z (At B) I (A3• B) 

A combination of (7) and (8) gives: 

or 

vx = X - z (Al·B)/(A3•B) 

vy = y- z (A2"B)/(A3·B) 

(A3-B)vx = (A3·B)x- z(A,.B) 

(A3•B)vy = (A3•B)y- z(A2·B) 

Using the values of table 1, this leads to 

vx = (pl5X + P16Y + Pl7Z)/q - (pl5Xo + P16Yo + Pl7Zo)/q 

vy = (p25X + P26Y + P27Z)/q - (p25Xo + P26Yo + P27Zo)/q 

(6) 

(7) 

(8) 

{9) 

( 1 0) 

( 11) 

This is done after the actual block adjustment and since it is done 

in sequence, an unlimited number of points can be computed. 
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8~ Conclusions and Outlook 

The purpose of aerotriangulation, namely control densifi­

cation, has been fulfilled. Modern rigorous block adjustments have 

reduced the horizontal control requirements to the perimeter of the 

block with rather large spacings. However, rather dense chains of 

vertical control points across the strips - except for 60% sidelap -

are required at certain intervals unless auxiliary vertical control 

is utilized. 

Several program systems have incorporated the latter and 

with proper statoscope use it is practically not necessary for 

mapping purposes to have vertical control points within the Dlock, 

especially if lakes are also available. APR is also quite useful, 

especially when tied into known water elevation as it permits then 

to even reduce the vertical control at the both ends. 

Finally, inertial navigation systems are now providing 

accuracies well within the mapping requirements and will in: 11uture 

play a bigger part, especially in difficult areas, e.g. for coastal 

mapping. 

Many practical tests have shown that bundle adjustments 

hardly give better accuracies than independent mod~ls, a fact 

which contradicts theoretical expectations. By now it is apparent 

that this is caused by the fact that all the rigorous adjustments 

basically just model random errors. Systematic cemponents, so 

adequately covered in interpolation type approaches (e.g. polynomials) 

are still present. 
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A new generation of block adjustment programmes uses 

additional parameters to ~odel systematic errors which cause deform­

ation of the photogrammetric models or images. It is thereby 

immaterial whether the causes or the effects are modelled, both pro­

cedures involve additional parameters and are either labeled as such 

or as 11 self calibration". The results for both bundles and indepen­

dent models have been excellent and have reached the photogrammetric 
.. 

noise level of 3 to 4 )m in the photograph. 

With this the present rapid development of aerotriangulation 

may well subside, although first attempts are being made to move from 

large computers to minicomputers at the expense of generality, at 

least presently. 

Unfortunately there is no textbook covering modern aero­

triangulation. The book 11 Phototriangulation 11 by S.K. Ghosh covers 

the analogue methods very well and gives many references. Otherwise 

the student is encouraged to read articles in Photogrammetric 

Engineering and Remote Sensing and other leading journals as well 

as the publications from such important centres of aerotriangulation 

as DBA~Systtms (D.C. Brown), Stuttgart University (Ackermann), 

NRC (Schut), University of Illinois (Wong•s SAPGO approach), and 

the governmental agencies in the United States (NOAA, U.S ... Geological 

Survey) and Canada (EMR ), and others. 




