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PREFACE

In order to make our extensive series of lecture notes more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.



FOREWORD

It has long been the author's conviction that most of the
existing courses tend to slide over the fundamentals and treat the
adjustment purely as a technique without giving the student a deeper
insight without answering a good many questions beginning with "why".
This course is a result of a humble attempt to present the adjustment
as a discipline with its own rights, with a firm basis and internal

structure; simply as an adjustment calculus. Evidently, when one tries

to take an unconventional approach, one is only too liable to make
mistakes. It 1s hoped that the student will hence display some patience
and understanding.

These notes have evolved from the first rushed edition - termed
as preliminary - of the Introduction to Adjustment Calculus, written for
course SE 3101 in 1971l. Many people have kindly communicated their
comments and remarks to the author. To all these, the author is heavily
indebted. In particular, Dr. L. Hradflek, Professor at the Charles
University in Prague, and Dr. B. Lund, Assistant Professor at the Math-
ematics Dept. UNB, made very extensive reviews that helped in clarifying
many points. Mr. M. Nassar, a Ph.D. student in this department, carried
most of the burden connected with rewriting the notes on his shoulders.
Many of the improvements in formulations as well as most of the examples
and exercise problems contained herein originated from him.

None of the contributors should however, be held responsible for
any errors and misconception still present. Any comment or critism com-

municated to the author will be highly appreciated.

P. Vani&ek
October T, 1974
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INTRODUCTION

In technical practice, as well as in all experimental sciences,
one is faced with the following problem: evaluate gquantitatively para-
meters describing properties, features, relations or behaviour of various
objects around us. The parameters can be usually evaluated only on the

basis of the results of some measurements or observations. We may, for

example, be faced with the problem of evaluating the length of a string.
This can be measured directly. Here the only parameter we are trying to
‘determine is the observed quantity itself and the problem is fairly
simple. More complicated proposal would be, for instance, to determine
the coefficient of expansion of a rod. Then the parameter--the
‘coefficient of expansion--cannot be measured directly, as in the previous
case, and we have to deduce its value from the results of observations of
length, by performing some computations using the mathematical relationship
connecting the observed quantities and the wanted parameters. The more
complicated the problems get, of course, the more complex is the system
whose parameters we are trying to determine. Obviously, the determination
of the orbital parameters of a satellite from various angles observed on
the surface of the earth would be an example of one such still more
sophisticated task.

The adjustment is a discipline that tries to categorise those .
problems and attempts to deal with them symmetrically. In order to be
able to deal with such problems systematically the adjustment has to use a

language suitable for this purpose, the obvious choice being mathematics.



Hence, the problem to be treated has to be first "translated" into the

language of mathematics, i.e., the problem has to be first mathematically

formulated. The mathematical formulation of the problem would really be
the mathematical formulation of the relation between the observed quan-
tities (observables) and the wanted quantities (parameters). This relation-

ship is called the mathematical model. Denoting the observables by L

(L stands for one, two, or n quantities) and the parameters by X (X stands
for one, two or m quantities) the most general form of the mathematical

model cna be written as

F (X, L) =0 .
The above equation merely states that there is a (implicit) relation
between the observables and the parameters. The formulation of an actual
mathematical model has to be done taking into account all the physical
and geometrical laws~-simply using the accumulated experience. The com~-
plexity of the mathematical model reflects the complexity of the problem
itself. Thus the mathematical model of our first problem is practically
trivial:

X =1L

where X is the wanted length and L is the observed length.
The mathematical model for the coefficient of expansion o of the

rod is more complicated, namely, for instance
L =2 (1 + at)
o

where o = X, the observed length % and the observed difference in temper-

ature t create L and 20 is another parameter (length of the rod at



a fixed temperature) which we happen to know. The mathematical model for
the satellite orbital elements would be more complicated still.

Once the mathematical model has been formulated it can become
a subject of rigorous mathematical treatment, a subject of adjustmeht
calculus. Hence, the formulation of the mathematical model itself is to
bé considered as being beyond the scope of adjustment calculus and only
the various kinds of mathematical models alone constitute the subject of
interest.

There is one particular class of models, that are very often

encountered in practice, and that can be termed as overdetermined. By an
overdetermined model we understand a model which does not have a unique
solution for X because there are "unnecessarily many" observations supplied.
This can be the case, say, with our first example, if the length is measured

several times. The model in this case would be formulated as

X = 21
X = 22
X = ln ’
where 21, 22, oo 2n are all encompassed by the symbol L. Or, in the

second example, we may have

'3 20 (1 + atl)

1

22 = lo (l + Qtz)

g = 20 (1L + atn) ’



/QJ ’ tl' t2, .-."tn) = L.

where (Rl, %2, ceer A

As we can easily éee, these overdetermined models may or may
not have a uhique solution. They usually have not. Therefore, in order
to produce a unique solution of some kine, we have to assume that the
observations wefe not quite correct, that there were errors in their
determinations.

This leads us into the area of the theory of errors with its

prerequisites—--the theory of probability and statistics. With the help

of these disciplines we are aboe to define the most probable unigue

solution (if it exists) for the parameters of the mathematical models.

We also are usually able to establish the degree of reliability of the

solution.

The notes afe divided into six sections: Fundamentals of the
intuitive Theory of Sets, Fundamentals of the Mathematical Theory of
Probability, Fundamentals Qf Statistics, Fundamentals of the Theory of
Errors, Least-Squares Principle, Fundamentals of the Adjustment Calculus.
The first four sections describe the relevant parts of the individual
fields that are necessary to understana what adjustment is all about. They,
by no means, claim any completeness and“it is envisaged that an interested
student will supplement his reading fraﬁ other sources, such as those
listed at the end of these notes.

A separate section (5) is devoted to the philosophical basis
of the adjustment calculus. Although not very extensive it should be
regarded important, giving the reasons why the least-squares technique

ig used in adjustment.



Finally, the last section deals with the basics of the adjust-
ment proper. Here again, only the introductory parts of the adjustment
calculus could be treated with the understanding that only the subsequent
courses will develop the full picture.

Throughout the course emphasis is placed on the parallel develop-
ment of concepts'of "discrete statistics", i.e. statistics of random
samples, and "continuous statistics", i.e. statistics of random variables.
While random samples are the quantities we deal with in every-day practice,
the mathematical tools used are predominently from the continuous domain.
Good understanding of the interplay of the two concepts is indispensable
for anyone who wants to be able to use the adjustment calculus prbperly.

The bibliography given at the end of these notes lists some
of the useful books dealing with statistics and adjustments. Interested
reader is recommended to complement the reading of these notes by turning

to at least some of the listed sources.



1, TFUNDAMENTALS OF THE INTUITIVE THEORY OF SETS

1.1, Sets, Elements and Subsets

A set is an ensemble of objects (elements) that can be distin-

guished one from another. The set is defined when all its elements are

defined.
. ; PAREN VS
Exa:rngle 1.1: Al = { . ://O‘E . v ) 4,18 } )
. S
A = { la 89 159 K 9 Oa :;9: 2 )"'} H

A =z={o0, 1} ,

Ah = {all the left feet} ,

A5 = {all the cities with more than one million inhabitants
in New Brumswickl} ,

R = {all the real numbers} , and

I = {all the positive integers} , are all sets.

The text within the bfackets'{...} is known as the list of the
set. If an element a exists in the list of a set A, we say that the element
a belongs to the set A, and this is denoted by

aeh ,

n

which is read as "a belongs to A". On the other hand, if an element g

does not belong to a set A, we write
a £A
which is read as "a does not belcng to A".
Example 1.2: Referring to Example 1.1, we see that:
2 ¢ Aj, and a right'foot ¢ Ay-

| 2,
:\0: € Al B 8 € A2 H)

-~



A part of a set G is called a subset of G whether it contains one
or several elements. The fact that a set H is contained in G is hence

written as

He ¢ .
If H is not contained in G, i.e. if not all the elements of H are at the
same time elements of G, we write
HE ¢ .
Example 1.3: Referring to Example 1.1, we see that:
ALC 1, , {2 , 35 , 118le1I ,

1.8, 3, 62lcR, ma (S0, © , € ) ¢

A set which does not contain any element is known as the empty
(void or null) set, and is denoted by ¢ .

Example 1.4: The set Ag = {all people taller than 10 feet}

contains no elements, i.e. A6 =@ . Also from Example 1.1,
we find that Ag = ¢ . |
The sets are called equal if they contain the same and none but
the same elements.
Example 1.5: All the following sets are equal
| {1, 2, 3,43, 1, 2y,{2, 3, 1}, ...

‘1.2, Progression and Definition Set

A progression £ is an ordered (by ordered we mean that & is
arranged such that each of its elements has a specific position) ensemble
of objects (elements) that may not all be distinguishable one from another.

The definition set D of a progression & is the set composed from all the

distinguishable elements of £. In such a case, we shall also say that D



belongs to &.
Example 1.6: &= {1, 2, C?:;/A, 2, 1, 8, ¢ y,isa

progression, and its definition set D is given by

D={1, 2,%/, 8, © 1.

At this point, the difference between a progression and a set

should be clear in mind. For instance, the'progression
( (5:E{A, 8, 2, 1, 1, 2, Q ) represents a different progress-
ion than the one given in Example 1.6. However, the sets |

{ C?Qj/ﬂ, 8, & ,2, 1}, {2, 1, 8, chs/", O}, ...

are all the same as the definition set D in Example 1.6.

1.3. Cartesian Product of Sets

The Cartesian product of two sets A and B is a set, called the
product set and denoted by A x B (reads A cross B), whose elements are all
the ordered two-tuples of elements of the component sets A and B. Hence,
if a ¢ A and b € B, then the two-tuple (a,b) € A x B. Howevér, if b € A
or a ¢ B, the two tuple (b,a) ¢ A x B.

The above definition can be extended to more than two sets, say
n sets. In such a case, the elements of the product set will be all the

ordered n-tuples of elements of the component sets. Accordingly, we can

. . n .
define the Cartesian n-power A™ (or An,Lf no danger of confusion with indexed

set exists) of & set A as the CartesianAQroduet of the seme set A with itself
n-times.
Example 1.7: If A={3, 1, 5} and B= {2, L} , then the product set

AxBisAxB={(3,2), (3,4,((1,2),(@,H, 5,2,

(5 , 4)} . Referring to Example 1.1, we can easily see that:

SR .\I',' ) .
( o= , z20: )a!‘xlxﬁg,(h.l&, « )SAJ_XAQ’

2K i



(1, @ Jéb xhput (1, Q )eh xA

2 1°

(1, 2, 15, 1, 8)e1I”, and (5.16, 3.26, 1, 0, 1) € R

‘1.4, Intersection of Sets

The intersection of twe sets A and B, denoted by A.r\B, is a

set which is a subset of both A and B and does not contain any elements

other than the common elements to A and B. The intersection of two sets

can be represented by the shaded area in Figure 1.1. Diegrams of this kind

are called "Venn diagrams".

Figure 1.1

From the above diagram we can easily see that
ANB=BNA .
Example 1.8: Referring to Example 1.1, we find that:

A = = < =
ANA ={ 0z }, RNI=1I,
A2ﬂ I={1, 4, 8, 15} , and ASﬂ A, = o, 1}; Loy

Note that we can define a subset A of B as such a set whose
intersection with B is A itself. In other words, if AC B then A B

or vice versa (see Figure 1.2).

A,

p)
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ANB

Figure 1.2

If A(YB = ¢, then the sets A and B are said to be disjoint sets.

The intersection of n sets A, A .» A 1is usually denoted by
1 n

2, e o
n
(\ A, , where
. i
i=1
- N
n Ai:AlﬂAz L ...OAn

This is illustrated in Figure 1.3 by the common srea to all sets.

Figure 1.3

1.5. Union of Sets

The union of two sets A and B, denoted by AU B, is a set that
contains all the elements of A and B and none else. Similar to the inter-

section, the union of the two sets is represented by the shaded area in
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Figure 1.4

AUB

Figure 1.L

The union of n sets Al, A2, e s An is denoted by
n
L} A, , where
i
i=1

n
U A, = Alu AQUA3... UAn .
i=1

Example 1.9: Referring to Example 1.1, we obtain

A’ié{é)/‘, 20z, @ ,%18,1,8,15, € ,

”

1 A

1

3

0, k1,

and TUR =R .

Thinking of the union as the addition of sets, the’subtraction
of two sets is known as the complement of one into the other. Referring
to Figure 1.5, and considering the two sets A €O B, the set of all the
elements contained in B and not contained in A is called the complement

of A in B, and is denoted by B - A.
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Figure 1.5

Example 1.10: Referring to Example 1.1, we get:

The complement of A3 in A2 is

A2—A3E{8,15,  , -O> , 4}, and

R-I z{all real numbers that are not integers}.

1.6. Mapping of Sets

f is called a mapping of A into B if it relates one and only one

element from B to each element of A. This means that for each element

a € A there will be only one corresponding image b € B (see Figure 1.6).

Figure 1.6

Note here that thé one-to-one relationship (i.e each b € B has got one
and only one argument. a e A).is not required. We shall denote any such mapping
by

f e {A~> B},

and read it as "f is an element of the set of all the mappings of A into B",
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or simply "f is a mapping of A into B", or "f maps A into B".

If the elements of B are all images of the elements of A, then
f is called an onto mapping, or simply we say that "f maps A onto B".

If A and B are numerical sets, then f is called a function
(which gives the mathematical relationship between each a e A and its
corresponding image b € B). In this case, the image b of a will be nothing

else but the functional value f(a) .

Example 1.11: Given the set A = {al, a5 a3} = {2, -1, 3} and the mapping
f ¢ {A > B} , where f(ai) = ag for each a; e A, 1=1,2,3,

then the images bi € B are computed as the functional values

3

of the corresponding elements a; e A, i.e. b, = f(ai) =al ,

1
which give b = (e)3 =8, b, = (-1)3 = -1, and b, = (3)3

2 3

= 27.

Generally, £ is an into function, hence we write

(8, -1, 27) € B . However, if f is an onto function, then
the image set B of this example is given as

B = {8, -1, 27} .

1.7. Exercise 1

1. Which of the following sets are equal?
v{fa r, S}yb{sa ry ﬁ}:-{rs Sy t}al{ﬁa S, r} .

o, Let A = {d}, B={c, d}, C=1{a,b,c} ,D={a, b} and H = {a, b, d};

1

(i) is BeD 17 , (ii) dis C = B K
(iii) isDeccC *? (iv) isB#E 1
(v) isAcH 1 (vi) is (AUD)ec B 7

(vii) is (A B)egC (viii) is (HNC) =D ?



1h

LetUE{13253s "'3859}:AE{132’3sh}aBE{23h3698}a

c={3, 4, 5, 6} and D

{1, 3, 5, T, 9}; then find the following:
(i) BUD (i1) alc
(iii) aUB ; (iv) U-A;

(v) a set H, which is a subset of all the sets U, A and D.
Considering the following Venn diagram with the sets A, B, C, D and H,
indicate by shading the suitable areas onkseparate diagrams, the
following sets:

(1) DUE

(11) ENlc

(iii) ¢ B ;

(iv) A-cC

(v) sUc ;

(vi) & -BUENC);

(viii) A - (cU B) .

Considering the two sets:

A= {3, L4, 0, -1} and B = {-2, 5} , find the Cartesian products A x B

and B x A. Also find the second power B2 of the set B.

Given the set X E'{—Q, -1, 0, 1, 2} , with £ ¢ {X » Y}. If for each
2

x e X, £ (x)=x"+1, find the image set Y considering that f is an

onto function.



2. FUNDAMENTALS OF THE MATHEMATICAL THEORY OF PROBABILITY

2.1 Probability Space, Probability Function and Probability

titioned into mutually disjoint subsets ch: D such that D

mutually disjoint subsets we mean such subsets that DiﬂDj

pair

real

Let us have a set D = @ and let us assume that it can be par-

D,
l%j (by

g for any

Di’ Dj’ i # j). Such a set D we shall call probability space.
Any mapping P of D onto [0, 1] (that is the set of all positive

nunbers "b" satisfying the inequalities (0 < b < 1)) that has the

following two properties:

(1)

(2)

If p'C D, then P(D') = 1 - P(D - D), (note that D - D') is the
complement of D' in D; see section 1.5), and

n
---» D CD are mutually disjoint, then P( Di) =

IfD,, D
1 i=1

27
n

'Zl P(Di), is called a probability function. The value (P(D'))
1=

of the probability function P (takes any value from [0, 1]) is called

the probability. Note that the difference between the function and

the functional value has been mentioned in section 1.6.

The above two properties of the probability function have the

following consequences:

(1)

(2)

(3)
(4)
(5)

P (D) 1,

it

P (7) 0,
If D'CD; then P(D') < 1,
If D"CD'; then P(D") < P(D'), and

If A, BCD, and A{MB = @; then P(AUB) = P(a) + P(B).

15
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If D is a point set ,i.e. its elements can be represented by
points , it is always decomposable.

The value I P(Di) € [0, 1] is sometimes called the total or
’ i

accumulative probability oftJ Di'
: i

2.2. Conditional Probability

If A, B €D; then the ratio P(A{)B)/P(B) = P(A/B) is called

the conditional probability. The right hand side, that is P(A/B),is read

as "probability of A given B". In other words, the conditional probability
P(A/B) can be interpreted as the probability of occurrence of A under the
condition that B occurred.

From the above definition of the conditional probability, we
notice that:
(1) If P(B) = 0; then P(A/B) is not defined,
(2) If BCA; then ANB = B (see section 1.4), and then P(A/B) = 1,

(3 1IfrAYB=¢,i.e. A and B are disjoint sets ; then P(A/B) = O.

2.3.  Combined Probability

If the conditional probability P(A/B) equals to P(A), then it is
clear that the occurrence of A does not depend on the occurrence of B. In
such a case we say that A and B are independent. Using the definition of
the conditional probability from the previous section, we can write:

P(ANB) = P(a) + P(B) .

This can be understood as the probability of simultaneous occurrence of A

and B, which is usually denoted by P(A, B) =d read as probability of A
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and B, and known as the combined (compound) probability of A and B, that is
P(a, B) = P(A) * P(B).
Similarly, we define the combined probability of occurrence of
the independent Dl' Dz; ey Dnc: D as the product of their individual
probabilities, i.e. -
P(D,, Dj) = P(D;) P(Dy) i # ]

P(Di' Dj' Dk) = P(Di) P(Dj) P(Dk) i#3, 3#%k, 1#Kk,

P(Dl' D

[ J=1s]

RERY Dn) = P(Di) .
i=1

Example 2.1: Suppose we have decomposed the probability space D into seven

mutually disjoint subsets Dy, D eesy D

57 as shown in Figure

7
2.1 such that:

Dy Dy

Figure 2.1.
Assuming that the probabilities P(Di) of the individual

subsets Di are found to be:

P(Dl) 1/28, P(Dz) 2/28, P(D3) = 3/28, P(D4) = 4/28,

it
it

P(D5) 5/28, P(D6) 6/28, and P(D7) = 7/28; then we get:

Total probability of Di' i=1, 2, «oe., 7 is

7
P(D) = P(UD;) = I P(D;)
i i=1

(1+2+3+4+5+6+7) /28 = 28/28 = 1.0.

7
Combined probability of all Di = I P(D,) =0
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Example 2.2: 1In this example we assume that our probability space D is
decomposed into five elements dj eDb, j=1, 2, ..., 5. 1If
the probabilities P(Dj), as represented by the ordinates in

Figure 2.2, are given as:

0.
?Q’Q 0.2 S—_— |

0011 F . : e

dc de da dy ds ‘
- Figure 2.2

P(dl) = 0.2, P(dZ) = 0.3, P(d3) = 0.1, P(d4) = 0.1,

and P(ds) = 0.3; then we get:

il

5
Total probability P (D) P(Udj) = ¥ P(dj) = 0.240.3+0.1+0.1+0.3
J =

j=1
= 1.0 .

Combined probability of dl and d2 (for example) = P(dl, d2)

2
= I P(d4.)
=1
This combined probability has to be understood as the probability
of simultaneous occurrence of dl and d2 under the assumption

of their independence.

2.4. Exercise 2.

We have determined that every number of a die have the proba-

bility of appearing when the die is tossed, proportional to the number itself.
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Let us denote: A = {even numberéi, B = {prime numbersi, and C = {odd

numbers}; all subsets of the set of numbers appearing on the die.

Required: (1) Construct the probability space D.
(2) Find the probability of each indiviaual element d, e D.
(3) Find P(A), P(B) and P(C).
(4) Pind the probability that:
(i) an even or prime number occurs,
(ii) an odd prime number occurs,

(1ii) A but not B occurs.



ITI. FUNDAMENTALS OF STATISTICS

3.1 Statistics of an Actual Sample

3.1.1 Definition of a Random Sample

Any finite (i.e. containing only a finite number n of elements)

ordered progression of elements (see section 1.2) & = (El, Eps wees En)

such that:
(i) its definition set D (see section 1.2) can be declared a
probability space (see section 2.1); and
(ii) it has the probability function P*defined'forueveryﬁ&ie‘D_in such a

way that P(di) = ci/n, where c; is the count (frequency), of the

element dirin g, o @ - T

may be @alledyaﬁraQQQMjsamﬁle;”'ﬁhe"?&ﬁigsgi/nris known as the relative

frequency.

Example 3.1: Consider the following progression £
£={1,9,00,°L,LC, 9},
which has seven elements, (i.e. n =17).

The definition set D of & will be

dl d2 d3 dh
D={1,(?,C§)/: € 1}, which
consists of four elements (i.e. m = L),
the counts of which are:

c.= 3, c,= 2, c3= 1 and ey, = 1, and their

20
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corresponding probabilities (relative frequencies)

are:

P(d)) = P(1) = 3/7, P(d)) = P(Q) = 2/7,
P(dy) = P(égy? = 1/7, and

P(dy) = P(C ) = 1/7.

Note here that really both properties required from P to be a
probability function (section 2.l1) are satisfied. In particular we have

(from the above example): the total probability

m
Pp() =P U 4.)
i=1 *
4
=3, 2
= .Z P(di) =3 + 5 +
i=1

-+

~ |-
|-

=7 -
=Z=1.

Accordingly, any finite ordered progression of elements may be
declared a random sample. This is a very important discovery and has to
be born in mind throughout the following development. As a result, it
is always possible to construct the probability space and the associated
probabilities "belonging" to the sample (i.e. the probability associated
with each element in the definition set of the sample).

From now on we shall deal with DCR (recall that R is the set of
all real numbers), i.e. with numerical sets and progressions only. Also,
D will be considered ordered in either ascending or descending sense;
usually the former is used.

It has to be noted here that our definition of a random sample
is not standard in the sense that it admits much larger family of objects to
be called random samples than the standard definition. More will be said

about it in 3.2.4.
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Example 3.2: A die is tossed 100 times. The following
table lists the six numbers and the
frequency (count) with which each number

appeared:

number d; 1 2 3 L4 5 6

count e 14 17 20 18 15 16

Find the probability that:

(1) a 3 appears ,

(ii) & 5 appears ;

(iii) an even number appears )

(iv)  a prime number appears.

Solution:

(1) P(3) = i%% = 0.20 ,
.. 15 _

(ii) P(5) = 00 = 0.15 ;

(iii) P(2,4,6) = P(2) + P(L) + P(6)
17, 18 16 _ 51

=100 " Too * 00 = To0 - 021,
(iv) P(2,3,5) = P(2) + P(3) + P(5)
17, 20 15 _ 52 _ oo

= 100 T 100 © T00 - 100

3.1.2 Actual (Experimental) Probability Distribution Function (PDF)

and Cumulative Distribution Function (CDF)

If the random sample £ is a progression of numbers only (and,
of course, its definition set D is a numerical set), which we shall from

now on always assume, then P is a discrete function mapping D into [0,1].
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This function is usually called experimental (actual) probability

distribution function (or experimental frequency function, etc.) of the

sample £, and abbreviated by PDF. The values P(di), d; €D, are known

as experimental probabilities of di’ which are equal to the corresponding

relative frequencies.

Example 3.3: Assume that a certain experiment gave us the

following randcem sample:

£=(1,2, 4, 1,1,2,1,1,2), n= 9,
Then its definition set is:
D= {1, 2, 4} = {di, i=1,2,3} , m =3,

Therefore, the frequencies cy of di are:
¢, = 5, cy = 3 and ey = 1.

The corresponding experimental probabilities

are: P(1) = 5/9, P(2)

3
As & check I P(d,) = & (5+3+1) = 1.
=1+ 2T |

The discrete PDF of the given £ in this

3/9 and P(L) = 1/9.

example is depicted in Figure 3.1 (which
is sometimes called a bar diagram), in which
the abscissas represent di and the

ordinates represent the corresponding P(di).

!
§/9 1—--— -y
P& 39t—-—-4- -
S i i EEEEE TS T
| 2 A 4

Figure 3.1
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Since we are using numerical sets only (and therefore ordered),
it makes sense to ask, for instance, what is the actual probability of 4

being within an interval Dé=D, where D'

[d , d,]. Such probability
J

is denoted by P(D') or P(d, < d < d,). To answer this question, we use

k J

the actual PDF and get

J
P(d, < d 5_dj) = ~ik P (d,). (3.1)

The above expression (equation 3.1) must be understood as giving the actual
probability of deD' = {dk’ vy djh:D rather than ds[dk, dj] (i.e. the
probability that d will acquire a specific discrete value equal to

dk’ dk+l’ ey dj—l’ dj rather than the probability that 4 will be

anywhere in the continuous intervalk[dk, dj])' This is not always properly

understood in practice.

The function C of diq.D given by

C(di) = T P(dj) e[0,1] k (3.2)

Jsi

is called experimental (actual) cumulative distribution function (or

summation density function, ... etc.) of the sample £, and usually
abbreviated by QQE.
Example 3.%: Using the data and results from example

3.3, we can compute the CDF of the given

sample & by computing each C(di) as follows:

c(dl)

c(ay) = p(a;) + P(d,) = 5/9 + 3/9 = 8/9,

P(a,) = 5/9,

and c(d31 (P(dl) + P(dz)) + P(d3)

Clay) + P(a)) = 8/9 +1/9 = 9/9 = 1.
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Figure 3.2 illustrates the discrete CDF of the given

sample £.
‘C(di“
1 s i SR
8/9 4 — — .- - _ _ e e gy T '
)
]
e o e o e e s
5/9 3
|
|
|
j
0 - 1 T T F 0("
l 2 4
Figure 3.2
From Figure 3.2, we notice the following properties of the
CDF:

(i) the value (ordinate) of the CDF is always positive,
(if) +the CDF is a never decreasing function,
(iii) the cumulative probability C(dm), where d_ is the largest

di eD, is always equal to 1.
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Example 3.5: Using the data from example 3.2, we
can construct the CDF of the die tossing
experiment as follows:

c(1) = P(1) = 0.1k,

¢(2) = ¢(1) + P(2) = 0.1 + 0.17 = 0.31,
c(3) = ¢(2) + P(3) = 0.31 + 0.20 = 0.51,
c(k) = ¢(3) + P(L4) = 0.51 + 0.18 = 0.69,
c(5) = c(k) + P(5) = 0.69 + 0.15 = 0.8L, and
c(6) = c(5) + P(6) = 0.84 + 0.16 = 1.00.

Note again that the maximum value of the
CDF is one. The graphical representation
of the above CDF can be constructed similar

to Figure 3.2.

3.1.3 Mean of a Sample

Consider the sample §

(al, Egs ones gn) with its definition

set D {d4,,d., ..., & }. The real number M defined as:
1 2 m
, B
M== iil g; e [a;, a ], (3.3)

is called the mean (average) of the actual sample.

We can show that M equals also to:

m
M = izl d, P(di) . (3.4)
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The proof of (3.4) reads as follows:

m
z

=

d.c, = —
i1 n

m 1
R.H.S. = i di(ci/n) ==

(E.+E + ... + &)
1 i=1 12

The mean M of a sample can be interpreted as the outcome of
applying the sumﬁation operator I divided by n on &, and is often
written as:

M = E(f) = mean (E) = ave (£) = £ , (3.5)

where the symbol E (an abbreviation for the "mathematical Expectation")

must be understood as another name for the summation operator I opera-
ting on P(di)di (and not on E£il).
Note that E is a linear operator, and hence it has the following
properties (where k is a constant and £ is a random sample):
(1) (k) = k,
(ii) E(kE) =kE(§),
(iii) E(&+k) = E(&) + k,

(iv) E(; gj) = I E(Ej), where Ej, j=1, 2, ..., s, are s random samples
witi the sa%e number of elements m in their corresponding definition
sets Dj (Do not confuse Ej with Ej; the former is an element in the
latter. 1In other words, Ej is a single element in a sample, but
Ej is one sample in a class of samples),

(v) If & = (g), then EE) = &,

(vi) E (E(E)) = E (&) .
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Using the random sample £ given in example
3.3, let us compute its mean from equation

(3.3) as follows:

£,= %(1+2+u+1+1+2+1+1+2)= - 1%

1

Also, we can use equation (3-L4), from which we

'I——’
\O N

M=E(£)= T
i

N~ B

get:
g 5 3 1
=E(g)= £ 4d,P(d,)=1.<£+2 .=+L =
SIS 9 9 9
= = L (se6rb)= 122 12
9 9 3
Obviously, both formulae (3.3) and (3.4) give

identical answers.

It is interesting to note that computing the mean of a sample

using equation (3.4) is analogous to computing the centre of balance

in mechanics. This can be simply seen by considering the probabilities

P(di) or the counts ci as weights, and then taking the I moments = O

about any point , e.g. the origin O (see Figure 3.3 which uses the data

from example 3.3).

Figure 3.3
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The resulting distance of the centre of balance from the point is
nothing else but the sample mean M.

It is worthwhile mentioning here that, based on the above analogy
with mechanics, the mean M computed from equation (3.4) is also called the

weighted mean, in which each element di eD is weighted (the concept of

weights is to be discussed later in details) by its probability P(di)'

3.1.4 vVariance of a Sample

Let us have again an actual sample £ = (gl, £ csey gn) with

2'
a mean M. Then, the real number S2 defined as
n

_ 1 2
ST = Y 'Z (Ei-M) p (3.6)
i=1

is called the variance (dispersion) the actual sample. The square root

. 2 , . L.
of the variance S, i.e. S, is known as the standard deviation of the

sample.
Keeping in mind the relationship between the random sample §

and its definition set D, we can write:

2
d, P(d.
J(J)r

which will provide another expression for 82, namely:

1
n

wn
It

(£;-m?

o3

i=1

m 2 ‘
P(d.) (d.-M)" . (3.7)
3=1 3 3
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82 can be also interpreted as the outcome of the application
of the operator E on (E-E(E))2 meaning really P(dj) (dj—M)2 and is often
written as

s = E ((&-E(£)2 = var (). (3.8a)

Carrying out the prescribed operation, we get

2

s® = E(g2-2EE(8) + (E(£)2) .
Applying the calculus with E operator (as summarized in section 3.1.3),
we obtain:

= E(£2)-2E(E)E(E) + E°(£)

[6)]
I

B(£2) - E2(E) .

From equation (3.5) we have E(£) = M, then by substituting for E({) we get

s = m(£2) - M2 . (3.8b)

Consequently, the corresponding expression to equation (3.7b) will be:

m
s = g a? P(dj)-M2 ) (3.9)

j=1
It is worth mentioning that giving the analogy with mechanics
(as discussed in the previous section) we can regard the variance of the
sample (equation 3.7)) as the moment of inertia of the system of corres-

ponding mass points with respect to M.
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Let us compute the variance 82 of the sample &
given in example 3.3, by using equation (3.8D).
First, we compute the first term E(£2) as

follows:

0 v
E(g2)= :;Ll- 5 og2= %(1+M+16+1+1+u+1+1+h) =.§-§’—— .

Substituting in equation (3.8b), and knowing

that M = ig'from example 3.6, we get:
2 _ 33  (15y2_ 9.33(15)2
82= var(g) 5 - ( 9) 51
_ 297-225 _ 72 _

Taking the square root of the computed variance,

we obtain the standard deviation of the sample as:

_ 8 _ 2/2 _2.828 -
s_/9.. 3 =753 = 0.943.

The same result is obtained i1f we use equation

(3.9), firstly we have

m
2 =1 2 3 L
jil ¥ P(dj) 1.5+ u.9 + 16.9
= %— (5+12+16) = —3-3— ,
and since M = l% , We obtain

3 _
9 9

—
l!—’
\J1
~—
N
1

82 = 0.89.

[

=8
9

It should be noted here that the same value for the sample

variance can be obtained from equations (3.6) and (3.7). The verifica-
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tion is left to the student (e.g. using the data from the above example).
~ However, equation (3.9) is advantageous from the computational point of
view, especially for large samples. A similar statement hoids for

computing the sample mean M using equation (3.4).

3.1.5 Other "Characteristics" of a Sample: Median and Range

The median, Med (£) of the sample £ = (gl, Eps nvs gn) is defined
differently for n odd and for n even. TFor n odd, Med (&) equals the &

that is in the middle of the ordered progression &, that is

Med (&) = 5--(‘92) . (3.10)
)
For n even, Med (&) is the mean of & and & that is:
(%0 (2 +1)
1 .
Med(g) = = (& + & 1. (3.11)
T E G

Example 3.8: Consider the sample £ z (5,3,6,4,1,2).
To obtain Med (g), we first arrange the
sample in either ascending or descending
order, for instance: & = (l,Q;S;h;5,6),

n=6. Since we have n even, we get:

Med(g )= -l-(a tg = 1{5 +£,)
= 1 S
=Lz = L= 3.5 .

Similarly, the ascending progression of the
sample £ given in example 3.3 is:
£ = (1,1,1,1,1,2,2,2,4), n = 9.

In this case n is odd, and we get:
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The range, Ra(g) of the sample & = (&, , i=1,2,...n) is defined

1

as the difference between the largest (El) and the smallest (ES) elements

of & that is:

Ra(&) = Ez;és -j (3.12)

Consequently, for an ascendingly ordered sample &, we get

Ra(&) = En-él N (3.12a)

Note that the range of the sample can be also determined from its
definition set D = {dj, j=1,2,...m }. The corresponding expressions to

(3.12) and (3.12a), respectively are:

Ra(t) = Ra(D) = d,-d_ s (3.13)
 and Ra(g) = Ra(D) = 4 -d,. (3.13a)

Example 3.9: From example 3.8, we have the ascendingly
ordered sample £ = (1,1,1,1,1,2,2,2,4), n=9 ,
whose definition set is D = {1,2,4} , m=3.
To obtain the range, we use either equation
(3.12a), i.e. Ra(g)= £ -&,= k-1 = 3,
or we use equation (3.13a), i.e.

Ra(g) =4 -d = L -1=3.

At this point, we can summarize the different characteristics

of the sample & originated in example 3.3; as computed in the last three
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sections, namely: M = 1.6 , S° = 0.8 , S = 0.9k,

Med(£) =1 and Ra(g)

3
(Note that the "bar" above the last digit means that it is a periodic

number) .

3.1.6 Histograms and Polygons

From now on, the number of elements n of a sample & will be
called the §1g§_of the sample. A sample with large size n, is often
divided into classes (categories). Each class is a group of n. indi-
vidual elements (ni< n). To achieve this, we usually determine
the range of £ (see section (3.1.5)),and then divide the range

into k intervals* by (k+1) class-boundaries (class-limits). It is usual

to make the intervals equidistant. The difference between the upper and
lower boundaries of a class is called the class-width. The number c of
elements in each class is called the class-count (class-frequency).

This process in statistics is called classification of the sample. The

"box" (or rectangular) graphical representation of the classified sample

is called the histogram of the éample.

Example 3.10: Let us have the following random sample §&:

E = (1733325891’5529h569159899}2,3310399
119129h95:836373h>5)3 n =25

¥ The interval from a to b is either:

- open , denoted by (a,b) = (x:a<x<b)
- closed s " " [a,b] = (x:ra<x<Db)
- Open-closed, " " (a,b] = (x:a<x<b)
- closed-open, " " [a,b) = (x:a<x<b)

To reconcile this known notation with the terminology of the theory of sets,
it has to be understood that any such interval can be regarded as a set.
To distinguish such a set from a point set, we shall call it a compact set.
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First, we compute the range of £ using
equation (3.12), i.e.

Ra(g) = - £ = 17-1 = 16.

Let us use four intervals:

[1,51, (5,91, (9,13] and (13,17].
Hence, the class-counts will be:

cl([l,B])= 12, c2((5,9]) = 8,

c3((9,13])= 3 and cu((13,17]) = 2.

The histogram of the given sample in this
example is shown in Figure 3.4, in which
the horizontal axis represents thevclass
boundaries and the ordinates represent the

class-frequencies . (see the left-hand

scale). Relative
Frequency (T2 )
~ i
C; ;" ACC
) 4
(2 ke . e e e e 2402
8 - ——— e V//‘ - = e - v—-w—»—-—_-,_.«;-0.0B
%fi)j\_/--P(6gxglo)
e S
I : l/////é/ —— — e e - 0-03
2= :://// '/,: - e=-40.02
0 . i N /‘i 0.00 , E
| 5¢ 90 I3 17
Figure 3.h

Note in the above figure that a rectangle is drawn over each interval
with constant height equal to the corresponding class-count.
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It is usually required that the area oﬂof underﬁhé histogram

has to be equal to one. Assume that we have k classes with corresponding

class~-counts c; such that: i?l c; = n. Let us denote the class-width,
assumed to be constant, by A. Hence, the area a of the histogram is
given by:

a = Acl + Ac2 R Ack

[}

k
A(cl+02+...+ck) = A E c. = An.

This means that the area under the histogram equals the class-width
multiplied by the size of the sample.

Therefore, to make the area of the histogram equal to one, we
simply have to divide each ordinate cy by the gquantity nA. The new

(transformed) ordinate 'E; is also called the relative count (compare

this to the relative count mentioned in section 3.1.2, which represents

the experimental probability of an individual element; however, here we

are dealing with counts in an interval).

Example 3.11: Using the data from example 3.10, we have:

n=25and A =4, The quantity nA = 25.4 =100.
Hence, to compute the relative counts ’E; of the
classified sample &, we divide each ordinate Ci

(obtained in example 3.10) by 100. This gives us:

~_ 12 _ ~ 8
1= Top = 0.12, 5= 750 0.08,

C=

3 100

r~
0.03 and ch— 100 0.02.
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The histogram of the sample in this case
will be the same as in example 3.10, with
the only difference that the ordinate scale
is going to be changed (see Figure 3.k, the
right-hand scale).
Using the relative counts ’E;, the area 'a
under the histogram equals to one, as we
can see from the following computation
(using Figure 3.4):

a= 4.0.12 + 4.0.08 + 4.,0.03 + L.0.02

= 0.48 + 0.32 + 0.12 + 0.08 = 1.0,

which may be used as a check on the correct-

. e
ness of computing ci.

Let us denote the largest and the smallest abscissas of a histo-
gram by & and s, respectively (e.g. in Figure 3.4, £ = 17 and s=1).
Notice that for any subinterval D' = [a,b] of the interval A = [s, %],
we can compute the area o (D') under the histogram. This a(D') will be
given as a real number from [0,1]. Hence, o can be regarded as a function
mapping any subinterval of [s, %] onto [0,1]. Therefore, it is easy to
see that o can be considered as a probability function (see section 2.1),
more specifically one of the possible probability distribution functions
(PDF's) of the sample. Obviously, such PDF (i.e. a) depends on the

particular accepted classification of the sample.
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From the above discussion, we find that the probability of any
subinterval of [s,%] is represented by the corresponding area under the
histogram. On the other hand,. the ordinates of the histogram do not represent
probabilities (again compare the histogram with the bar diagram given in

section 3.1.2).

Example 3.12: Referring to Figure 3.4, we may ask: what is the

probability of D' = [6, 10]; or, what is the
probability that the sample element, say x, lies
between 6 and 10. This can be written as:

P(6 < x <10) = *
The answer will be given by the area under the
histogram between 6 and 10 (which is shaded in
Figure 3.L4), i.e. |
P(6<x<10) = P(6<x<9) + P(9<x<10) =

(9-6).0.08 + (10-9).0.03

3.0.08 + 1.0.03 = 0.24 + 0.03

= 0.27
On the other hand, by inspecting the actual
sample & originated in example 3.10
we find out that the actual number of elements
in the intefval [6,10] is nine. This number
represents (520.100% = 36% of the sample.
Or, we say that the actual probability
P(6<x<10) = 0.36, which does not agree precisely
with the result obtained when using the

corresponding histogram (i.e. 0.27).
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The difference between the actual probability and the computed
probability using the histogram, as experienced in example 3.12, is
largely dependent on the chosen classification of the:sample (selection
of the class-intervals). Usually, one gets a smaller difference (better
agreement) by selecting the class-boundaries so as not to coincide with
any of the elements of the given sample. The construction of histograms
can be considered a subject of its own right. We are not going to

venture into this subject any deeper.

Example 3.13: If we, for instance, use the following classification

(for the sample £ given in example 3.10): [0.7, 4.8]1,
[4.8, 8.91, [8.9, 13] and [13, 17.1], i.e. we have

again four equal intervals, for which A = 4.1. Then
we get the class-counts as cl =9, c,

and Cy = 2. The quantity nA = 25.4.1

= 9, cy = 5

102.5. Hence,

the relative counts are:

~ _ o~ _ 9 -
cl = 02 102.5 — 0.0878,
G. = —=—— = 0.0488, and
€3 T 7102.5 . ’
& = —2__ = 0.0195

4~ T02.5 ~ ° .

In this case, the new histogram of the sample & is

shown in Figure 3.5.
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The probability P(6<x<10) is computed as follows
(shaded area in Figure 3.5):

P(6<x<10) = P(6<x<8.9) + P(8.9<x<10)

[t}
e

2.9.0.0878 + 1.1.0.0488

ne

0.25L46 + 0.0537 =

0.3083 = 0.31,

which gives a better agreement with the actual
probability than the classification used in

example 3.11.
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The graphical representation of a histogram, which uses the
central point of each box (class-midpoint) and its ordinate (the
corresponding relative élass-count), is called a polygon.

In order to make the total area under the polygon egual to one
we have to add one more class interval on each side (tail) of the
corresponding histogram. The midpoints s' and %' of these two, lower and
upper tail intervals,are used to close the polygon.

Therefore, it can be easily seen that the area o' under the poly-
gon has again the properties of probability. This means that o' is one
of the possible PDF's of the sample. Hence a' can be used for determining
the probability of any D' = [a, ble[s', 2']. Note also here

that the ordinates of the polygon do not represent probabilities.

Example 3.14: The polygon corresponding to the histogram of

Figure 3.4 is illustrated in Figure 3.6.
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Similar to the histogram, the area'a'under

the polygon should be equal to cne. To show
e tn

that this is the case, we compute'ausing

Figure 3.6 as:

a =L (3.0.2+%(0.12 + 0.08)+
+ 2 (0.08 + 0.03) + £ (0.03 + 0.02) +
1
+ 3. 0.02)

i

2(0.12 + 0.20 + 0.11 + 0.05 + 0.02)

2 (0.50) = 1.00.

Let us compute the probability P(6<x<10)
using the polygon (the required probability
is represented by the shaded area in Figure
3.6). To achieve this, we first have to
interpolate the ordinates corresponding to 6 -
and 10, which are found to be 0.090 and
0.0L25, respectively. Therefore, the

required probsbility is:

P(6<x<10) = P(6<x<T) + P(7<x<10)

1.%(o.09+o.08)+3.%(o.08+0.oh25)

1.0.085 + 3.0.06125

0.085 + 0.184 = 0.27,

which is the same as the value

obtained when using the corresponding histogram.
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So far, we have constructed the histogram and the polygon
corresponding to the PDF of a sample. Completely analogously, we may
construct the histogram and the polygon corresponding to the CDF of the

sample which will be respectively called the cumulative histogram and the

cumulative polygon. In this case, we will use a modified form of equation
(3.2), namely

C(a) = P(x<a) = = P

xX.<a
1‘

Xy <xsx,) (3.1k)

Example 3.15: Let us plot the cumulative histogram and cumulative

polygon of the sample £ used in the examples of
this section.

For the cumulative histogram, we get the following

by using Figure 3.k4:

c(1) = P(1) = 0 (remember that the probability of
individual elements from the
histogram or polygon is always
zero).

c(5) = p[1,5] = L.0.12 = 0.48,

c(9) = c(5)+P(5,9] = 0.48 + 4,0.08

= 0.48 + 0.32 = 0.80,

c(13) = ¢(9)+pP(9,13] = 0.80 + 4.0.03

= 0.80 + 0.12 = 0.92,
c(17) = c(13)+pP(13,17] = 0.92 + 4.0.02

0.92 + 0.08 = 1.00.

Figure 3.7 is a plot of the above computed

cumulative histogram.
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For the cumulative polygon, we get the

following by using Figure 3.6:

c(-1)

0,

c(3)

P[+1,3] = %(h.o.12)= £(0.18)= 0.2L,

o(7) = ¢(3)+B(3,7] = 0.2h+ .4(0.12 + 0.08)
= 0.24 + 0.40 = 0.6l

c(11) = C(7)+2(7,11] = 0.64 + 2.4(0.08 + 0.03)
= 0.64 + 0.22 = 0.86,

0(15) = C(11)+(11,15] = 0.86+ 3 .4(0.03 + 0.02)
= 0.86 + 0.10 = 0.96,

c(19)

c(15)+P(15,19] = 0.96 + %-. 4.0.02

It

0.96 + 0.0k = 1.00
Figure 3.8 1is a plot of the above computed
cumulative polygon (note here, as well as- in Figure

3.7, the properties of the CDF mentioned in example

3.4).
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By examining Figures 3.7 and 3.8, we can see that the cumulative
polygon uses the central point qf each class-interval along with its
ordinate from the corresponding cumulative histogram. Therefore, the
relationship between the cumulative polygon and its corresponding
cumulative histogram is exactly the same as the relationship betﬁeen the

polygon and its corresponding histogram.

Because of the nature of the CDF, we can see that the cumulative
probability - represented by an area under the PDF extending to the left-
most point - is represented just by an ordinate of the cumulative histogram
or the cumulative polygon. Hence the cumulative histogram or the cumulative
polygon can be used to determine the probability Pla,b], a<b, simply by

subtracting the ordinate corresponding to a from the one corresponding to b.



L6

Example 3.16: Let us compute the probability P[6,10] by

using:

(i)  the cumulative histogram of Figure 3.7,

(ii) the cumulative polygon of Figure 3.8.

First, we get the following by using Figure 3.7:

The interpolated ordinates corresponding to 6

and 10 are found to be 0.56 and 0.83, respect-

ively. Therefore, P[6,10]= P(6<x<10) =

= 0.83-0.56 = 0,27, which is the same value as the one

obtained when using the histogram (example 3.12).

Second, we get the following by using Figure 3.8:

The interpolated ordinates corresponding to 6

and 10 are found to be 0.5k and 0.805,

respectively. Therefore:

P[6,10]= P(6<x<10)= 0.805-0.5h='<9_._2_7___.,

which is again th& same value as the one

obtained when using the polygon (exsmple 3.1L).

To close this section, we should point out that both the histo-

grams and the polygons (non-cumulative as well as cumulative) can be
refined by refinning the classification of the sample. Note that this

refinement makes the diagrams look smoother.
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3.2 Statistics of a Random Variable

3.2.1 Random (Stochastic) Function and Random (Stochastic) Variable

In order to be able to solve the problems connected with inter-
val probabilities (see the histograms and polygons of section 3.1.6) more
easily and readily, the science of statistics has developed a more con-
venient approach. This approach is based on the replacement of the
troublesome numerical functions defined on the discrete definition set
of a random sample, by more suitable functions. To do so, we first
define two idealizations of the real world: the random (stochastic)
function and the random (stochastic) variable.

A random or stochastic function is defined as a function X

mapping an unknown set U* into R, that is
xe {U > R}

(Later on, concepts of multi-valued Xe {U > Rm} (where Rp is the Cartesian
m~-power of R, see section 1.3) are developed.)

This statement is to be understood as follows: For any value
of the argument uel, the stochastic function x assumes a value x(u)g¢ R.
But, because the set U is considered unknown, there is no way any
formula for x can be written and we have to resort to the following
"abstract experiment" to show that the concept of random functions can

be used.

"Note that in experimental sciences the set U may be fully or at least
partly known. The science of statistics however, assumes that it is
either not known, or works with the unknown part of it only.
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Suppose that the function .k is realised by a device or a process

(see the sketch) that produces a functional

v

value x(u) ewery time we trigger it. Knowing nothing about the inner

workings of the process all we can do is to record the outcomes x{(u}.
When a large enough number of values x(u) have been recorded, we can
plot a histogram showing the relative count of the x(u) values within
any interval [xo, xl]. In this abstraction we can imagine that we have
célléctéd enoughi;alﬁéé to bé ablé to compuféf%ﬁe rélativé counts for
any arbitrarily small interval dx and thus obiain a "smooth histogram'.
Denoting the limit of the relatife count divided by the width dx of the
interval [x, x + dx], for dx going to zero, by ¢(x) we end up with a
function ¢ that maps x € R into R. |

Going now back to the realm of mathematics, we see that the
outcome of the stochastic function can be viewed as a pair (x(u), ¢(x)).

This pair is known as the random (stochastic) variable. It is usual in

literature to refer just to the values x(u) as random variable with the
tacit understanding that the function ¢ is also known.

We note that the function ¢ is thus defined over the whole set
of real numbers R and has either positive or zero values, i.e. ¢ is non-
negative on all R. Further, we shall restrict ourselves to only such ¢
that are integrable on R in the Riemannian sense, i.e. afe at least
pilece~wise continuous on R.

3.2.2 PDF and CDF of a Random Variable

The function ¢ described in 3.2.1, belonging to the random

variable x, is called the probability distribution function (PDF) of the

random variable. It can be regarded as equivalent to the experimental
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PDF (see 3.1.2) of a random sample. From our abstract experiment it

can be seen that

T ox) ax = 1 (3.15)

since the areé under the "smooth histogram" must again equal to 1 (see
3.1.6). This is the third property of a PDF, the integrability and
non-negativeness being the first two. We note that eq. 3.15 is also
the necessary condition for ¢(x) dx to be called probability (see 2.1).
Figure 3.9 shows an example of one such PDF, i.e. ¢ in which

the integral (3.15) is illustrated by the shaded area under the ¢.

e} - |
S & dxzPloexgoo)-.

Figure 3.9

The definite integral of the PDF, ¢, over an interval dc:D is

called the probability of D'. So, we have in particular:

/¢ (x) ax = P(x<x ) elo, 1] , , (3.16a)
J ¢(x) ax = P(x > x) €l0, 1] , (3.16b)
%o
*2
I T¢(x) ax = P(x; < x<x) €l0, 1] . (3.16¢)
x .
1
Consequently,

P(x Z_xo) =1-P (x < x5) - (3.17)
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The integrals (3.16a), (3.16b) and (3.16¢) are represented by

the corresponding shaded areas in Figure 3.10: a, b, and ¢, respectively.

§09 P(x%Xo) §4(x) P(*2 %)

Figure 3.10

At this point, the difference between discrete and compact probabil-

ity spaces, should be again born  in.mind. In the discrete space, the value
of the PDF at any point, which is an element of the discrete definition set
of the sample, can be interpreted as a probability (section 3.1.2). However
in the compact space, it is only the area ﬁnder the PDF, that has.

got the properties of probability.* We have already met this problem when

dealing with histograms.

¥ The whole development for the discrete and the compact sPaces could be
made identical using either Dirac's functions or a more general definition
of the integral.
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Note further that:

x

o

P (x = xo) = [  ¢(x) dx = 0*).
- X

o

Analogous to section 3.1.2, the function Y defined as

X .
Y(x) =/ ¢(y) dy, elx > [0, 11} , (3.18)

.\ _— 1

where yeR is a dummy variable in the integration, is called a CDF

provided that ¢ is a PDF. VY is again a non-negative, never decreasing

function, and determines the probability P(x j_xo). (Compare this

with section 3.1.2); namely:

¥(x)) = P(x <x) e [0, 1] . (3.19)

Figure 3.1l shows how the CDF (corresponding to the PDF in

Figure 3.9) would look.

} ¢x)

Jode - e e =

I ty(x):l.

LPM:' 4: - X

Figure 3.11

* This may not be the case for a more general definition of the integral,
or for ¢ being the Dirac's function.
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If ¢ is symmetrical, ¥ will be'inversely symmetrical'"around the

axis ¥(x) = 1/2. Figure 3.12 is an example of such a case.

QJCK) W (x)=1.

r ¢ &)

B L T T T wuv——,

¢ (x)=0

!
!
|
i
'
C

o

n—dh-— -———
o -
)

Figure 3.12
Note that Y is the primitive function of ¢ since we can write:

o(x) = LEEL Hx)

dx

In addition, we can see that ¢(x) has to disappear in the infinities in order

to satisfy the basic condition :

]

I ¢ (x) ax = 1.

- CO

Hence, we have:

lim \[J(x) = Q » 1lim W(X) =1 ..

K00 X0

3.2.3 Mean and Variance of a Random Variable

It is conceivable that the concept of a random variable is useless
if we do not know (or assume) its PDF. On the other hand, we do not have the

one-to-one relation between the random variable and its PDF as we had with
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the random samples (seétion 3.1.1 and 3.1.2). The random variable acts
only as an argument for the PDF.

The random variable can be thus regarded as an argument of the
function called PDF, that runs from minus infinity to plus infinity.
Therefore, strictly speaking, we cannot talk about the "mean" and the
"variance" of a random variable, in the same sense as we have talked
about the "mean" and the "variance" of a random sample. On the other
hand, we can talk about the value of the argument of the centre of gravity
of the area‘under the PDF. Similarly, we can define the variance related
to the PDF. It has to be stated, however, that it is a common practice
to talk about the mean and the variance of the random variable; and
this is what we shall do here as well.

The mean u of the random variable x is defined as:

w= S x ¢(x) dx | (3.20)

Note the analogy of (3.20) with equation (3.L4), section 3.1.3.
Y is often written again in terms of an operator E¥; usually

we write

B (x) ==t %6 (x)ax.) (3.21)

T E¥ is again an abbreviation for the mathematical Expectation, similar
to the operator E mentioned in section 3.1.3. However, we use the
"asterisk' here to distinguish between both summation procedures, namely:
E implies the summation using I; and E¥ implies the summation using /.
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We can see that the argument in the operator E¥ is x+¢(x) rather than x,

X being just a dummy variable in the integration. However, we shall

again use the customary notation to conform with the existing literature.
We have again, the following properties of E¥, where k is a

constant: (i) E¥ (kx) = k E¥ (x);

r T s .
(ii) E*jéiﬂxj)=j§l E* (XJ), where x9, § =1, 2, vu. T,

are r different "random variables", i.e., r random
variables with appropriate PDF's;
(iii) and we also define:

T

E¥(E¥(x)) = E* (x) = n ).

2

The variance 0% of a random variable x with mean p, is defined as:

©o

= [ (x-u

-0

0?2 )2 ¢ (x) ax . (3.22)

Note the analogy of (3.22) with equation (3.8), section 3.1.4. The

square root of 02, i.e. o, 1s again called the standard deviation of the

random variable.

Carrying out the operation prescribed in (3.22) we get:

o® = I [x° ¢(x) = oxpe (x) + 12 (x)] dx

= [ x° o(x) dx - 2p S x ¢(x) dx + u2 S oo(x) dx .

HIn order to prove this equation, one has to again use the Dirac's

function as the PDF of E¥(x).
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In the above equation, we know that the integral in the second
term equals u (equation (3.20)), and the integral in the last term equals

one (equation (3.15)). Therefore, by substituting we get:

0o

02 = [ x%¢ (x) dx-pZ. (3.23)

-0

Note the similarity of the first term in equation (3.23) with

E(E2) = T d? P(dj) (section 3.1.4). This gives rise to an often used

j=1
notation:

g2 = E* (x—u)2 = E* (x-E*(x))2 . A (3.23a)
‘We shall again accept this notation as used in the literature, bearing in
mind that E* is not operating on the argument, but on the product of the
argument with its PDF.

The expression

o]

m, = S xr¢(x) dx (3.24)

=00

is usually called the r-th moment of the PDF (random variable); more

precisely; the r-th moment of the PDF about zero. On the other hand,

the r-th central moment of the PDF is given by:

= J (- 7F ¢ (x) dx . (3.25)

-0
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By inspecting the above expressions for m and mé along with
equations (3.20) and (3.22), we can see that:
uo=my (3.26a)
and 02 = mé =m, - U< = m, = m2 . (3.26b)
Compare the above result (3.26 a, b) with the analogy to mechanics men-

tioned in sections 3.1.3 and 3.1.4.

3.2.4 Basic Postulate (Hypothesis) of Statistics, Testing

The basic postulate of statistics is that "any random sample has
got a parent random variable". This parent random variable xgR is usually
called population and is considered to be infinite. It is common in stat-

istics to postulate the PDF of the population for any random sample, and

call it the postulated, or the underlying PDF. Such a postulate may be
hence tested for statistical validity.

In order to be able to test the statistical validity we have to
assume that the sample can be regarded as having been picked out, or diawn
from the population, each element of the sample independently from the rest.
This additional property of a sample is required by the standard definition
of a random sample as used in statistical literature. However, since the
present Introduction does not deal with statistical testing we shall keep
using our original, more general definition.

There are infinitely many families of PDF's. Every such family is
defined by one or more independent parameters, whose values characterize the
shape of its PDF. The individual members of a family vary according to the
value of these parameters. It is common to use if possible, the mean and the
standard deviation as the PDF's parameters. The less parameters the family of
PDF's contains the better; the easier it is to work with.

The usual technique is thatvwe first select the “appropriate"

family of PDF's on the basis of experience and then try to find such values
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of its parameters that would fit the actual randém sample the best. In
other words, the shape of the postulated ¢(x) is chosen first; then, its
parameters are computed using some of the known techniques.

Since we shall be dealing with the samples and the random var-
iables (populations) at the same time, we shall use, throughout these notes,
the latin letters for the sample characteristics, and the corresponding greek

letters for the population characteristics as we have done so far.

3.2.5 Two Examples of a Random Variable

Example 3.17: As the first example, let us investigate a random variable x

with rectangular (uniform) PDF , which is symmetrical

around a-value x.= k. :Lét the probability

of x < k=g and x > k+q, be zero. Obviously, this PDF has the

;/__..a.xis of symmeﬁy

\"0‘)* (k—g,zxz_kfg) - /.

Wi

following analytical form (see Figure 3.13):
1
!
!
Q

(k-9) , (‘H %)

i X

Figure 3.13

h, for (k - ¢ < x <k + q)

0, for (x <k - q) and (x > k + q).
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This can be written in an abbreviated form as:

h, for (Jx-k|.<q).
$(x) =<: -

0, for (|x - k| > q).
The above ¢ contains apparently three parameters k, g and h.
However, only two are independent, since one can be eliminated

from the condition (3:15), i.e.:

[~]

[ o¢(x) dx =1

e OO

that must be satisfied for any ¢ to be a PDF. Let us

eliminate for instance the parameter h., We can write:

3 k-q k+q
S oo (x)ax= [ ¢ (x)ax+ [ ¢ (x)dx +
-0 —C0 k-_q
I (x) dx
k+q
k+q
=0+ [ hdx + 0
k~q
k+q K+q
=n [ dx = h [x] = 2hg = 1
k-q k-q

This means that h =§%-, and therefore:

1/(2q), for (|x - k| < q)
¢(x) =<

0, for (|x - k| > q)

The corresponding CDF t© the above ¢ is:

. 0, for (xs k - q)
X X

. 1 1
v(x) =—i b(x) dx e i_q dx. = 2q (x—qu), for
(|x - &l < a).

1, for (x > k +q),

and is shown in Figure 3.1k,
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Figure 3.1L

From the above figure

we see that the functionyislinear in the

interval over which 0y # 0, and is constant everywhere else. Note

that :
d(x) =

The mean of the given

follows:

o«

=/ x¢ (x)dx

)

This result satisfies

avy (x)
ax

PDF is computed from equation (3.20) as

1 Kt 1 x° ke

i

i—-—-(k2 + 2kq + q2 - x4 2kq - q2)
qQ

bkg _ o

hq ‘

our expectation for a symmetrical function

around k. The variance of the given PDF can be obtained from

equation (3.22), yielding

2 _ r
o

o0

(x-u)2 p(x) dx = = [ (x-k

1 k+q )2(1}(:
2q k~-q



k+q k+q 2 k+q
=& Cax -2 5 T xax+ B0 dx
2q kgt 2q k—q 2q k-q
+
- 1;-[§§Jk T
59 '3 “k-q
= %a-(kB ¥ 3k%q + 3kq® + g0 - kO + 3k°q - 3kg° + gO) - k°

. _ . o1
Since k = y and ¢q = /30, then h = g 57-3-;, and we can
express the given rectangular PDF, which we will denote by
R, in terms of its mean 1 and its standard deviation ¢ as

follows:

'-]5756-, for (|x-p|) < V30)

R(u, o3 x) = ¢(x)
~. 0, for (]X.'Pl) > V30) ,

Similarly, we can express its corresponding CDF, which we will
denote by Rc’ in terms of u and ¢, as follows:

0, fox:-(x'< u - V30).

R, (p,05x) = ¥(x) %737; (x-u+v30), for (|x-u| < V3a).

1, for (x> u + ¥/30) , -
Assume that we would like to compute the probability of
x € [wo, uto], where x has the rectangular PDF.
This can be done by using equation (3.16c) and Figure 3.15, as

follows:
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(u-130) *““°‘ | (¢rB3o)
(@“O) (é#oﬁ
Figure 3.15
wko
Plywo < x < p+o) = S ¢(x) ax
T,
_ ;* 1 -1 20
m dx = —7——2 o 20
U0
T - 1%-= 2138 20,577 = 0.58.

The above probability is given by the shaded area in Figure

3.15.

Similarly, for this particular uniform PDF, we find that:

P(w20 < x < u+ 20) = P(p-30 <x < p+30) = 1.0
‘In"statistical -testing, welOftén nééa tO’compﬁte'thé moments

of the PDF (see;SectLen;3.2.3). Let us, -for instance,

compute the third moment m, about zero of the rectangular

3
PDF. We will use equation (3.24),-i.e.
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© 4 u +/30 1
m, = _i x° ¢(x) dx = '1{-/30 x m—o-d_x
=%r-ﬁ5wgc
273
=L T+ /30)" - G - V30"

= 575 (87307 + 243 03 )

Example 3.18: As a second example let us investigate a random variable with

a triangular PDF, which is symmetrical around x =k.. Let us
assume that the probability of x < k - q and x > k + q, be

zero. We may write (see Pigure 3.16):

* <#(x) /——QXB’ of Sjmaoezf';;y

Plk-2 ¢ x ¢ k+g )

i
!
!
]
|

[

(k-2)

Figure 3.16
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0, for (x <k - q).

-%*(x -k +aq), for (k - q < x <K).

-%F(;x +k+gqg), for (k <x <k +q).
0, for (x > k + q).

This can be rewritten in the following abbreviated form as:

%'(q - |x = x|), for (|x - k| < q)

o(x) =
0, for (|x - k| > q) .
From the above, we can see that the triangular PDF has the
same parameters (k, a4, h) as the uniform PDF of example 3.17.
Let us again eliminate the parameter h from the condition

S ¢(x) dx = 1. This integral is nothing else but the area

=GO

of the triangle, so:that'wewcaﬁ write;f%-,-gq *h=qh=1.

This gives us: h =-%, and hence,

i_lﬁ%—l , for (|x=k] < q).

. q q
¢(x) =
0, for (|x-k| > q).

The computations of the mean and the variance of the triangular
PDF can be performed by following the same procedure as we have
done for the rectangular PDF in example 3.17. We state here
the results without proof, and the verification is left to the
student.

The mean u of the given triangular PDF equals to Xk, and the

. 2 1 2
variance ¢ comes out as za-
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Since k= pand g = /60 , we can again-express the tri-
angular PDF, which we will denote by T, in terms of its mean

pand its standard deviation o, as follows:

Lx=] > for(|x-u| < véo)

1
V6o ~ 6 2
o

0, for (|x-ul > Y60).
The corresponding CDF is given by:

,0, for (x <u-a).

X 1 .
¥(x) ;o= - X'; ) ax, for (|x-u| < q)
p-g ¢ q

1, for (x > u+ a),

and is shown in Figure 3.17.

The integral in the above equation can be rewritten as:



6l

X .
+ -
,u_é 9-~5§——E-dx, for (x < u).
*1 ]x—“| d
I (’c‘l‘ - 5) ax =
k-q a u %
+ - —
f 9-—-’S§-—l‘—dx+ r i_zg_Lg dx,
u=-q (e} u o}
for (x > u).
and we get:
X x
1 1 2 X
= J (qg+x- dx = = {= [x + (gq=-n) [x }
211__q q u) 22 5 | ]u__‘q (q )[]uq
1,1, 2 2 2
= =, {5(x"-u"+2uq-q") + (q-u) (x-u+q)}
q
=i {x2~2ux+u2+2q(x—-u) + q_2}
2q2
2
(x=)7 , (x=m) 1
2 q 2
2q
Similarly,
X 2
Ly (q-x+u) dx = - (x-u) + (X—“),
2 2
q H 2q q
and B
u
s g *+ x2- U _ 1
2
U=-q 4

Finally, we can express the CDF, which we are going
to denote by TC, in terms of the mean p and the

sfahdard deviation o, as folldws:
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0, for (x < u - V60)

5 ‘
(x-g) + (x-u) + %v for (u - Véo < x <u.
/// 120 /60
T (4, 0; x) = ¥(x) = |
c \ (x—u)2 (x-u) 1
- 5+ oo+ 5 for (u < x<u+ /60).

120

1, for (x > u + v/60).

By following the same procedure as in example 3.17, we
can compute the probabilities: P(u-0 < x < u + 0),P(§~-20 < x < u + 20)
and P(u-30 < x < u + 30) as well as the third moment my about zero for
the triangulai PDF. Again, we give here the results, and the verification

is left to the student:

P(u-0 < x < u + 0) = 0.66 ,

P(u=-20 < x < u + 20) 0.97 ,

il
=

P(u-30 < x < u + 30) and

m, = ud + 302y .

3
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3.3 Random Multivariate

3.3.1 Multivariate, its PDF and CDF

Analogically to the ideas of stochastic function and stochastic
variable given in section 3.2.1, we introduce the concept of a multi-

valued stochastic function

xe {u -+ R°}
in the s~dimensional space.
We note that X is a vector function, i.e., X(u) can be written
as:
X (u) =(xl(u), xz(u), veoy xs(u)) € RS, ue U.

The individual components xj(u)E R, =1, 2, ..., s are called components

J of the stoch-

or constituents of X(u). We also note that each component x
astic function X can be regarded as a random variable (univariate) of its
own. One particular value of xj may be denoted by xz*) and similarly a
particular value of X may be denoted by

' 12

s
X, = (X, X,y «eey X.).
i ( l, l’ ’ l)

Note that a specific value of X is a sequence of real numbers (not a
set), or a numerical vector.

The pair (X(u), ¢(X)), where

3(X) = o(xb, %2, .o, x5 e (B® > R} (3-27)

is a non-negative, integrable function on RS is called a random multi-

variate or simply a multivariate.

*The superscripts and subscripts here are found very useful to distinguish
between the components xj, i=1, 2, ..., s of the multivariate X, and

t?e elements xi,_i =1, 2, ..., D of the univariate (random variable)

X,
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We can speak of a probability of X{;[Xb, Xl]c RS, and define it

as follows:

%
= fx $(xX) ax e[0, 11 . (3-28)

[e]

Here the integral sign stands for the s~dimensional integration; dx for

an s-dimensional differential, i.e. dX = (dxl, dxz, e dxs) and
_ 1 2 s _ 1 2 S .
Xo = (xo, Xor - xo), X1 = (xl, Xyr e xl) are assumed to satisfy
the following inequalities:
xi z.xg ’ =121, 2, .., 8 .

Note that in order to be able to call the function ¢ a PDF, the following

condition has to be satisfied:

[ b0 dx =1 . (3-29)
R

A complete analogy to the one-~dimension 1 or univariate case
(section 3.2.2) is the definition of the multivariate CDF. It is defined

as follows:

X
¥(x) = ¢(¥) arve {rR® > [0, 11} (3-30)

00

where Y is an s-dimensional dummy variable in the integration.

Example 3.19: Consider the univariate PDF shown in Figure 3.12. This

bell-shaped PDF is known as the normal or Gaussian PDF (to be

discussed later in more details), and is usually denoted by N,
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in terms of its u and o we have
¢(x) = N(u, o3 x) .

Then the multivariate normal PDF in two-~dimensional space, i.e.

$(X) = ¢(xl, x2), would appear as illustrated in Figure 3-18.

Figure 3-18.

In the two~dimensional space, ¢(X) is caelled a bivariate PDF,

and the bivariate normal PDF illustrated above can be expressed as

¢(X) N(ul’ u2, 013 025 X)

= 5“*fl—"'"' exp [-%
mo, o, _ 9, a,
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3.3.2 Statistical Dependence and Independence

The PDF, ¢, of the multivariate X may have a special form,

namely

In this case, the integral in equation (3-28) can be rewritten as:

X X

1 _ 15 J J
@] oej
S Xil_ N .
= 17 o, (x9) ax? . (3-31)
J=1 XJ
(o]

J

Remembering that each component x° of the multivariate X can be regarded

as a univariate, and regarding ¢j as the PDFs of the corresponding

univariates we can rewrite equation (3-31) as:

s Xj 3 .
1 /Lo, (xd)ax? =
3=1 xi J 3=1

J

(=1

J J
P(xO <x0osx ) .

Comparing this result with equation (3-28), we get the relationship

between the probabilities

) . (3-32)

s . .
= 1 P(xg E_XJ < x

This relation can be read as follows: "The combined probability of all

the components satisfying the condition: xg f_xJ j_xi, equals to the

product of the probabilities for the individual components", and

obviously satisfies the definition of the combined probability of
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independent events (section 2.3). Hence, the components x3 of such a
multivariate X are called statistically independent. The PDF from
example 3.19 is statistically independent.

If the PDF of a multivariate cannot be written as a product

of the PDF's of its constituents, then these constituents are known as

statistically dependent. In this case, the probability P(Xo <X < X))

1

is not equal to the product of the individual probabilities.
It can be shown that for statistically independent components

we have

J

Ip b5 (x) ax? =1, j=1, 2, .., s.

3.3.3 Mean and Variance of a Multivariate

The sequence

T = ; "‘1
- ’ S
l U = (ul( uz, v o ey uS) = E*(X) € R 7 (3_33)

where
w. o= J sxj $(X)AX = E* (x)e R, 3 =1, 2, v\ s (3-34)
)R
is called the mean of the multivariate X. The argument of the operator E*

1 1

. . 2 2
(i.e. the s-dimensional integral) is X. ¢(X) = (x7,x ,...,xs)'¢(x K x0) .

Similarly the variance of the multivariate X is given by

o2 (cl, ci, ey cé)

it

S

E*((x-1)2) e R° , (3-35)

where

2 _ J_, 2
Gj fRs (x uj) $(X) dx

E* (xj—uj)Z) ER, j=1,2, oo, s. (3-36)
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Note that we can write again

Br(x-) 2 = Br(x-E*(X))2 = B*(X°) - 12, (3-37)

and

E*(xj~uj)2 = B* (x0-E*(x3)) 2 = B*((x))?) - u2 . (3-38)

The variance of the multivariate does not express the statis-
tical properties in the multi-dimensional space as fully as the variance
of the univariate does in the one-~dimensional space. For this reason,
we extend the statistical characteristics of the random multivariate
further and introduce the so-called variance-covariance matrix (see
section 3.3.4).

Let us now turn our attention to what the mean and the variance

of a "statistically independent" multivariate look like. For the stat-

istically independent components xj =1, 2, ..., 8 of a multivariate X,

we obtain

RS =1
. . S 9 9 .
=/ S[XJ o.(x7) (1 8, (x)ax ydx?] (3-39)
R J =1
2#3
s PR N = [
= fo ¢j(x ydx- - hii IR¢2(X ydx© .
g=1
2#]

Here, according to section 3.3.2, all the integrals in equation (3-39)

after the I-sign are equal to one, and thus we have

- J 3 I -
uy = ng ¢j (x?) d&x”, 3 =1, 2, «ouy 5 . (3-40)
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Similarly,

2 _ J_ 2 S N o _
Oj fR(x uj) ¢j(x ydx=, j 1, 2, .., s. (3-41)

Thus for the statistically independent X, we can compute the mean and

the variance of each component %7 separately , as we have computed

Hyr My S 02 of the PDF from example 3.19.

3.3.4 Covariance and Variance~Covariance Matrix

Before we start describing the variance-covariance matrix,
let us define another statistical quantity needed for this matrix. This

quantity is called covariance and it is defined for any two components

kj and xk of a multivariate X as

il

cov (x9x) = 0., = f s(xj—uj> o) ¢ ax | (3.42)

jk R

il

. . |
E* <(x3—uj>(x ) =0 € Rk § = 1,208

We note three things in equation (3-42). First, if j = k
we see that the expressions for the covariances become identical with

those for the variances, namely:
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0., =0, . =05, for j = k.

Secondly, if the components of the multivariate are statistically
independent, the covariances (j # k) are all equal to zero. To show this,

let us write
S
' k % %
ro - (x -u) T g (x) dx
R J 9=1

Q
il

jk

k

i 3y g¢d - k_ k
IR(x uj) ¢j(x ) dx fR(x uk) ¢k(x ) dx

]

[fsz¢j () dxdi ) x50, () @ -

il

-[uj - uj] [uk - uk] =0 .

Finally, noting that for a pair of components of a statistically

independent multivariate we have

O = E*((xj—uj)(xk—uk)) =0 , (3.43)

we can write:
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g.,, = E*(xjxk—xj

- xk + )
ik uk Uj ujuk

=*jk_. .*j_. *k+
E*(x7x ) ukE (x7) qu (x) ujuk
=*jk_ -

E*(x7x ) ukuj ujuk + “juk

= Br (0K - L = B* (0% - BE*(x)) B*(x5) = 0 .

]uk

J

Hence, for statistically independent components x~ and xk, we get

B* (309x5) = B*(x)) -E*(x5) (3-44)

or more generally, for r independent components we get

r
E* (1 xg) =
=1 2

B* (x%) . (3-45)
1

I =K

Equation (3-45) completes the list of properties of the E* operator
stated in section 3.2.3.

As we stated in section 3.3.3, the variance (02) of a multi-
variate is not enought to fully characterize the statistical properties
of the multivariate on the level of second moments. To get the same
amount of statistical information as given by the variance alone (in the
univariate case), we have to take into account also the covariances.

The variances and covariances can be assembled into one matrix

called the variance-covariance matrix or just the covariance matrix.




75

The variance-covariance matrix of a multivariate X is usually denoted by

Z§ and looks as follows:

2 T
01 012 013 ..... Gls
2
021 02 023 ..... 025
* = . - ° © -
ZX , (3-406)
. . . Y
fsl d52 Os J

It is not difficult to see that the variance-covariance matrix

can also be written in terms of the mathematical expectation as follows:

o

Tk = B% [(X-E*(X)) (X-E* (X)) 111, (3-47)

which is the expectation of a dyadic product of two vectors. Note

that the superscript T in the above formula stands for the transposition
in matrix operation. The proof of equation (3-47) is left to the
student.

Note that the variance-covariance matrix is always symmetrical,
the diagonal elements are the variances of the components and the off-
diagonal elements are the covariances between the different pairs of
components. The necessary and sufficient condition for the variance-
covariance matrix to be diagonal, i.e. all the covariances to be zeros,
is the statistical independence of the multivariate. The variance-
covariance matrix is one of the most fundamental quantities used in
adjustment calculus. It is positive -~ definite (with diagonal elements
always positive) and the inverse exists if and only if there is no absolute

correlation between components.
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3.3.5 Random Multisample, its PDF and CDF

Like in the univariate case, we can also define here a quan-
tity n corresponding to the random sample E, defined in section 3.1.1

as follows:

1 1 1 1 1 1
2 } (E]r  Eyr  Egr eeenns f) € ®
2 .2 2 2 2 2
n —i £ ) CEl, E5r  E3r weeens Enz) € R (3-48)
ir S S S s nS
S
E (gll Ezl 531 s ss 0oy E,ns) € R

which is a straightforward generalization of a random sample, and will

be called a random multisample. From the above definition, it is obvious

that n has s components (constituents), gj, each of which is a
random sample on its own. The number of elements nj in each component
Ej may or may not be the same.

We can also define the definition set as well as the actual
(experimental) PDF and CDF of a multisample in very much the same was as
we have done for a random sample. Also, the distribution and cumulative
distribution histograms and polygons can be used for two-dimensional multi-
samples. The development of these concepts, however, is left to the

student.

3.3.6 Mean and Variance-Covariance Matrix of a Multisample

The mean of a multisample (3.48) is defined as

~ ; - S )
M= (Ml, M2, ey Ms) = E(n) e R , (3-49)

where from equation (3-3) we get .

1 B3
M, =

et g =E(E) erR, §=1,2, ..oy s . (3-50)
3
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Here, the operator E is defined as a vector of operators E which is

obvious from comparison of (3.49)with (3.50). Similarly,

{ =2 2 2 2 2 ~ ~0 2 s
L“? = (Sl' S2' S3, ooy Ss) = E(n-M)" e R , (3-51)

where from equation (3-6), we get

)]
il
5IH

I 52 2 -
(E-=-M.) =E(§"-M,)“ e R, =1, 2, .., s. (3-52)
1 °ig 3

e B

i i
We can also define the standard deviation S of the multisample n as

S = (Syr Syr Sgr wees S) (3-53)

Example 3.20: Let us determine the mean ﬂ, the variance §2 and the

standard deviation S of a multisample n = (gl, 52, 53),

where
1
£ = (2, 3, 4, 7, 4),
2
g = (6, 4, 0, 3, 2) and
3
g = (51 2’ 5] 5, 8) °
Here we have Ny = ny = n, = 5. The mean M is given from

equation (3-49) as

~

M = (M1' M2, M3) ®
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The members Mj’ J =1, 2, 3 are computed from equation (3-50)

as follows:

5
1 1.1 1 1
M ==— I"& == I &
SR T T T S
= l‘(g + 34 b+ 7+ L) = 20 .
5 5
M, = %-(6 + 4+ 0+3+2)= ;% = 3,
My=g(5+2+5+5+8) =22=5,
and we get
M= (4,3,5).
. . ~5 R .
The variance S” is given from equation (3-51) as
~ 2 2 2
ST o= (Sl’ S2, S3) .

The members 82, j =1, 2, 3 are computed from equation (3-52)

J

as follows:

%.[(_2)2+ (-1)%+ (0)%+ (3)%+ (0)7]

= %-[h +14+0+9+0] = l% = 2.8,
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o 3 (R C R G RN (R G O
1 =20 _
=5 [9+1+9+0+1] ="5=4.0
s§ - %'[(0)2 f =% 0%+ @ + (32
1 _1s _
=g [0+9+0+0+09] =>=3.6,

and weiget

s“ = (2.8, 4.0, 3.6) .

Taking the square root of the individual members S?, i=1, 2, 3,

-~

we obtain the standard deviation S as
S = (Sl’ SZ' 83) = (l1.67, 2.0, 1.9) .
If the jth and kth components of a multisample have the same

number of elements, say n, we can write the covariance Sjk between these

two components EJ and Ek as:

n
1
S, =% 2
1 n
| T s

which can be rewritten as:

rel-mp (€1, (3-54)
1

S = BUE-M) (5 m)) = s e R G k=1, 2, . s
Note that the covariance Sjk’ as defined above, depends on the ordering of
the elements in both components Ej and Ek, whereas the means M. and Mk and
the variances S? and Si do not. Therefore, to obtain a meaningful covariance
Sjk' each of the components Ej and Ek should be in the same order as it
was acquired. This can be visualized from the following example. Assuming
that the elements of gj are observations of‘one vertical angle, and the
elements of Ek are the corresponding times of the observations. Clearly,
to study the relationship (covariance) between the observation time and
the value of the observed vertical angle, the matched pairs must be

respected.
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Example 3.21: Let us determine the covariances between the different
pairs of components of the multisample n given in example 3.20.

The covariances Sjk are computed from equation (3-54) as follows:

i} 12 ety (g2
512 % 51 75 12, L(E-H) (gi"3)]

2 [(-2)(3) + (-1)(1) + (0)(-3) +
(3)(0) + (0)(-1)]

% [-6-1+0+0+0] = -‘% = - 1.L,

il

+

1
815 = 85, = §{<-2)(o) + (-1)(=3) + (0)(0) +
+ (3)(0) + (0)(3)]
= %-[O+3+0+0+0] = %'=‘9;§_and
X _
8,5 = 835 = 5{(3)(0) + (1)(=3) + (=3)(0) +

(0)(0) + (~1)(3)]

!: ' '-:-6—-=_.
c[0-3+0+0-3]=—5=21.2.

+

]

Finally, we can assemble the variance covariance matrix In of

the multisample n:

- e
5,1 sg Spg eee Sy
r= |- : . . . (3-54)
Ssl 852 Si )
- -

Having defined the mean and the variance-covariance matrix of
a multisample let us stop and reflect for a while. We have stated in
3.3.3 that the expansion from one to s dimensions defied a straight-

forward generalisation of one dimensional variance. We had to introduce

the variance-covariance matrix to describe the statistical properties
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of a multivariate on the second moments level. Turning to the relationship
sample - univariate we discover that this is not paralleled in the multi-
dimensional case either. While formulae for the mean and the variance
of a sample and a univariate were equivalent, those for a multisample
and a multivariate are not. While equivalent formulae to (3-34), (3-35)
and (3-42) can be devised for the multisample, the ones used mostly in
practice ((3;h9), (3-51) and (3-54)) correspond really to (3-k0), (3-L41),
and (3-43) valid only for statistically independent multivariate.

This, %together wifh the difficulty with the computation of
multisamplé covaiiances, i.e., the necessity to have the same number
of eléments in any two components, leads often in practice to the
adoption of an assumed variance-covariance matrix. Decisions connected
with the determination of the multissmple variahce—covariance matrix

are among the trickiest in adjustment calculus.

Example 3.22. Let us determine the variance-covariance matrix of the

multisample n introduced in example 3.20. In this case, we
have the variances computed in example 3.20, the results

were:

_ 2 _ 2 _
S, = 2.8, 82 = 4,0 and 83 = 3,6.

Also, we have the covariances computed in example 3.21, the
results were:

812 = S2l = - 1.k, 813 = 831 = 0.6 and

823 = 832 = - 1.2.

Therefore, the required variance-covariance matrix will be:
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3.3.7 Correlation

Although the covariances of a multisample do not play the same
role as the covariances of a multivariate, they still can serve as a
certain measure of statistical dependence. We say that they show
the degree of correlation between the appropriate pairs of components.

The degree of correlation as a measure of statistical dependence,

may, of course, vary. We can see that the covariance S,

3k € R may attain

any value. Hence it is not a very useful measure because we cannot
predetermine the value of the covariance corresponding to the maximum
or complete correlation. For this reason, we use another measure, the

correlation coefficient, which is usually denoted by p, and is

defined as

pjk = Sjk/ (Sj.Sk), Sj, Sk #0 . (3-57)

It can be shown that pjk varies from -1 to+l.
Based on the use of thevcorrelation coefficient is the correlation
calculus, a separate branch of statistics. It will suffice here to say
that we call two components Ej and Ek of a multisample n:
(i) totally uncorrelated, if pjk =0,
(ii) correlated, if ijkl <1,

(iii) totally positively correlated, if pjk 1,
(iv) totally negatively correlated, if pjk = -1 .
Note that for the multivariate, the expression for pjk is written completely

analogous to equation (3-57).
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Example 3.23: Let us discuss the degree of correlation between the

different pairs of components of the multisample n which is

used in examples 3:20 to 3;22 inclusive; and whosé variancé—
covariance matrix is given in ékample 3.22.

The corrélation coéfficiénts pjk aré computed from equation (3-57)

as follows:

S
12 - 1.4
P, = = = -~ 0.42
12 5,+8, 1.67 - 2
0.6 _
P13 = T67-1.9 -~ 0-19 »
__=l.2 _
Po3 =5 1.9~ 031
Note that:
Pi1p = Ppys  Py3 = P3p 884 Py = gy e
Since
ol <15 dsx=1,2,3, 3¢5,

thus the components El, 62 and €3 of the given multisample n

are all correlated.

Example 3.24: Let us discuss the degree of correlation between the

components El and Eg, and between El and 53 of the multi-

sample n = (El, £2, 53), where:

et = (2,1, 3,5, 4),

£ = (4, 2, 6, 10,.8), -

g3 = (-b, -2, -6, =10, -8).
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By computing the means and variénces of EJ, J=1,2,3

similarly to example 3.20, and the covariances 812 and 313

similarly to example 3.21, we get the following results:

My =3, My=6 and M= -6

2
=2, sg-——s and 8% =8,

S
3

2
1

1 2 3
-k = _ L
12 and  8)5 =
Hence
- 512 ok m+ 1
P12 8,8, V2 2727 7 7

which means that El and Ee are totally positively correlated,
" and
513 4

P13 * 5. > =-1,
13~ 5,-5; V2 -2/2

which means that gl and 53 are totally negativeiy correlated.

At this point it is worthwhile mentioning +that the computa-
tions of the means, variances, covariances and correlation coefficients
of the constituents of a multisaiple are always préferably performed in a
tabular form for easier checking. The following table is an example of
such an arrangment using the two constituents El and EZ of the multi-

sample introduced in example 3.20.
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1 2
g 3 1
. (&i—Ml).
1 1 1 2 2 2 2 2], .2
£5 (g5-1) | (e5-M)) €5 (g5-M,) (85-M,)" [ (g7-1,)
2 -2 L 6 3 9 -6
3 -1 1 L 1 1 -1
L 0 0 0 -3 9. 0
T 3 9 3 0 0 0
N 0 0 2 -1 1 0
20 1k 15 20 -7
: 1 - =1 -
i) =3 (20) =k, =3 (15) = 3
2 1 N _1 _
5] 5 (14) = 2.8, 5 (20) = 4
5, V2.8 = 1.67 , =/ =2
i -
5.5 5 (-7) = -1.4,
and
-1.4 N
P1o=Ter 2=~ 0¥
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i 61, 70,102,107,113,1145117[119,120,126,126,129,129,132,137,“
130, 139, 139, 142, 143, 146, 146, 147, 147, 148, 149, 149, 150, 130, 153,
153, 136, 157, 138, 159, 159, 159, 159, 162, 162, 164, 166, 166, 166, 167,

169, 169, 169, 169, 170, 170, 171, 172, 172, 172, 173, 173, 175, 175, 176,

176, 176, 177, 177, 178, 179, 180, 180, 181, 181, 181, 182, 183, 184, 184,

185, 188, 187, 188, 188, 190, 192, 192, 193, 194, 104, 194, 195, 195, 195,
156, 197, 108, 193, 200, 201,201, 201, 202, 202, 203, 204, 206, 205, 209,
200, 200, 214, 216, 219, 219, 219, 221, 222, 223, 227, 233, 234, 256, 237,
| 240, 247, 254, 262, 270 : .

Required: (i) Gi@ssify this sample according to your own choice, and
then draw its: Aistributioﬁ histogram, distribution polygon, cumulative
histogram, cumulé%ifé polygon.

(ii) Determine the mean, standard deviatidn,.median and range
of the sample;-théﬁ‘piot these quantities on your histograms and
polygons.

(iii)‘Determine‘the probability of the height being in between
121 and 174 ems, by using your distribution histogfam, your distribution
polygon, the cumulative histogram, the cumulative polygon, ﬁhe actual

sample. Then compare the results.

(3) Verify the results given in Example 3.18 for the mean, the variance

and the third moment about zero of the triangulsr PDF.
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3.4 Exercise 3

(1) The following table gives the weights as recorded to the nearest

pound for a random sample of 20 high-school students:

a4

138 150, 146, 158, 150

146 164 138 164 164
150 146 158 173 150
158 130 146 150 16L

Required: (i) Compute the mean, the standard deviation, the median
and the range of this random sample using both the original sample
and its definition set.

(ii) Compute the experimental probabilities of the
individual elements and then construct the corresponding discrete
PDF and CDF of the sample.

(iii) Compute the probability that the weight of a high-
school student is less than or equal to 150 pounds.

(iv) Compute the probability of the student weight to be

in the interval [158, 173].

(2) The following table gives the observed heights in cm of a random

sample of 125 nine years old pine trees.
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(L) Verify the results given in Examples 3.17 and 3.18 for the
probabilities P(u~0 < x < p+o), P(u=20 < x < u + 20) and
P(u=-30 <x <+ 30)using the rectangular and the triangular CDF s

respectively (rather than the corresponding PDF s.)

(5) Let x be a random variable whose PDF is given by:

h, for (=3 < x < 7T)
¢(x) =<<::
0, everywhere else.
Required: (i) Determine h.
(ii) Compute the mean and the standard deviation of x.
(iii) Construct the CDF of x.
(iv) Use both the PDF and CDF to determine the following
probabilities: - P(x < 1.5) ,
P(x > 2.5) ,
P(-1<x < k),
P(p-20< x < p+20) .
(v) Compute the 3-rd and L-th moments of the PDF about

Zero.

(6) Let x be a random variable having the following PDF:

k'x , for (0 < x < 2)
¢(x) =<
0 , everywhere else.
Required: (i) Determine the mean, the variance and the standard

deviation of x.

(ii) Compute the probability P(1l < x < 1.5).
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(7) Let x be a random variasble whose PDF is given as:

k + g%-x - g% , for (3 < x < 8)
$(x) ok - =k x + 22

-3 + 50 for (8 < x < 13)
0 , everywhere else.
Reguired: (i) Determine the mean and the standard deviation of x.
(ii) Compute the probabilities: P(5.5 < x < 10.5), P(x < 9),

P(x > 7), P(W -~ 0 < x g_ﬁ + g) .

(8) Given a multisample n = (El, €2, 53), where El = (k.2, 3.7, 4.1),
£2 = (26.7, 26.3, 26.6), and g3 = (-17.5, =17.0, =18.0).
Required: (i) Compute the mean of n .

(ii) Compute the variance-covariance matrix of n.
(iii) Compute all the correlation coefficients between

the different pairs of components of n.

(9) Given a bivariate X = (x*, x°) with PDF
1
- [x = ap— , for (|xl—ql < s /6, and
° 12v3 St 6ve o
s |x“-r| <t V3)
$(X) -

0 , everywhere else,

where q, r are some real numbers and s, t are some positive real

numbers.
Required: (i) Compute the mean of X.

(ii) Compute the variance-covariance matrix of X.
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4, FUNDAMENTALS OF THE THEORY OF ERRORS

4,1 Basic Definitions

In practice we work with observations which are nothing else

but numerical representation of some physical quantities, e.g. lengths,
angles, weights, etc. These observations are obtained through

measurements of some kind by comparison to predefined standards. In many

cases we obtain several observations for the same physical quantity, which
are usually postulated to represent this quantity.

There is a different school of thoughts claiming that no
quantity can be measured twice. They say that if a quantity is measured
for the second time, it becomes a different quantity. Philosophically,
the two approaches are very different, however, in practice they coincide.
They vary in assuming different things (hypotheses), but they lead to
the same results.

The observations representing the same quantity may or may not
have some spread or dispersion (by spread we mean that not all the
observations are identical). For instance, when we measure the length of
the side of a rectangle using a graduated ruler, we will have two possi-

bilities (see Figure L.la, b).
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First, i the 1ength of that side is exactly equivalent to an
integer number of graduations (divisions) on the ruler, the measurement
of it will not produce any spread. This is simply because the beginning
of the side will be at a graduation line of the ruler, aﬁd at the same
time the end of the side will be at another graduation line, and hence
we get always the same result. On the other hand, if the end of the
side is located between two division lines on the ruler, there will be
a fraction of the smallest division on the ruler to be estimated. The
estimates (observations) will differ, say due to different observers, and
hence we shall get a spread.

Usually, the spread and its presence depend on many other
things like: the design of the experiment, measuring equipment, precision
required, atmospheric conditions, etc. If we know the causes that
influence the spread, we can try to account for them in one way or the
other. In other words, we will apply certain corrections to eliminate

such unwanted influences which are usually called systematic errors.

Examples of systematic errors are numerous like: variation of the length
of a tape with temperature, variation of atmospheric conditions with
time, etc.

In practice, this is possible if we can express such corrections
mathematically as functions of some measurable physical quantities. In
some cases, the systematic errors remain constant in both magnitude and
sign during the time of observations 3e;g. most of the instrumental
systematic errors. . 1In such cases, we can eliminate these systematic
errors by following certain - techniques in making the observations. For

example, the error in the rod reading due to the inclination of the line
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of sight of the level, with respect to the bubble axis, can be eliminated
by taking the backsight and the foresight at equal distances from the
level.

Further, we shall assume that there are no blunders (mistakes)
in the observations. These blunders are usually gross errors due to the
carelessness of the observer and/or the recorder. The elimination of
blunders has to be carried out before starting to work with the observations.
The ways for intercepting blunders are numerous and are as different as

the experiments may be. We are not going to venture into this here.

4.2 Random (Accidental) Errors

Even after eliminating the blunders and applying the appropriate
correctiong to eliminate the systematic errors, the observations repre-
senting a single physical quantity usually still have a remaining spread,
i.e. are still not identical, and we begin to blame some unknwon or
partly unknown reasons for it. Such remaining spread is practically

inevitable and we say that the observations contain random or accidental

errors.
The above statement should be understood as follows: given a
finite sequence L of observations of the same physical quantity %', i.e.

L = (211 2/2, ce oy Q/n),

we assume that the individual elements Qi' i=1, 2, ..., n represent the

same quantity 2£; where ' is the unknown value, and can be written as:

g, =8 +eg, i=1,2, .o, (4-2)
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The quantities e's are the so-called random (accidental) errors¥.

The sequence

€ = (el, €ps en en) , (4-3)

(or the sequence L, equation (4-1), for this matter) is declared a random
sample as defined earlier in section 3.1.1. This random sample has a
parent random variable, as defined in section 3.1.2.

It should be noted that the term "random error" is used rather

freely in practice.

4,3 Gaussian. PDF, Gauss Law of Errors

The histograms (polygons) of the random samples representing
observations encountered in practice generally show a tendency towards

being bell-shaped, as shown in Figure 4.2 a,b.

¥ It may happen, and as a matter of fact often does happen, that we are
able to spot some dependence of e (for whatever this means) on one or
more parameters, e.g. temperature, pressure, time, etc., that had not
been suspected and eliminated before. Then we say that the e's change
systematically or predictably with the parameter in question, or we say
that there is a correlation between the e's and the parameter. Here, we
may say that the observations still contain systematic errors. In such a
case we may try to eliminate them again, after establishing the law
governing their behaviour.
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Various people throughout the history have thus tried to
explain this phenomenon and establish a theory describing it. The
commonly accepted explanation is due to Gauss and Laplace independently.

This explanation leads to the derivation of the well known model - the

Gaussian PDF. The assumptions, due to Hagen, necessary to be taken into
account, along with the derivation of the law, due to de Moivre, are
given in Appendix I. Here we state only the result.

The Gaussian PDF,G(C;e) is found to be (equation (I-11),

Appendix I):

6(c; €) = Vox exp (-26°/0), (h-k)

where its argument € is the random error, i.e. a special type of random
variable with mean equml togzero, and C is the only parameter of the dis-

tribution. The Gaussian PDF is continuous and is shown in Figure 4.3.

o

\
|
, 1' :
-©9 ) ve/2 VTvg/2 reo

. Figure k4.3.
From the above Figure we note the following characteristics of

the Gaussian PDF,

(i) © is symmetrical around O.

(ii) The maximum ordinate of G is at € = 0, and equals V(2/7 ), which
varies with the parameter C, see Figure L4.2b.

(iii) G approaches the € axis asynptotically as e goes to + «.
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(iv) G has two points of inflextion at ¢ = + vc/2.

The shape of G reflects what is known as the "Gauss law of a

large sample of errors", which states that:

(i) smaller errors are more probable than the larger errors,

(ii) positive and negative errors have the same probability.¥*
Note-that since G is a PDF it satisfies the following con-

dition:

(=]

S G(Cse) de = /%F ;7 exp (-252/C)de =1 (L.s)

e OO -—CO

4.4 Mean and Variance of the CGaussian PDF

Since G is symmetrical around zero, it is obvious that its
mean u_ equals zero (see section 3.2.5).

The variance Gi of G is again obtained from

o

o> = ¥ (e -u )2 = [ e? G(C;e) de
€ B .
= /%F s e? exp (—282/C)dsl (4.6)
Recalling that
! 2 exp (—agtz) at = ﬁﬂé , (a >0), (%:7)
0 La

we get from equatians (4.6) and (4.T)

* The same result can be obtained using slightly weaker (more general)
assumptions through the "central limit theorem".
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© 2 5
I ezexp(—2e /C)de = 2/0 €2exp(—a €7 )de
- H
2a
where
2
a = /C .
Hence,

2_ 2. /. L3 _Voe.-c/c ¢
62"‘/0'1r 2[‘@] T/ - 2/2 T h o

and we get

C = bo . (4-8)
Consequently, the variance %f,lor rather the standerd deviation %f can
be considered the only parameter of G. Substituting equation (4-8) into

equation (L-L) we get:

G(g; e) = 1 exp (-EQAQOSD . (L-9)
¢ oaf?m) €

Note from equation (L4-8) that q = /C/2, which equals to the abscissas

of the two points of inflextion of G.

Example L.1. Let us compute, approximately, the probability P(-%‘i € < %)

assuming that ¢ has a Gaussian PDF. We first expand the function

exp (-62/2q5) to be able to integrate eguation (L4-~9). Recall

that:
2 3
exp(y):e—l+y+g—!—+%'+.
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2 I 6

exp ("82/(2052»= 1- = 5+ eu & REr
20, 8o; k8o
and
P(-0.< € < og = Igec‘(qe;";e)de
€
= —= {Z%xp (—5242023de
GgQJﬂ € €
o A0 2
;gg")[{czde f 2 / es de +
.
2y et ae ]
8o €
_ (20 oL - 202 , 1 .202
ofen) € 205 3 802 5
a _
N S 291 + e ]
h806 1
€
- —3—‘}5; 1. = 0.167 + 0.025 - 0.003]
€ ,
- @2_-1{) [0.855] = 0.683
Thus:

P(~0 < g <g) = 0.683 *
e — & :

By following the same procedure, we can find that:

P(—20€_<_ € < 206) £ 0.954,
P(-30 < e < 3c€) = 0.997.
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4,5 Generalized or Normal Gaussian PDF

The Gaussian PDF (equation (4.9)) can be generalized to have an

arbitrary mean uy. This is achieved by the transformation

yEe g, (4-10)

in equation (4-9), where y is the argument of the new PDF - the generalized

Gaussian. Such generalized Gaussian PDF is usually called normal PDF and

is denoted by N, where:

2
1 (y-u_)
N(u_, 0_3=y) = —=——— exp (= ) . (4-11)
%", ¥
The name "normal" reflects the trust which people have, or
used to have, in the power of the Gaussian law (also called the "normal
law") which is mentioned in section 4.3 . If the errors behave according

to this law and display a histogram conforming to the normal PDF, they
are normal. On the other hand, if they do not, they are regarded as
abnormal and strange things are suspected to have happened.
The normal PDF contains only two parameters -~ the mean uyand
the standard deviation g. Hence, it is well suited for computations.

Note here that the family of G(g ) is a subset of the family

% °
of N(%, %; y). Also note that the following condition has to be satis-—
fied by N:
. 1w (y=-u
S N(uy 03; y)dy = ;yé;‘) {mexp(—"""x'gogy )dy = 1.
The formula for the normal CDF correspondlng to N is given as:
(x-n_)2

W (y) = '7r70f exp(-———z—> dx, (h=12)

where x is a dummy variable in the integration.
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For the generalized (normal) Gaussian PDF, it can be again

shown that:
Plp =0 < vy < + 0 ) = 0.68
(uy y ST Sy y) 3,
Py =20 < < + 20 = 0.954
(uy L L y) 95
and .
P -30 < < + 30 = 0, .
(uy 3 . A _.uy 3 y) 997

(Compare the values to the corresponding results of the triangular PDF

in example 3.18).

4.6 Standard Normal PDF

The outcome t of the following linear transformation

X -
t = —x (L=13)

o
X

is often called the standardized random variable, where x is a random

variable with mean ux and standard deviation OX. Note that the above

standardization processdoes not require any specific distribution

for x.
The transformation of the normal variable y (equation (L-10))
y—H
to a standardized normal variable t = a;l! results in a new PDF
y

Wuys 0,3 8) = exp (43/2) = 80, 15 0) = H(3), | (1o1b)

V(2m)

whose mean ut is zero and whose standard deviation Ot is one. This

PDF is called the standard normal PDF, a particular member of the family

of all normal distributions.
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Since both the parameters ﬂt:=\0 and otra"ir&ré.determined orice
for all, the standard normal PDF is particularly suitable for tabulation
due to the fact that it is a function of t only. An example of such

tabulation is given in Appendix II-A, which gives the ordinates of the

standard normal PDF for different values of t. Note again that
oo _ 1 ) _'_t_- _
[ N(t)at = 7577 Lo exp (- 37) at = 1.

The CDF corresponding to N (t) is given by

1 t x2
W(t) = 7imy Ls e (- 75) ax, (4-15)
or
1 1 t x2
WN(t) =3 * 7y fo exp (- §~)dx, (L-16)

where x is a dummy variable in the integration. Again, the CDF of
the standard normal PDF is tabulated to facilitate its use in probability

computations. Appendix II-B is an example of tabulated ¥ _(t) using

N
equation (L4=15), which gives the accumulated areas (probabilities)
under the standard normal PDF for different positive¥® values of t.
Appendix II-C contains a similar table, but it gives the values of

the second term in equation (4-16) only, for different values of t.

Hence, care must be taken when using different tables for computations.

¥ For negative values of the argument t the cumulative probability

P(t 5,to) = WN(—tO) is computed from WN( to) through the condition:

WN(—tO) =1 - wN(tO) .
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The second term in equation (h—l6) is usually known as E%E

erf (t), i.e.

v (1) = 2+ b ere (1), (4-17)

where, erf (t) is known as the error function, and is obviously given by

2 .
erf (t) = 72; fz exp (- §~')dx . (4-18)

This erf (t) is also tabulated®.

In order to be able to use the tables of the standard normal
PDF and CDF for computations concerning a given normal random variable
x, we first have to standardize x, i.e. to transform x tot using:
equation (4-13), then enter these tables with t. Thus, if we want,
for instance, to determine the probability P(x g_xo) we have to write:

X-u u

_ X o x
P(x < x) = P( 5. < o ). (4-19)

This is identical to the probability P(t j_to) that can be obtained

from the standard normal tables.

Example 4.2 Suppose that the height h of a student

is a normally distributed random

_k .
NCt) variable with mean u, = 66 inches and
P standard deviation ch = 5 inches. Find
the approximate number K out of 1000
/2 // students h inches tall:
0 04 i

(i) h < 68 inches (Figure h.L-i);
Figure 4.k - i

(ii) h < 61 inches (Figure L.L-ii);

# TIn most of the computer languages, this error fun?tion, erf (t).is a
built-in function. Hence, it can be called as any llb?ary subroutine
and evaluated more precisely than using the corresponding tubles.



101

(ii1) h > Th.6 inches (Figure L, h-iii) ;

(iv) [€Lk.3 < h < T0] inches (Figure L.k-iv),.
}‘N(i] Solution: We are going to use the
Table in Appendix II-B.

(i) P(h < 68) = P(t < 68-66 )
P , - 5
P(t < 0.%0) = 0.655L .

(0.6554)(1000) = 655 students .

61-66 )
p)

-1.0 0 + = Hence, K,

(ii) P(n

Ia

61) = P(t <

Figure 4.b-ii

= P(t < -1) = 1-P(t < 1)

= 1. - 0.8413 = 0.1587 .
1N
Hence, K, = (0.1587)(1000) = 159 students .
(iii) P(h > T4.6) = P(t > h‘§'66 )

P

P(t > 1.72)

0 .72 + 1. - P(t < 1.72)

1. - 0.9573 = 0ghk2T .

Figure 4.h-iii

Hence, K = (0.0427)(1000) = 43 students.

(iv) P(64.3 < h < 70) =

é’iﬁé:—é.6_<t<Z_Q:§§-)

=P (ST st

4 NY)

P (-0.3% < t < 0.80)

P = P(t < 0.80) - P(t < -0.3h4)

% ‘ = P(t+ < 0.80) - (1-P(t < 0.3L)
%

/ = 0.7881 - [1-0.6331]

0340 0.8 0.7881 - 0.3669 = 0.4212 .

-
]

Figure b.h-iv Hence K) = (0.4212)(1000) = 421 students.
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Example 4.3 For the normal random variable h

given in example 4.2, determine the
student's height H such that:

(1) P(h < H,) = 0.6554 (Figure 4.5-i) ;

1
(ii) P (h > Hy)

0.25 (Figure h.5=ii) ,

H3)

(iv) P(H4_i h < H5) = 0.95,

(iii) P (n

| A

0.20 (Figure L.5-iii);

where Hh = uh-K and H5 = uh+K. (Figure k4 5-iv).
Solution: Again in this example, we
are going to use the standard normal

CDF table given in Appendix II-B.

(1) P(h < H)) = P(t < t;) = 0.655 .
T N(ﬁ) From the above mentioned table, we
0. 6554 _ get tl = 0.4, that corresponds to
probability P = 0.6554. But we know
Ho-u
/// that t = 1l h |
/ N - oy

"

0 £1 From example L4-2 we have W, = 66 inches

Figure U.5-i and o

inches. Hence,

=5
Py -66
t =

1 5= 0.h4

from which we get
H) - 66 = 5(0.4) = 2,

i.e.
H, = 66 + 2 = 68 inches,

1
which is identical to the first case
in example L.2; however,what we are

doing here is nothing else but the

inverse solution.
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(ﬁ)ﬂhi%)=ﬂtit)=oea

2
But:
P(t >t )= 1-P (t < t
TLN(k) and we get

P(t <t

2) = 0.25,

2) =1 - 0.25 = 0.75.

By interpolation in the above mentioned

0.25

Ite

table we get t 0.675 which

2
L . corresponds to P = 0.75. Hence,

0 %, t Ho-u,  H,-66 |
t . = = = 0.675.

Figure L.5-ii

66 + 5 (0.675)

e

]

=}
i}

66 + 3.375 = 69.375 inches .

(iii) P(h < Hg) = P(t < t;) = 0.20.

3

By examining the above mentioned table
we discover that the smallest probabil-

ity reading is 0.50, since it considers

NG

only the positive values of t. Therefore
we have to write:

P(t <t,) =1 =Pt <=t,) = 0.20,

3

and we get

3

v

t, O t P(t <=t5) =1 - 0.20 = 0.80.

By interpolation in the above mentioned
Figure 4.5-iii

table we get: (-t3) = 0.842, which

~ corresponds to P = 0.80. Then we have:

H3—66

37 75
66-5(0.842)

t = ~0.8L42

1]

and, H3

66-4.210 = 61.79 inches.

[t}
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(iv) P(H, <h < H

5
H) -u H -y
- 4 "h 5 h
FN(Y) SRS v
095 =P(_—K‘_<__tf_ .I_{__)
h %n
///// | = P(-t <t <t ) =0.95,
_t o ": + where t =-K—=-I-{-.
0 2 0 @] Gh 5

Figure L4.5-iv

The above statement means that:
P(t < to) - P(t _<_—to) = 0.95.
However, from the symmetry of the
normal PDF we get:

_ _ 1. -0.95 _
P(t > to) = P(t <-t,) = 5 = 0.025

and we get:

P(t < to) - 0.95 + 0.025 = 0.975,

or P(t _<_to) = 1. - 0.025 = 0.975.
From the above mentioned table we get:
t, = 1.96, which corresponds to

P = 0.975, and we have:

t =-I§-=

- 1.96 3

i.e. K = 5(1.96) = 9.80. Consequently:

H) = uh—K = 66~9.80 = 56.2 inches
and
H5 = +K = 66 + 9.80 = 75.8 inches.
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Example L.k: Let us solve example 4.1 again by
using the standard normal CDF tables.
Recall that it was required to compute
P(-—oe < e <o), where € has a

Gaussian PDF (i.e. its u_ = 0). We

can write:

-0_-u o _~u
Pl-c_ < e <o ) =p(——=Ect <« =-F
e — =g o, = = ©
£
> = P(—O°“o.i t <’e” 0))
t g o
€ €
Figure 4.6 =P(-1 <t <1), see Figure 4.6,

Further we can write:
P(-1 <t <1)=2P(0<t<1).
From the table given in Appendix II-C,
we get:
P(0 <t < 1) = 0.3413.
Hence,

2(0.3413)

I A
™
A
Q
~
]

0.6826 = 0.683,
which is the same result as obtained

in example L.1.
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4.7 Basic Hypothesis (Postulate) of the Theory of Errors,

Testing

We have left the random sample of observations L behind in
section 4.2 while we developed the analytic formulae for the PDF’s
mostly used in the error theory. Let us get back to it and state the
following basic postulate of the error-theory. A finite sequence of
observations L representing the same physical quantity is declared a
random sample with parent random variable distributed according to the

normal PDF N(ug, o] 2). Other PDF's are used rather seldom. The

R,.,
validity of this hypothesis may or may not be tested, on which topic
we shall not elaborate here.

The mean M, of the sample L is said to approximate (the word

estimate is often used in this context) the mean u, of the parent PDF,

L
i.e. N(“z’ 9,3 2). Also, the variance SE of the sample L is said to
estimate the variance ci of the parent PDF.

Considering the original sample

L= ()= (e), 1=1,2, .., n,
i
n

1 1 '
L, == e, =8 +M . (L-20)
n = 1 €

i=1 1
Since the random errors e's are postulated to have a parent Gaussian
PDF  N(O, O e),which implies that He = 0, then we should expect that

M_ > 0 and we can write equation (L4-20) as:

M. = t= uz . (24"'"21)



107

keeping in mind that by the unknown value £'we mean the unknown mean

Mo of the parent PDF of &. We say that the mean ML of the sample L

approximates (estimates) the value of the mean Hy of the parent PDF of 2.

Similarly, we get

82 =

i 2
L n i

e n)] f s 2 =" (k22

il 1 € €

e 3
I B

> 1
g ()" =0

The above result indicates that the variance Si of the sample L is

identical to the variance Si of its corresponding sample of random errors

€. This is actually why Si is sometimes called the mean square error of

the sample, and is abbreviated by MSE. Also, Sy is known as the root

mean scuare error of the sample, and is abbreviated by RMS. According

to the basic hypothesis of the error-theory we can write equation (L-22)

as:
2 2 . 2
= S = = -
s, . o o (L-23)
which states that Si estimates the variance . of the parent PDF of
€ = (elg €5 +ovs en).
Txample L.5 Assume that the sample L = (2, 7, 6, 4,

2, 7, 4, 8, 6, L4) is postulated to be
normally distributed. Let us transform

this sample in such a way that the transformed
sample will have:

(i) Gaussian distribution ;

(ii) Standard normal distribution.
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Solution: First we compute the mean ML

and the variance Si of the given sample

as follows:

10

-—.—.J; — ce— -
Mot T0iE M T 10 (50) =3,
10
2 _ 17 2 __1 -
SL = 15 :&; (4;-5) =15 (b0) = k.

According to the basic postulate of the

error-theory we can say that:

Ho = ML = 5 and 02= OE = SL = 2,

where ug and 02 are respectively the

mean and the standard deviation of the

parent normal PDF N(ug, 0,3 &) assumed

I
for the given sample. The parameters
My and 9 will be used for the required
transformetions as follows:
(i) The Gaussian distribution G(oe; £),
- where O, = 0g = 2, has an argument ¢
obtained from equation (4-10) as:
eomlomu = -F, =1, 2, ..., 10.
Hence fhe transformed sample that has a
Gaussian PDF is:

g€ = (ei), i=1,2, ..., 10 i.e.:

€ = ("‘3, 2, 1, -1, -3, 2, -1, 3, 1, "'l)-
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(ii) The standard normal distribution
N(t), has an argument t obtained from

equation (4-13) as:

L,-u %.-5
t = i 74 _ i

. -
i o2 2

Hence, the transformed sample that has

- a standard normal PDF is T (tg,

i=1,2, ..., 10 , i.e.:

=]
n

(‘1'5: ls 0'55 _O°5> _1‘53 l: ’O'S:

1*55 0'59 '0'5)0

L.8 Residuals, Corrections and Discrepencies

As we have seen, we are not able to compute the unknown
value L'or My A11 we can get is an estimate & for it from the

following equation
E:ML=2'+M = 0"+ g, %) (4-2L)

and hope that E, in accordinace with the basic postulate of the error-

theory, will really go to zero.

The residual ri is defined as the difference between the

observation £i and the sample mean %, i.e.

* From now on, we shall use the symbol % for the mean of the sample
L. The "bar" above the symbol will indicate the sample mean to make

the notation simpler.
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r, =4, - ; = (ot+ si) - '+ e) =€, - €. (4.25)

Residuals with inverted signs are usually called corrections. It should be noted
that a residual, as defined above, is a uniquely determined value and not
a variaple. The observed value li is fixed and so is the mean ; for the
particular sample. In other words, for a given sample, the residuals can
be computed in one way only. Note that the differences (2i - E) = r, are
called residuals and not errors, because errors are defined as Ei = (%i— uz)
and B, may be different from ;.
In practice, one often hears talks about "minimized residuals",
"variable residuals" etc. which are not strictly correct. If one wants
to regard the "residuals as variables'" the problem has to be stated differ-

ently. The difference vy between the observed value Zi and any arbitrarily

assumed (or computed) value 2°, i.e.

v.=2.—2°,i=l,2,...,nl (L.26)

should be called discrepency, or misclosure, to distinguish it from the
residual. These discrepencies are obviously linear functions of ontheir
values vary with the choice of 4°. Hence one can talk about "minimization
of discrepencies", "variation of discrepencies" etc. Evidently, residuals
and discrepencies are very often mixed up in practice.

At this point it is worthwhile to mention yet another pair of

formulae for computing the sample mean £ and the sample variance 82. Such
L
simplified formulae facilitate the computations especially for large samples
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whose elements have large numerical values. The development of these
formulae is done analogically to the formulation of equations (4.20),
(4.22), (4.25) and (4.26). Here we state only the results, and the

elaboration is left to the studeqt.

g i (k.27)
L=32°+v,
and
n
si=l- $or.°, . (4.28)
n .- i?
i=1
where: 2° is an arbitrarily chosen value, usually close to E,
n
v=i oz v, , (4.29)
n ., i
i=1 :
v,= &, - 2°
i i
and - -
r. =4 - L=V, -V, (4.30)

Example 4.6: The second column of the following table is a sample of 10
observations of the same distance. It is required to compute
the sample mean and variance using the simplified formulae
given in this section.

We take 2° = 972.0 m,
10

- S =1 =
v=ig I vi=735 (10.50) = 1.05 m,
i=1
X =2°+v=972.0 + 1.05 = 973.05 m,
10
_ 1 2 _ 1 - 2
MSE = si =35 I T =I5 (0 .5730) = 0.0573. m
i=1
and RMS = SL = 0.24 m.
, n
One¢ of the checks on the computations is that r r, =0,

see the fourth colimn of thegiven table.
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: P T P — 5 *
No. s g,i u SR :‘ rvi____. R:i - R,O I'i = S?,i - ! ri2 . lo)-l
(m) ) (m) = vi - ; g (m2)
1 | 972.89 0.89 -0.16 1 256
2 973.46 1.46 0.h41 1681
3 973.0h4 1.04 - =0.01 1
L 972.73 0.73 -0.32 1024
5 972.63 0.63 -0.42 1764
6 973.01 1.01 -0.04 16
T 973.22 1.22 0.17 289
18 973.10 1.10 0.05 g 25
9 973.30 : 1.30 0.25 625
10 973.12 1.12 . 0.07 Lo
T e 10.50 -0.95 5730
+0.95
= 0.00 r
- k

4.9 Other Possibilities Regarding the Postulated PDF

The normal PDF (or its relatives) are by no means the only bell-
shaped PDF's that can be postulated. Under different assumptions, one can
derive‘a whole multitude of bell-shaped curves. Generally, they would
contaia more than two parameters which is an advantage from the point of
view of fitting them to any experimental PDF. In other words the additional

parameters provide more flexibility. On the other hand, the computations
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with such PDF's are more troublesome. In this context let us just mention
that some 1ecent attempts have been madé to design a family of PDF's that
are more peaked than the n&rmal PDF in the middle. Such PDF's are called
"Leptokurtic". This more pronounced peakedness is a feature that quite
a few scholars claim to have spotted in the majority of observational
samples. We shall have to wait for any definite word in this dpmain for
some time.

Hence, the normal is still the most populur PDF and likely to remain
so because it is relatively simple and contains the least possible number

of parameters - the mean and the standard deviation.

4.10 Other Measures of Dispersion

So far, we have dealt with two measures of dispersion of a sample

namely: The root mean square error (RMS) mentioned in section 4.7, and
the range (Ra) mentioned in section 3.1.5. Besides the RMS and the range
of a sample the following measures of dispersion (spread) are often used.

The average or mean error R of the sample L is defined as

_z|=i-
i=1 i

[ e B =

lr.| (4.31)
. i
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which is the mean of the absolute values of the residuals.

The most probable error P> of the sample L, is defined as the

error for which:

P(lrl < Pe) = P(Irl > pe) = 0.50 (4.31)
' _ . |
which means that there is 50% probability that the residual is smaller and

50% probability that the residual is larger than Pe*

The most probable error of a random sample can be computed by constructing

the CDF of the corresponding absclute values of the sample residuals, and

take the value of r which corresponds to the CDF = 0.5 as the value ofvpe .
Both a, and.pe can be defined for the continuous distributions as

well. For instance, by considering the normal PDF, N(ux,cx; x),we can

write: v
a, = —fm |x| ¢ (x) ax
w® (x-p_)2
=--—-—-—:L-——~—-»—- I lxl exp (-~ }2c ) dax . (4.33)
cx/( o ) —o 20

Similarly for Pgo by taking the symmetry of the normal curve into account,

we can write:

Plx cu, -p) =¥ -p) =
1 (ux—pe) ( (x—ux)z) (b 3k}
= J‘ exp - S———e dx = 0-25 -3
0x7Z2“) e » 2cx2
and
P(x < u + ) = ¥ (u +p)=0.75 | (4.35)

where WN is the normal CDF.
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Tt can be shown for the normal FPDF N(Mx, GX;X) that "OX"a "&e" and "Pe"

are related to each other by the following approximate relation:

o = 1.25 ae

x 1.5 Pea

or (L.36)
1.0 ¢ 0.80 ¢ 0.67.

c_ s a_ i
X e Pe

The relative or proportional error re, of the sample L, is defined

as the ratio between the sample RMS and the sample mean, i.e.

r = SL / L. (4.37)
In practice, the relative error isusually used to describe the uncertainty
of the result, i.e. the sample mean. In that case, the relative error is
defined as:

T, = s? / zA;l (4.38)

where S_ is the standard deviation of the mean % and will be derived later
L
in Chapter 6.. In this respect, one often hears expressions like "propor-

tional accuracy 3 ppm (parts per million)", which simply means that the
relative error is 3/106 = 3 10—6. It should be noted that unlike the

other measures of dispersion, the relative error is unitless.

The idea of the confidence intervals is based on the assumption

of normality of the sample, i.e. the postulated parent normal PDF

(N (2, S .38)) for the random sample L. It is very common to represent the

L
sample L by its mean % and its standard deviation SL as
5 [+ %5]
or _ _
[2 -8 <22+ 5.1, (h.39)

and refer to it as the "68% confidence interval" of 2. This is based on

the fact that the probability P(UR— o, <& <u + oz) is approximately 0.68 for

L L
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the normal PDF (see section 4.5).

Similarly, one can talk about the "95% confidence interval",
the "99% confidence interval", etc. In géneral, the confidence interval
of ¢ is expressed as:

[T +K 8. ] (k.4o)

where K is determined in such a way as to make

P(u, - Ko, < & < u +Ko )equal to 0.95, 0.99, etc.

The values (2 - KSL) and (2 + KSL) are called the lower and the

upper confidence limits.

Example L.7: Let us compute the average errorythe relative error and the
95% confidence interval for the sample of observations L
given in example L4.6.

The average error is computed using equation (4.31) and the
fourth column of the given table in example L.6 as:
10 :
1
a, = %6- z Iri] =35 (1.90) = 0.19 u .
i=1
The relative error of the sample is computed from eguation

(4.37) and the results obtained in eiample 4.6 as:

- - 0.24 .
r, =8 /%= 77305 © 247 ppm

The 95% confidence interval of & is

[T-Ks <e<t+Ks].

L - L
where the number K is computed so that

P(uz - Ko, <2< u¢+ Koz) = 0.95 .

2
This is identical to the probability P(-K < t < K) obtained
from the standard normal tables (see example 4.3, the last

case). Hence we can write:
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from which we get
P(t < K) = 0.975.
Using the table for the standard normal variable of Appendix
IT - B we get: |
K=1.96,
(In practice K = 2 is usually used for the 95% confidence
interval.) The 95% confidence interval of A then becomes
[973.05 - 1.96 (0.24) < 2 < 973.05 + 1.96(0.24)],

that is:

[972.58

1A

% < 973.52] m
or

[973.05 + 0.47] m.

Example 1.8: Given a random variable x assumed to have a normal distri-
bution N (35, 4; X), compute the most probable error.
From the assumed PDF we have:
AN®) W, =35 and o = L,
05
The most probable error pe is computed so that
%\ P(Ux-pef}(fux+pe)=
=P(-t_ <t <t_)=0.50, (Figure L4.Ta)
. b - - P
Figure L.7a
P P
where t = L == .
p o N
X

The above probability statement can be rewritten as (equation

(4.35)):
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Plx s u, + ) =Pt <t ) =0.75 (Figure 4.7p).
N (L) From the table in Appendix II - B, we obtain tp = 0.675
0.75 corresponding to P = 0.75. Hence,
7. %\, b, =kt =k (0.675) = 2.7 .
0 tP t
Figure k4.7b Note that in the second case of example 4.3, the value 3.375

is nothing else but the most probable error of the given random

variable h.

4.11 Exercise 4

1. Prove that the Gaussian PDF given by equation (4.4), has two points of

inflection at abscissas + vc/2.

2. TFor the Gaussian PDF given by equation (L.8), determine approximately
the probabilities: P(-20_ < e <20 ) and P(-30_ < e < 30)

by integrating the PDF, then check your results by using the standard

normal tables.

3. Prove by direct evaluation that the standard normal PDF has a standard

deviation equals to one.

4. Show that the standard deviation 0, average error ag and the most pro-
bable error P, of the normal PDF satisfy the following approximate

relations:

o fa, P, = 1.0 ¢ 0.80 2 0.67.
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Determine: the average error, the most probable error, the relative
error and the 90% confidence interval of the random sample given in

the second problem of exercise 3, section 3.k.

Assume that the sample H = (-5, =L, -3, -2, -1, 0, 1, 2, 3, 4, 5) is
hypothesized (postulated) to have a Gaussian distribution. Transform
this sample so that the transformed (new) sample will have:

(i) Normal distribution with mean equal 10.

(ii) Standard normal distribution.

Given a random variable x distributed as N (25, 10; x), determine the
following probabilities:

(1) P(x = 28.5) 4 (i1) P(x < 22.5),

(iii) Plx > 27.5), (iv) P(16.75 < x < 23.82),

(v) P (]x-25| < 1.25).

For the random variable in the previous problem, determine the values

Zi such that

(1) P(x < z)) = 0.65, (i1) P(x > 2z,

(ii) P(x < Z,) = 0.33 , (iv) P(]x-25] < Z),) = 0.33,

) = 0.025 ,

(v) P(]x-25] > z.) = 0.50.

5
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The above figure shows a surveying technique to determine the height h

of a tower CD, which cannot be measured directly. The observed quantities
are:

2 = the horizontal distance AB ,

a »B8 = the horizontal angles at A and B,

8 = the vertical angle of D at B .

The field results of these observations are given in the following table:
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Field Observations
A(m) o B 6

145.63 | 65° 32' 03" 37° 13' 08" 42° 53 15"
.55 32 Ob k 13 11 52 30
.59 3159 13 10 53 00
.65 32 01 13 13 51 00
.58 31 58 13 06 | 52 15

13 12 52 k5

51 1>

53 00

5L L5

52 15

’

Average temperature during the observations time was T = 20° F.

The following information was given to the observer:

(1, The micrometer of the vertical circle of the used theodolite was not
adjusted to read 00' 00" when‘the corresponding bubble axis is
horizontal; it reads - (00' 30").

(ii) The nominal length of the used tape is 20 m at the calibration temper-
ature T, = 60° F, and the coefficient of expansion of the tape material

0
is y=5. 107 / 1°F .
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Required

(i) Compute the estimated values for the quantities %, a, B and 6,

(ii) For each of the above observed quantities compute its standard de-
viation and its average error.

(iii) Compare the precision of these observed quantities (by comparing
the respective relative errors).

(iv) Assume that each of these observed quantities has a postulated normal
parent PDF, construct the 95% confidence interval for each quantity.

(v) Compute.the estimated value of the tower's height h to the nearest

centimeter.
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5. LEAST-SQUARES PRINCIPLE

5.1 The Sample Mean as

"The Least Squares Estimator"

One may now ask oneself a hypothetical question: given the
sample L = (Qi), i=1,2, .., n, what is the value 2° that makes the
summation of the squares of the discrepancies

v, =2, -2°,1i=1,2, ..., n, (5-1)

the smallest (i.e. minimum)?
The above question may be stated more precisely as follows:

Defining a "new variance" S%° ag

8*2

n
(2,-22)% =1 3+, (5-2)
1 1 1=

S
1l MmB

= L
. n
i
£ind the value 2° that is going to give us the smallest (minimum)
2
value of S¥7.
Obviously, such a question can be answered mathematically.

From equation (5-2), we notice that 8*2 is a function of 20,‘which is

the only free variable here and can be written as

s%2 = g#2(g0) | (5-3)

We know that:

P
*

min [8%°(2°)] implies that BSO =0 .

29¢R 98

Hence, by differentiating equation (5-2) with respect to 2° and equask -

- ting it to zero, we get:
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35 1 3 . B 0.2
6o n..o [iél (9'1—2 )]
3L 3% .
n
=1 3 [ (0.-29)7]
n 1_.1 8240 1
n n
_ 1 —0%y(_ - =2 40y =
=5,k [0 =0 g (-0 =0,
that is:
n (@]
r (2,-27) =0 .
i:l 1

The above equation can be rewritten as:
n no o
pX L,= I & =nk ,

which yields

(5-4)

M
o
ut
=l

The result (5-4) is nothing else but the "sample mean" % again. In
other words, the mean of the sample is the value that minimizes the
sum of the squares of the discrepancies making them equal to the

residuals, (see section 4.8).

This ic the reason why the mean ¥ is sometimes called the
least-squares estimation (estimator) of f, i.e. of LY the name being

derived from the process of minimization of the squares of the discre-

vancies. We also notice that ¢ minimizes the variance of the sample if

we want to regard the variance as a function of the mean.

Note that the above property of the mean is completely indep-

endent of the PDF of the sample. This means that the sample mean % is

always ''the minimum variance estimator of " whatever the PDF may be.
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5.2 The Sample Mean as

"The Maximum Probability Estimator"

Let us take our sample L again, and let us postulate an underlying
parent PDF to be normal (see section 4.5) with a mean My = 2° and a

. 2
variance 02 given by:

w2, (5.5)

1 1

_ o) = L
(2. 2°) ==

Ho~mp

i

We say that the normal PDF, N(ux, o 3 2) = N(2°, S*; %) is the most

Q';
probable underlying PDF for our sample L (L = (Qi), i=1,2, ... n)

if the combined probability of simultaneous occurrence of n elements,

that Mavethe normal distribution N(2°, S¥; %), at the same places as L is

maximum. In other words, we ask that:

P(e; < &<y +88,),1i=1,2.1n]-=

n
= T N(R°, S*; 2.) . 84, (5.6)
. i i
i=1
be maximum with respect to the existing free parameters. By examining equation
(5.6), we find that the only free parameter is 2° (note that S¥ is a function
of 2°), and hence we can write the above combined probability as a function

of 2° as follows:

i = . e ey = (&°
PI(g, <8 <2 +68,),1=1,2, n] = (2°) (5.7)

Note that 8%'s are some values depending on L and therefore are determined

uniquely by L.
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We shall show that the value of ° satisfying the above condition
is (for the postulated normal PDF) again the value rendering the smallest

value of S¥*¥. We can write:

n
max [A(2°)] = max [ I  W(°, S%: zi) szi]

2°%€eR 2°eR  i=1
n n (2, -1°)%
- 1 i
= max. [ II e e I exp (- 5 ) 88, ]
2°eR  i=1  s*/(2n) i=1 o5¥*
1 n O (2,-2°)° 1
= max [(m) g exp ( - . (5.8)
i=1 28%
% €R
n
Here @I 4§82, is determined by L, and hence does not lend itself to maximiza-
i=1
tion. It thus can be regarded as a constant, i.e.
1 n (Qi‘mo)g
mex ((a0)) mmax (o)t 1 e (=) 1. (5.9)
* i= * :
49cR 49cR s*y/(2m) i=1 2s

Let us denote the second term in the RHS of equation (5.9) by Q, which can

be expressed as:

n (zi-x°)2
Q= I, exp (—xi), where x, = 5 ) (5.10)
28%
This implies that:
n n
tn Q= (0 exp (-x,)) = £ gn (exp(-x,)) ,
. i . i
i=1 i=1
or
n
Q= exp (I (-x,)). (5.11)

1=
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From equations (5-9), (5-10) and (5-11) we get:

n (Qi'zo)2 1 B 0,2
I exp (- —————5—-0 = exp [~ = T (21—2 )71 . (5-12)
i=1 28% 25%T i=1
The condition (5-9) can be then rewritten as:
n n
1 1 2
max [A(2°)] = max [(——:7-——) exp (- 5 I (21—20) )1.(5-13)
* %S 5
2R 2 eR  S*/(om) 28%T i=1
From equation (5-5), we have:
n
5 (2.-2°)% = ng¥®,
. 1
i=1

Hence by substituting this value into equation (5-13) we get:

n
[A(2°)] = max[ (—2—) exp(- 2)]. (5-14)
z%§§ 2%:% s*/(2r) P2

Since the only quantity in equation (5-1L4) that depends on 2° is S¥, we

can write:

max [A(29)] =max [(—=£) ] = max [(5%) 7]
2%e R L°eR S* %R
= min [(s*)" 1. (5-15)

2°¢R
Because S¥ is a non-negative (quadratic) function of 20, the minimum of
(s*)™ will be attained for the same argument as the minimum of S* (see

Figure 5-1.

c*1°)"
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Finally, our original condition (equation (5-9) can be restated as:

mgx [A(2°)] = min [5%(+%)] = mgn [s%°(2%)] (5-16)
L eR £ eR 2 eR

which implies that

as* _ as*% _
- - s
32°  22°
that is:
5 0 2
—— 75 v°=0. (5-17)
ap° i=1 *

Obviously, the condition (5-17) is the same condition as that of the
"minimum variance" discussed in the previous section, and again we have
20 =7 . |
We have thus shown that under the postulate for the underlying

PDF, the mean % of the sample L is the maximum probability estimator for

. As a matter of fact, we would find that the requirement of maximum

probability leads to the condition

—==0 (5.18)

for quite a large family of PDF's, in particular the symmetrical PDF's.

If one assumes the additional properties of the random sample as
mentioned in 3.2.L4. then additional features of the sample mean can

be shown. This again is considered beyond the scope of this course.

5.3 Least-Squares Principle

We have shown that the sample mean renders always the minimum sum
of squares of discre)ancies and that this property is required, for a larse

family of postulated PDF's, to yield the maximum probability for the underlying
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PDF. Hence the sample mean %, which automatically satisfies the condition
of the least sum of squares of discrepancies, is at the same time the
most probable value of the mean uz of the underlying PDF under the con-
dition that the underlying PDF is symmetrical. This is the necessary
and sufficient condition for the sample mean to be both the least squares
and the maximum probability estimator, i.e. for both estimators to be
equivalent.

The whole development we have gone through does not say any-
thing about the most probable value of the standard deviation c2 of the
underlying PDF¥*). 9 has to be postulated according to equation (4.23).

The idea of minimizing the sum of squares of the discrepancies

is known as the least-squares principle,and has got a fundamental

importance in the adjustment calculus. We shall show later how the
same principle is used for all kinds of estimates (not only the mean of
a sample) and how it is developed into the least-squares method. However,
the basic limitations of the least-squares principle should be born in
mind, namely

(i) A normal PDF (or some other symmetrical PDF) is postulated.

(ii) The least-squares principle does not tell anything about the

best estimator of 9y with respect to the mean Mo of the

postulated PDF.

*) Some properties of the standard deviation S can be revealed if the
additional properties of the random sample are assumed (see 3.2.4).
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5.4 Least—-Sqgaures Principle for Random Multivariate

So far, we have shown that the least-squares principle spells
out the equivalence between the sample mean % and the estimate for the
parent population mean My determiﬁed from the condition that the sum of
discrepancies be minimum. We have also shown that ? is the most probable
estimate for My providing the parent population is postulated to have
normal or any other symmetrical PDF. We shall show now that the same
principle is valid even for random multisample if we postulate the under-

lying PDF to be statistically independent (see Section 3.3.2).

J

Denoting the multisample by L and its components by L°, j = 1,

2, ..., s, and remembering that each 1) is a sample on its own, we can

write:
> 2 b
L= (Y, 12, ..., 1
. . . . (5-19)
. s
L:J = (xi, 2;, . Qi‘) eR
J
Assuming a particular value LO for the multisample L, where
1 2 s s
LO = (20, 20, ey 20) eR (5-20)

is a numerical vector (sequence of real numbers), the associated dis-

crepancies V, which can be regarded as a multisample as well, are:

- ~ 2
V= @) = v, Ve, o, v (5-21)
Here, each VJ, j=1, 2, ..., s is a sample of discrepancies on its own,
i.e.
vz (v, v, ..., v? ) erR®. (5-22)
1 2 n.

J
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Making use of formula (3—52), we can write analogically to (5.2)

.

n
Jogd - g2 . Jye
1_, (2 - 20)" = EL(V)7]. (5-23)

g2 - L
J

a)

J
The minimization of the variances, i.e. minimization of each E[(VJ)Q},

is equivalent to the minimization of each S§2,.or as we usually write:

(min [E(Vj)g], j=1,2, .., s) = min_ [trace 2‘]92 (5-2k)
S s L
L eR L eR
o o
ey
where 2; is the variance-covariance matrix of the multisample L (see

section 3.3.6). By carrying out this operation,similar to section 5.1,

we will find that the vector

eR (5-25)

satisfies the condition (5-24). On the other hand, the result (5-25)
is nothing else but the mean L of the multisample, i.e.:
s

LO = f, eR . (5"26)

Postulating a normal PDF, N(zg, S?; 2J), for each component LY
W .
of the multisample L, the multivariate PDF of the parent population can

be written as:

xS, J
L) = T N(LY, S¥; 2
$(2) j=l(0 : )
J o3
s (2°-2°)
= I S exp [- -———251——], (5-27)
Jj=1 sg/(zn) 2S§

where 29 is the random variable having mean li and standard deviation S?.

Following a similar procedure as in section 5.2, we end up again with

with the discovery that the vector

L,z L= (7, 22, ..., 1°) RS (5-28)

¥) Trace of a matrix is the sum of its diagonal elements.
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maximizes the probability that the members of the parent population will

Y
occur at the same places as the members of the multisample L.

Hence LeR® is, under the above conditions,*)the
L
maximum probable estimator for the mean p of the postulated parent

multivariate PDF¥, where

o~ s

v = (Ula U2s ceey US) eR™ . (5‘29)

5.5 Exercise 5

1. Prove that the mean p of a continuous PDF, ¢(x), defined as:

o]

u= S x ¢ (x)ax

- CO

minimizes the PDF variance 02, defined as:

o2 = 1P(x-1)? 9(x) ax.

e

*
2. Prove that §§3
EA o

rectangular (uniform) PDF, R(2 , S%; %), to be the most probable

0, is the necessary and sufficient condition for the

underlying PDF for a sample L with mean % and variance 82. Note
that the analytic expression for the uniform PDF is given in example

3.17, section 3.2.5.

3. Prove that the same helds for the triangular -
PDF, T(L°, 5%, 2),using its analytic expression given in example

3.18, section 3.2.5.

%) It can be shown that I is the maximum probability estimator of u even . when

we postulate a statistically dependent multi dimensional PDF from a certain
family of PDF's.
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6. FUNDAMENTALS OF ADJUSTMENT CALCULUS

6.1 Primary and Derived Random Samples

So far, we have been dealing with random samples (multisamples)
that had been obtained through some measurement or through any other data

collecting process. These samples may all be regarded as primary or original

random samples (multisamples).

In practice, we are often interested in other samples that would
be derived from the primary samples by means of a computation of some kind.
Such samples may be called derived random samples (multisamples).

From the philosophical point of view, there is not much difference
between these two, since even the "primary'" samples may be regarded as
derived from the samples of physical influences or physical happenings.
However, it is necessary to distinguish between them to be able to speak

about the transition from one to the other.

6.2 Statistical Transformation, Mathematical Model

The transition from a primary to a derived sample (multisample)
along with the associated variances and eovariancesmay be called statistical

transformation. We have already met two examples of such transformation

although applied to random variable rather than sample (see sections 4.5 and
4.,6), namely the transformation of the Gaussian PDF to the normal and to
the standard normal PDF's, respectively.
Such statistical transformation may not always be as simple as
in the above two cases. As a matter of fact, it may not be even possible

to derive the sample at all from the primary sample which is usually
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the case with multisamplies. In other words, it might'not be possible to
express the derived sample explicitly in terms of the primary sample.
Let us consider a primary multisample L = (L7), i = 1, 2y. .« s,

that has s constituents. Each constituent L' = (& Y, k= 1, 2, . . 0,

k i

is a random sample on its own and represents a distinct physical quantity

Qi (i.e. the observations le, k=1, 2, . . .40, are all representing the
same physical quantity %i). Now, we may be interested in deriving a multi-

sample X having n constituents, ie.

X = (Xj) » J=1, 2,. . . ,n,
from the original multisample L; noting again that each constituent Xj
represents a distinct physical quantity Xj, J=1,2, . . 4n. The formulae
(relationships) relating the physical quantities £ and
X, Where

L = (J?,l, 22, o s e ’QS)’

and (6.1)%
x = (xl, X5y oo "Xn)
are called the mathematical model for the statistical transformation; and

is usually expressed as:

F(,x)=0 - (6.2)

where F denotes the vector of functions fi, i=1,2, .. . , r(having r
components)that can be established between 2 and x.

To be able to derive x from £, the mathematical model (6.2) should
be formulated as:

x=TF (2), (6.3)

¥ Note that 2 and x are nothing else but the multivariates corresponding
to the multisamples L and X respectively.
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which gives x as explicit function of &.

Example 6.1: After having measured the two perpendicular edges a and b

of a rectangular desk (see Figure 6.1), suppose that we
are interested in learing something about the length of
the diagonal d, and about the surface area « of this disk.

In this case, the mathematical model will be written as:

x = F(2), where

X = (xl, x2) = (d, ), and

L = <5Ll, {12) = (a, b) .

To derive the components of x from 2 we write:

d=7 (a, b) = V(a° +1b°) , and

1

o3

f2 (a, ) =ab . .

In vector notation, we can write:
x d /(a2 + b2)

o ab

The possibility .of carrying out the statistical transformation depends

basically on three factors:

(1)

(i)

(ii1)

complexity of the mathematical model, i.e., the possibility of expressing
x explicitly in terms of i (x 5 F(2));

"completeness" of the primary multisample L, i.e. whether all its con-
stituents have the same number of elements in order to deduce the variance-
covariance matrix ZL;

our willingness to match the individual s~tuples of elements from the

primary multisample L with the n-tuples of elements from the derived

multisample X, which creates much of a problem.
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Particularly the last two factors are so troublesome that we
usually do not even try to carry out the transformation and put up with
some statistical estimates, i.e. representative values %(X) and I, for
the derived multisample instead. To do so, we first evaluate E(L) and

ZL for the primary multisample L, from which we then compute the statistical

estimates E(X) and ZX for X.

According to the basic postulate of the error theory and to make
the subsequent development easier, we generally postulate at this stage the

PDF of the parent multivariate to the multisample L and assume

B(X) = E*(x), and L. = ot (6.1)

E(L) = E¥(2), L. = o* X

L L

in very much the same way as we postulated

%= u, and SL =0,
for the univariate case as discussed in sectioﬁ L.7. This postulate allows
us to work with continuous variables in the mathematical model and write it
as:
F(L, X) =0 (6.5)
‘understanding tacitly that each value X has its counterpart L.
From now on, we shall write L for'ﬁ(L)jénd_i for the statistical

estimate of . X . Hence the mathematical model (6.5) becomes

F(E, X) =0, (6.6)
which consists of r functional relationships between L and i.
" From the point of view of the mathematical model F(i, i) = 0,
the statistical transformation can be either solvablé (if s > ﬁ) or unsolvable

(if s <n). If it is solvable then we may still have two distinctly different

cases:
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(i) either the model yields only one solution X (when r = s = n) by
using the usual mathematical tools, i.e., X is uniquely derived from
L;

(ii) or the mathematical model is overdetermined (when r, s > n) and cannot
be resolved for X at all by using the ordinary mathematical tools,
since an infinite number or different solutions for X can be found.

The first case we have met in example (6.l1) where the determina-
tion of X from I does not present any problem from the statistical point of

view. The only problem is to obtain ZX from L and ZL. This problem, known

as propagation of errors, will be the topic of the next section.

If the model is overdetermined, or as we often say, if there are

redundancies, (redundant or surplus observations) then the problem of trans-

forming (L, ZL) -> (%, ZX) constitutes the proper problem of adjustment.*)

6.3 Propagation of Errors

6.3.1 Propagation of Variance-Covariance Matrix, Covariance Law

The relationship between ZX and ZL for a mathematical model
F(L, X) =0

is known as the propagation of variance-covariance matrix. Such relationship

can be deduced explicitly only for explicit relations
X = F(L) .
To make things easier, let us deduce it first for one particular explicit

relation, namely the linear relation between X, and L, i.e.

X=BL +C

* It has to be mentioned here that in practice we are in both cases working
with £- and I», the variance-covariance matrices of I and X rather than
L_, L belonging to the samples L and X. The expressions for ZE, Zi are
derived in 6.4.4.
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where B is indeed an nby s matrix composed of known elements ¥ . Note
that X ig determined uniquely, as required. We want to establish the

transition

£, = E((L-F) (z-)F) » Ly ,vhere L = E(L). (6.8)

We can write:

~

= B((-E(0) (-5(0)T). (6.9)

Here X = BL, and according to the postulate introduced in section 6.2

we can write:

E(X) = ﬁ(B L+C) =BE (L) +C=BL + C.
Hence

1
o
=
o
=

]
s8]
(|

5. = E ((BL

=E (B(L - ©) (B(L - T))7)

=E (B(L - ©) (1 - ©)F BT)
=8 ((L - T) (L - 5)T) 8T = B(z,) BT,
5. =B I BL. (6.10)

X L

This formula (6.10) is known as the law of propagation of variance -

covariance matrix, or simply the covariance law.

¥) This matrix B, which determines the linear relationship between X and
L is sometimes called the "design matrix","the matrix of the coefficients"
of the constituents of L in the linearized model, or simply the "coef-

ficients matrix".
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Assume that the variance-covariance matrix of a given

multisample L = (21, 22, 2.) was found to be

3
3 2 0
ZL = 2 3 1
0 1 L.

If a multisample X = (xl, x2) is to be derived from L
according to the following relationships:

X = 21 - 3 23,

b 221 + L

2 27

determine the variance-covariance matrix I, of X.

X

It can be seen that the above relationships between the
components of X and L are linear, and our mathematical

model can be expressed as:

X= B L s

2,1 2,3 3,1
i.e.
X 1 0 -3 24
= 2:2
X5 2 1 0 £3 .
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The variance-covariance matrix ZX of X is given by equation

(6.10) i.e., in our case:

1 0 -3 3 2 0 rl 2
ZX = 2 3 1 0 1
2 1 0 0 1 4 -3 0
3 -1 -12 1 2 39 5
= 0 1 =
8 7 1 -3 0 5 23
39 5
i.e. L, =
X 5 23 | »

Now we shall show that the propagation of variance-covariance
matrix can be deduced even for a more general case, namely the non-linear
relation between X andli, i.e.

X =7 (L) (6.11)
when F is a function with at least the first order dérivative. Here we
have to adopt another approximation yet. We have to linearize the relation
(6.11) using, for instance, Taylor's series expansion around an approximate

‘value L° for L .

X = F(Lo) + QE-I o (L - LO) + higher order terms,
dL. 'L =L
where
s
ol (L-t)= 3 &= ORI
aL - o i=1 9%, '8, = &
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Taking the first two terms only, which is permissible when the values of

the elements an&Jare much smaller than the values of Zi’ we can write:

X = F(L°) + B(L - L°) (6.12)
where B is againannby s matrix but this time compcsed from all the partial
9%,
derivatives gzi #), Applying the expectation operator we obtain
J 1 oa, =25

Jo7d
realizing that E(F(L°)) = F(L°) and E(L°) = L° (because L° is a

selected vector of constant values)
E(X) 2 E (F(I°) + B(L - 1°))
= P(L°) + B(E(L) - L°). (6.13)

Subtracting (6.13) from (6.12) we get:

X - E (x) £ B(L - E(L)) = B(L - T) (6.14)
and we end up again with
. . .
Iy ® BL B, (6.15)
realizing that ZX~ﬁ(X) = ZX .
¥ Explicitly, if we have
] ( v
Xl Xl Ql, 22, coee s A
X, X, (Zl, Los v+ v e s QS)
X=1. =
X, X (zl, oo+ 0 o s zs)

- ‘them .the matrix B will take the form:

oM !

38, 32, Tt A

B=| ¥ % By

s a8, e, T T an
Lazl 3k, Y |-
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Hence the linear case may be regarded as one particular instance(special

case)of the more general explicit relation, yielding therefore the same

law for the propagation of variance-covariance matrix, i.e., the same

covariance law.

It should be noted that the physical units of the individual

elements of both matrices B and XL must be considered and selected in

such a way to give the required units of the matrix ZX .

Example 6.3:

Let us yake again the example 6.1 and form the Variance

covariance matrix ZX for the diagonal d and the area a of-
the desk in question. We have:
2
Sa Sab
L. =
L 2
Sab Sb

and the model is non-linear, although explicit, i.e.
X = F(L), or (d, o) = F(a, b).

We havevto linearize it as follows:

X = (a, a) = (a°, «°) + B [(a, b) - (a°, B°)],

where (a°, a°) = F(a°, ©°), and

a2
B = 2a 9b
da da
91 9b |}
Here
d 1 1 e 3 b 3o 3o
d_1_ 1 -8 24 b fa_ .0,
a " 2 202 3°% 4d° da 3
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and by applying the covariance law (equation (6.15)) we

- get:
2
S ]
_ d do| _ T
;X = , = B ZL B
Sud Sa
a/d  b/d s s a/d b
- B a ab
2
b a Sba Sb b/d a
-
1 2 .2 2.2 1 2 2 2 2 ]
2 (a S, + 2abS_ + b sb)) 3 (ab(sa +8.) + (e + b )) Sab)
1 2, 2 2 .2 2.2 2 2
3 (ab(s, +8.) + (a” +b%) 5.,), b8 + 2ab5_, + & 5. . ‘
Example 6.k: Let us assume that the primary multisample L = (a, b) which

we have dealt with in Examples 6.1 and 6.3 is given by:

L = {a, b} = {(128.1, 128.1, 128.2, 128.0, 128.1), (62.5,
62.7, 62.6, 62.6, 62.5)} , in centimetres.

Accordingly, the statistical estimate of the derived

quantities will be ‘

/L(3)? + (3)]

3 a b i

2> A

A -

-X=;
where a and b are the estimates (means) of the two ‘measured
sides of the desk. From the given data we get

a = 128.1 cm. and b = 62.58 cm.

Hence



1hh

R a 1(128.1)° + (62.58)2]
¥ = n =
(128.1) . (62.58)
142,57 em
18016.50 em” | ,

After computing the variance-covariance matrix ZL we get

0.00k 0
. o= cm
0 0.0056

2

which indicates that the constituents a and b are being taken
as statistically independent.

Evaluating the elements of the B matrix (as given in Example

6.3) we get:
& : 0.898  0.439
s. | @ @
I 62,58  128.1
b a

in which the elements of the first row are unitless, and
of the second row are in cm.

Finally I is computed as follows:

X

0.898  0.439 'o.ooh 0 0.898 62.58
62.58 128.1 0 0.0056 0.439 128.1

.0.0043. 0.5397 2 3
= . . cm cm
0.5397 107.562%]’ with units [;m3 h] )

cm
Furthermore
84 = /(0.0043) = 0.066 cm.
S = /(107.5627) = 10.37 cu” .

o
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6.3.2 Propagation of Errors, Uncorrelated Case

If X contains one component only, i.e. X, the matrix B in the formulae

(6.10) or (6.15) degenerates into & 1 by s matrix, i.e. into a row vector

B = [Bl, B2, . "Bs]’ and :
ZX = BZLB

becomes a quadratic form which has dimensions 1 by 1, Then

Ex= Py (6.16)

If, moreover, L is assumed uncorrelated, we have

R 2 2 2
L = diag (sg » Sg s v v v s sg), (6.17)
1 2 s
which is a diagonal matrix,and we can write

2 5 2 2 3F  _ d3x
S”= § B;S; B, == - (6.18)

bid . i .y i LN of .

i=1 i i i

This formula is known as the law of propagation of MSE's or simply the

law of propagation of errors. The law of propagation of errors is hence

nothing else, but a special case of the propagation of variance-covariance
matrix.

The law of propagation of errors'has many applications in
surveying practice as well as in many other experimental sciences.
Example 6.5: In figure 6.2, - we assume a plane.triangle in which

the angles o and B whose estimated values are:

L

32° 15' 20", with S

1"
Lt

B

75° 43' 32", with S 3", are observed .

B

ﬁ Also, assume that o and B are independent, i.e. S = 0.

aB
Let us estimate the third angle y ,along with its standard

error SY,as follows:

Figure 6.7
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that is: S = 5".

Example 6.6: Figure 6.3 shows a levelling line between two bench marks

A, C, with observed level differences hi of the individual
sections with length zi, i=1,2, .. <y S- Assume that

all the hi’s are uncorrelated and the MSE of hi is propor-

tional to ni’ i.e. Si =k zi, wherek is a constant.
i
Let us deduce the expression for the MSE of the overall level

difference AH between A and C where:

s
AH = HC - HA = ‘i h. .

1: The mathematical model in this case is

AH = hl + h2 + h3 + 0. .t hs .

A Hence:

2 BAH\2 42 3AH\2 2
Sy = (577 + ()

I
—
[
N
—
b
=
I_l
~
+
H
~
n
—_
o
=

which means that the MSE of AH equals to the constant of propor-
tionality k multiplied by the total (overall) length of the

levelling line A — C.
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Let us consider the example 6.3 and assume that the errors in
a, b are uncorrelated i.e. Sab = 0 as we did in Example 6.4. Then we can
treat d and o¢ separately (if we are interested in their individual MSE's

alone) and we get by applying the law of propagation of errors:

o 3d4\2 2 . ,3d2 .2 _ 1 , 22 . .22

53 = (5507 S5 + ()7 8y = 5z (878 + p78)
2 _ 80y2 2, (a2 2 _ .22 20

S a (Ba) Sa * (8b> Sb b Sa *a sb *

Note that the same results can be obtained from Example 6.3 immediately by

putting S 0.

ab %

On the other hand, if we are interested in the covariance Sda

between the two derived quantities 4 and & , we have to apply the covariance

law (equation 6.15) and we will end up with

- 2b 2 2
Sa0 = 7q (84 *57)
that is 8, # 0, and Iy (X & (d, o)) is not a diagonal matrix, even though
the ZL of the primary multisample is diagonal 1{i.e.. Sab = Q, see the

results obtained in Example 6.4 . This is a very important discovery and
should be taken into consideration when using the derived multisample
X 2 (d, o) for any further treatment in which case we cannot assume that

d and o are uncorrelated any more and we must take the entire I, into

X
account.
Example 6.7: Let us solve Example 6.2 again, but this time we will

consider the primary multisample L = (21,22,23) as

uncorrelated and its ZL is:
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3 0 O
ZL = |0 3 O = diag (3, 3, k4).
0 o0

From example 6.2 we have:

1 0 -3 Xl
B = o 1 0 and X = x .

Hence:

39 6 g2 s

]
]
i
[
no

which again verifies the fact that even when ZI,is diagonal
the Zk is not.
On the other hand we can treat Xy and X5 separately by using

the law of propagation of errors (since L is uncorrelated)

to get 82 and 82 separately; for instance,
X, X,

= (1)2 (3) + (0)2 (3) + (=3)2 (W)

3+ 0+ 36 =39,
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which is the same value as we got by applying the covariance
law above.

To determine the two sides AC = Z and BC = y of the plane
triangle shown in Figure 6.4, the length AB = x along with
the two horizontal angles o and B were observed and their

estimates were found to be:

X =10 m, with S_ = 3 cm,
X
@ =90% , with § =2",
B = 45° , with 85 = T
2
S = -1 arc sec and S =3 =0 .
aB X0 xB

It is required to coﬁpute the statistical estimates for
v and z along with their associated variance-covariance
matrix ZX in cmg, where

X=(y, z).
First, we establish the mathematical model which relates the
primary and derived samples, i.e.,

X = F (L), where

L= (2192292’3) = (a) 69 X) J

X = (Xl’ x2) = (y, z) .
From the sine law of the given triangle we get:

Y __z - __X

sin o sin B sin ¥y

however the angle vy is not observed, i.e. it is not an
element of the primary sample, therefore we have to sub-
stitute for it in terms of the observed quantities, say

& and B by putting
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sin vy = sin (a + B),
and we get:

y =X

X sin (o + B) °*

By substituting for a, B and x, we get

10492 =10 (1.h1k) = 1h.1km ,

Ny <3
]

= 10 m.

Our mathematical model then can be written as:

v v (a, B, x) X sin o/ sin (a + 8)
X =1 = =
z z (a, B, x) x s8in B/ sin (o + B)
To compute ZX =B ZL BT , We have to evaluate the matrix

B-which is of the form

[ =z -y ¥
sin(q + B) tan (a + B) X
-7 X Z‘_

tan (o +8) sin (o + B) X ‘

From the given data, the matrix ZL takes the form
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52 S s
o af ox
_ 2
I, 1 %a  Sg Sex.
2
Sxa xR Sx
I -1 0
= (-1 16 0
0 0 9 ’

(&t is very important to maintain the same sequence of the
elements of the primary sample in both matrices B and ZL
to give a meaningful ZX.)

Now matching the units of the individual elements of B and
z

> keeping in mind that ZX is required in cm2, results in

scaling the B matrix to

[ z (100) -¥(100) v
o" sin(a + B) o"tan(a + B) *
B =
-2(100) y(100) z
l p"tan(o + B) p"sin(a + B) *

where p" = 206265 = 2.10° arc sec.

Evaluating the elements of the above B matrix we get:
0.007 0.007 1.41k
0.005 0.010 1.000

and consequently
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| . 00T .007 1.41k L -1 0 .007  .005
I, = -116 0 .007  .010 J
.005 .010 1.000 0O 0 9 1.41%  1.000 _
le€e
18.0009 12.7272 18 13 5
ZX = . = . cm bl
12.7272 9.0016 13 9
and
S =+v/18 = L.2 em
y
s, = Y9 = 3 cm.

The results of the above example show that the high precision
in measuring the angles o and B has insignificant effect on the estimated
standard errors of the derived y and z lengths as compared to the effect of.
the precision of the measured length x. Hence, one can use the error
propagation to detect the main deciding factors in the primary sample on
the accuracy of the derived quantities and decide on the needed accuracy

of the observations. This process is usually known as pre-analysis which

is done before taking any actual measurements by using very approximate

values for the observed quantities. This results in accepting specifications

concerning the observations techniques to achieve the required accuracy.

Some more details about it are given in section 6.3.5.
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6.3.3 Propagation of Non-Random Errors, Propagation of Total Frrors

The idea of being able to foretell the expected magnitude of
the MSE (as a measure of random errors) of a function of observations -
this is essentially what the law of propagationvof errors is all about -
is often extended to non-random errors. These non-random errors are
sometimes called systematic errors, for which the law governing their
behaviour is not known. Hence, the values of such non-random errors
used in the subsequent development are rather hypothesized (postulated)
for the analysis and specification purposes.

The problem may be now stated as follows: let us have an
explicit mathematical model

x =f (L) , (6-19)
in which x is a single gquantity, f is a single-valued function and
L = (21, 22, cevs zs) is the vector of the different observed quantities
that are assumed to be uncorrelated. We are seeking to determine the
influence of small, non-random errors 621 in each observation Qi on the
result x. This influence will be denoted by 6X.

The problem is readily solved using again the truncated

o (¢] o
)

Taylor's series expansion, around the approximate values LO = (ll, 22,u.,28

b

from which we get:

op(r0) 4 2L o
x = £(L°) + 5 (LfL )
L=1L
o S of
= x + _Z 5-2':'*' (2.-27) . (6-20)
i=l Pile, =g
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By substituting azi for (zi-zz) and GX for (x-x°) in equation (6-20)

we get:

S
of
= * -
5. igl TN ) 82, 9, (6-21)
L. = A
i i

which is the formula for the propagation of non-random error.
Note in formula (6-21), the signsof both the partial
. . 3f
derivatives (Bli
(Compare this to formula (6-18).)

) and the non-random errors Gzi, haveto be considered.

We may also ask what incertitude can we expect in x if the
observations Ri are burdened with both random and non-random errors.

In such a case we define the total error as:

T = /(8% + 89) j (6-22)

with § being the non-random error and S being the MSE. Combining

the two errors in x as given above and using equations (6-18) and (6-21)

we get:
s s 2
T = /[(z %f-—csn.)g + = (%—i—) 521
X 1:1 i 1 i=1 i 1
s 2 S
3 3f 2 2 3f df
= /[igl{(———ml) (szi+sl)} + 35 Y 8%, 84,1
Y 4. 1 J
1#]
or
s 2
e of 2 _
T_ = /[151 (5o i) T+ al  (6-23)

where g may be regarded as a kind of "covariance" between individual non-

random errors, and Ti is the total error in the observation li.

¥ For the validity of the Taylor's series expainsion, we can see that
the requirement of 62i being small in comparison to Qi is obviously
essential.
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As we mentioned in section 4.2, the non-random (systematic)
errors may be known or assumed functions of some parameters. In this
case their influence GX on X can be also expressed as a function of the
same parameters.

Example 6.9: Let us solve Example 6.2 again considering the primary

multisample L = (21, %2, %.) to be uncorrelated with variance-

3

covariance matrix:

3 0 0
o= |0 3 0 )
0 0 L

and having also non-random (systematic) errors given as:
8L = (821, 82,5, 885) = (-1.5, 2, 0.5), in the
same units as the given standard errors,.
It is required to compute the total error in the derived
quantities: X and X5 according to the mathematical model

given in Example 6.2.

The total errors are given by equation (6-22) as:

TX = ‘/(5§ + Si ) )
1 1 1
T, = /(ai + si ) .
2 2 2
We have:
2
3 90X
2 = 1 (D) 85 =39,
1 i=l i i
2 .
3 X
si = 3 (353) si =15 .
2 i=1 i i
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The influences SX and dx due to the given non-random errors
1 2
in L are computed from equation (6-21) as follows:

3 Bxl
§ = X Y 84
X i=1 i 1
= (1)(-1.5) + (0)(2) + (-3)(0.5)
=-1.5+0=-1.5=-3,
3 90X
S, = I 5-2—2- 82,
X2 i=1 i 1

= (2)(-1.5) + (1)(2) + (0)(0.5)
=-3+2+0=-1,

Hence, the required total errors will be:

=
i}

/[-3)% + 301 = V[48] 2 6.93 ,

/[(-1)% + 15] = /[16] = L.

=}
i

Example 6.10: Consider again Example 6.6. In addition to the given

information, assume that each height difference hi has got

a non-random (systematic) error expressed as'dh = k'hi,
i
where k' is another constant, a constant of proportionality

not Determine the total error in AH where

S

AH=H-H = ¥ h, =h, +h.+ ... +h .
i=1 i 1 2 s

between hi and ¢

The total error in AH is given by:
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In Example 6.6, we found that:

2

Spp T K e

] .
where k was a constant and QAC =z Qi is the entire length
i=

the levelling line AC.

We can now compute SAH as follows:

where

and

Then we get

S

S, = I k'h,=%k'I h, =k'AH,
I by i=p 1

Finally, the expression for the total error in AH will be:

B 2 .2
Ty = /[k'S AHS + k & AC].

6.3.4 Truncation and Rounding

In any computation we have to represent the numbers we work with,

vhich may ve either irrational like w, e, /é, or rational with very

many decimal places like 1/3, 5/11, etc., by rational numbers with a
fixed number of figures.

The representation can be made in basically two different

of

ways. We either truncate the original number after the required number
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of figures or we round off the original number to the required length.

The first process can be mathematically described as:

[—é g, = Int (a-10™)/10" (6-2L)

where a is the original number assumed normalized¥), n is the required

number of decimal places and Int stands for the integer value.

Example 6.11: 7 = 3.141592 ....., n = 3 and we get:
T = T = Int (n-103) 1073
= Int (31L41.592 ...) 1073
= 3141 - 1073
= 3.1h1 .

The second process,'i.e. the rounding-off, can be described

by the formulae:

a & a, = Int (a+10™ + 0.5)/10" (6-25)

in which all terms arebas described above.

Example 6.12: 7, n = 3 and we get:

3 3

Int (7+10° + 0.5) 10~

=
il
=
1

Tnt (3141.592 ... + 0.5) 107°
-3

Int (31L42.002 ...) 10
3

31k2 + 10°

3.142,

It can be seen that the errors involved in the above two

alternative processes differ. Denoting the error in "a'" due to

* To normalize the number, say 3456.21, we write it in the form 3.45621 - 103.
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truncation by § and the error due to rounding by § , we get:

-n
Ga =a-a;¢ [0, 10 )
T
§, =a-a8; e [-0.510",0.510 ")
!
and we may postulate that'Ga has a parent random variable distributed

T
according to the rectangular (uniform) PDF (see section 3.2.5):

R(0.5 10 7, o3 & ) (6-26)
while éaR has parent PDF:

R(0, 03 §_ ) (6-27)
7% e

as shown in Figure 6.5.

1 R ﬂl R
3 F < 7 Z
-n o y i 0" 6
- 0510 " & 0 0.5 10 2
05 10 0 3y T
PDF of rounding errors PDF of truncation errors

Figure 6.5
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From example 3.17, section 3.2.5 we know that o = q//3, where q equals
half of the width of the R. In our case, obviously q = 0.5 107" so
that o = 0.289 10 ".

Because of their different means, the error in truncation

propagates according to the "total error law' and the errors in rounding

propagates according to the "random error law". Hence, if we have a
number x:

x = £(L) > (6-28)
where

L=1(8,), i=1,2, cic.ys
is a set of s numbers to be either truncated or rounded off individually,
we can write the formulae for the errors in x due to truncation and

rounding errors in the individual zis as follows:

S S
3f -n,2 3f 2 1 _ -2n
§, =/[{z. = 0.5:10 )+ £ (== ==10°"1], (6-29)
X i=1 0L, =1 0% 12 )
s 2
s, =V 2 (%i—) 3% 107°%] (6-30)
R i=1 "7

This indicates clearly that the error in x due to the rounding process
is less than the corresponding error due to truncation; and this is
why we always prefer to work with rounding rather than truncation.
Example 6.13: Let us determine the expected error in the sum X of

1000

a thousand numbers a;,x = .I, a., if
1 i=1 1

(i) the individual values ai were truncated to five decimal

places;
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(ii) the individual values a, were rounded-off to five
decimal places.

Solution:

(i) The error §, due to the truncation of individual a, is

T
computed from equation (6-29) as follows:

(SXT = /{%igj %}:Ti“, (0.5 - 10°2)]° +
+ igio(%fzqg (I% . 10710y)
=/{[0.5 + 1070+ 10%1% £+ 10710 10%)

i

/{10"8 (2500 + 0.833)}

0.005001 = 0.005 .
(ii) The error & due to the rounding of individual ai is
computed from equation (6-30) as follows:

1000 2

9X 1 -10
. /{izl (5;';) (1"2-'10 )}

3}
]

it

v{(1000) (E% . 10"10)}

/{10‘8 (0.833)}

0.000091 ,

which‘is much smaller than the corresponding Gx .
T
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6.3.5 Tolerance Limits, Specifications and Preanalysis

Another importantant application of the propagation laws for

errors is the determination of gspecifications for a certain experiment

when the maximum tolerable errors of the results, which are usually

called tolerance limits, are known beforehand. Such process is known

as pre-analysis. The set-up of the specifications should therefore

result in the proper design of the experiment, i.e. the choice of
observation techniques, instrumentation, etc., to meet the permissible
tolerance limits.

The specifications for the elementary processes should account
for both the random and the inevitable non-random (systematic) errors.
This is, unfortunately, seldom the case in practice. It is usual to
require that the specifications are prescribed in such a way as to meet
the tolerance limits with the probability of approximately 0.99. If
we hence expect the randbm errors to have the parent Gaussian PDF,
the actual results should not have the total error, composed of the non-
random error & and 2.5 to 3 times the RMS ,which corresponds to

probability of 99% ,larger than the prescribed tolerance limits, i.e.

2
T < /(6% + (30 ) ). (6-31)

Example 6.1h: Assume that we want to measure a distance D = 1000 m,

with a relative error (see 4.10) not worse than lO_h, using a
20 m tape which had been compared to the "standard" with a
precision not better than 30 < 1 mm, i.e. tolerance limits

of the comparison were + 1 m . Assume also that the whole

length D is divided into 50 segments di’ i=1,2, ..., 50,
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each of which is approximately 20 m. Providing that each
segment di will be measured only twice: forward Fi and
backward Bi’ what differences can we tolerate (accept or
permit) between the back and forth measurements of each
segment?
Solution:

The tolerance limits in D, i.e. the permissible total
error in D, is given by

L

T, = 1000m 100" = 0.10 m = 10 ecm.

This total error TD is given by

_ 2 2
Tp = /{5D+ ( 3oD) }o,

where GD is the non-random (systematic) error in D, GD is

the random error in D and the factor 3 is used to get probability

> 99% according to the assumed Gaussian PDF. Knowing that

50 1
D= £ 4., where d, == (F,+B.) ,
i=1 1 1 2 1 1
we get:
50
3D
6D .Z 2d, 6dl ’
i=1 i
where -
adi Bdi
8d; =37 OF; *3E. ¢ B
i i
1 =L -
=5 6F, +5 8B, =3 (6i+6i) =8, .
Hence,
50
§ .= I 16, < 50mm =5 cm.
D i=1 1
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Thus, we must require that:

2 _ .2 2 2, \2 2
(30,) 2 Tp = 8y = (10)°=(5)% = 75 cm

RS

or

o :.15532— = §:33 cn®

in order to meet the specifications.

Denoting the MSE in the individual segménts dif'by

o, = o, (all assumed equal) we get
di d .
50
2 2 2
o.= L ¢ = 500
D2 %, a’

2

o}
2 D _8.33 _ 2
94 __<_-—--,)_O =50 0.16cm” .

and denoting the MSE in either F, or B, (both assumed equal)

i
by o we get:
9d. 2 . 9d
2 _ 2 i 2 i, 2
og =0g = (35 o *+ (3F) op
i i i i
1,2 2, (1 2
(2) o + (2 o
(.1, 2 _1 2
= (h + )4) o = 5 o

and
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o2 < eoi = 2(0.16) = 0.33 om.

Recalling that we want to know what differences between the
forth and back measurements can we tolerate, and denoting

such differences by Ai, we can write:

A, = F,. =B, .
i i 71
Then:
dA 2 dA, 2
02 - 02 ( i) 02 +( i 02
A A oF, F. 9B, B,
i i i i i

1l
no
Q

Thus, we end up with the condition:

oi < 20° = 2(0.33) = 0.68 cm”

or

o, < 0.816 = 0.8 cm.

This means that if we postulate a parent Gaussian PDF for

the differences A, the above o, is required to be smaller

A
or equal than the RMS of the underlying PDF. Consequently,
the specifications will be as follows: We should get 68%

of the differences A's with  o,, i.e. within * 0.8 cm, and

95% of A within + 20,, i.e. within 1_1.6 cm. These specifications

A
are looser than a man with an experience in practice would expect.

It illustrates the fact that in practice the specifications are

very often unnecessarily too stringent.
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6.4 Problem of Adjustment

6.4.1 Formulation of the Problem

Let us resume now at the end of section 6.2 where we have
defined the proper problem of adjustment as the +transition
(€, 5) > (X, 5,) (6.32)
for an overdetermined mathematical model
F(L, X) = 0 . (6.33)
By "overdetermined" we mean that the known L contains foo many components
to generally fit the abbve model forAwhatever X we choose, i.e. yielding
infinite number of solutions X . The only way to satisfy the model ,
i.e. the prescribed relations,is to allow some of or all the L to change
slightly while solving for %. In other words, we have to regard L as
an approximate value of some other value i which yields a unique solution %
and seek the final value £ together with %.
Denoting
L-T=v (6.34)

we may reformulate our mathematical model (6.33) as:

F(L, X) = F(L + v, X) = 0 (6.35)
where V is called the vector of discrepancies.
Note that V plays here very much the same role as the v's
have played in section 4.8. From the mathematical point of view, there
is not muech difference between V and v. However, from the philosophical

viewpoint, there is, because V represents a vector of discrepancies of
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s different physical quantities (see also section 5.4)while v was a vector

of discrepancies of n observations of the same physical gquantity. To

show the mathematical equivalence of these two we shall, in the next
section, treat the computation of a sample mean as an instructive adjust-

ment problem.

6.4.2 Mean: of a Sample as an Instructive Adjustment Problem,yeights

Let us regard a random sample L = (21, fps o .,xn) of n
observations representing one physical quantity,ﬁ as uncorrelated estimate
of the mean . Further we shall denote the definition set of L by L,

where L = (Rl, §2, .. "Em) consists of only m. distinctly different
values‘of 2's. Let us seek an estimate ;, satisfying the mathematical
model
x =R (6.36)

representing the identity transformation. Evidently, the model is
overdetermined because the individual ij, J=1,2, . . .,m, are
different from each other and cannot therefore all satisfy the model.

So, we reformulate the model as:

X = Qj + vj j=1,2, .. ., m (6.37)
where the v's are the discrepancies. We have to point out that, although
we seek now the same result as we have sought in section 4.7, the formu-
lation here will be slightly different to enable us to use analogies later

on. While we have been taking all the n observations into account in section

4.7, we shall now work only with the m distinctly different values ij’
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3=1,2, .. .,m, that constitute the sample L¥.
Thus we shall have to compute the mean £ from the second

formula introduced in section 3.1.3 (equation (3.4)), i.e.:
n - . m -~
1= by @) I 4T (6.38)

rather than the first (equation (3.3)) as used in section k.7. Here,

according to section 3.1.3, PJ = cj/n with cJ, being the count of the

3

Hence P, are the experimental (actual) probabilities. In other words, if

J
we wish x to equal %, the model (6.37) yields the following solution:

same values &, in the original sample L’containing all n observations.

- m :
x= ¢ %.P (6.39)
J=l ) J J )
or )
x=P I l | (6.140)

in vector notation, where pr = (Pl, P2, eees P )

The coefficients PJ are called weight coefficients ,or simply

weights ,and ; is called the weighted mean - analogy borrowed from mechanics

(see section 3.1.3). Note that, with the weights being nothing else but
the experimental probabilities, we put "more weight” on the values with
which we are more "certain", i.e. which are repeated more often in the

sample, which is intuitively pleasing.

-

* I, = (z R . .,2 ) can be regarded in this context as a sample of
groupe% o%servatlons, i.e. each constituent LJ, J=1,2, . . .m,

has a count (frequency) c'j associated with it“in the original sample
L L
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In our slightly different notation even the least-squares prin-
ciple, as formulated in section 5.3, would sustain a minor change. While

. o
we were seeking such ¢  as to make

o 2

2
(Zi - %2) (6.41)

1
v, = =
i n

i =

1
n 1

s

i=1 1

minimum, we would have to write now the condition of minimum variance as:

n 2

min [ Z P.vj 1, (6.42)
o1

loe R ]
where Vj = ij - ZO. In matrix notation, (6.42) becomes:
-
\ T
min VPV |, (6.43)
loeR

where P is a diagonal matrix, i.e.

P = diag (Pl, P2, ooy Pm) . (6.44)

The latter formulation, i.e. equations 6.42 and 6.43 is more
general since we can regard the former formulation, i.e. eugation 6.41 as

a special case of (6.42) and not vice-versa. We have

n n
P v? % Piv%
=1 * i=1 *

B

i
which implies that Pi = %y for i =1, 2, ..., n are equal weights for all
the observations li. Hence we shall use (6.43) exclusively from now on.
The same holds true even for the two formulae for & and we shall use
equation (6.40).

Note that once we apply the condition 6.43, the discrepancies
cease to be variable gquantities and become residuals (see 4.8). We shall

denote these residuals by V.
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Equation 3.7 can now be obviously written as

m

2 AD
s.“= I P, V, 6.4
L LR (6.45)
J
or in matrix notation,
ng = v By, (6.46)

Consequently, we shall restate the least-squares principle as follows:
the value x that makes the value of the gquadratic form VTPV the least
ensures automatically the minimum variance of the sample L. This property

does not depend on any specific underlying PDF. If L has got normal

parent PDF (or any symmetric distribution), x is the most probable estimate

of x, which is sometimes called the maximum likelihood estimate of x.

6.4.3 Variance of the gample Mean

We have shown that the simple problem of finding the mean of
a sample can be regarded as a trivial adjustment problem. Hence we are
entitled to ask the question: What will be the #ariance-covariance matrix
of the result as derived from the variance-covariance matrix of the original
sample 2 In other words, we may ask what value of variance can be assoc-
iated with the result - the mean of the sample.

The question is easily answered using the covariance law
(section 6.3.1). We have established that (equation 6.40):

x =P'L .

Hence, by applying the covariance law (equation 6.15)we obtain:
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" = BIL —BT=PTZ -P==Sz '
L b4
i.e.
s? = pTi-p . (6.47)
b4 L
Here Zi is not yet defined. All we know is that L= (El’ 52"'im)

is a sample of "grouped" observations Ei with different weights (observed
probabilities) Pi associated with them. Let us hence assume these obser-
vations uncorrelated and let us also assume that there can be some
"variances" S%. attributed to these observations. In such a case, the

i
variance covariance matrix of L can be expressed as

T- = aiag (s2 , §2 , ..., s2) . (6.48)
I 2. 51 g
1 2 m

Substituting (6.48) into (6.47), we get:
m
2
s2= 1 s’ . (6.49)
X . J L.
j=1 3
On the other hand the value of x (i.e. the sample mean) can be
computed using the original sample of observations, L = (21, 22, ooy Qn),

i.e. the ungrouped observations zi, i=1, 2, ..., n, which all have equal

experimental probabilities (equal weights) of 1/n, yielding:

>
]
8-

L, =
i

S

[21 + 4.+ ... + zn] . ‘ (6.50)

2

[ B

ni=1

. , 2 \ .
Hence, we can compute the variance of the mean, i.e. S;, again by applying

the law of propagation of errors on (6.50), and we get:

dx. . 2 2 1

n ,
(57) s = (EQ i S ’ (6.51)

n
e T TR .
X 1 1 1

i=1

*It should be noted here that since L = (2., 2., ..., L) is a sample of
group observations, for which a different weight Pj (experimental proba-
bility) is associated with each_element ., j = 1,72, ..., m, the individual
variances S* - assigned to the . are, in“general, different from each other,

i.e. they j vary with the groaps of observations.
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in which all the 'variances Si are agalin assumed to have the same value
i
and equal to the sample variance 82L given by

2 _1 & ~2
SL =5 _Z (Ri - x)°. (6.52)
i=1
Equation (6.51) then gives:
2 1 2, 2
8 = =, (n SL) = SL/n (6.53)
x n

which indicates that the variance of the sample mean equals to the variance

of the sample computed from equation (6.52) divided by the total number
of elements of the sample®)

We thus ended up with two different formulae, (6.49) and
(6.53), for the same value Si. In the first approach, we havé regarded
the individual observations (really groups of observationé having the same

value) as having different variances Sai associated with them. The second
J

approach assumes that all the observations belong to the same sample with

variance Si. Numerically, we should get the same value of S? from both

X
formulae, hence

. (6.54)

¥ TIn terms of our previous notation, we can write the variance of the
sample mean as
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and the right hand side in the form:

SL2 n SL2
oTn = )

i=1

B

Using the same manipulation as in section 6.4.2 when dealing with the
V's and A's, and also earlier, in section 3.1.4 when prooving equation

(3.4), the right hand side can be reyritten as:

1 n SL2 m SE
Y z (T) = 1 [P, (T)] s
i=1 g=1 Y

in which P, has the same meaning as in (6.49).

Now, the condition (6.5.4) becomes:

) 2
m oo m SL
) [Pj(Pj 55, )= 1 [Pj(~EJ], (6.55)
Jj=1 J J=1
which can be always satisfied if
Bauad 5
2 5y
P,8% =—=K, j=1,2, . . . ,m, (6.56)
J 2j n

where K is a constant value for a specific sample that equals to the

variance of the sample mean. From (6.56) we get:

K
Pj > , j=1,2, «o. , m, (6.57)

which shows that in order to get the correct result from (6.49) we have to
assume that in the first approach the individual observations have
variances inversely proportional to their weights.

This result is usually expressed in the form of the following

principle: the weight of an observation is inversely proportional to its

variance, i.e.

. } (6.58)

U)ml?%‘
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We can also write using equation (6.57):

2 2 o2
P, S] =PByS, =...=18 =K (6.59)

2 e . . .
where SO’ constant for a specific sample, is known as the variance of unit

welght. It can be interpreted as the variance of an imaginary observation

whose weight equals to one. 1In the case of sample mean £, So equals to SE'

From equations (6.46) and (6.53) we can write:

s? = i (6.60)
X

This result will be often referred to in the subsequent development.
We have to point out that the whole argument in this section

hinges on the acceptance of the "variances" Si and Szz . They have been
i i

introduced solely for the purpose of deriving formulae (6.53),(6.58) that
are consistent with the rest of the adjustment calculus. The more rigorous

alternative is to accept the two formulae by definition.

6.4.4 vVariance Covariance Matrix of the Mean of a Multisample

We have seen in section 6.4.3 that the mean 2 of a gsample I,
has also a standard deviation SE associated with it. This standard devi-

ation is v(n)-times smaller than the standard deviation SL of the sample
itself and can be interpreted as a measure of confidence we have in the
correctness of the mean 2. Evidently, our confidence increases with the
number of observations.

We can now ask ourselves the following question: Does the mean
L of a multisample L also have a variance-covariance matrix associated with

it? The answer is - there is nothing to prevent us from defining it by

generalising the discovery from the last section. We get

\—Szz S= E e e o« S= -
1 1%2 1*s
5-— = | s= - g% S- - (6.61)
L oM 4y 22
s; 3 ... 82
L sl s J
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where
$ = = &
L. i i
1
and
S- - = %"'Sz )
2.8, i i7J :
1J

Here we have to require again that ni = nj, i.e. that both components of
the multisample have the same number of elements (see section 3.3.5).

Obviously, if this requirement is satisfied for all the pairs of components

we have
n, = n2 =, . . = ns =n
and
I. = = . (6.62)
L n L ° ’

By analogy, the variance-covariance matrix obtained via the
covariance law (see section 6.3.1) from the variance-covariance matrix of
the mean of multisample 1s associated with the mean of the derived multi-

sample, or statistical estimate X. We say that

P —

. T
I, = BisB (6.53)

is the variance-covariance matrix of the statistical estimate X, i.e. of

the solution of uniquely determined mathematical model

x = F(E) .
Similar statements can be used for other laws of propagation of errors.
Development of these is left to the student, who should also compare results

of this sections with the solution of Example 6.1L.
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Example 6.15: Let us take again the experiment described in Examples

6.1, 6.3 and 6.4. This time we shall be interested in

deriving the variance-covariance matrix I; of the solution

X

~

vector X.

Solution: First we evaluate Ir from eq. (6.61). We obtain

2
s =Lg? o Q00 em” 008 e
a 5 a 5
2oL o 0:0056 e 1 oo o2
b 57b 5 ’ )
Since Sab = 0 we get
0.0008 0 5 1
Zi = cm = E-ZL.
0 0.0011

NOW)Z§ can be evaluated from eguation:(6.63) and we have

~ = n(x T _1 T _ 1
or
2 3
0.00081 cm 0.1079 cm
TL =
X 0.01079 cm3 21,5125k cmh .

~

Thus the standard deviations of the estimates d and Gare

given by
87 = /(0.00081 cm®)= 0.028 cm ,
5o = /(21.51254 en’) 2 b6k cn®.

6.4.5 The Method of Least-Squares, Weight Matrix

The least-~squares principle as applied on the trivial identity
transformation,i.e. the sample mean,can be generalized for other mathematical

models. Takingthe general formulation of the problem of adjustment as
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described in section 6.4.1, i.e.

F(L+vV, X) =0,

we can again ask for such X that would make the value of the quadratic
form of the weighted discrepencies, VTPV, minimum, i.e.
. T
min VPV . (6.64)
n

XeR
Th e condition (6.64) for the majority of mathematical models, is enough to specify
such X =X uniquely. The approach to adjustment using this condition became

known as the method of least-squares.

The question remains here as how to choose the matrix P. In

the case of the sample mean we have used

. 2 2
P = diag (K/SS , K/S°- , ... , K/S° ),
2 2 3
1 2 m

that is

P = K diag (1/823z , 1/82I s e 1/52_ ).

L
1 2 m
Using the notation developed for the multisample, this can be rewritten as:
-1
P =K Zf (6.65)

which indicates that the matrix P is obtained by multiplying the constant
K by the inverse of the variance-covariance matrix of the means of observa-
tions. This is in our case a diagonal matrix as we have postulated the
sample L to be uncorrelated.

We again notice that, mafhematically, there is not much dif-
ference between a sample and multisample - they can be hence treated in much

the same way. Thus, there is not basic difference between the apparently
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trivial adjustment of the sample mean and the general problem of adjust-
ment. The only différence is that in the first case i\is a &ector of one
component, while generally it may have many components.
This gives a rise to the question of what would be the role éf
K (K having been a scalar equal to Si in the adjustment of the mean of sample),

in the least squares method, where X has several constituents. Let us just

say at this time that we usually compute the weight matrix P, as it is called

in the method of least-squares,as

P=xg —-l

£ (6.66)

where k is an arbitrarily chosen constant, the meaning of which will be
shown later. This can be done because, as will also be shown later, the
solution % is independent of k since it does not change the ratio between
the weights or variances of. the individual observations.

In this course we shall be dealing with only two particular
mathematical models which are the most frequently encountered in practice.
In these models, we shall use the following notation:

E_for the number of constituents of the primary or original multisample L;
u for the number of constituents of the derived, or unknown(to be derived)
-multisample X;
r for the number of independent equations frelationships) that can be for-
mulated between the constituents of L and X.
Moreover, we shall consider these models to be linear.
The first model is

AX=1L, (6.67)
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in which A is an n b u matrix, X is a u b 1 vector and L is an n by 1
vector (n = r > u). The adjustment of this model is usually called

parametric adjustment, adjustment of observation equations, or adjustment

of indirect observations, etc.
The second model is
BL = C (6.68)
in which B is an ¥ by n matrix, L isnx 1 and C is r x 1 &ectors (r < n).

The adjustment of this model is known as conditional adjustment, adjustment

of condition equations, etc.

The two mathematical models are evidently quite special since
they are both linear. Fortunately many problems in practice, although
non-linear by nature, can be linearized. This is the reason why the two

treated models are important.

6.4.6 Parametric Adjustment

In this section, we are going to deal with the adjustment of
the linear model (6.67), i.e.

AX+C=1L (n > u) (6.69)
which, for the adjustment, will be reformulated as:
AX - (L+V) =0

or
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V = AX - L*) . (6.70)

Here A is called the design matrix, X is the vector of unknown

parameters, L is the vector of observations, (i = L* - C where L* is the

mean of the observed multisample), and V is the vector of discrepancies,
which is also unknown. The formulation (6.70) is known as a set of

observation equations.

We wish to get such X = X that would minimize the quadratic

T . . . . ' .
form V' PV in which P is the assumed weight matrix for the observations
L (see the previous section). This quadratic form, which is sometimes

called the quadratic form of weighted discrepancies, can be rewritten

using the observation equations (6.70) as

- 7 -
VTPV = (AX - L) P(AX - L)

(ax) T - %) (pax - PL

T =T =T =
XTA PAX - L PAX - XTATL + L PL (6.71)

. -1 .
From equation (6.66) we have P = ¢ I_", where «k is a constant scalar and
L

Zi is the variance-covariance matrix of L. Since Zi is symmetric, the

weight matrix P is symmetric as well and PT = P. We can thus write

T = pax = X ATRL (6.72)

since it is a scalar quantity.

Substituting (6.72) into (6.71) we get

* If we have a non-linear model
L = F(X)
it can be easily linearized by Taylor's series expansion, i.e.

I = F(xo) + 0 (X—xo) + ..y

oF

o
8X|x=x ]
in which we neglect the higher order terms. Putting AX for X-X , AL for
L-F(X°) and A ( a matrix) for 3F/8xlx=xo we get

AL = AAX .
This is essentially the same form as equation (6.69). However, in th%s
case we are solving for the corrections AX to the approximate value X of
the vector X, instead of solving for X itself.
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T

V PV = XTATPAX - 2XTAT

Tet . (6.73)

PL + L
The quadratic function (6.73), called sometimes the variations
function, is to be minimized with respect to X. This is accomplished by

equating all the partial derivatives to zero, i.e.

~§I~VTPV =0 i=1,2, ..., u, (6.74)

39X
and we obtain, writing 3/3X for the whole vector of partial derivatives
3/5%,

%§ VPV = 2X°ATPA - 207PA = 0 , *)

which can be rewritten as:
%TaTpa = T'pa
or by taking the transpose of both sides we get:

S (aTpA)% = ATPL }*ﬁ (6.75)

This system of linear equations is called the system of normal equations

which can be written, as often used in the literature, in the following
abbreviated form:

NX=U (6.76)
where N = (ATPA) is known as the matrix of coefficients of the normal
equations, or simply the normal equation matrix and U = ATP£ is the vector
of absolute terms of the normal equation.

The system of normal equations (6.76) has a solution X

* From matrix algebra we know that if A is a symmetric matrix and X is a
vector we get:
)

3 T T
E-}EAX-—Aands‘i(XAX)—2XA.

+ .
Note that the normal equatior§ can be obtained directly from the mathemati-
cal model by pre-multiplying it by alp .
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given by

-1 1

X =N1U= (a"pa)"t (aTRL) (6.77)
if the normal equation matrix, N = ATPA, has an inverse. Note that N
is a symmetric positive definite matrix.¥*)
To discuss the influence of the weight matrix P on the solution
vector %, let us use a different weight matrix, say P', such that

P' = vP (6.78)

where vy is an arbitrary constant. Substituting (6.78) into (6.77) we get:

2 = aTpra)t @ty
= aTypa) "t (aTypl) (6.79)
= %‘(ATPA)-I v (ATPL)
=X .

This result indicates that the factor k in equation (6.66) for computing
the weight matrix P from IZ-, can be chosen arbitrarily without any influ-
ence on %, which really verifies the statement we have made earliér, in
section 6.4.4.

It should be noted that the vector of discrepancies V as defined
in (6.70), becomes after minimization of the vector of residuals (see 4.8)
of the observed quantities. As such, it should be again denoted by a
different symbol, say R, to show that it is no longer a vector of variables
(function of X) but a vector of fixed quantities. Some authors use v
for this purpose and this is the convention we are going to use (see also
6.4.2). The values Gi are computed directly from equation (6.70) in the

same units as these of the vector L. Then the adjusted observations will

A

be given by L=1L+7%.

* A matrix say N, is positive definite if the value of the quadratic form
Y 'NY is positive for any vector Y (of the appropriate dimension).
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We should keep in mind that one of the main features of the
parametric method of adjustment is that the estimate of the vector of
unknown parameters, i.e. %, is a direct result of this adjustment as
given by equation (6.77).

At this stage, it is worthwhile going back to the trivial
problem of adjustment - the sample mean. According to the equation (6.79),
we can choose the weights of the individual observations to be in&ersely

proportional to their respective variances with an arbitrary constant «

of proportionality. This indicates that the weights do not have to equal

to the experimental probabilities for which ; P, = 1, as we required
in sections 6.4.2 and 6.4.3. In this case,‘t;i observation equations
will be
X = El + 91, with weight Py
X = 12 + ;2, with weight Py
X =12 + v , with weight P
Or, in matrix form
AX =L+ 7V,
where
[ 1 2,
1 Ré
a= ||, o
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with weight matrix, P = diag (Pl, Pos vee pn).
Substituting in equation (6.77) we get the solution, i.e. the weighted

mean of the sample, as

n -
LI p.2
A q=p tH (6.80)
x~ 7
L P,
i=1 t
n
which agrees with the result in section 6.L4.2., whem Ip; equals to one.
i=1

Formula (6.80) is the general formula used to compute the weighted mean
of a sample of weighted observations.

Example 6.16: Let us have a levelling line connecting two junction points,

H_;are known. The

G and J, the elevations of which,HG, T

d
10 o and d3

was observed,with

levelling line is divided into three sections d

h, and h

long. BEach level difference hl’ 5

3

results El’ Eg and 53. The observations Ei are considered

uncorrelated with variances proportional to the corresponding
lengths di’ i=1, 2, 3.

It is required to determine the adjusted values of the
elevations of points 1 and 2, i.e. Hl and H2 respectively,

using the parametric adjustment.

Solution

From the given data we have:number of observations n=3 ;
number of unknowns u = 2. Therefore, we have. one redund-
ant observation. The independent relationships between
the observationsand the unknowns are written as follows

(each relation. corresponds to one observation.):
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R
hy = 8y, - H)
hy = H) - B,

The above relations can be rewritten in the general form
used in the previous development:

A X =1L
3,2 2,1 3,1

where X = (Hl, H2) and

These observation equations can be written in matrix form
as:

vV = A x -1§ R
3,1 3,2 2,1 3,1
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where:

r 7] -
v, . (hl + HG)
l — —
vV = v X = L = h
) H
3,1 2 2,1 H, 2
] v3- (h3 - HJ)

and the design matrix A is given by

1 0
A= -1 1
32 1o
We assumed that the observed values El’ Eé and h3 are
uncorrelated. We will also assume that HG and HJ are

errorless, Hence:

2 2 2
-, 8=", )
hi h2 h3

L= = diag (S

L

But Sﬁz is proportional to di’ i=1, 2, 3;
i
thus

= = k diag (4., 4,, @

L l’ 23 3)'

Further, we choose K =1 and we get

1 1 1
) .

-1 )
P=«k I= = diag (5-3 =T

L

1 2 3
Applying the method of least-squares the normal equations
are
A
N X = U
2,2 2,1 2,1 °
where
T 1 -1 0 i 0 o0 1 0
N =A"PA = dl
0 1 -1 0 %— 0 -1 1
2 1
0 0 N 0 -1
3

This gives



187

1 1 1
G +37) -5
N 1 2 2
2,27 | L (L ,1
-
2 2 3
and ’l
o |1 -1 o = 0
U=APL = 1 1
0 1 -1 0 i
2
0 0
Hence [ - - 7]
by +Hy b,
( - =)
. dl d2
U =
(2. 2373,
| 'd, a, |
A
The solution X is given by
A ' -
X - N 1 U
2,1 2,2 2,1 ?
where 5
N_l = El~i§_ié___ (i_ + i_) 1l
= s
(dl+ d * d3) d, " dg d
1 1,1
— (..—4.._...
9
TR

Fl-‘l—' o

Performing the multiplication N-lU and realizing that

X = (H . ),we obtain:
1" 2
A~ - d
1= Eg+thp+33 (H
Ii
. _ dq
Hy = Hy = hy - 555~ (H
1 1

T -

. 'f h,),
G"?hﬁ :

ow, we compute the residuals vy from the equation

~

V =AX -1 and find

N

H - HG - E hi

- J
v, =

i T d.
i i

d
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Finally, we compute the adjusted observations from

L=L+V,
Remembering that HG and HJ are assumed errorless we get:
hy ='Bi * v i=1,2, 3.
Example 6.17: A local levelling network composed of 6 sections)shdwn in

Figure 6.T,was observed. Note that the arrow heads indicate
the direction of increasing elevation . The following
table summarizes the observed differences in heights‘zﬁ

along with the corresponding length of each section.

Section . Stations ” hi _ length Xi
No. from | to (m) (km)
1 a c 6.16 L
2 a a 12.57 2
Figure 6.7 3 c a 6.541 2
4 a b 1.09 L
5 b d 11.58 2
6 b c 5.07 L
Assume that the variances SE ,i=1,2, ..., 6, are
i

proportional to the corresponding lengths Qi. The elevation
Ha of station a is considered to be 0 metres. It is
required to adjust this levelling net by the parametric

method of adjustment and deduce the least-squares estimates
A A ~

Hb, Hc’ and H_ for the elevations Hb’ Hc and Hd of the

d

points b, ¢, and 4.
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From the given data we have - number of independent obser-
vations: n = 6, number of unknowns: u = 3. Hencé we have
3 redundant observations, i.e. 3 degrees of freedom .
Our mathematical model in this case is linear, i.e.

A X =. L
6,3 3,1 6,1
where
X = ( > H , H) e
3,1 - Hb c d
The 6 independent observation equations will be (one

equation for each observed quantity):

hl +'Vl = HC - Ha = Hc - 0.0 c

[t}
jus}

I N
=

By +V, = Hy - B, = Hy - 0.0 =Hy,

=
=
+
<
=
]
]
fas]
o
il

Hb - 0.0 =

o

bg * Vg = Ho ~ H,
The above set of equations can be rewritten iun the following

form, after substituting the values of Ei:

v, = H, -  6.16
A

v2 = Hd - 12.57 »

V3= —Hc + Hd - 6.h1 3
A

th Hb - 1.09 »
- A

V5= —H.b + Hd - 11.58 o
, -

PRI S ] L

In matrix form we can write
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VvV = A X - L )
6,1 6,3 3,1 6,1
where
[ 6.16]
5 - 1 12.57
v H 6.41
3 1 -
Vs v, ’ X = H s L = 1.09
6,1 G 3,1 c 6,1 11.58
’ H
v6 L d- L 5.07J
and the design matrix, A,is
0 1 07
0 1
0 -1 1
A = .
6,3 00
-1 1
L—l 1 0

gince we have no information about the correlation between
Ei’ we will treat them as uncorrelated. Hence, the variance-

covariance matrix Zi of the observed quantities will be:

EE = dlag ()*:v 23 23 )4” 23 h)
6,6
understanding that the constant factor k is assumed one.

The corresponding weight matrix is given as:

6P = diag (0.25, 0.5, 0.5, 0.25, 0.5, 0.25).
,6

The normal equations are

A

N X = U

3,3 3,1 3,1 >
yielding the solution
X = N1 v

3,1 3,3 3,1 °
where



N
3,3
Thus:
0 0
N = 1 -1
0 1 1
X
and
0 0 0
N = ]0.25 0 -0.5
0 0.5 0.5
Finally:
1.00
N
3,3 =0.25
| =0.5
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=T P a4 .
3,6 6,6 6,3
1 -1 -1} {0.25 0 O O 0 O 1
0 1 0 0.5 0 0 0 0O
1 0 0 0.5 0 0 O
0 0 0 0.250 0
0O 0 0 0 0.5 0
L O 0 0 0 0 0.25 ]
_ -
0 0
0 1
o -1 1
1 0 o0
-1 1
-11 0
0.25 -0.5 =0.25 0 0.1
0 0 0.25 0 1
0 0.5 0 o -1 1
1 0 O
-1 1
-1 1 0 j ‘
-0.25  =0.5
1.00  -0.5
-0.50 1.50

Note that N is a symmetric,positive-definite matrix.
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Hence:
1.6 0.8 0.8
vyt =|0.8 1.6 0.8]
3,3 0.8 0.8 1.2

Computing U = ATPE , we get.

0o 0 O 0.25 =-0.5 -0.25 6.16
U =10.25 0 -0.5 0 0 0.25 12.57
31 o o505 o0 0.5 0 6.41
1.09
11.58
| 5.07
and
-6.7850
U = | -0.3975
31 15.2800

Performing the multiplication N-l U, we get X as:

1.6 0.8 0.8 -6.7850 1.05
X =0.8 1.6 0.8 -0.3975 = _ 6.16 | .
31 15,8 0.8 1.2 15,2800 12.59

Therefore, we have obtained the following estimates

B o=1.05 m,
I"\I = 6.16 my
[¢]

Hd = 12.59 m.

~

By substituting the values of X we get the residual vector

V for the observed h, from the equation

1
V=AX-1L.
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Namely:

<
i
O
o
N
g2 8 8 8B 38 B8

ol P

>

The adjusted observations h are computed from:

h, =h, +v. , i=1,2, ..., 6

1 1 1
and we get:

T 6.16 | " 0.00 | [ 6.16
12.57 0.02 12.59
6.41 0.02 6.43
h= 1.00]{ + |-0.04| = | 1.05
11.58 -0.04 11.54
5.07 | 0.04 J | 5.11

~

in metres.

The computations can be checked by deriving the heights of
points b, ¢ and 4 from Ha using the adjusted ﬁi. The resulting values
must not differ from the adjusted values f{b, ﬁc and H

a

6.4.7 Variance~Covariance Matrix of the Parametric Adjustment Solution

Vector, Variance Factor and Weight Coefficient Matrix

The parametric adjustment solution vector X is given by equation

(6.77), i.e.

1

X = (atpa) "t aTRL = owtate) T .
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This can be written as:

A

X

i}
[vs)
[

(6.81)
where

B=n"Tal p . (6.82)

The variance-covariance matrix Zi of the solution vector X can be easily

deduced by applying the covariance law (equation (6.15)) on (6.81);

we get:

N T
Ly = BIr B . (6.83)

From equation (6.66), we have
-1
P-—KEE
and inverting both sides we obtain

_ -1
Z-L- =k P . . (6.8’4)

Substituting (6.82) and (6.84) into (6.83) we get

Iy = (N'lATP) « pT (N'lATP)T. (6.85)

Both P and N are symmetric matrices, so that we can write:

P’ = p, NT; N oana (1T = w7t

gubstituting this into (6.85) we get

h=k NP AT PPl p AN

X
= vE @) vt vty s vt

Iy =« Nt=k (ATPA)'l. I (6.86)

On the other hand, by putting P = Kzi—l in (6.86) we get
SN N JR N RN J: B
il (A Iz AT = (A Iz A, (6.87)

1 1

that is

z

which shows that Z% does not depend on the choice of the factor «. In fact,

this statement is valid only if we know the correct values of the elements
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of Zi . Unfortunately, however, Zf is often known only up to a scale factor,

i.e. we know the relative variances and covariances of the observations

only. This means that we have to work with the weight matrix Kﬁi_l
without knowing the actual value of the factor k. Therefore Z% cannot be
computed from equation (6.87).

If we develop the quadratic form.GTPG *) considering the obser-
vations L to be influenced by random errors only, we get an estimate A
for the assumed factor k given by

VRV = (n - w) R . (6.88)

The multiplier in the right-hand side is nothing else but the difference
between the number of independent observations and the number of unknown

parameters, 1.e. the number of redundant observations, which is sometimes

denoted by’ﬁf”and called the number of degrees of freedom, i.e.

df = n - u. (6.89)
df must be greater than zero in order to be able to perform a least-squares

adjustment. Hence equation (6.88) becomes

\ k=== (6.90)

Usually,in the literature, k is known as the a priori variance factor and

~

k 1is called the least-squares estimate of the variance factor,or,simply,

estimated or a posteriori variance factor. The estimated variance factor

A

can be now used instead of the a priori one, yielding an estimate of ZX

~

¥ Here, the vector V is the veetor of residuals from the least squares
adjustment .
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cnt = 2Tyt

o>
>

~ A

- VBV
df

(aTea) (6.91)

which is known as the estimated variance-covariance matrix of X.

To discuss the influence of the chosen variance factor « in

A

K Zil on Z%, as defined by (6.91), we take another

the weight matrix P

-1
factor, say k'. We obtian P' = K'Zi = yP. Substituting in equation
(6.921) we get:
vy 9%%) 1 T -1
/\' - A
ZX = aF vy (A"PA) = ZX .

The above result indicates that ﬁ% given by equation (6.91) is independent
of the choice of the a priori variance factor k. We recall that the same
holds true for the estimated solution vector % (equation 6.79).

It often happens in the adjustment calculus, that we have to use
the estimated parameters X in subsequent adjustments as "observations".
Then we have to take into account their respective weights. We know that
the weight matrix of an observation vector must be proportional to the
inverse of its variance-covariance matrix (equation 6.66). Thus, we can
see that the matrix of normal equations, N, can be immediately used as the
weight matrix of the vector %, since the inverse N_l is proportional to the
variance-covariance matrix Z%; Accordingly, the matrix N"l is known also

as the weight coefficient matrix and the square roots of its diagonal

elements are called (Hansen's) weight coefficients.

Note that X is called uncorrelated when N-l is diagonal, i.e.
when N is diagonal. In such a case, we can solve the normal equations
separately for each component of X which satisfies our intuition. The

N

correlation of X is only remotely related to the correlation of L. X
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will be uncorrelated if i is uncorrelated, i.e. P is diagonal, and if the
design matrix A is orthogonal. On the other hand, N may be diagonal
even for some other general matrices P, A.

Let us now turn once more back to the "adjustment" of the
sample mean (see 6.4.3). It is left to the student to show that the
normal equations degenerate into a single equation, namely equation (6.40)
On the other hand, using eq.(6.91¥ we obtain the estimated variance of
the mean ; as

T

pa
I i B
5% = FF T na (6.52)

~

Evidently the estimated variance of X differs from the variance 8;2

(see eq. 6.60) in the denominator. By analogy we define a new statis-—

tical quantity, the estimated variance S of a sample L

L

42 1

St Thn-1

(Ri -2 n-1 vi2 ?
1 i=1

(6.93)

Ho~s

i

(compare with eq. 3.6) which is used in statistics wherever the mean I of the
sample L is also being determined. It is again left to the student to
show that using the estimated variances for the grouped observations (see

6.4.2) the formula(6.92) (instead of 6.60) can be derived using the argumentation

of 6.4.2 and 6.4.3.

The estimated variances of the sample L and its mean.fcan be

also computed using non-normalized weights,.i.e. weights P for which

n .

I py # 1 (see 6.4.6). It can be shown that the appropriate formulae are
i=1 0 - s

e N (6.94)
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and

n
2 1 ~ 2
S=" = ” I P, V. . (6.95)
(n-l) ¥ pi i=
i=1

To conclude this section, let us try to interpret the meaning
.of the variance factor k, introduced for the first time in 6.4.5. Let
us take, for simplicity, an experiment yielding a unit matrix of normal

equations, i.e. N = I. What would be the variance-covariance matrix

~

of the solution vector X? It will be a diagonal matrix

Zi = diag (K, Kyeeeyk). (6.96)

This implies that all the variances ng of the components of X equal to
i
k. Since the square roots of the diagonal elements of N (all equal to 1)

A

can be considered as the weights Pi of the components Qi of X we can also

write:

2 - 22 = 2 - (6.97)
P8 =P8, =...=P8 =« .

Comparison with equation (6.59) gives some insight into the role the
variance factor k plays. It can be regarded as the variance of unit

weight (see 6.L4.3) and is accordingly usually denoted by either 502 or

002 (in case of postulated variances). This is again intuitively pleasing

since it ties together formulae (6.66) and (6.65), where « can be also
~ 2

equated to 802. Analogically, we denote k by either 802 or o -

By adopting the notation 002 for k, and further by denoting the

weight coefficient matrix of the estimated parameters X, i.e. N_l, by Q.

the equations (6.90) and (6.91) become:
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»‘\T A
~2 _ VPV
Oo __df ) (6.98)
I =0°Q (6.99)
X 0 ’ .

Example 6.18: Let us compute the estimated variance-covariance matrix

A

A
Z; of the adjusted parameters X in example 6.16. The

Z; matrix is computed from equation (6.99). First, from

the above mentioned example we have:
- -~ Zh
~ HJ H ihi

G
VT o= [d,d,d],
1,3 24, 12 3
i’i
P g 1 1 1
= .diag ,[—_: FEE) =]
3,3 %; d2 d3
and df = n - u=3 -2 =1
Hence, -
o H_ - H, - ¢h,
vip = L zG =2 [1, 1, 11,
1,3 idi
TS = 12
PV = (HJ - Hy- §hi) / g a,
and
~ 2 yipy = N2
oy = g5 = (Hy - Hy - ?hi) /oy
As we have seen, N_l = Q is given by
-1 dl d2_ d3 d2 + d3 1 T
T T T a0 4y
’ Zidi 3 2
1 a; + 4,
a > ‘
L 2 dld2 |

We thus obtain finally

~ 5 Hy - Hy - Zh;
=g )

Zi o) Q= I.a 173
i¥i '
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Example 6.19: Let us compute the estimated variance-covariance matrix

A~ ~

Iz of the adjusted parameters X in example 6.17. We

are going to use equations (6.98) and (6.99). First, from
the above mentioned example we have

vl = [0.00, 0.02, 0.02, -0.04, -0.04, 0.04]
1,6
in metres,
P = diag [0.25, 0.5, 0.5, 0.25, 0.5, 0.25]
6,6

in m-g'and

df =n-u=6 -3 = 3.

Hence
g .
V'PV = 0.002 (unitless),
and
T
~ 2 v'py _ 0.002 . )
oy = Tgr T3 ° 0.00067 (unitless).

Also, from example 6.17, we have

1.6 0.8 0.8

Q9 =xt= (0.8 1.6 0.8 in m°.
3,3 0.8 0.8 1.2
Finally,

10.67 5.33 5.33

Iy = 002Q - 107 5.33  10.67 5.33 | in m°,
3,3 5.33 5.33 8.0

10.67 5.33 5.33
22 =1 5.33 10.67 5.33 in em“ ,
5.33 5.33 8.0
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6.4.8 Some Properties of the Parametric Adjustment Solution Vector

It can be shown that the choice of the weight matrix P of the
observations L (proportional to the inverse of variance-covariance matrix

ZE) and the choice of the least-squares method (minimization of VTPV)

~ ~

to get the solution X = X ensures that the resulting estimate X has got

the smallest possible trace of its variance-covariance matrix L. In

X
. ~2 . -1 . . T .
other words: taking P = Oo ZL and seeking min VPV, provides such a
A XeRY

solution X that satisfies at the same time the condition

min trace Il . (6.100)

RU X
XeR

This is a result similar to the consequence of the least squares principle
applied to random multivariate (section 5.4) and we are not going to prove
it here.

Similarly, it can be shown that for uncorrelated multisample of

observations L = (Ll, Loy o o« oy Ln) which are assumed to be normally

2’
distributed with PDF given by:

n (ir - 1,92
$(LyS5L) = T exp [ - — ; 1)
i=1 8,/(2m) : 2 8,
i i
. . T
we get the most probable estimate of Lo if the condition min, V'PV
‘ XeR
is satisfied. This can be verified by writing
1 1 9 V12
¢(L_,S;L) = exp [-= 1 =]
° n/2 B 2 321 8.2
(2m) n s, i
i
i=1
1 T
= L exp [--é? V'PV],

(6.101)
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T
which is maximum if both V PV and trace (Zi) are minimum. This is valid

for any fixed k.

6.4.9 Relative Weights, Statistical Significance of A Priori and A

Posteriori Variance Factors

We have seen in section 6.4.6 that the choice of the a priori
variance factor 002, or k, does not influence the estimated solution

A
vector X. Also, in section 6.4.7 we have seen that the same holds true

even for the estimated variance-covariance matrix Zi; Hence, for the

~ ~

purpose of getting the solution vector X along with its Z%, we can assume

any relative weights, i.e. P = 002 Zi—l, with 002 chosen arbitrarily. On
the other hand, the matrix of normalequations, i.e. N = A"PA, and the

. VTPV/df, are influenced by the

estimated variance factor, i.e., 30
selection of 002

These features of ¢02 are used in practice for two different
purposes. First, is to render the magnitude of the elements of the
normal equation matrix N such as to make the numerical process of its
inversion the most precise. This is accomplished by choosing the value
of 002 such as to make the average of the elements of N close to one.

The second purpose is to test the consistency of the mathematical
model with the observations and to test the correctness of the assumed
variance-covariance matrix ZE' Usually, if we do not have any idea

about the value of the variance factor 002, we assume 002 = 1. Then,

2 T

after performing the least-squares adjustment, we get 35 = V' PV/4f

as an estimate of the assumed 002. The ratio 302/002, provides some
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testimony about the correctness of Zi and the consistency of the model.
This ratio should be approaching 1. By assuming in particular, 0§v= 1,
we should end with 82 = 1 as well. If this is not satisfied, we start
looking into the assumed Zi and use the obtained 3§ from the adjustment
instead of cg in computing the weights. If the resulting new variances
and covariances of the observations are beyond the expected range known
from 'experience, we have to start examining the consistency of the math-
ematical model with the observations, i.e. if it really represents the
correct relationship between the observed and the unknown quantities.
This approach is also used to help detecting the existing
"systematic errors" in the observations L, that manifest themselves as

deviations from the mathematical model. These deviations cause an

"overflow" into the value of the quadratic form VTPV and con$equently,

2.
o

into ¢
The theoretical relation between the a priori and a posterior
variance factors allows us to test statistically the validity of our
hypothesis. However, this particular topic is going to be dealt with
elsewhere. Let us just comment here on the results of the adjustment
of the levelling network discussed in Examples 6.17 and 6.19. In com-
puting the weight matrix P, we assumed Ug = 1. After the adjustment we
obtained 82 = 0.00067. Thus the ratio cg/gg equals to 1500 which is con-
siderably different from 1. This suggests that the variance-covariance

matrix Zﬂ was postulated too "pessimistically" and that the actual variances

of the observations are much lower.
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6.4.10 Conditional Adjustment

In this section we are going to deal with the adjustment of
the linear model (6.68), i.e.

B L = ¢ , (r < n), ' (6.102)

"r" independent linear conditions between n

which represents a set of
observations L. Note that C is an r by 1 vector of constant values
arising from the conditionms.

For the adjustment, the above model is reformulated as:

B(L+V)=C=0

or, as we usually write it

B V + W = 0%), ‘ (6.103)

where: ” j
W= B L-cC, (6.104)

The system of equations (6.103) is known as the condition
equations, in which B is the coefficient matrix, V is the vector of dis-
crepencies and W is the vector of constant values, We recall that "n" is
the number of observations and "r" is the number of independent
conditions. It should also be noted that no unknown parameters,.i.e.

vector X, appear in the condition equations; The discrepencies V are

the only unknowns

* If we have a non-linear model F(L) = 0, it can be again linearized by
Taylor's series expansion, yielding:

oF

__O
oL (L-1°) + . . . ,

F(r) = F(L°) +
L=L°

in which we again neglect the higher order terms. Putting V = (L-1°),
B for 3F/3L and W = F(1L°), we end up with the lineariz=d condition
equations of the form: BV + W = 0, which is the same gs (6.103),
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We wish again to get such estimate V of V that would minimize

the gquadratic form VTPV, where P = Gg Zi—l is the assumed weight matrix

. = . . C s . . T
of the observations L. The formualtion of this condition, i.e. min V PV,
Ver"
is not as straightforward, as it is in the parametric case (section 6.4.6).

This is due to the fact that V in equation (6.103) can not be easily
expressed as an explicit function of B and W. However, the problem can
be solved by introducing the vector K of r unknowns, called Lagrange's

r,l
multipliers or correlates*). We can write:

min VPV = min VPV + 2KT (BV + W) ] , (6.105)
veRD VeR

since the second term on the right hand side equals to zero. Let us
denote

¢ = VTPV + 2KT (BV + W) .
To minimize the above function, we differentiate with respect to V and

equate the derivatives to zero. We get:

~ T
%$'= ZVTP + 2KB =0

. ’ , A T
which, when transposed, gives PV + B K = O.

The last equation can be solved for V and we obtain:

Xfr = p 1 eTx. (6.106)

e

This system of equations is known as the correlate equations.

Substituting equation (6.106) into (6.103), we eliminate V:

B(-p T 8T K) +Ww=o0 ,

LEEE:iEEL—E_i_Y;:1 (6.107)

This is the system of normal equations for conditional adjustment. It is

or

usually written in the following abbreviated form:

* This is why the conditional adjustment is sometimes called: adjustment
by correlates.
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MK = W, (6.108)

where
M=BP B . (6.109)
The solution of the above normal equations system for K yields:

K=M7T W= (BP-lBT)_l

W. (6.110)
Once we get the correlates K, we can compute the estimated residual vector

V from the correlate equations (6.106). finally the adjusted observation$

A

L are computed from

L=L+vV, (6.111)

In fact, if we are not interested in the intermediate steps,

~

the formula for the adjusted observations L can be written in terms of the

original matrices B and P and the vectors L and C. We get

~ ~

L= + V

-pt ek

i

]
el |

- P'lBT(BP’lBT)'l (BL ~-0C) . (6.112)

]
=

It can also be written in the following form:

where:

Example 6.20:

L=(I-T)T+8HC, (6.113)

I is the identity matrix ,

pt sl (e ten) "t B,

=
1}

(6.11h)
g =pt BT(BP-l BT)'l . ’

Let us solve example 6.16 again, using this time the-con-
ditional method of adjustment. We have only one condition
equation between the observed height differences Ei’ i=1,2,3,

and we thus note that the number of degrees of freedom
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is the same as in example 6.16. Denoting Hy - H, by AH, the

existing condition can be written as:

vh., = AH.
1

After reformulation we get:

+ +(h +h.+h,-AH) =0
vt U, Vg (hl hy +hy -4 ) ,

which ean be easily written in the matrix form as

B v + W =0
1,3 3,1 1,1
where v
1
B=1[1,1, 1], V= v, ,
V3
and

The weight matrix of the observations is given by (see
example 6.16):

. 1 1 1
P = diag QT", T afﬁ
3,3 1 2 73

and

a.).

-1 .
P~ = diag (dl, dza 3

3,3

The system of normal equations for the correlates K is given

by equation (6.108) as

M K = W |,
l’l l,l l9l
where
_ ap~L RT -
M=BP B = (dl +d, + d3) = Id,.
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The solution for K is

K=M W= %E" (;Ei - AH).
i1 i

The estimated residuals are then computed from equation

(6.106) as:

v = -p7t Bk
'él © 0 1 i, - AH
(== )
=-10 d, © 1 Iq
1 1
0 0 4, 1)
1 h, - H
1 1
% g
1 1
[dBi
and we get: _
. 0H - Ihy
A di, i=1, 2, 3.
194

This is the same result as obtained in example 6.16 when

using the parametric adjustment (note that AH = Hy - HG).

In this particular problem, we notice that the adjustment

divide the misclosure, i.e. (AH -y;h.), to the individual
observed height differences proportionally to the corresponding

lengths of levelling sections, i.e. inversely proportionally

to the individual MSE's, The adjusted observations are given

by equation (6.111) i.e.
i=1+va

or
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This yields:

h, = h, + —— 4d,.
1 1

Finally, the estimates of the unknown parameters, i.e.

X = (Hl, H2) , are computed from the known elevations
HG’ HJ and the adjusted observations hi’ as follows:
By = Hy + by
=H, + h, + (AH - h
G 1 i1
Fa,
and
H2 = HJ - h3
d3 »
= H_ -h, -— (aH - zth,).
J 3 . i1
il

The results are again identical to the ones obtained from

the parametric adjustment.

Example 6.21: Let us solve example 6.17 again, but this time using the

conditional adjustment. The configuration of the levelling
network in question is illustrated again in Figure 6.8,

for convenience.

From the above mentioned example we have:

No. of observations, n = 6,

No. of unknown parameters, u = 3.
Figure 6.8 Then df = 6 -~ 3 = 3, and we shall see that we can again
formulate only 3 independent condition equations between

the given observations.
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By examining Figure 6.8, we see that there are 4 closed
loops, namely: (a - c - d - a),‘(a -d-Db ~-a),
(b ~¢c -d-D)and (a —c =Db - a).
This means that we can write L4 condition equations, one
for each closed loop. However, one can be deduced from
the other 3, e.g. the last mentioned loop is the summation
of the other three loops.
Let us,for instance, choose the following three loops:
loop I = a-c=-b=-a )
loop IT = a -c ~-d - a
loop ITI = a ~-d -Db - a .
These loops give the condition equations as follows

- (h6 +V6) - (Eh +V)4) =

I
o
-

)‘(E +V)=09

2 2

(EE + v2) - (ES + VS) - (Eh + vh) = 0.

Then we get
v

1 - vy - Vet (A - By -h) =0,

- +(h - %
v V. o+ v (hl h

1 2 3 2

Vo = Uy - Vst (h2 -h -h ) =0.
The above set of condition equations can be written in the

matrix notation as

B vV + W
3,6 6,1 3,1

i
o
-

where:
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1 0 0 -1 0 -1
B = 1 -1 1 0 0 0 s
3,6
0 1 0 . 0
V‘(V,V,V,V,V,V)
1.6 1’ 722 '3 T 52 U6
and _ - _
(b) - by - h)
3wl = (El - by 4 ?3) .
(h2 - hu - hs)

Substituting the observed quantities Ei , 1 =
into the above vector we get

0.0

W = 0.0 in metres .,
3,1
—0'1

The weight matrix P of the observations is formulated as:

(see eXample 6.17):

P = diag (0.25, 0.5, 0.5, 0.25, 0.5, 0.25)
6,6

and

Pl = diag (4, 2, 2, L, 2, L4).
6,6

The normal equations for the correlates K are

M K = W s
3,3 3,1 3,1

where
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M =8Pt B = 12 L L
393 ‘
L 8§ -2
L2 8
By inverting M we get:
0.15 -0.1 -0.1
VR 0.2 0.1
3,3 .

-0.1 0.1 0.2

The solution for K is given by

0.15 =0.1 =0.1 0.0 0.01
K =M= |-0.1 0.2 0.1 0.0 = |-o0.01
3,1 0.1 0.1 o0.2| {-0.1 ~0.02

The estimated residuals are computed from equation (6.106):

v == pte'x = [o.00 |
6,1 0.02
0.02 m
-0.0k
-0.0k
| 0.0b |

and are again identical with the results of example 6.17.

The adjusted observations will be.

%11 [ 6.16'T [ 0.00 Y 6.16
h, 12.57 0.02 12.59
?3 6.41 0.02 6.43
B, = 1.09 T [-0.04 = 1.05
@5 11.58 -0.0k4 11.54
| he i 5.07 | | 0.0k | 5-11

in metres.
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Finally, to compute the estimated elevations of points
b, ¢, and d, i.e. Hb . Hc and Hd’ we will use the given

~

elevation Ha and the adjusted observations hi.

For instance;

H = H_ +h, =0.0+1.05=1.05m,
H =H +h =0.0+6.16=6.16 m,
c a 1
H. =H +h. = 0.0 + 12.59 = 12.59 m.
d a 2

These are obviously identical with the corresponding results
of the parametric adjustment.

Note again that when computing the estimates of the unknown
parameters from the adjusted observations we can follow any

route in computing them. They all lead to the same answer.

6.4.11 Variance-Covariance Matrix of the Conditional Adjustment Solution

The formula for the variance-covariance matrix Zi of the adjusted
observations - the "result" of the conditional least squares adjustment -
can be developed by applying the law of propagation of variance-covariance
matrix (equation 6.15) on equation (6.113). In this equation, the matrices
I,T,H are, obviously, fixed. Similarly, the vector C is considered as a

vector of theoretically deduced, and therefore errorless, values, then

ZC will be zero. Hence, we get:

.= Ly, (LT
ip = (38) Ip (59)

LI}

(r -m) Zx (1 - 1)T
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T T
= Zi-‘ IZE ™ - TZEI + TZiT . (6.115)

It is not difficult to see that both (IZiTT) and (TZEI) are square symmetric

matrices, hence we can write:

~ T
= —_— - + -
ZL ZL 2TZLI TZLT
= %= - TI= (2I - T T) (6.116)
L L ¢ e
Recalling, from equation 6.114, that T = p~t [BT(BP"lBT)—lB] and
. 2 -1
knowing that P = Oo ZE , 1.e.

Iz = 002 P—l, then by substituting these quantities into equation (6.116)
we get:
22 =0 2Pt oo 2 et sTerteT) ] Pl
L (¢} e}
« (21 - (pr[BY (Bp " ET) a1} (6.117)

002 pt (1 - orsf(epteT) te] Pt o+

+ Y (8p7YeT) ety (piET) ! mply

.

Noting that

((BP—lBT)—l)T - (BP_l T)—l

we get finally

L o}

Here, similar to the parametric adjustment, to obtain the estimated

sa =0 2Pt (1 - BT (sp~isl)t BP'l).J (6.118)

. ; . ~ 2, 2
variance-covariance matrix we use co instead of Oo , Where:
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A A A~

~2 VPV _ VPV

o0 = 5 =% (6.119)
and we end up with

5 = o % (7t - =t 8T (p7ieT)t mpt),  (6.120)
or,in an abbreviated form:

ca 2 o=l

I; =0 " (I-1)P ). (6.121)

Analogous to the parametric adjustment, it also can be shown

that the estimate L assures the minimum trace of its variance-covariance

matrix I'. Under the same assumptions as stated in section 6.4.8, the

~

estimate L is also the most probable estimate of L.

Regarding the correlation between the adjusted observations
ﬁ, we can see that E will be uncorrelated if:(i) L is uncorrelated and
(ii) the coefficient matrix B is orthogonal. If these two conditions
are satisfied then T and P-l will be diagonal matrices. On the other
hand, we can experience uncorrelated ﬁ even for some other general T and
P.

Finally, we note that again the choice of the a priori variance

factor 002 does not influence the estimated Z£ defined by equation (6.121).

A
Example 6.22: Let us determine the variance-covariance matrix Z£ for the

conditional adjustment formulated in example 6.20.

We have
n AH - ;Ei
v, = ——" 4 ,1i=1, 2,3,
t 4, 1
i7i
and P = diag (%—-, ;Ji-—, 3'1—-).
3,3 1 2 3

Thus we get

¥ It can be shown that similarly %, =0 TP
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=12
~p_n -2
P h;)

o r

xd,
i1

The required variance-covariance matrix is given by equation

6.121, i.e.
A o2 -1
I =0y (I-1T)Pp".
. o=l T -1
First we compute T = P "B™M "B. We recall from example
6.20 that M T = 1/za; , B = [1,1,1]
1,1 1 1,3
and PT = diag (4., d., d.).
1 2 3
3,3
Hence,
d, O 0 1 1
1 [ =] [1, 1, 1]
rd.
T = 0 4d 0 1 i1
2
d 1
0 0 3
and we obtain
dl dl dl
1
T =" d d d
3,3 Edi 2 2 2
] d3 ds d3J
Further we get r
o o o]
-1 _
(I-mT)P " = o, o, o,
lo3 o3 o3
di2
where a, = di - ;di , 1i=1,2,3
1

Finally we get:
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Iy =0y (I - 1) p~t
3,3
2 % % %
(AH - §hi)
= Ed 0.2 OL2 OL2
i
(6 e} [0}
3 3 3

Let us determine the variance-covariance matrix ijfor

the conditionally adjusted levelling net of example 6.21.
We have

A
v = [0.00, 0.02, 0.02, -0.0%, -0.0k, 0.0L]

1,6

in metres,

6P6 = aiag [0.25, 0.5, 0.5, 0.25, 0.5, 0.25]
o2
inm —, and

r=df =n-u=6-3= 3,

Hence,
VTPV = 0.002 (unitless),
A p ATA
o g‘? YV, 0.002 0.0006T7 (unitless).
o ! r 3
The required Z£ matrix is computed again from equation
6.121 as
A _ o2 -1
Il =0, (I-T)pP
6,6
where

2™t = aiag [4, 2, 2, 4, 2, L]
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and T is computedfrom
-1 ( T -1 )

T = P B'M "B
6,6
From example 6.21, we have
0.1
Mt o= (BP'lBT)'l = -0.1
-0.1
and 0 0 -1
B =4{1 -1 1 0 o0
3,6 1 0 -1 -1
Hence ,
(BTM‘lB) =
0.15 =-0.1 0.1
-0.1 0.2 =0.1
- 0.1 -0.1 0.2
-0.05 =0.1 0
0 -0.1 =0.1
| -0.05 0 0.1
and: T = PT (BTM'lB) =
‘ 6,6
O-6 -0-1" Onh‘
-0.2 0.4 -0.2
- 0.2  -0.2 0.k
-0.2 -0. 4 0
O —0.2 "'002‘.
| 0.2 0 0.4
Hence
-1

5 =0.1
0.2
0.1

-1
0

-0.05
=0.1

0.15
0.1
0.05

-0.2
-0.2
0
0.6

0.2
0.2

-0.1
0.1
0.2

0 -0.05

-0.1 0.1
0.1 0.05
0.2 -0.1

-0.1 0.15
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i 1.6 -0.8 0.8 -0.8 0o -0.8
-0.8 1.2 -0.4 -0.8 -0.L 0
0.8 -0.k4 1.2 0o -0.4 0.8
-0.8 -0.8 0 1.6 0.8 0.8]°
0 -0.4  -0.4 0.8 1.2 -0.8
| -0.8 0 0.8 0.8 -0.8 2.4
Finally we get
ii = ; 2 (I - T) P—l as
6,6
10.72 -5.36 5.36  =5.36 0 -5.36
-5.36 8.0b -2.68 -5.36 -2.68 0
1o"h 5.36 -2.68 8.04 0 -2.68 5.36
-5.36 ~5.36 0 10.72 5.36 5.36
0 -2.68 -2.68 5.36 8.0k -5.36
L—5.36 0 5.36 5.36 =5.36 16.08
in metres squared.
By dropping the scalar 1o'h we get the results in cm2.

The comments stated at the end of section 6.4.9 regarding

the value of Oo versus the assumed walue of 1.0 for 002

hold true here as well.
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6.5 Exercise 6

1. To determine the height h of a wall shown in the Figure, the
horizontal distance 2 and the vertical angle 6 were observed and
found to be: - '\7'

% = 85.34 m, with S7 = 2 cn.

@
i H]
%\
\
J—.

= 12°37'30", with 85 = 10",
Required: Compute the statistical estimate for h

along with its RMS.

2. To determine the distance P1P2 = ¢, which cannot be measured directly

due to the existence of some obstacle as shown in the Figure, the

following measurements were taken:

i
]

P2P3 = a = 30 m, with Sa 3 cm,

PlPB =D

Y = 60°, with 55 = 25",

40 m, with 8¢ = 4 cm,

Reguired: Compute the distance P1Pp and its

standard error to the nearest mm.

3. Determine the standard error of the estimated hedight h of the tower
given in Problem number 9, Exercise L, section 4.11. Consider all the

measured quantities, namely 2, o, B and 6 to be uncorrelated.

b, From a point Po in the x-y coordinate system shown below, a distance
d = 5637.8 m and an azimuth T = 49.9873 grads (100 grads = 90 degrees)
to a second point Pl were measured. The relative error of d is
1.2 ¢ lOuu. The RMS of T is 0.08 centigrads (1 grad = 100 centigrads).
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Required: Compute the following:

1 c
_‘)

(i) The coordinate differences (Ax, Ay)

between points PO and Pl'

~

(ii) The variance-covariance matrix P

AN
)

N

where X = (Ax, Ay), in m 2.

(iii) The RMS of Ax and Ay respectively.

(iv) The correlation coefficient

between Ax and Ay.

==X

5. The shown traverse consists of two legs POPl and Png. The coordinates

(xo, yo) of the initial point P_ as well as the (x, y) coordinates of

the reference mark R are considered to be

error-free (errorless), i.e. fixed

F?Cx,g) 432

guantities. The measured quantities

are the horizontal angles 8. and 82

1

and the horizontal distances dl and d2

respectively. The available data are:

x =100.0 m , v = 200.0m , Y
Xo = 150.0 m ) v, = 150.0 m ,
- X
G = TSO bl With S_ = 3” 9
1 B,
7 = o) . — = on
3, = 270° , with 882 o
i =100m  and a, = 200 m.

The standard error of the observed distance is to be calculated according

to the formula :

Sa(cm) = 1.0 {em) + da(m) . 1072,
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Required: Compute the following:

(i) The estimated coordinates (xq, yl) of point P, along with their

. X1 Yl)
(ii) The estimated coordinates (x5, yp) of point P, and their

associated variance-covariance matrix Z(

variance-covariance matrix Z<§ § )"
D>

Note that the coordinates are required to the nearest mm  and the
. . . . 2
variances and covariances are required in cm

~

(iii) Discuss the correlation among the estimated coordinates X5 Vo

x2 and Voo
6. Having an intersection problem, as shown in the Figure, i.e.
observing the two horizontal angles B and o from the two known stations
Pl (xl, yl) and P2 (x2, y2) in order to determine the (x, y) coordinates
of an unknown station P.

Given: the following data:

Xl=200.0m S Lol L2

- H - . b]

y, = 500.0 m (x5 9) |1 5

X2 = 5h6. b m . ) - 2 -0.5 - 5

S =300.0m (Xp» o ’

¥, = 300.0 m -0.5 3

o =90° , §-=3" g(*zfﬁz)
and S= == 0 . P

-B- = 600 , Sé_ - 2!1 oL

~ ~

Required: Compute the estimated (x, y) coordinates of the unknown

station P, in metres, and their associated variance-covariance matrix

~

~ . 2
I in em .
(x, y)
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7. Consider problem number 1 of this exercise. Assume that the observed
quantities & and 6 have got also non-random (systematic) errors of
-1 cm and 5" respectively. Compute the expected total error in the

derived height h in centimetres.

8. Determine the expected error in the sum of a hundred numbers in the
following two cases:
(i) each individual number is to be rounded-off to three decimal
places.
(ii) each individual number is to be truncated to three decimal
places.

Then compare and comment on the results.

9. To determine the height h of a tower, the
technique shown in the Figure was
proposed, in whieéh o, B, O and a are the

quantities to be measured. The approxi-

mate values of these quantities were

obtained from a preliminary investigation

and found to be:

60° , B =30° ,

o

8 = L5° and a = 100 m.

Providing that the horizontal angles o and B are to be measured with

a precision of 2" (i.e. 9= = S= = 2"), what are the required precisions
)

8

in measuring both the horizontal distance a and the vertical angle ©

(i.e. 85 and 85) such that their contributions to the standard error Sﬂ

~

of the derived height h - which is specified not to be worse than

2.45 cm - will be the same.
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Assume that the horizontal anglés in a triangulation network are to

be measured using two theodolites, "I" and"II", of different quality.
These two theodolites were tested by measuring one particular angle
several times, from which it was found that the standard deviation

of one observation, i.e. the standard deviation of the sample,Observed

with theodolite "I" was SL = 1"5 and with theodolite "II"
1

was SL = 2U5, If it is specified that all the angles of the net-
2

work are required to have a standard deviation of the mean, i.e.
SE’ not worse than 0.5, how many times should we measure each angle

when using theodolite number"I" and when using number "II"?

The following observations of the length of an iron bar in metres
are made on a comparator:
3.284, 3.302, 3.253, 3.273, 3.310, 3.321, 3.304,
3.295, 3.263, 3.270.
Required: (i) the length of the bar (i.e. the mean) ;
(ii) the RMS of one observation

(iii) the standard deviation of the mean.

The following table shows the means Ei'of the daily measurements of
the same distance 2 during a five day period, along with their

respective standard errors SE .
i

Day Mon. Tues. Wed. Thurs. Fri.

2. (m) 101.01 100.00 99.97 99.96 100.02




13.

225

Regquired: Compute the weighted mean of the distance &, say ﬁ, along

~

with its associated RMS, i.e. SE'

Given a gravimetric network, as shown in the figure below, determine

the gravity values g and g, at points Pi and P

respectively,

2
with their variance-covariance matrix. The gravity P
_ 1
g = 979832.12 mgal at the initial
0
AJ o
point PO is known.
The following table gives the observed JAte P
gravity differences with their signs,
' P
along with the time needed for each o
AGoy P
observation. 2
Station
From To Ag (mgal) AT (hr)
PO Pl - 9.82 2.5
P2 PO -27.78 1.5
+38. .
Pl P2 38.k42 2.0

Assume that the observed differences Ag's are uncorrelated, and their

variances are proportional to the corresponding time intervals AT.
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14, Given a levelling net as shown in the

Figure, the elevations H, , HB of

points A and B are considered as

known and errorless:

[}

By

g

300.000 m,

302.245 m.

The following table gives the observed

height differences Ei's along with the P
2
length zi of each section.

Section Station h. L.

No. From To : T

(m) (km)

1 P B 1.24ks 1.0

2 A Pl 0.990 - 0.5

3 Pl P2 0.500 1.0

i P2 B 0.751 1.0

5 P3 B 1.486 0.5

6 P3 P2 0.740 1.5

Note that the arrows in the given figure indicate the directions of
increasing elevations. The above observations are considered

uncorrelated with S% proportional to zi.
i

Required: Perform a parametric least squares adjustment of the above

levelling net and find out the following:
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A

~ A
(i) The estimated elevations H , H, and H3 of points P, P, and P3.
(ii) The adjusted values of the given six height differences.
(iii) The estimated variance-factor éi and compare it with the assumed,

s s . 2
apriori variance factor So; comment on the results.

(iv) The estimated variance-covariance matrix iﬁ of X = (ﬁl,ﬁg, ﬁ3).

15. Adjust the levelling net given in problem no. 14 again by using the
conditional method of adjustment. Replace the requirement no. 1iv

N

by computing the estimated variance-covariance matrix Zﬁ of the
adjusted height differences. Compare the results of the other three
requirements with the corresponding results from the parametric

adjustment.

16. Two physical quantities Z and Y are assumed to satisfy the following
linear model
Z =0Y +8 ,
where o and B are constants to be determined. The observations Yi

and Zi obtained from an experiment are given in the following table.

¥ 1 3 L 6 8 9 11 1h

N
=
n
=
=
N
—
o
\O

Assume that the Y's are errorless, and the 7Z's were observed with equal
precision.
Required: Determine o and é which provide the best fitting line

between Z and Y, in the least squares sense.
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17. Solve problem No. 16 again, but this time consider the Z's error-
less, and the Y's with equal variances. Compare the results for

6 and B with the corresponding results from problem No. 16.

18. The given figure shows a triangulation B
network with fixed base AB = 2 km. The
eight numbered angles in the Figure

are -all measured, each with a

different number ni of observations

as shown in the following table:

Angle n, Mean value of the angle
No.
1 o 82° 07" 0950
2 2 28 22 17.70
3 5 110 29  25.02
4 3 125 53 33.67
5 2 25 Lk 09.30
6 2 29 19  17.50
7 5 55 03  29.32
8 3 68 33 32.33

Assume that all the meaéurements were done with the same instrument
and under similar circumstances. (Eigﬁ; the weight of each angle
will be proportional to the corresponding number of repetitionSni).
Required: (i) Neglecting the spherical excess in this network, compute

A
the distance CD using the adjusted values of the observed angles.
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(i) Considering the fixed base AB to be errorless, find

N\
the estimated relative error of the estimated length CD.

The given figure shows a braced quadrilateral ABCD in a triangulation
network, in which all the directions marked by arrowheads were
measured with the same precision.
The base AB = 25 km is assumed
errorless. The spherical excess
€ in the four formed triangles

is computed approximately and
given by:

AABC, ¢ 3126

i

AABD, e = 1U556

ACBD, ¢

3V085 ,

AACD, € = 10515 .
The results of the direction observations are summarized in the

following table.

Occupied 4 Target " Direction | Observed Direction
Station Station No.

B T 00° 00' 00900

A C 8 91 30 30.35

D 9 125 53 33.91

C 30 00 00 00.00

B D 36 28 22  1T7.26

A 38 110 29 27.13

D 26 00 00 00.00

C A 27 29 19 17.52

B 28 35 03 26.80

A 11 00 00 00.00

D B 12 35 07T .29.00

C 13 68 33 32.60
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Required: (i) Perform a conditional adjuétment and find out the
adjusted values of the observed directions, along with their
estimated variance~covariance matrix iﬁ .
(ii) Using Legendre's theorem for the spherical triangle,

i.e. by subtracting one third of the spherical excess from each
adjusted angle and then solving the triangle as if it was a plane
triangle compute the side 6% from the known base AB and the
adjusted directions. Then check the computed 6% by following another
route in its computation.

iii) Compute the estimated relative error of the estimated

length CD.

The given figure shows a
triangulation network with

two fixed (errorless) stationms
A and E whose x and y

coordinates are:

X y

A: 0.0m, 0.0 m,

E: 200.0 m, 0.0 m.

The 1b marked directions (with arrowheads) were observed with the

same precision. The results of the observations are tabulated below.
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Occupied Target Direction Observed Directions
Station Station No.
A B 1 00° 00' 00v0
C 2 60 00 10.0
D 3 00 00 00.0
B C L 60 00 05.0
A 5 119 59 50.0
A 6 00 00 00.0
C B 7 59 59 55.0
D 8 120 00 00.0
E 9 180 00 05.0
B 10 00 00 00.0
D C 11 50 59 h5.,0
B 12 119 59 55.0
. A 13 00 00 00.0
D 1k 60 00 15.0

Required: Prepare the input foi'a computer program performing

a parametric least squares adjustment using the directions (not the

angles) to estimate the unknown coordinates of points B, C and D by

providing the following:

(i) The number of unknown parameters and the number of degrees of

freedom.

(ii) The non-linear mathematical model.

(iii) The approximate values for the

Xy ¥

coordinates of points B,C,D.

(iv) The linearized form of the mathematical model, i.e. V = AAX-AL,

giving the symbolic elements of the vectors V and AX and the

numerical values of the elements of the design matrix A and the

vector AL.
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(v) Construct the variance-covariance matrix ZAi of the obser-

vations assuming the standard errors in directions to equal

2"
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APPENDIX I

Assumptions for and Derivation of the

Gaussian PDF

The derivation of the Gaussian PDF presented here is.due to G.H.L.
Hagen (1837). The first formulation of the normal law, however, originates
with De Moivre (1733).

(i) Let us assume that m independent physical causes are influ-

encing the measurement. Let each cause contribute an elementary error

either +A or -A towards the overall error €. Any value of € can thus be
expressed as a combination (there are n = 2% such combinations) of m
elementary errors + A. We note first that the spam of e is <-mA, mA>.
Further, we realize that € can attain only a value of an integral multiple
of A. It is not difficult to see that any two adjacent values of € differ

by 2A since one is obtained from the other by replacing -A by +A and vice-

versa. Dividing the range of €

Ra (g) = mA - (-mA) = 2mA
by the step of €, i.e. 2A, we discover that € can attain any of the following
m + 1 values
e, = (2, -m)d , i=0,1,...m | (1-1)
corresponding to particular distinguishable combinations of the m elementary
errors.
(ii) Let us regard now the set D of all permissible values of ¢

D = {SO" El, “ee ,Ei, .--,E:m}
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the probability space of the random sample consisting of all the o
combinations €. Obviously,many of the 2m combinations have the same values,
because there are only m + 1 different values available. The counts, ci,

of the individual values €5 (see section 3.1.1) can be computed using the

combined probability (see section 2.3):

e = (U o m (m-1) (m-2) ... (m=i+l) _ E 3/ ﬁ 3 (1-2)

0t i (i-1) (i-2) ... 1  j=m-i+l  j=1

The actual probability of any value €s is then given by

[¢]

ple,) = == (12", (1-3)
n

(see section 3.1.2).

(iii) The above formula describes the actual PDF of our sample €
in the discrete probability space D. Since our ultimate aim is to derive
the analytic expression for the "corresponding" (we shall see later what
is meant by corresponding) continuous PDF, we want to be able to express
P as a function of € rather thah i. The easiest way to do it is to use the
finite differences.

Let us:.define

§p(e,) = P(ey) - Ple;_,)
and we get from equation (I-3)
sp(e,) = (1)/2" - (012"
=1 - D =71
= (et (- m—i+l)'

Obviously, the ratio &P (ei)/P(ei) is then given by
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GP(si)/P(ei) =1 - i/(m-i+1). (I-k)
On the other hand, i can be expressed as a function of Ei from equation
(1-1)
2i - m = ai/A

or 1
i= E-(ei/A +m).

Renoting &8e =2A and substituting for i in equation (I-4) we obtain

§P(e) =1 - e/8e + m/2
P(e) m- /8= m/2 + 1
='l + m/2 - ¢/8e - /8¢~ m/2
1+ m/2 - /8¢
_ 1 - 2¢e/8e . 2 - 8¢

1+ m/2 - ¢/6¢ (1 + m/2) Se - ¢

(iv) The next step in the development is to convert the discrete
PDF, P(e), to a continuous PDF, i.e. to derive the "corresponding" continuous
PDF. The "corresponding" PDF is assumed to be the PDF of such a variable
e which is defined the same way as the discrete € in (i) with the exception
that m 1s let to grow beyond all limits, i.e. m -+ ». By letting m grow
we would obtain infinitely large values of ¢ (see equation (I~l». This
would contradict our experience teaching us that the errors are always finite
in value. Hence, we have to adopt another assumption and that is that as
m grows to infinity, the absolute value of elementary error A grows to zero,

making the product mA in equation (I-1) always finite.
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Accepting these two assumptions we can write the finite difference

equation as

1im S§P(¢g) = - lim 2g - &g (15)
P(€) (1+m/2) 8e - ¢
m - o m > o
§e + 0 §e »~ 0O

which is nothing else but an ordinary differential equation for the con-

tinuous PDF P(eg). It can thus be rewritten as

d P(e) _ _ 2e - de
P(e) (L + m/2) de - ¢

To simplify the solution of this differential equation let us multiply
both the numerator and denominator of the right hand side by de and assume

that md52 is constant We further assume

d€2 << gde << mds2 = C

Then we can write

dp 2 ede i
E ) (1-6)

(v) We can now finally solve the differential equation. It is

solvable by direct integration and we get

dP . Ly
— T e + .
J T fC ede const

2

n P = -~ §§-+ const.

Q=

Denoting the integration constant by Ln K we finally obtain

P = K exp (—262/0). (I-7)
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The question now arises whether we are free to regard both K and
C as two independent parameters of the above PDF. We know that the basic

equation for a PDF, i.e
S Ple) de =1 (1-8)

has to be satisfied. Substituting for P into the basic equation we get

0 [e]

i) P(e) de = /__ K exp (-282/C) de =

OO

co

=K [ exp (—262/0) de = 1

o]

and K=1// exp (—232/C) de .

- OO

Hence the answer is that K must not be regarded as an independent parameter.

It is a function of C and can be evaluated by solving the integral above.

We obtain
I ) exp (—252/0) de = 2 4)& exp (—252/0) de = v Q% (1-9)
and k=72, (1-10)
i Cm
The Gaussian PDF can then be written as
P(e) = 6 (C3e) = om exp (-26%/0) (1-11)

and we can see that it is a one-parametric PDF.
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APPENDIX IT - A

ORDINATES OF THE
STANDARD NORMAL CURVE

2 .
Y 1 exp (- lé* Y f
Ver
o 0 £
+ 0 1 2 3 ey 5 6 7 8 9
0.0 | .3989  .3989  .3989  .3988  .3986  .3984  .3982  .3980  .3977  .3973
0.1 8970 .3965 3961 .3956 3951 .3945 .3939 .3932 .3925 .3918
0.2 | .3910  .3902  .3894  .3885  .3876  .3867  .3857  .3847  .3836  .3825
0.3 | .3814  .3802  .3790  .377%  .3765 = .3752  .3739  .3725 3712 = .3697
04 | .3683 3668  .3653  .3637  .362L  .3605  .3589  .3572  .3555  .3538
0.5 3521 3503 .3485 .3467 .3448 3429 .3410 .3391 3372 .3352
0.6 | .3332 ' 3312 3292  .3271  .3251  .3230  .3209  .3187  .3166  .3144
0.7 | .8123  .3101  .3079  .3056  .3034  .3011  .2989  .2966  .2043  .2920
0.8 2897 2874 .2850 2827 2803 .2780 2756 2732 2709 2685
0.9 | .2661  .2637  .2613  .2589 2565  .2541  .2516  .2492  .2468  .2444
1.0 2420 .2396 2371 2347 .2323 .2299 2275 2251 2227 .2203
1.1 2179 .2155 2131 2107 .2083 .2059 .2036 2012 .1989 1965
1.2 | 1942 1919 1895  .1872 1849  .1826  .1804  .1781  .1758 1736
1.3 1714 1691 .1669 1647 .1626 .1604 .1582 1561 .1539 1518
14 | 1497 1476 1456 1435 1415 1394 1374 1354 1334 1315
1.5 1.1295 .1276 1257 .1238 1219 1200 1182 1163 .1145 1127
1.6 1109 1092 1074 1057 .1040 .1023 .1006 .0989 .0973 L0957
7 | 0940  .0925  .0909  .0893  .0878  .0863 . .0848  .0333  .0818 - .0804
1.8 0790 0775 0761 .0748 0734 0721 0707 0694 0681 .0669
1.9 L0656 .0644 0632 0620 0608 .0596 .0584 0573 0562 .0551
2.0 0540 .0529 .0519 0508 .0498 .0488 .0478 .0468 .0459 .0449
2.1 .0440 .0431 .0422 .0413 .0404 .0396 .0387 .0379 0371 0363
2.2 L0355 L0347 .0339 .0332 .0325 0317 .0310 .0303 .0297 .0290
2.8 L0283 0277 .0270 0264 .0258 .0252 .0246 0241 .0235 .0229
2.4 0224 .0219 0213 .0208 .0203 .0198 L0194 0189 0184 .0180
2.5 0175 0171 .0167 .0163 .0158 .0154 0151 .0147 .0143 .0139
2.8 0136 .0132 .0129 0126 - .0122 0119 0116 .0113 0110 0107
- 2.7 0104 .0101 0099 .0096 .0093 0091 .0088 .0086 .0084 .0081
2.8 | .0079  .0077  .0075  .0073  .0071  .0063  .0067  .0065  .0063  .0061
2.9 .0060 .0058 .0056 0055 .0053 .0051 .0050 .0048 .0047 .0046
3.0 .0044 .0043 .0042 .0040 .0039 .0038 0037 0036  .0035 0034
3.1 0033 0032 0031 . .06030 .0029 .0028 .0027 0026 .0025 .0025
. 3.2 .0024 .0023 .0022 .0022 .0021 .0020 .0020 .0019 .0018 .0018
2.1 0017 .0017  .0016  .0016  .0015  .0015  .0014  .0014  .0013  .0013
3. .0012 .0012 .0012 0011 .0011 .0010 .0010 .0010 .0009 .0009
3.5 | .0009  .0008  .0008  .0008  .0008  .0007  .0007  .0007  .0007  .0006
3.8 0006 .0006 .0006 .0005 .0005 .0005 .0005 .0005 0005 .0004
3% | .0004 L0004  .0004  .0004  .0004  .0004  .0003  .0003  .0003  .0003
3.8 | .0003  .0003  .0003  .0003  .0003  .0002  .0002  .0002  .0002  .0002
39 | .0002 L0002  .0002  .0002  .0002  .0002  .0002  .0002  .0001  .0001
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APPENDIX IT . B

AREAS UNDER THE -
- STANDARD NORMAL CURVE
RS from _” tO £ - e

i

£ 0 1 2 3 4 5 6 7 8 9

0.0 | .5000  .5040  .5080  .5120  .5160  .5199  .5239 5279  .5319  .5359
01| .5398  .5438  .5478  .5517  .5557  .5596  .5636  .5675  .5714  .5754
02| .5793  .5832  .5871  .5910  .5948  .5987  .6026  .6064  .6103  .6141
0.3 .6179  .6217  .6255  .6293  .6331  .6368  .6406  .6443  .6480 6517
0.4 | .6554 6591  .6628  .6664  .6700  .6736  .6772  .6808  .6844  .6879
05| .6915  .6950  .6985 7019  .7054  .7088 7123 7157  .7190  .1224
0.6 | .1258 7201 7324 7357 7389  .7422  .T454 7486  .7518  .71549
07| .7580  .7612  .T642 7673 7704 7734 7764 7794 7823 71852
0.8 | 1881 7910  .7939  .7967  .7996  .8023  .8051  .8078  .8106  .8133
09| 8159  .8186  .8212  .8238  .8264  .8289  .8315  .8340  .8365  .8389
1.0 | .3413  .8438  .8461  .8485  .8508  .8531  .8554  .8577  .8599  .8621
11| 8643 8665  .8686  .8708  .8729  .8749 8770  .8790  .8810  .8820
12| .8849 8869  .8888  .8907  .8925  .8944  .8962  .8980  .8997  .9015
3| 9032 9049  .9066  .9082  .9099  .9115 9131 9147 9162 9177
4 | 9192 9207 9222 9236 9251  .9265  .9279 9292  .9306  .9319
15| .9332 9345  .9357  .9370  .9382  .9394 9406  .9418 9420  .9441
16| 9452 9463 9474 9484  .9495  .9505  .9515  .9525  .9535  .9545
17 ] 9554 9564 9573 9582 9591  .9599 9608  .9616  .9625  .9633
1.8 | .9641  .9649  .9656  .9664 9671  .9678  .9686  .9693  .9699  .9706
1.9 | 9713 9719 9726  .9732 9738  .9744 9750  .9756  .9761  .9767
20 | ..9772 9778 9783  .9788  .9793  .9798 = 9803  .9808  .9812 . .9817
21| .9821  .9826  .9830  .983¢ 9838  .9842 9846  .9850  .9854  .9857
2.2 | 9861  .9864  .9868 9871  .9875  .9878 - 9881  .9884  .9887  .9890
2.3 | .9893  .9896  .9898  .9901  .9904  .9906  .9909  .9911  .9913  .9916
24 | 9918 9920  .9922  .9925 9927  .9929  .9931  .9932  .9934  .9936
2.5 | .9938  .9940  .9941 9943 9945  .9946  .9948 9949 9951  .9952
2.6 | .9953  .9955 9956 9957  .9959  .9960  .9961  .9962  .0963  .9964
2.7 | .9965  .9966  .9967  .9968  .9969  .9970 9971  .9972 9973  .9974
28| 9974 9975 9976  .9977 9977 9978 9979  .9979 9980  .9981
2.9 | .9981  .9982  .9982  .9983  .9984  .9984 9985  .9985  .9986  .9986
30 | .9987  .9987 9987  .9988  .9988  .9989  .9989  .9989  .9990  .9990
31| 9900  .9991  .9991  .9991  .9992  .9992 9992  .9992  .9993  .9993
32| 9993  .9993 9994 9994 9994  .9994 9994 9995  .9995  .9995
33| .9995  .9995  .9995  .9996  .9996  .9996  .9996  .9996  .9996  .9997
84 | 9997 9997 9997 9997  .9997  .9997 9997  .9997  .9997  .9998
35 | .9998  .9998  .9998  .9998  .9998  .9998  .9998  .9998  .9998  .9998
36 | .9998  .9998  .9999  .9999  .9999  .9999  .9999 - 9999  .9999  .9999
87 | 9999 9999 9999  .9999  .9999  .9999 9999  .9999  .9999 9999
38 | .9999  .9999 9999  .9999  .9999  .9999 9999  .9999  .9999  .9999
3.9 | 1.0000 1.0000 1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000

<
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APPENDIX II - C

AREAS
under the
STANDARD
NORMAL CURVE
from 0 to t

t 0 1 2 3 4 5 6 7 8 9

0.0 .0000 .0040 .0080 .0120 .0160 0199  .0239 0279 .0319 0359
0.1 | - .0398 .0438 0478 0517 0557 .0596 .0636 .0675 0714 0754
0.2 0793 0832 0871 0910 .0948 .0987 1026 .1064 1103 1141
0.3 1179 1217 1255 1293 .1331 .1368 .1406 1443 .1480 1517
0.4 1554 .1591 1628 1664 1700 1736 1772 1808 1844 1879
0.5 1915 1950 .1985 2019 2054 2088 2123 2157 2190 2224
0.6 - .2258 2201 2324 2357 2389 2422 2454 2486 2518 2549
0.7 2580 2612 2642 2673 2704 2734 2764 2794 2823 2852
0.8 2881 2010 2939 2967 2996 3023 3051 3078 3106 3133
0.9 31569 .3186 3212 .3238 3264 .3289 3315 3340 3365 3389
1.0 3413 3438 3461 .3485 .3508 3531 3554 3577 3599 1.3621
1.1 .3643 .3665 .3686 3708 - .3729 3749 .3770 .3790 .3810 .3830
1.2 3849 .3869 .3888 .3907 .3925 3944 .3962 .3980 .3997 4015
1.3 .4032 4049 40686 4082 4099 4115 4131 4147 4162 4177
1.4 4192 4207 4222 4236 4251 4265 4279 4292 4306 4319
1.5 4332 .4345 4357 4370 4382 4394 .4406 4418 4420 4421
1.6 4452 4463 4474 4484 4495 4505 4515 4525 4535 4545
1.7 4554 4564 4573 4582 4591 4599 4608 4616 4625 4633
1.8 4641 4649 4656 .4664 4671 4678 4686 4693 4699 4706
1.9 4713 4719 4726 4732 4738 4744 4750 4756 4761 ATET
2.0 4772 4778 4783 4788 4793 4798 4803 4808 4812 4817
2.1 4821 4826 4830 4834 4838 4842 4846 4850 4854 A8H7
2.2 .4861 4864 4868 4871 4875 4878 4881 .4884 4887 .4390.
2.8 4893 4896 .4898 4901 4904 .4906 4909 - 4911 4913 4916
2.4 4918 .4920 4922 4925 4927 4929 4931 4932 4934 4936
2.5 4938 4940 4941 4943 4945 4946 4948 4949 4951 4952
2.6 .4953 4955 4956 4957 4959 4960 4961 4962 4963 4964
2.7 4965 4966 4967 .4968 4969 4970 4971 4972 4973 4974
2.8 4974 4975 .4976 4977 4977 4978 .4979 4979 4980 4981
2.9 4981 4982 4982 4983 4984 4984 4985 4985 .4986 4986
3.0 4987 4987 4987 4988 4988 .4989 .4989 4989 .4990 4990
3.1 4990 4991 4991 4991 4992 4992 .4992 4992 .4993 4993
3.2 4993 4993 4994 4994 «994 4994 4994 4995 4995 4995
3.3 4995 14995 4995 4996 4996 4996 4996 4996 4996 4997
3.4 4997 4997 4997 4997 4997 4997 4997 4997 4997 4098
3.5 4998 4998 4998 .4998 .4998 .4998 4998 4998 4998 4998
3.6 4998 .4998 .4999 4999 .4999 4999 ,4999 .4999 4999 4999
3.7 .4999 .4999 ,4999 4999 4999 .4999 4999 4999 4999 4999
3.8 4999 4999 4999 4999 .4999 14999 .4999 4999 4999 4999
8.9 5000 .5000 5000 .5000 5000 5000 5000 5000 .5000 5000
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