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PREFACE 
 

In order to make our extensive series of lecture notes more readily available, we have 
scanned the old master copies and produced electronic versions in Portable Document 
Format. The quality of the images varies depending on the quality of the originals. The 
images have not been converted to searchable text. 



FOREWORD 

It has long been the author's conviction that most of the 

existing courses tend to.slide over the fundamentals and treat the 

adjustment purely as a technique without giving the student a deeper 

insight without answering a good many questions beginning with "why". 

This course is a result of a humble attempt to present the adjustment 

as a discipline with its own rights, with a firm basis and internal 

structure; simply as an adjustment calculus. Evidently, when one tries 

to take an unconventional approach, one is only too liable to make 

mistakes. It is hoped that the student will hence display some patience 

and understanding. 

These notes have evolved from the first rushed edition - termed 

as preliminary- of the Introduction to Adjustment Calculus, written for 

course SE 3101 in 1971. Many people have kindly communicated their 

comments and remarks to the author. To all these, the author is heavily 

indebted. In particular, Dr. L. Hrad{lek, Professor at the Charles 

University in Prague, and Dr. B. Lund, Assistant Professor at the Math-

ematics Dept. UNB, made very extensive reviews that helped in clarifying 

many points. Mr. M. Nassar, a Ph.D. student in this department, carried 

most of the burden connected with rewriting the notes on his shoulders. 

Many of the improvements in formulations as well as most of the examples 

and exercise problems contained herein originated from him. 

None of the contributors should however, be held responsible for 

any errors and misconception still present. Any comment or critism com-

municated to the author will be highly appreciated. 

P. Van!~ek 
October 7, 1974 
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INTRODUCTION 

In technical practice, as well as in all experimental sciences, 

one is faced with the following problem: evaluate quantitatively para

meters describing properties, features, relations or behaviour of various 

objects around us. The parameters can be usually evaluated only on the 

basis of the results of some measurements or observations. We may, for 

example, be faced with the problem of evaluating the length of a string. 

This can be measured directly. Here the only parameter we are trying to 

determine is the observed quantity itself and the problem is fairly 

simple. More complicated proposal would be, for instance, to determine 

the coefficient of expansion of a rod. •rhen the parameter--the 

coefficient of expansion--cannot be measured directly, as in the previous 

case, and we have to deduce its value from the results of observations of 

length, by performing some computations using the mathematical relationship 

connecting the observed quantities and the wanted parameters. The more 

complicated- the problems get, of course, the more complex is the system 

whose parameters we are trying to determine. Obviously, the determination 

of the orbital parameters of a satellite from various angles observed on 

the surface of the earth would be an example of one such still more 

sophisticated task. 

The adjustment is a discipline that tries to categorise those 

problems and attempts to deal with them symmetrically. In order to be 

able to deal with such problems systematically the adjustment has to use a 

language suitable for this purpose, the obvious choice being mathematics. 

l 
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Hence, the problem to be treated has to be first "translated" into the 

language of mathematics, i.e., the problem has to be first mathematically 

formulated. The mathematical formulation of the problem would really be 

the mathematical formulation of the relation between the observed quan-

tities (observables) and the wanted quantities (parameters). This relation-

ship is called the mathematical model. Denoting the observables by L 

(L stands for one, two, or n quantities) and the parameters by X (X stands 

for one, two or m quantities) the most general form of the mathematical 

model cna be written as 

F (X, L) = 0 • 

The above equation merely states that there is a (implicit) relation 

between the observables and the parameters. The formulation of an actual 

mathematical model has to be done taking into account all the physical 

and geometrical laws--simply using the accumulated experience. The com-

plexity of the mathematical model reflects the complexity of the problem 

itself. Thus the mathematical model of our first problem is practically 

trivial: 

X = L 

where X is the wanted length and L is the observed length. 

The mathematical model for the coefficient of expansion a of the 

rod is more complicated, namely, for instance 

R, = R, ( 1 + at) 
0 

where a = X, the observed length R, and the observed difference in temper-

ature t create L and R, is another parameter (length of the rod at 
0 



3 

a fixed tern~erature) which we happen to know. The mathematical model for 

the satellite orbital elements would be more complicated still. 

Once the mathematical model has been formulated it can become 

a subject of rigorous mathematical treatment, a subject of adjustment 

calculus. Hence, the formulation of the mathematical model itself is to 

be considered as being beyond the scope of adjustment calculus and only 

the various kinds of mathematical models alone constitute the subject of 

interest. 

There is one particular class of models, that are very often 

encountered in practice, and that can be termed as overdetermined. By an 

overdetermined model we understand a model which does not have a unique 

solution for X because there are "unnecessarily many" observations supplied. 

This can be the case, say, with our first example, if the length is measured 

several times. The model in this case would be formulated as 

X = R. 
1 

X = R, 2 

X = R. n 

where t 1 , t 2 , .•• , tn are all encompassed by the symbol L. Or, in the 

second example, we may have 

t 1 = t 0 (1 + at1) 

R-2 = R-0 (1 + at2) 
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••• I t ) = L. n 

As we can easily see, these overdetermined models may or may 

not have a unique solution. They usually have not. Therefore, in order 

to produce a unique solution of some kine, we have to assume that the 

observations were not quite correct, that there were errors in their 

determinations. 

This leads us into the area of the theory of errors with its 

prerequisites--the theory of probability and statistics. With the help 

of these disciplines we are aboe to define the most probable unique 

solution (if it exists) for the parameters of the mathematical models. 

We also are usually able to establish the degree of reliability of the 

solution. 

The notes are divided into six sections: Fundamentals of the 

intuitive Theory of Sets, Fundamentals of the Mathematical Theory of 

Probability, Fundamentals of Statistics, Fundamentals of the Theory of 

Errors, Least-Squares Principle, Fundamentals of the-Adjustment Calculus. 

The first four sections describe the relevant parts of the individual 

fields that are necessary to understand what adjustment is all about. They, 

by no means, claim any completeness and it is envisaged that an interested 

student will supplement his reading from other sources, such as those 

listed at the end of these notes. 

A separate section (5) is devoted to the philosophical basis 

of the adjustment calculus. Although not very extensive it should be 

regarded important, giving the reasons why the least-squares techniqu~ 

is used in adjustment. 
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Finally, the last section deals with the basics of the adjust

ment proper. Here again, only the introductory parts of the adjustment 

calculus could be treated with the understanding that only the subsequent 

courses will develop the full picture. 

Throughout the course emphasis is placed on the parallel develop

ment of concepts of "discrete statistics", i.e. statistics of random 

samples, and "continuous statistics", i.e. statistics of random variables. 

While random samples are the quantities we deal with in every-day practice, 

the mathematical tools used are predominently from the continuous domain. 

Good understanding of the interplay of the two concepts is indispensable 

for anyone who wants to be able to use the adjustment calculus properly. 

The bibliography given at the end of these notes lists some 

of the useful books dealing with statistics and adjustments. Interested 

reader is recommended to complement the reading of these notes by turning 

to at least some of the listed sources. 



1. FUNDAMENTALS OF THE INTUITIVE THEORY OF SETS 

1.1. Sets 1 Elements and Subsets 

A set is an ensemble of objects (elements) that can be distin-

guished one from another. The set is defined when all its elements are 

defined. 

Example 1.1: k':- 'I/,, 

" 4.18 } Al - { :o::: 
/I I'-

{ 8, <r 
'I I, 

4} A2 - 1, 15, 0, .::0~ 
/p-

A3 - { 0, 1} 

A4 - {all the left feet} 

A5 _ {all the cities with more than one million inhabitants 

in New Brunswick} 

R - {all the real numbers} , and 

I - {all the positive integers} , are all sets. 

The text within the brackets{ ••• } is known as the list of the-

set. If an element a exists in the list of a set A, we say that the element 

a belongs to the set A, and this is denoted by 

a e: A 

which is read as "a belongs to A". On the other hand, if an element a 

does not belong to a set A, we write 

a t A 

which is read as "a does not belong to A". 

Example 1.2: Referring to Example 1.1, we see that: 

\I"~ 
-;0.:- e: -A-1 ,, \ 

2 t A1 , and a right foot t A 4. 

6 
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A part of a set G is called a subset of G whether it contai~s one 

or several elements. The fact that a set H is contained in G is hence 

written as 

HC G 

If H is not contained in G, i.e. if not all the elements of H are at the 

same time elements of G, we write 

H¢ G 

Example 1.3: Referring to Example 1.1, we see that: 

. {2 35 118} C::: I 

3 6.2} c:: R, and · { ~' \? 

A set which does not contain any element is known as the empty 

(void or null) set, and is denoted by~ • 

Example 1.4: The set A6 = {all people taller than 10 feet} 

contains no elements, i.e. A6 = ~ . Also from Example 1.1, 

we find that A5 = ~ . 
The sets are called egual if they contain the same and none but 

the same elements. 

Example 1.5: All the following sets are equal 

. {1 ' 2 ' 3} ' {3 ' 1 ' 2} ' {2 ' 3 ' 1} ' ••• 

1. 2. · P:t(;)gresston and Definition Set 

A progression ~ is an ordered (by ordered we mean that ~ is 

arranged such that each of its elements has a specific position) ensemble 

of objects (elements) that may not all be distinguishable one from another. 

The definition set D of a progression ~ is the set composed from all the 

distinguishable elements of ~. In such a case, we shall also say that D 
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belongs to ~. 

Example 1. 6: ~ = tl , 2 , W', 2 , 1 , 8 , C/ ) , is a 

progression, and its definition set D is given by 

D :: {1 , 2 , u, 8 , CV' } • 

At this point, the difference between a progression and a set 

should be clear in mind. For instance, the progression 

( &((', 8, 2 1 , 1 , 2 , ~ } represents a different progress-

ion than the one given in Example 1.6. However, the sets 

{ U, 8 ' 2 ' 1} ' . {2 ' 1 ' 8 ' cfC/' ' " } ' ... 
are all the same as the definition set D in Example 1.6. 

1.3. · Cartesian Product of Sets 

The Cartesian product of two sets A and B is a set, called the 

product set and denoted by Ax B (reads A cross B), whose elements are all 

the ordered two-tuples of elements of the component sets A and B. Hence, 

if a g A and b g B, then the two-tuple (a,b) g A x B. However, if b i A 

or a i B, the two tuple. (b,a) i Ax B. 

The above definition can be extended to more than two sets, say 

n sets. In such a case, the elements of the product set will be all the 

ordered n-tuples of elements of the component sets. Accordingly, we can 

define the Cartesian n-power Anlo'r An.if no danger of confusi.on with indexed 

set exists· I of. a set A as ·t:ne Cartes-ian p;rC!>duat ot tl:i.e same ·s:e-t A with itself 
n-times. 
Example 1.7: If A:: {3 , 1 , 5} and B = {2 , 4} , then the product set 

Ax B is AX:B- {(3, 2), (3, 4), (1, 2), (1, 4), (5, 2), 

( 5 , 4)} . Referring to Example 1.1, we can easily see that: 

' ', 
' :0: ) g Al X A2 ' ( 4 .18 ' <r 

I I ' 
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( 1 , <:::::> ) t A1 x A2 but (- 1 , ~ ) e: A2 x A1 , 

( 1 , 2 , 15 , 1 , 8) e: I 5. , and ( 5 .16 , 3 • 26 , 1 , 0 , 1 ) e: R 5.. 

1. ~-. Intersection of Sets 

The intersection of two sets A and B, denoted by An B, is a 

set which is a subset of both A and B and does not contain any elements 

other than the common elements to A and B. The intersection of two sets 

can be represented by the shaded area in Figure 1.1· Diagrams of this kind 

are called "Venn diagrams" . 

Figure 1.1 

From the above diagram we can easily see that 

Example 1.8: Referring to Example 1.1, we find that: 

n ' ,,; 
A A2 :{ :o-:. }, Rni:I, 1 /,,, 

Note that we can define a subset A of B as such a set whose 

intersection with B is A itself. In other words, if A C: B them An B : A, 

or vice versa (see Figure 1.2). 



10 

Figure·l.2 

If A() B = r/J, then the sets A and B are said to be disjoint sets. 

The intersection of n sets A1 , A2 , •.• ,An is usually denoted by 

n 

n 
() A. , where 
i=l ~ 

('\ A. ::: A1 () A2 tl A3 ... () A • 
i=l ~ n 

This is illustrated in Figure 1.3 by the common area to all sets. 

·Figure 1.3 

1.5. Union of Sets 

The union of two sets A and B, denoted by AU B, is a set that 

contains all the elements of A and B and none else. Similar to the inter-

section, the union of the two sets is represented by the shaded area in 
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Figure 1.4 

Figure 1.4 

The union of n sets A1 , A2 , 

n 

. . . ' A is denoted by 
n 

V A. where 
i=l ~ 

Example 1.9: Referring to Example 1.1, we obtain 

\? ' 4.18, 1, 8, 15, ~ 

0' 4 } ' 

and I U R ::: R 

Thinking of the union as the addition of sets, the subtraction 

of two sets is known as the complement of one into the other. Referring 

to Figure 1.5, and considering the two sets A C:: B, the set of all the 

elements contained in B and not contained in A is called the complement 

of A in B, and is dimoted by B - A. --
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13-A 

Figure 1.5 

Example 1.10: Referring to Example 1.1, we get: 

The complement of A3 in A2 is 
-\I,~ 

A2 - A3 : { 8, 15 , (t , :0: , 4} , and 
I I \ 

H-I 5, { all real numbers that are not integers}. 

1.6. Mapping of Sets 

f is called a mapping of A into B if it relates one and only one 

element from B to each element of A. This means that for each element 

a£ A there will be only one corresponding image b £ B (see Figure 1.6). 

Figure·l.6 

Note here that the one-to-one relationship (i.e each b £ B has got one 

and only one argument. a-~ A) is not required. We shall denote any such mapping 

by 

and read it as "f is an element of the set of all the mappings of A into B", 
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or simply "f is a. mapping of A into B", or "f maps A into B". 

If the elements of B are all images of the elements of A, then 

f is called a.n onto ~a.pping, or simply we say that "f maps A onto B". 

If A and B are numerical sets, then f is called a function 

(which gives the mathematical relationship between each a. e A and its 

corresponding image be B). In this case, the image b of a will be nothing 

else but the functional value f(a) • 

Example 1.11: Given the set A = {a1 , a2 , a.3} = {2, -1, 3} and the mapping 

f e {A+ B} , where f(ai) = a.~ for each a. e A, i=l,2,3, 
~ ~ 

1. 

2. 

then the images b. e B are computed as the functional values 
·~ 

of the corresponding elements ai e A, i.e. bi w f(ai) = ai , 

which give b = (2) 3 = 8 , b = (-1)3 = -1, and b = (3) 3 
1 2 . 3 

= 27. 

Generally, f is an into function, hence we write 

(8, -1, 27) e B . However, if f is an onto function, then 

the image set B of this example is given a.s 

B 3 {8, -1, 27} • 

1. 7. Exercise 1 

Which of the following sets are equal? 

{:e, r, s}, {s, r, 'C}, {r, s, t}, {-£, s, r} . 
Let A: {d}, B: {c, d}, c = {a, b, c} ' D - {a, b} and H: {a, b, d}; 

(i) is BCD 7 (ii) is c - B 1 

(iii) is DCC 1. (iv) is B :# H 7 

(v) is Ac:H 1 (vi) is (AU D) C: H ? . 
(vii) is (A("\ B) ¢;. C 1 (viii) is (R (\ C) : D 1 
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3. Let u = {1, 2, 3, ... ' 8' 9} ' A :: {1, 2' 3' 4} , B :: {2, 4, 6, 8} ' 

c = {3, 4, 5, 6} andD = {1' 3, 5, 7' 9}; then find the following: 

( i) BUD . 
~ 

( ii) A()c . 
) 

(iii) AUB . (iv) U- A • ) j 

(v) a set H, which is a subset of all the sets U, A and D. 

4. Considering the following Venn diagram with the sets A, B, C, D and H, 

indicate by shading the suitable areas on separate diagrams, the 

following sets: 

( i) DUH j 

(ii) H.n c 
) 

(iii) en B . 
I 

(iv) A- C ) 

(v) BUc . 
J 

(vi) (11: - B) U (B f1 C) ' J 

(viii) A - (c U B) · 

5. Considering the two sets: 

A = {3, 4, 0, -1} and B :: {-2, 5} , find the Cartesian products A x B 

and B x A. Also find the second power B2 of the set B. 

6. Given the set X:: {-2, -1, 0, 1, 2} , with f E {X~ Y}. If for each 

x E X, f (x) = x2 + 1, find the image set Y considering that f is an 

onto function. 



2. FUNDAMENTALS OF THE MATHEMATICAL THEORY OF PROBABILITY 

2.1 Probability Space, Probability Function and Probability 

Let us have a set D ~ ~ and let us assume that it can be par-

titioned into mutually disjoint subsets Dj C D such that D !: UD. (by 
J J 

mutually disjoint subsets we mean such subsets that D.n D. = ~ for any 
~ J 

pair Di' Dj' i ~ j). Such a set D we shall call probability space. 

Any mapping P of D onto [0, 1] (that is the set of all positive 

real numbers "b" satisfying the inequalities (0 .:::_ b < 1)) that has the 

following two properties: 

(1) If D'C D, then P(D') = 1- P(D- D'), (note that D- D') is the 

complement of D' in D; see section 1. 5) , and 
n 

(2) If Dl' D2' ... , D C D are mutually disjoint, then P( u D.) = n 
i=l ~ 

n 
~ P(D.), is called a probability function. 

i=l ~ 
The value (P (D I)) 

of the probability function P (takes any value from [0, 1]) is called 

the probability. Note that the difference between the function and 

the functional value has been mentioned in section 1.6. 

The above two properties of the probability function have the 

following consequences: 

{_1} P(_D) = 1, 

(2) P(~) = 0, 

(3) If D' C D; then P (D' ) .:::_ 1, 

(4) If D"CD'; then P(D"l .:::_ P(D'}, and 

(5) If A, BCD, and A()B = {l1; then P CAU B) = P (A} + P (B). 

15 



16 

If D is a ;point set , i.e. its elements can be represented by 

points , it is always decomposable. 

The value E P (D. ) E T 0, 1] is sometimes called the total or 
~ 

i 

accumulative probability of U D .• 
i ~ 

2~2L Conditional Probability 

If A, 13 c D; then the ratio P(A()13)/P(13) = P(A/13) is called. 

the conditional ;probability. The right hand side, that is P(A/13),is read 

as "probability of A given 13". In other words, the conditional probability 

P(A/13) can be interpreted as the probability of occurrence of A under the 

condition that B occurred. 

From the above definition of the conditional probability, we 

notice that: 

(1) If P(B) = 0; then P(A/13) is not defined, 

(2) If B CA; then A ()B = B (see section 1.4), and then P(A/B) = 1, · 

(3) If A(\ B = C/J; i.e. A and Bare disjoint sets ; then P(A/B) = 0. 

2._3 ... Combined Probability 

If the conditional probability P(A/B) equals to P(A), then it is 

clear that the occurrence of A does not depend on the occurrence of B. In 

such a case we say that A and 13 are independent. Using the definition of 

the conditional probabi~ity from the previous section, we can write: 

P(A n B) = P(A) • P(13) 

This can be understood as the probability of simulta.rteous occurrence of A 

and B, which is usually denoted by P(A, B) sn read as probability of A 
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and B, and known as the combined (compound) probability of A and B, that is 

P(A, B) = P(A) · P(B). 

Similarly, we define the combined probability of occurrence of 

the independent D1 , D2' • • .·I D nc: D as the product of their individual 

probabilities, i.e. 

p (D.' 
l. 

Dj) 

p (D. I 
l. Dj' 

= p (D.) 
l. 

P(Dj) i :! j 

Dk) = p (D.) 
. l. 

P(Dj) P(Dk) 

n 
IT 

i=l 
p (D.) 

l. 

i :! j, j :! k, i :! k, 

Example 2.1: Suppose we have decomposed the probability space D into seven 

mutually disjoint subsets D1 , D2, ••• , D7 as shown in Figure 

2.1 such that: 
7 

D = U D. 
l. i=l 

Figure 2.1. 

Assuming that the probabilities P(D.) of the individual 
l. 

subsets Di are found to be: 

P(Dl) = 1/28, P(D2) = 2/28, P(D3) = 3/28, P(D4) = 4/28, 

P(D5) = 5/28, P(D6) = 6/28, and P(D7) = 7/28; then we get: 

Total probability of D., i = 1, 2, ••• , 7 is 
l. 

7 
P(D) = P(U D.) = L P(Di) = (1+2+3+4+5+6+7)/28 = 28/28 = 1.0. 

i l. i=l 

Combined probability of all Di = 
7 
II 

i=l 
P(D.) = 0 

l. 
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Example 2.2: In this example we assume that our probability space D is 

decomposed into five elements dj € D, j = 1, 2, ••• , 5. If 

the probabilities P(D.), as represented by the ordinates in 
J 

Figure 2.2, are given as: 

O,'?J"'c. +------....-··--···------·-----...... -

0. '2,-11-----...----·---r------ --------------1--

0.\-t------ ·----

P(dl) = 0.2, P(d2) = 0.3, P(d3) = 0.1, P(d4) = 0.1, 

and P(d5) = 0.3; then we get: 

Total probability P(D) = P(L/d.) = 
J J 

= 1.0 . 

5 
~ P(d.) = 0.2+0.3+0.1+0.1+0.3 

j=l J 

Combined probability of d1 and d2 (for example) = P(d1 , d2) 

2 
= rr P(d.> = o.2.o.3· = o.o6. 

j=l J --

This combined probability has to be underst't>Od as the probabili·ty 

of simultaneous occurrence of d1 and d2 under the assumption 

of their independence. 

2.4. Exercise 2. 

We have determined that every number of a die have the proba-

bility of appearing when the die is tossed, proportional to the number itself. 
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Let us denote: A = {even numbers\ , B = [prime numbersj, and C = [odd 

numbersj; all subsets of the set of numbers appearing on the die. 

Required: (1) Construct the probability space D. 

(2) 

(3) 

(4) 

Find the probability of each individual element d. E D. 
~ 

Find P(A), P(B) and P(C). 

Find the probability that: 

(i) an even or prime number occurs, 

(ii) an odd prime number occurs, 

(iii) A but not B occurs. 



III. FUNDAMENTALS OF STATISTICS 

3.1 Statistics of an Actual Sample 

3.1.1 Definition of a Random Sample 

Any finite (i.e. containing only a finite number n of elements) 

ordered progression of elements (see section 1.2) s = (sl' s2' ... , sn) 

such that: 

(i) its definition set D (see section 1.2) can be declared a 

probability space (see section 2.1); and 

(ii) it has the probability function P 'defined. for. every .. d;& D in such a . . ' l. 

way that P(d.) = c./n, where c. is the count (frequency), of the 
~ ~ ~ 

element di ·in s .. -::_-~· ·· ··· 
may be ~Hw:lea ~ :r.an~ $~l.e: ~-·- 'I'.lJ;e: :r~~q;;l. ~j:l:P. is knovm as the relative 

frequency. 

Example 3.1: Consider the following progression s 

~1 s2 s3 s4 s5 s6 s7 

~ !! { 1, <:> ' cfCJ': 1, 1, <I. ' 
r:::; } 

which has seven elements, (i.e • n = 7) • 

The definition set D of ~ will be 

dl d2 d3 d4 

D = { 1 , ~ , &Cr: CL } , which 

consists of four elements (i.e. m = 4), 

the counts of which are: 

20 
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corresponding probabilities (relative frequencies) 

are: 

P(dl) = p (1) = 3/7, P(d2) = P(Q) = 2/7, 

p (d3} = P(t/) = 1/7, and 

P(d4} = P(c{ ) = 1/7. 

Note here that really both properties required from P to be a 

probability function (section 2.1) are satisfied. In particular we have 

(from the above example}: the total probability 

= 
4 
l: 

i=l 

m 
P(D) = P U 

i=l 
d,) 
~ 

Accordingly, any finite ordered progression of elements may be 

declared a random sample. This is a very important discovery and has to 

be born in mind throughout the following development. As a result, it 

is always possible to construct the probability space and the associated 

probabilities "belonging" to the sample (i.e. the probability associated 

with each element in the definition set of the sample). 

From now on we shall deal with DCR (recall that R is the set of 

all real numbers}, i.e. with numerical sets and progressions only. Also, 

D will be considered ordered in either ascending or descending sense; 

usually the former is used. 

It has to be noted here that our definition of a random sample 

is not standard in the sense that it admits much larger family of objects to 

be called random samples than the standard definition. More will be said 

about it in 3.2.4. 
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Example 3.2: A die is tossed 100 times. The following 

table lists the six numbers and the 

frequency (count) with which each number 

appeared: 

number d. 1 2 3 4 5 6 
J.. 

count c. 14 17 20 18 15 16 
J. • 

Find the probability that: 

(i) a 3 appears ; 

(ii) a 5 appears; 

(iii) an even number appears j 

(iv) a prime number appears. 

Solution: 

(i) P(3) 20 
0.20 ) = -- = 100 

(ii) P(5) 15 = 0.15 J ··--100 

(iii} P(2 ,4 ,6) = P(2) + P(4) + P(6) 

17 18 16 51 = 10'0 + 10'0 + IOo = IOo = 0. 51 ~ 

(iv) P(2,3,5)'= P(2) + P(3) + P(5) 

17 20 15 52 
= I05' + I05' + laO= laO= 0.52 • 

3.1.2 Actual (Experimental) Probability Distribution Function (PDF) 

and Cumulative Distribution Function (CDF) 

If the random sample ~ is a progression of numbers only (and, 

of course, its definition set Dis a numerical set), which we shall from 

now on always assume, then Pis a discrete function mapping D into [0,1]. 
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This function is usually called experimental (actual) probability 

distribution function (or experimental frequency function, etc.) of the 

sample~' and abbreviated by PDF. The values P(di), di ~ D, are known 

as experimental probabilities of d., which are equal to the corresponding 
~ 

relative frequencies. 

Example 3.3: Assume that a certain experiment gave us the 

following random sample: 

~ :.; ( 1 , 2 , 4 , 1 , 1 , 2 , 1 , 1 , 2 ) , n = g_. 

Then its definition set is: 

D~ {1, 2, 4} = {d., i=l,2,3} , m = 3 • 
~ 

Therefore, the frequencies ci of di are: 

c1 = 5 , c2 = 3 and c3 = 1. 

The corresponding experimental probabilities 

are: P(l) = 5/9, P(2) = 3/9 and P(4) = 1/9 •. 

3 
As a check i!l P(di} = ~ (5+3+1) = 1. 

The discrete PDF of the given ~ in this 

example is depicted in Figure 3.1 (which 

is sometimes called a bar diagram), in which 

the abscissas represent d~ and the 
~ 

ordinates represent the corresponding P(d.). 
~ 

2 
Figure 3.1 
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Since we are using numerical sets only (and therefore ordered), 

it makes sense to ask, for instance, what is the actual probability of d 

being within an interval D.J::D, where D' .- [ ~, d j]. Such probability 

is denoted by P(D' 2 or P(~ .::_ d .::_ dj). To answer this question, we use 

the actual PDF and get 

(3.1) 

The above expression (equation 3.1) must be understood as giving the actual 

probability of d€D 1 s {dk' ••• , dj~D rather than d€[~, dj] (i.e. the 

probability that d will acquire a specific discrete value equal to 

~' dk+l' ••• , dj-l' dj rather than the probability that d will be 

anywhere in the continuous interval I~, dj]}. This is not always properly 

understood in practice. 

The function C of d .... D given by 
~ 

C(d.l = 
~ 

E P(dj) €[0,1] 
j<i 

(3.2) 

is called experimental (actual} cumulative distribution function (or 

summation density function, etc.) of the sample~. and usually 

abbreviated by CDF. -
Example 3.4: Using the data and results from example 

3.3, we can compute the CDF of the given 

sample~ by computing each C(d.) as follows: 
1 

C(d1 ) = P(d1 ) = 5/9, 

C(d2 ) = P(d1 ) + P(d2 } = 5/9 + 3/9 = 8/9, 

and C(d3 l = (P(d1 ) + P(d2 }} + P(d3 ) 

= C(d2 l + P(d3} = 8/9 + 1/9 = 9/9 = 1. 
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Figure 3.2 illustrates the discrete CDF of the given 

sample 1;. 

1 
8/9 

5/9 

------ --- -·--·---
- ---- --- ---. 

I 
I 

--- --- .. rr-·----~~~J 
I 
I 
I 
f 

0~--~~~------~--------------~---------d· l 

' 2. 4 

Figure 3.2 

From Figure 3.2, we notice the following properties of the 

CDF: 

(i} the value (ordinate} of the CDF is always positive, 

(ii) the CDF is a never decreasing function, 

(iii l the cumulative probability C(<\), where dm is the largest 

d .. e::D, is always equal to 1. 
l. 
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Example 3.5: Using the data from example 3.2, we 

can construct the CDF of the die tossing 

experiment as follows: 

C(l) = P(l) = 0.14, 

C(2) = C(l) + P(2) = 0.14 + 0.17 = 0.31, 

C(3) = C(2) + P(3) = 0.31 + 0.20 = 0.51, 

C(4) = C(3) + P(4) = 0.51 + 0.18 = 0.69, 

C(5) = C(4) + P(5) = 0.69 + 0.15 = 0.84, and 

c(6) = d(5) + P(6) = o.84 + 0.16 = 1.00. 

Note again that the maximum value of the 

CDF is one. The graphical representation 

of the above CDF can be constructed similar 

to Figure 3.2. 

3.1.3 Mean of a Sample 

Consider the sample~ 5 (~1 , ~ 2 , .•. , ~n} with its definition 

••. , d }. The real number M defined as: 
m 

1 M=
n 

n 
E ~- E [d1 , d ], 

i=l ~ m 

is called the ~ (average) of the actual sample. 

We can show that M equals also to: 

[ m 

. 1 M = E d. P(di) 
i=l ~ 

(3.3) 

(3.4) 
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The proof of (3.4) reads as follows: 

R.H.S. = 
m 
~ 

i=l 
d. (c./n) 
~ ~ 

1m 
=- ~ d.c. = 

n i=l ~ ~ 

1 n 
= l: t;, = M • 

n i=l ~ 

The mean M of a sample can be interpreted as the outcome of 

applying the summation operator ~ divided by n on ~, and is often 

written as: 

-M = E(~) =mean (~) = ave (~) = ~ , (3.5) 

where the symbol E (an abbreviation for the "mathematical Expectation") 

must be understood as another name for the summation operator E opera-

ting on P(d.)d. (and not on ~i!). 
~ ~ 

Note that E is a linear operator, and hence it has the following 

properties (where k is a constant and ~ is a random sample) : 

(i) E(k) = k, 

(ii) E (k~) = kE (~), 

(iii) E(~+k) = E(~) + k, 

(iv) E(E ~j) = E E(~j), where ~j, j = 1, 2, ••. , s, ares random samples 
j j 

with the same number of elements m in their corresponding definition 

sets Dj (Do not confuse~. with ~j~ the former is an element in the 
J 

latter. In other words, ~. is a single element in a sample, but 
J 

~j is one sample in a class of samples) , 

(v) If ~ = (~ 1 ), then E~) = ~l' 

(vi) E (E(~)) = E (~) • 
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Example 3. 6: Using the random sample l; given in example 

3.3, let us compute its mean from equation 

(3.3) as follows: 

1 n 1 15 2 
M=E( ~ )= - r ~. = -(1+2+4+1+1+2+1+1+2 }= - = 1-

n i=l 1 9 · 9 3 

Also, we can use equation (3-4), from which we 

get: 
m 

M=E(~)= .: djP(dj)= 1. t + 2 • ~ + 4 • ~ 
J-l 1 15 2 

=- (5+6+4'=- = 1-9 '- 9 3 . 

Obviously, both formulae (3.3) and (3.4) give 

identical answers. 

It is interesting to note that computing the mean of a sample 

using equation (3.4) is analogous to computing the centre of balance 

in mechanics. This can be simply seen by considering the probabilities 

P(d.) or the counts c. as weights, and then taking the r moments= 0 
l l 

about any point , e.g. the origin 0 (see Figure 3. 3 which uses the data 

from example 3.3). 

I f (cw-s) I .l.. (or 3) }(or1) I 

~ ·9~ 
~0 • 1 4 2 4 

' ( 

I 
I 

~ M ~ 
I 

Figure 3.3 
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The resulting distance of the centre of balance from the point is 

nothing else but the sample mean M. 

It is worthwhile mentioning here that, based on the above analogy 

with mechanics, the mean M computed from equation {3.4) is also called the 

weighted mean, in which each element d. ED is weighted (the concept of 
~ 

weights is to be discussed later in details) by its probability P(d.). 
~ 

3.1.4 Variance of a Sample 

Let us have again an actual sample~= (~ 1 , ~ 2 , ... , ~n) with 

a mean M. Then, the real number s2 defined as 

n 
4 

i=l 

2 
( ~. -M) ' 

~ 
( 3. 6) 

is called the variance (dispersion) the actual sample. The square root 

of the variance s2 , i.e. s, is known as the standard deviation of the 

sample. 

Keeping in mind the relationship between the random sample ~ 

and its definition set D, we can write: 

n 
1 E 
n 

i=l 

m 
E 

j=l 

2 d. P(d.) 
J J 

which will provide another expression for s2 , namely: 

= 
m 
E 

j=l 
P (d.) (d. -M) 2 

J J 
(3.7) 
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52 can be also interpreted as the outcome of the application 

of the operator Eon (s-E(s)) 2 meaning really P(d.) (d.-M) 2 and is often 
J J 

written as 

52 = E ((s-E(s)) 2 = var (s). ( 3. Ba) 

Carrying out the prescribed operation, we get 

Applying the calculus withE operator (as summarized in section 3.1.3), 

we obtain: 

52 = E<s2 >-2E<s>E<s> + E2 <s> 

= E<s 2 > - E2 <s> • 

From equation (3.5) we have E(S) = M, then by substituting for E(s) we get 

(3.8b) 

Consequently, the corresponding expression to equation (3.7b) will be: 

m 
E 

j=l 

2 2 
d. P (d.) -M 

J J 
(3.9) 

It is worth mentioning that giving the analogy with mechanics 

(as discussed in the previous section) we can regard the variance of the 

sample (equation 3.7)) as the moment of inertia of the system of corres-

pending mass points with respect to M. 
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Let us compute the variance 82 of the sample ~ 

given in example 3.3, by using equation (3.8b). 

F;irst, we compute the first term E(,;2) as 

follows: 

n 
E(E; 2 )= 1. ~ E;~= 1.9 (1+4+16+1+1+4+1+1+4) =J1_ • 

n i=l ~ 9 

8ubsti tuting in equation ( 3 .B'b) , and knowing 

that M = 1~ from example 3.6, we get: 

82- (c)- 33 (15)2.- 9 .3;3..(15) 2-
- var "' - 9 - 9 - 81 

- 297-225 - 72 - ~ ~ 0 89 
- 81 - 81 - 9 - -·- . 

Taking the square root of the computed variance, 

we obtain the standard deviation of the sample as: 

2 12 
3 

= 2.828 ;. 0.943. 
_3 

The same result is obtained if we use equation 

(3.9), firstly we have 

= 1. (5+12+16) = 33 ' 9 - 9 

and since M = 1~ , we obtain 

82 33 (159)2 = _98 ;. 0.89. = 9-

It should be noted here that the same value for the sample 

variance can be obtained from equations (3.6) and (3,7). The verifica-
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tion is left to the student (e.g. using the data from the above example). 

However, equation (3.9) is advantageous from the computational point of 

view, especially for large samples. A similar statement holds for 

computing the sample mean Musing equation (3.4). 

3 .1. 5 Other "Characteristics" of a Sample: Median and Range 

The median, Med (~)of the sample~= (~1 , ~ 2 , ••• , ~n) is defined 

differently for n odd and for n even. For n odd, Med (~) equals the ~ 

that is in the middle of the ordered progression~' that is 

Med (~) = ~, +l • (3.10) 
(~) 

2 

For n even, Med (~) is the mean of ~ and ~ that is: 
(~) (~ +1} 

Med(~} = 1. (r;: + ~ 1 .. 
2 . (~} (~ +1) 

Example 3.8: Consider the sample~ ;. (5,3,6,4,1,2). 

To obtain Med (r;:}, we first arrange the 

sample in either ascending or descending 

order, for instance: [;; : (1,2~3,4·,5,6), 

n=6. Since we have n even, we get: 

Similarly, the ascending ~regression of the 

sample~ given in example 3.3 is: 

I" .. 
~ : (1,1,1,1,1~2,2,2,4), n = 9. 

In this case n is odd, and we get: 

(3.11) 
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Med(F;) = 1 • 

The range, Ra(t;) of the sample t;;: (C , i=l,2, .•. n) is defined 
~ 

as the difference between the largest (t;9;l and the smallest (F;s) elements 

of t; that is: 

I Ra(~) = ~~-~s ·1 (3.12) 

Consequently, for an ascendingly ordered sample t;, we get 

(3.12a) 

Note that the range of the sample can be also determined from its 

definition set D: {dj, j=l,2, ... m }. The corresponding expressions to 

(3.12} and (3.12a), respectively are: 

and 

Ra(t;) = Ra(D) = 

Ra(t;) = Ra(D) = 

d. -d ' i s 

d -d 0 m 1 

Example 3.9: From example 3.8, we have the ascendingly 

ordered samples: (1,1,1,1,1,2,2,2,4}, n=9' 

whose definition set is D = - {1,2,4} , m=3. 

To obtain the range, we use either equation 

( 3 .12a} , i. e . Ra(F;)= t; -t; = 4-1 = _3, 
n 1 

or we use equation (3.13a), i.e. 

(3.13) 

(3.13a) 

At this point, we can summarize the different characteristics 

of the sample t; originated in example 3. 3; as computed in the last three 
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sections, namely: M = 1.6 o.8 s = 0.94, 

Med(t;) = 1 and Ra(~} = 3 

(Note that the "bar" above the last digit means that it is a periodic 

number). 

3.1.6 Histograms and Polygons 

From now on, the number of elements n of a sample ~ will be 

called the ~ of the sample. A sample with large size n, is often 

divided into classes (categories). Each class is a group of n. indi
~ 

vidual elements (n. < n). To achieve this, we usually determine 
1. 

the range of s (see section (3.1.5)),and then divide the range 

into k intervals* by (k+l) class-boundaries (class-limits). It is usual 

to make the intervals equidistant. The difference between the upper and 

lower boundaries of a class is called the class-width. The number c of 

elements in each class is called the class-c.ount (class-frequency). 

This process in statistics is called classification of the sample. The 

"box" (or rectangular) graphical representation of the classified sample 

is called the histogram of the sample. 

Example 3.10: Let us have the following random sample s: 
~; (17,3,2,8,1,5,2,4,6,15,8,9,2,3,10,9, 

11,12,4,5,8,6,7,4,5), n = 25 

* The interval from a to b is either: 

open denoted by (a, b) = (x :a<x<b) 
closed " II 

' [a,b] = (x:a<x<b) 
Open-closed, " " ( a,b] = (x :a<x<b) 
closed-open, It " I a,b} = (x :a<x<b) 

To reconcile this known notation with the terminology of the theory of sets, 
it has to be understood that any such interval can be regarded as a set. 
To distinguish such a set from a point set, we shall call it a compact set. 
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First, we compute the range of s using 

equation (3.12), i.e. 

Ra(s1 = ~ - s = 17-1 = 16. 
i s 

Let us use four intervals: 

[1,5], (5,9], (9,13] and (13,17]. 

Hence, the class-counts will be: 

c1 (Il,5])= 12, c2 ((5,9]) = 8, 

c3 ((9,13])= 3 and c\((13,17]) = 2. 

The histogram of the given sample in this 

example is shown in Figure 3.4, in which 

the horizontal axis represents the class 

boundaries and the ordinates represent the 

class-frequencies c. (see the left-hand 
~ 

scale). Relative 
Frequency (c; ) 

I 2 - - - - - ---....---.... --- - -- - - ·- - · - - - - --- - - - -· · - - - - -

8 

3 
2 ··- - - - -- - .. 

Figure 3.4 

Note in the above figure that a rectangle is drawn over each interval 
with constant height equal to the corresponding class-count. 



It is usually required that the area of,ol: under,the histogram 

has to be equal to one. Assume that we have k classes with corresponding 
k 

class-counts c. such that: t c. = n. Let us denote the class-width, 
~ i=l 1 

assumed to be constant, by ~. Hence, the area a of the histogram is 

given by: 

k 
= ~(c1+c2+ •.. +ck) = ~ t 

i=l 
c .. = ~n. 

1 

This means that the area under the histogram equals the class-width 

multiplied by the size of the sample. 

Therefore, to make the area of the histogram equal to one, we 

simply have to divide each ordinate c. by the quantity n~. The new 
1 

(transformed) ordinate ~ is also called the relative count (compare 
1 

this to the relative count mentioned in section 3.1.2, which represents 

the experimental probability of an individual element; however, here we 

are dealing with counts in an interval). 

Example 3.11: Using the data from example 3.10, we have: 

n = 25 and ~ = 4. The quantity n~ = 25.4 =100. 
,...., 

Hence, to compute the relative counts c. of the 
1 

classified sample~' we divide each ordinate c. 
l 

(obtained in example 3.10) by 100. This gives us: 

- s·· c = 2 100 = 0.08, 
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The histogram of the sample in this case 

will be the same as in example 3.10, with 

the only difference that the ordinate scale 

is going to be changed (see Figure 3.4, the 

right-hand scale). 

.,.., " " Using the relative counts ci, the area a 

under the histogram equals to one, as we 

can see from the following computation 

(using Figure 3. 4): 

a= 4.0.12 + 4.0.08 + 4.0.03 + 4.0.02 

= 0.48 + 0.32 + 0.12 + 0.08 = 1.0, 

which may be used as a check on the correct-

ness of computing -c .• 
J. 

Let us denote the largest and the .smallest abscissas of a histo-

gram by .Q. and s, respectively (e.g. in Figure 3.4, g.= 17 and s=l). 

Notice that for any subinterval D' = [a,b] of the interval 6. = [s, R-], 

we can compute the area a (D') under the histogram. This a(D') will be 

given as a real number from [0,1]. Hence, a can be regarded as a function 

mapping any subinterval of [s, ~] onto [0,1]. Therefore, it is easy to 

see that ct can be considered as a probability function (see section 2.1), 

more specifically one of the possible probability distribution functions 

(PDF's) of the sample. Obviously, such PDF (i.e. a) depends on the 

particular accepted classification of the sample. 
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From the above discussion, we find that the probability of any 

subinterval of [s,t] is represented by the corresponding area under the 

histogram. On the other. b.anao., the ordinates of the histogram do not represent 

probabilities (again compare the histogram with the bar diagram given in 

section 3.1.2). 

Example 3.12: Referring to Figure 3.4, we may ask: what is the 

probability of D' = [6, 10]; or, what is the 

probability that the sample element, say x, lies 

between 6 and 10. This can be written as: 

P(6 < X < 10) = ? 

The answer will be given by the area under the 

histogram between 6 and 10 (which is shaded in 

Figure 3.4}, i.e. 

P(6~x~l0) = P(6~s9) + P(9<x~l0) = 
= (9-6).0.08 + (10-9).0.03 

= 3.0.08 + 1.0.03 = 0.24 + 0.03 

= 0.27 . 

On th~ other hand, by inspecting the actual 

sample ~ originated in example 3.10 

we find out that the actual number of elements 

in the interval [6,10] is nine. This number 

represents (2;).100% = 36% of the sample. 

Or, we say that the actual probability 

P(6~x~l0) = 0.36, which does not agree precisely 

with the result obtained when using the 

corresponding histogram (i.e. 0.27). 
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The difference between the actual probability and the computed 

probability using the histogram, as experienced in example 3.12, is 

largely dependent on the chosen classification of the•sample (selection 

of the class-intervals). Usually, one gets a smaller difference (better 

agreement) by selecting the class-boundaries so as not to coincide with 

any of the elements of the given sample. The construction of histograms 

can be considered a subject of its own right. We are not going to 

venture into this subject any deeper. 

Example 3.13: If we, for instance, use the following classification 

(for the sample~ given in example 3.10): [0.7, 4.8], 

[4.8, 8.9], [8.9, 13] and [13, 17.1], i.e. we have 

again four equal intervals, for which ~ = 4.1. Then 

we get the class-counts as c1 = 9, c2 = 9, c3 = 5 

and c4 = 2. The quantity n~ = 25.4.1 = 102.5. Hence, 

the relative counts are: 

- - 9 . 0.0878, cl = c2 = = 102.5 

- 5 . 0.0488, and c3 = 102.5 

2 . 0.0195. c4 = = 102.5 

In this case, the new histogram of the sample ~ is 

shown in Figure 3.5. 
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The probability P(6~~10) is computed as follows 

(shaded area in Figure 3.5): 

= 2.9.0.0878 + 1.1.0.0488 ; 
. . 

0.2546 + 0.0537 
. 

= 0.3083 = 0.31, 

which gives a better agreement with the actual 

probability than the classification used in 

example 3.11. 
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The graphical representation of a histogram, which uses the 

central point of each box (class-midpoint) and its ordinate (the 

corresponding relative .class-count), is called a polygon. 

In order to make the total area under the polygon egual to one 

we have to add one more class interval on each side (tail) of the 

corresponding histogram. The midpoints s' and i' of these two, lower and 

upper tail intervals,are used to close the polygon. 

Therefore, it can be easily seen that the area~· under the poly-

gon has again the properties of probability. This means that ~· is one 

of the possible PDF's of the sample. Hence~~ can be used for determining 

the probability of any·D' = fa, b]cis', .i' J. Note also here 

that the ordinates of the polygon do not represent probabilities. 

Example 3.14: The polygon corresponding to the histogram of 

Figure 3.4 is illustrated in Figure 3.6. 

0.12 ........ ----

3 IS 

Figure 3.6 
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Similar to the histogram, the area"a"under 

the polygon should be equal to one. To show 

that this is the case, we compute"a"using 

Figure 3.6 as: 

a = 4' (1.2 • 1 ( ) ' ' 0.12 + ~ 0.12 + 0.08 ~ 

+1. 
2 

(0.08 + 0.03) + ~ (0.03 + 0.02) + 

1 
+ 2 • 0.02} 

= 2(0.12 + 0.20 + 0.11 + 0.05 + 0.02) 

= 2 (0.50) = 1.00. 

Let us compute the probability P(6~x~l0) 

using the polygon (the required probability 

is represented by the shaded area in Figure 

3.6}. To achieve this, we first have to 

interpolate the ordinates corresponding to 6 

and 10, which are found to be 0. 090 and 

0.0425, respectively. Therefore, the 

required probability is: 

P(6~x~l0) = P(6~x~7) + P(7~x~l0) 

1 1 = 1.2(0.09+0.08)+3.~0.08+0.0425) 
= 1.0.085 + 3.0.06125 

= 0.085 + 0.184; 0.27, 

which is the same as the value 

obtained when using the corresponding histogram. 
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So far, we have constructed the histogram and the polygon 

corresponding to the PDF of a sample. Completely analogously, we may 

construct the histogram and the polygon corresponding to the CDF of the 

sample which will be respectively called the cumulative histogram and the 

cumulative polygon. In this case, we will use a modified form of equation 

(3.2), namely 

C(a) = P(x~a) = l: 
x <a 

i""" 

P(x. <x<x.) • 
~-1 - ~ 

(3.14) 

Example 3.15: Let us plot the cumulative histogram and cumulative 

polygon of the sample ~ used in the examples of 

this section. 

For the cumulative histogram, we get the following 

by using Figure 3.4: 

C(l) = P(1) = 0 (remember that the probability of 

individual elements from the 

histogram or polygon is always 

zero}. 

C(5) = P[l,5] = 4.0.12 = 0.48, 

C(9) = C(5)+P(5,9] = 0.48 + 4.0.08 

= 0.48 + 0.32 = 0.80, 

C(l3) = C(9)+P(9,13] = 0.80 + 4.0.03 

= 0.80 + 0.12 = 0.92, 

C(l7) = C(l3)+P(l3,17] = 0.92 + 4.0.02 

= 0.92 + 0.08 = 1.00. 

Figure 3.7 is a plot of the above computed 

cumulative histogram. 
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For the cumulative polygon, we get the 

following by using Figure 3.6: 

C(-1) = O, 

1"1 

C(3) = p[:..l,3] = ~(4.0.12)= ~(0.48)= 0.24, 

C(7) = C(3)+P(3,7] = 0.24+ ~.4(0.12 + 0.08) 

= 0.24 + 0.40 = 0.64, 

C(ll) = C(7}+P(7,ll] = 0.64 + ~.4(0.08 + 0.03) 

= 0.64 + 0.22 = 0.86, 

C(l5) = C(ll)+P(ll,l5] = 0.86+ ~ .4(0.03 + 0.02) 

= 0.86 + 0.10 = 0.96, 

C(l9) = C(l5)+P(l5,19] = 0.96 + ~ . 4.0.02 

= 0.96 + 0.04 = 1.00 

Figure 3.8 is a plot of the above computed 

cumulative polygon (note here, as well a&· in Figure 

3. 7, the properties of the CDF mentioned in example 

3.4). 
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By examining Figures 3.7 and 3.8, we can see that the cumulative 

polygon uses tbe central point of each class-interval along with its 

ordinate from the corresponding cumulative histogram. Therefore, the 

relationship between the cumulative polygon and its corresponding 

cumulative histogram is exactly the same as the relationship between the 

polygon and its corresponding histogram. 

Because of the nature of the CDF, we can see that the cumulative 

probability - represented by an area under the PDF extending to the left-

most point - is represented just by an ordinate of the cumulative histogram 

or the cumulative polygon. Hence the cumulative histogram or the cumulative 

polygon can be used to determine the probability P[a,b], a<b, simply by 

subtracting the ordinate corresponding to a from the one corresponding to b. 



46 

Example 3.16: Let us compute the probability P[6,10] by 

using: 

(i) the cumulative histogram of Figure 3.7, 

(ii} the cumulative polygon of Figure 3.8. 

First, we get the following by using Figure 3.7: 

The interpolated ordinates corresponding to 6 

and 10 are found to be 0.56 and 0.83, respect-

ively. Therefore, P[6,10]= P(6~x~l0) = 

= 0.83-0.56 = 0.27, which is the same value as the one 

obtained when using the hi.stogram (example 3.12). 

Second, we get the following by using Figure 3.8: 

The interpolated ordinates corresponding to 6 

and 10 are found to be 0.54 and 0.805, 

respectively. Therefore: 

• 
P[6,10]= P(6~x~l0)= 0.805-0.54~0.27 , 

which is agai!i t1l~ same value as the one 

obtained when using the polygon (example 3.14). 

To close this section, we should point out that both the histo-

grams and the polygons (non-cumulative as well as cumulative) can be 

refined by refinning the classification of the sample. Note that this 

refinement makes the diagrams look smoother. 
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3;2 Statistics of a Random Variable 

3.2.1 Random (Stochastic) Function and Random (Stochastic) Variable 

In order to be able to solve the problems connected with inter-

val probabilities (see the histograms and polygons of section 3.1.6) more 

easily and readily, the science of statistics has developed a more con-

venient approach. This approach is based on the replacement of the 

troublesome numerical functions defined on the discrete definition set 

of a random sample, by more suitaple functions. To do so, we first 

define two idealizations of the real world: the random (stochastic) 

function and the random (stochastic) variable. 

A random or stochastic function is defined as a function X 

mapping an unknown set U* into R, that is 

xe: {U + R} 

(Later on, concepts of multi-valued Xe: {U + Rm} (where Rm is the cartesian 

m-power of R, see section 1.3) are developed.) 

This statement is to be understood as follows: For any value 

of the argument u e U, the stochastic function x assumes a value x ( u) c: R. 

But, because the set U is considered unknown, there is no way any 

formula for x can be written and we have to resort to the following 

"abstract experiment" to show that the concept of random functions can 

be used. 

"Note that in experimental sciences the set U may be fully or at least 
partly known. The science of statistics however, assumes that it is 
either not known, or works with the unknown part of it only. 
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Suppose that the function:x is realised by a device or a process 

(see the sketch} that produces a functional 

u --... 4 __ x _ _.-l-__...,.. · :X:.(U) 

value x(u) every time we trigger it. Knowing nothing about the inner 

workings of the process all we can do is to record the outcomes x(u}. 

When a large enough number of values x(u) have been recorded, we can 

plot a histogram showing the relative count of the x{u) values within 

any interval [.x0 , ~]. In this abstraction we can imagine that we have 

collected enough values to be able to compute the relative counts tor 

any arbitrarily small interval dx and thus obtain a ~mooth histogrmn'. 

Denoting the limit of the relative count d~vided by the width dx o£ the 

interval [x, x + dx], for dx going to zero, by cjl(x) we end up with a 

function cjl that maps x e R into R. 

Going now back to the realm of mathematics, we. see that the 

outcome of the stochastic fun~tion can be viewed as a pair (x(u), cj~(x)}. 

This pair is known as the random {stochastic) variable. It is usual in 

literature to refer just to the values x(u) as random variable with the 

tacit understanding that the function cjl is also known. . 

We note that the function $ is thus defined over the whole set 

of real numbers R and has either positive or zero values, i.e. cjl is non

negative on all R. Further, we shall restrict ourselves to only such ; 

that are integrable on R in the Riemannian sense, i.e. are at least 

piece-wise continuous on R. 

3.2.2 PDF and CDF of a Random Variable 

The function ; described in 3.2.1, belonging to the random 

variable x, is called the probability distribution function (PDF) of' the 

random variable. It can be regarded as equivalent to the experimental. 
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PDF (see 3.1.2) of a random sample. From our abstract experiment it 

can be seen that 

j t/J(x) dx = 1 ( 3 .15) 
-oo 

since the area under the "smooth histogram" must again equal to 1 (see 

3.1.6). This is the third property of a PDF, the integrability and 

non-negativeness being the first two. We note that eq. 3.15 is also 

the necessary condition for t/J(x) dx to be called probability (see 2.1). 

Figure 3.9 shows an example of one such PDF, i.e. tP in which 

the integral (3.15) is illustrated by the shaded area under the rp. 

Figure 3.9 

l 
The definite integral of the PDF, tP, over an interval D c D is 

called the probability of D'. So, we have in particular: 

Jxorp (x) dx = P(x<x) €[0, 1] , -o 
-oo 

00 

I tfl(x) dx = 

Consequently, 

P(x > X ) 
- 0 

€ [0 1 1] 1 

€ [0, 1] • 

P (x > x ) = 1 - P (x _< Xo> • 
- 0 

(3.16a) 

(3 .1Gb) 

(3.16c) 

(3.17) 



(a) 

The integrals (3.16a), (3.16b) and (3.16c) are represented by 

the corresponding shaded areas in Figure 3.10: a, b, and c, respectively. 

~) 
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Figure 3.10 

At this point, the difference between discrete and compact probabil-

ity spaces, should be again-born • in.··mind. In the discrete space, the value 

of the PDF at any point, which is an element of the discrete definition set 

of the sample, can be interpreted as a probability (section 3 .1. 2) • However 

in the compact space, it is only the area under the PDF, that has 

got the properties of probability.* We have already met this problem when 

dealing with histograms. 

* The whole development for the discrete and the compact spaces could be 
made identical using either Dirac's functions or a more general definition 
of the integral. 



Note further that: 

X 
0 

so 

P (x = x0 ) = f ~(x) dx = 0*). 
X 

0 

Analogous to section 3.1.2, the function ~defined as 

I ----------------------------------
X 

~(x) =f~(y) dy, e:[x+ [0, 1]} 
-<» 

(3.18) 

where ye:R is a dummy variable in the integration, is called a CDF 

provided that ~ is a PDF. ~ is again a non-negative, never decreasing 

function, and determines the probability P(x < x ). (Compare this 
- 0 

with section 3.1.2); namely: 

~(x0 ) = P(x < x ) e: [0, 1] . 
- 0 

(3.19) 

Figure 3 .11 shows how the CDF' (corresponding to the PDF in 

Figure 3.9) would look. 

\t'(x) \f(x):: I. 

l.o -------

L---~~------------~~--~~x --+00 
a.. 

Figure 3.11 

* This may not be the case for a more general definition of the integral, 
or for ~being the Dirac's function. 
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If <P is symmetrical, '1:' will be"inversely symmetrical"around the 

axis 'l:'(x) = 1/2. Figure 3.12 is an example of such a case. 

<((x) lt' {x):: I. 

X 

Figure 3.12 

Not'~Fthat '1:' is the primitive function of <P since we can write: 

<P (x) = 
d 'l:'(x) 

dx 

In addition, we can see that q,(x) has to disappear in the infinities in order 

to satisfy the basic condition : 
00 

! <P (x) dx = 1. 

-co 

Hence, we have: 

lim 'l:'(x) = 0 , lim 'l:'(x) = 1 • 
x+-CIO x-+oo 

3.2.3 Mean and Variance of a Random Variable 

It is conceivable that the concept of a random variable is useless 

if we do not know (or assume) its PDF. On the other hand, we do not have the 

one-to-one relation between the random variable and its PDF as we had with 
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' 
the random samples (section 3.1.1 and 3.1.2). The random variable acts 

only as an argument for the PDF. 

The random variable can be thus regarded as an argument of the 

function called PDF, that runs from minus infinity to plus infinity. 

Therefore, strictly speaking, we cannot talk about the "mean" and the 

"variance" of a random variable, in the same sense as we have talked 

about the "mean" and the "var-iance" of a random sample. On the other 

hand, we can talk about the value of the argument of the centre of gravity 

of the area under the PDF. Similarly, we can define the variance related 

to the PDF. It has to be stated, however, that it is a common practice 

to talk about the mean and the variance of the random variable; and 

this is what we shall do here as well. 

The~~ of the random variable x is defined as: 

" =-~ x ¢(x) dx • l 
Note the analogy of (3.20) with equation (3.4), section 3.1.3. 

(3.20) 

~ is often written again in terms of an operator E*; usually 

we write 

00 

t) (3.21) E* (x) = ~ = f x ~ (x) dx 

t E* is again an abbreviation for the mathematical Expectation, similar 
to the operator E mentioned in section 3.1.3. However, we use the 
"asterisk" here to distinguish between both summation procedures, namely: 
E implies the summation using E; and E* implies the summation using!. 
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We can see that the argument in the operator E* is x·~(x) rather than x, 

x being just a dummy variable in the integration. However, we shall 

again use the customary notation to conform with the existing literature. 

We have again, the following properties of E*, where k is a 

constant: (i) E* (kx) = k E* (x); 

. . . r' 

are r different "random variables", i.e., r random 

variables with appropriate PDF's; 

(iii) and we also define: 

E*(E*(x)) = E* (x) = ~tt). 

The variance cr2 of a random variable x with mean~' is defined as: 

~ a2 =-~ (x-•)2 0 (x) dx ·I (3.22) 

Note the analogy of (3.22) with equation (3.8), section 3.1.4. The 

square root of cr 2 , i.e. a, is again called the standard deviation of the 

random variable. 

Carrying out the operation prescribed in (3.22) we get: 

00 

cr2 =! [x2 ~(x) -. 2x~+ (x) + ~2~ (x)] dx 

00 00 00 

= ! x2 ~(x) dx - 2~ ! x ~(x) dx + ~2 ! ~(x) dx • 
-00 

ttin order to prove this equation, one has to again use the Dirac's 
function as the PDF of E*(x). 
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In the above equation, we know that the integral in the second 

term equals~ (equation (3.20)), and the integral in the last term equals 

one (equation (3.15)). Therefore, by substituting we get: 

00 

(3.23) 
-oo 

Note the similarity of the first term in equation (3.23) with 
m 

E(l;2) = 2: 
j=l 

d~ P(d.) 
J J 

(section 3 .1. 4) • This gives rise to an often used 

notation: 

(3.23a) 

We shall again accept this notation as used in the literature, bearing in 

mind that E* is not operating on the argument, but on the product of the 

argument with its PDF. 

The expression 

(3.24) 
-oo 

is usually called the r-th moment of the PDF (random variable); more 

precisely; the r-th moment of the PDF about zero. On the other hand, 

the r-th central moment of the PDF is given by: 

m' = r 

00 

r ! (x-~) ~ (x) dx • 
-oo 

(3.25) 
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By inspecting the above expressions for mr and m~ along with 

equations f3. 20) and ( 3. 22) , we can see that: 

l.l = ml (3.26a) 

and a2 = m2 = m2 - l.l2 = m2 - mf (3.26b) 

Compare the above result (3.26 a, b) with the analogy to mechanics men-

tioned in sections 3.1.3 and 3.1.4. 

3.2.4 Basic Postulate (Hypothesis) of Statistics, Testing 

The basic postulate of statistics is that "any random sample has 

got a parent random variable". This parent random variable x~R is usually 

called population and is considered to be infinite. It is common in stat-

istics to postulate the PDF of the population for any random sample, and 

call it the postulated, or the underlying PDF. Such a postulate may be 

hence tested for statistical validity. 

In order to be able to test the statistical validity we have to 

assume that the sample can be regarded as having been picked out, or drawn 

from the .. population, each element of the sample independently from the rest. 

~his additional property of a sample is required by the standard definition 

of a random sample as used in statistical literature. However, since the 

present Introduction does not deal with statistical testing we shall keep 

using our original, more general definition. 

There are infinitely many families of PDF's. Every such family is 

defined by one or more independent parameters, whose values characterize the 

shape of its PDF. The individual members of a family vary according to the 

value of these parameters. It is common to use if possible, the mean and the 

standard deviation as the PDF's parameters. The less parameters the family of 

PDF's contains the better; the easier it is to work with. 

The usual technique is that we first select the "appropriate" 
9 

family of PDF's on the basis of experience and then try to find such values 
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of its parameters that woUld fit the actual random sample the best. In 

other words, the shape of the postulated ~(x) is chosen first; then, its 

parameters are computed using some of the known techniques. 

Since we shall be dealing with the samples and the random var

iables (populations) at the same time, we shall use, throughout these notes, 

the latin letters for the sample characteristics, and the corresponding greek 

letters for the population characteristics as we have done so far. 

3.2.5 Two Examples of a Random Variable 

Example 3.17: As the first example, let us investigate a random variable x 

with rectangular (uniform) PDF ,. which is symmetrical 

around a· value x; = k~ ::.:t'§t'"· the ·probability 

of x < k-q and x > k+q, be zero. Obviously, this PDF has the 

following analytical form (see Figure 3.13): 

~ax t:S oF s !i m, e-try 

P(k-~!: x !: l<t 'l).: 1. 

Figure 3.13 

h, for (k - q < x < k + q) 

o(x) =< 
0, for (x < k- q) and (x > k + q). 
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This can be written in an abbreviated form as: 

<h, for (i.x-kl.-< q) · 
~(x) = -

0, for (!.x- kl > q). 

The above ~ contains apparently three parameters k, q and h. 

However, only two are independent, since one can be eliminated 

from the condition (3~15), i.e.: 

! ~(x) d.x = 1 

-"" 
that must be satisfied for any ~ to be a PDF. Let us 

elimi~ate for instance the parameter h. We can write: 
00 k-q k+q 

f ~ (x) dx = f ~ (x) dx + f ~ (x) dx + 
-oo -oo k-q 

= 

00 

f ~ (x) dx 
k-4-q 

k+q 
0 + ! hdx + 0 

k-q 

k+q k+q 
= h ! dx = h [x]k 

k-q -q 

1 This means that h =2q , and therefore: 

--<l/(2q), for ( l.x - kl ~ q) 
~(x) 

0, for ( I x - k I > q) 

The corresponding CDF to the above ~ is: 

= 2hq = l. 

0, for (x ~ k - q) 
X 1 

X 

dx. = ;q_ (x-k+q), ll'(x) = ! ~(x) d.x - ! 
-oo 

2q k-q 

( lx - kl ~ q) • 

1, for (x :::, k + q) , 

and is shown in Figure 3.14. 

for 



)0 

o/(x) 

/. 0 ---- ------------

0,5 

Figure 3.14 

From the above figure we see that the function~~linear in the 

interval over which <l> :/: 0, and is constant everywhere else. Note 

that: 
cjl(x) = d '!' (x) 

dX 

The mean of the given PDF is computed from equation (3.20) as 

follows: 
00 

11 = f x<P (x)dx 
k+q 1 2 k+q 

= 1 f xdx = - [:!....] 
2q k-q 2q 2 k-q 

1 2 2 2 2 = - ( k + 2kq + q - k + 2kq - q ) 4q 

- 4kq -- 4q - k. 

This result satisfies our expectation for a symmetrical function 

around k. The variance of the given PDF can be obtained from 

equation (3.22), yielding 

2 
00 

cr 
1 

<j>(x) dx = 2q 

k+q 
fk-q (x-k) 2 dx = 
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1 
k+q 

2 2k 
k+q 2 k+q 

=- f. X dx -- J X a.x+L J dx 2q k-q 2q 
k-q 

2q 
k-q 

3 k+q 

= ~q [~ Jk-q - 2k2 + k2 

Since k = ~ and q = 13o, then h = ~q = 2;~0 , and we can 

express the given rectangular PDF, which we will denote by 

R, in terms of its mean ·~ and its standard deviation a as 

follows: 

R(·~, a ; x) <~her, for ( lx-p.l) ~ 
= ~(x) 

0, for ( I x - pI ) > 

her) 

her) • 

Similarly, we can express its corresponding CDF, which we will 

denote by R , in terms of~ and cr, as follows: c 
0, fo~:~{x<1 ~- ll - ho) . 

~ho ( x-J.t.+l3cr) , for ( I x- ~-1 < 13a) • 

1, for (x ~ ~ + ho) • -

Assume·· that we would like to compute the probability of 

x e: [ ]..1-cr, ~+cr] , where x has the rectangular PDF . 

This can be done by using equation (3.16c) and Figure 3.15, as 

follows: 



I , 

6o 

{>(x). 

~~~~~~~~~~~~~-.-x (~-f3C1') I (~+JJo-) 

(~-rr) cJ+o-) 
Figure 3.15 

].I+ a 
P ( 1,1-0! < X < 1J +a ) = f cp ( X ) dx 

].I+ a 
= f 

}.1-a 

}.1-a 

1 1 
2ha dx = 2ha [2o] 

= ;§- = ~~ = L ~32 =o.~ 577 = Q.:.2§_. 

The above probability is given by the shaded area in Figure 

3.15. 

Similarly, for this particular uniform PDF, we find that: 

P(~J-2a-:_ X-:_ ]1 + 2a): P(~J-3a-:_ X-:_ 1J + 3a): 1.0 

·In:' statistie.a.l,t;esting, we: often need to compute the moments 

of the PDF (see/seo1;i.ea,3.2.3). Let us,., .-fer instance,· 

compute the third moment m3 about zero of the rectangular 

PDF... We will use equation (@-:.-24),. L e. 
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oo 3 ll +13a 3 1 
f X ¢(x) dx= .( X ~dx 

-oo )1-/Jcr . cr 

= ~her ( 8/3crp 3 + 2413 a3 ll ) 

3 2 
m3 =ll_·-~~ 

J:l-:;xample 3.18: As a second example let us investigate a random variable with 

a triangular PDF, which is symmetrical around x = k . Let us 

assume that the probability of x < k - q and x > k + q, be 

zero. We may write (see Figure 3.16): 

Figure 3.16 
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for (x < k - q). 

q), for (k - q < x < k). 

~(x) = 
+ q), for (k < x < k + q). 

0, for (x > k + q). 

This .can be rewritten in the following abbreviated form as: 

< h ( q - I x - k I ) , for ( I x - k I < q) 

~(x) = qo 

for ( I x - k I :: q) • 

From the above, we can see that the triangular PDF has the 

same parameters (k, q, h) as the uniform PDF of example 3.17. 

Let us again eliminate the parameter h from the condition 
00 

f ~(x) dx = 1. This integral is nothing else but the area 

of the triangle, so.· that we, can Write:_:~ • 2q • h = qh = 1. 

Thi.s gives . us : 1 h = -, and hence, 
q 

- 1 ix-~ l -. ( 1· 1 ) <--. - , for x-k < q • q . q ' 
~(x) ·= 

0, for Clx-kl ~ q). 

The .c-omputations of the ~ and the variance of the triangular 

PDF can be performed by following the same procedure as we have 

done for the rectangular PDF in example 3.17. We state here 

the results without proof, and the verification is left to the 

student. 

The ~ Jl of the given triangular PDF equals to k, and the 

variance a2 comes out as~ q2 . 
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Since k = lJ and q = 16a , we ean againt~press the tri-

angular PDF, which we will denote by T, in terms of its mean 

lJ and its standard deviation a, as follows: 

<
~ -lx-}.1 I ' for( lx··\11 
voa 6(/ 

T (\1, a ;x) = ~(x) 

0, for ( I X-lll > 16a ) . 

< 16a) 

The corresponding CDF is given by: 

0, for (x ~ ~- q). 

l!'(x) / (l- lx-21 ) dx, for ( lx-gl ': q) 
q ,.., lJ-q ':l. 

1, for (x: ll + q), 

and is shown in Figure 3.17. 

t.o 
'f(>c)=J. 

0 .. 5 -----·-- -------

Figure 3.17 

The integral in the above equation can be rewritten as: 



X 

< ! _.q,_+_x_-_J.!.o;;.' dx, for (x < u). 

- 11-fllq q + xq2-
f x ( ~ _ I x-u I ) dx 

k-q q 9.2 
X 

......._ ______ -"'-]J dx + f 9. - x + 11 
]1-q q2 11 q2 

for (x > 11). 

and we get: 

X 

f 
11-q 

(q + x - 1J) dx 

= 1 {~2(x2-112+2~q-q2) + (q-11) (x-11+q)} 
q2 

== 1 
2 {x2-2~x+i+2q(X-!1) + q2 } 

2q 

2 
= . (x-11) _ + (x-11)_ + ~ 

2q2 q 2 

Similarly, 

l 
2 q 

and 

f 

JJ-q 

X ( 2 
f (q-x+).l) dx = - x;JJ) - + (x-~2_, 
11 2q q 

g,_+x-11 dx=l 
2 2 

q 

Finally, we can express the CDF, which we are going 

to denote by T , in terms of the mean 11 and the 
c 

.statt:C'tard d.eviation o, as folJ_(lj)wa: 

dx, 
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10, for (X 2_1-l- ./6a) 

2 . 
(x-1J) + (x-1J) + !, for (l..l - ./60 .:s_ x .:s_ u) • 

=1/ 1202 /60 2 

\ 

(X-l..l) 2 + (X-1J) 1 f ( .j ) 
2 ; 60 + 2' or u .:s_ x .:s_ 1..l + 60 • 

120 

1, for (x .::_ 1..l + ./60) • 

By following the same procedure as in example 3.17, we 

can compute the probabilities: P(l..l-0 .:s_ x .:s_ 1..l + 0),P(~-20 ~ x ~ 1..l + 20) 

and P (1J-30 .:s_ x .:s_ 1J + 30) as well as the third moment m3 about zero for 

the triangular ·PDF. Again, we give here the results, and the verification 

is left to the student: 

P(lJ-0 2_ X 2_ 1J + a) ; 0.66 , 

P(lJ-20 .:s_ X .:s_ .l..l + 20) - 0.97 

P(lJ-30 .:s_ x .:s_ 1..l + 30) = 1 and 

m = l..l3 + 3a21..l • 
3 
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3.3 Random Multivariate 

3.3.1 Multivariate, its PDF and CDF 

Analogically to the ideas of stochastic function and stochastic 

variable given in section 3.2.1, we introduce the concept of a multi-

valued stochastic function 

in the s-dimensional space. 

s 
XE {U + R } 

We note that X is a vector function, i.e., X(u) can be written 

as: 

X(u) =(x1 (u), x2 (u), ..• , xs(u)) E Rs, u E u. 

The individual components xj(u) £ R, j = 1, 2, .•• , s are called components 

or constituents of X(u). We also note that each component xj of the stoch-

astic function X can be regarded as a random variable (univariate) of its 

One particular value of xj may be denoted by x~*) and similarly a 
~ 

own. 

particular value of X may be denoted by 

X. 
~ 

1 
(x. , 

J. 
• • • I 

s 
x.) • 

J. 

Note thq.t a specific value of X is a sequence of real numbers (not a 

set), or a numerical vector. 

The pair (X(u), ~(X)), where 

1 2 s 
~ (X) = ~ (X , X , . • •• , X ) (3-27) 

is a non-negative, integrable function on Rs is called a random multi-

variate or simply a multivariate. 

*The superscripts and subscripts here are found very useful to distinguish 
between the c~ponents xJ, j = 1, 2, ... , s of the multivariate X, and 
the elements x~, i = 1, 2, •.. , nj of the univariate (random variable) 
XJ. J. 
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s We can speak of a probability of X£ [X0 , Xl] C R , and define it 

as follows: r-------------------------------, 
xi 

P(X0 ~X~ x1 ) =!X ~(X) dX E[O, 1] . ( 3-28) 
0 

Here the integral sign stands for the a-dimensional integration~ dX for 

1 2 s an a-dimensional differential, i.e. dX = ( dx , dx , • • • dx ) and 

1 = (xl, 
2 

xl' •. • 
s x1) are assumed to satisfy 

the following inequalities: 

j=l,2, ••• ,s 

Note that in order to be able to call the function ~ a PDF, the following 

condition has to be satisfied: 

f s~ (X) dX = 1 
R l (3-29) 

A complete analogy to the one-dimension 1 or univariate case 

(section 3.2.2) is the definition of the multivariate CDF. It is defined 

as follows: 

X 
~(X) = f ~(Y) dYe {Rs + [0, 1]} (3-30) 

-oo 

where Y is an a-dimensional dummy variable in the integration. 

Example 3.19: Consider the univariate PDF shown in Figure 3.12. This 

bell-shaped PDF is known as the normal or Gaussian PDF (to be 

discussed later in more details), and is usually denoted by N, 
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in terms of its ~ and o we have 

~(x) = N(~, o; x) • 

Then the multivariate normal PDF in two-dimensional space, i.e. 

~(X)= ~(x1 , x2), would appear as illustrated in Figure 3-18. 

Figure 3-18. 

In the two-dimensional space, ~(X) is ca.lled a bivariate PDF, 

and the bivariate normal PDF illustrated above can be expressed as 

~(X) = N( ~l' ~2' 01' o2; X) 
.. 

·1 2 
1 X - l-11 X- l-11 

= exp [-~ . -~ ] 
2 'IT 0 cr2 01 02 1 

X ~ .v ~. 

[~-
\~.:..- ).l~ \ )< --

J •· 

'2 
~--:- 2 0 pi 2. 
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3.3.2 Statistical Dependence and Independence 

The PDF,~' of-the multivariate X may have a special form, 

namely 

In this case, the integral in equation (3-28) can be rewritten as: 

s xj 

= IT ! l (3-31) 
j=l xj 

0 

Remembering that each component xj of the multivariate X can be regarded 

as a univariate, and regarding ~j as the PDFs of the corresponding 

univariates we can rewrite equation (3-31) as: 

s 
IT 

j=l 

s 
IT P(xj < xj < xJ1' ) • 

o-j=l 

Comparing this result with equation (3-28), we get the relationship 

between the probabilities 

P(X <X< X ) = ~ P(xj < xj < xj) 
o- - l . o- - l 

J=l 
(3-32) 

This relation can be read as follows: "The combined probability of all 

the components satisfying the condition: xj < xj < xj equals to the 
0- - l' 

product of the probabilities for the individual components 11 , and 

obviously satisfies the definition of the combined probability of 
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independent events (section 2.3). Hence, the components xj of such a 
multivariate X are called statistically independent. The PDF from 
example 3.19 is statistically ~ndependent. 

If the PDF of a multivariate cannot be written as a product 

of the PDF's of· its constituents, then these constituents are known as 

statistically dependent. In this case, the probability P(X0 ~X~ x1 ) 

is not equal to the product of the individual probabilities. 

It can be shown that for statistically independent components 

we have 

J R cj> j (xj) dxj = 1, j = 1, 2, ••• , s. 

3.3.3 Mean and Variance of a Multivariate 

where 

The sequence 

... , u ) 
s 

= E* (X) 

~. = J xj cj>(X)dX = E* (xj)e R, j = 1, 2, ••• , s 
J Rs 

(3-33) 

(3-34) 

is called the mean of the multivariate X. The argument of the operator E* 

(i.e. the a-dimensional integral) is X. cj>(X) 1 2 s 1 2 s 
== (x , x , ••• , x ) • <P (x , x , ••• , x ) • 

Similarly the variance of the multivariate X is given by 

where 

cr2 = (crl, cr2, ••• , cr2) 
2 s 

(f~ = 
J 

I 

= E* (xj -11 . ) 2) e R, j = 1, 2, ••• , s. 
J 

(3-35) 

( 3-36) 
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Note that we can write again 

~ - 2 ~ - 2 ~ 2 -2 
E*(X-~) = E*(X-E*(X)) = E*(X) - ~ ( 3-37) 

and 

The variance of the multivariate does not express the statis-

tical properties in the multi-dimensional space as fully as the variance 

of the univariate does in the one-dimensional space. For this reason, 

we extend the statistical characteristics of the random multivariate 

further and introduce the so-called variance-covariance matrix (see 

section 3. 3. 4) • 

Let us now turn our attention to what the mean and the variance 

of a "statistically independent" multivariate look like. For the stat

istically independent components xj, j = 1, 2, ••• , sofa multivariate x, 

we obtain 

s 
= J [xj ~ . (xj) ( II ~ R, (x.R,) dx.R,) dxj] 

Rs J .R-=1 
( 3-39) 

R-r!j 

Here, according to section 3.3.2, all the integrals in equation (3-39) 

after the IT-sign are equal to one, and thus we have 

( 3-40) 
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Similarly, 

(3-41) 

Thus for the statistically independent X, we can compute the mean and 

the variance of each component xj separately, as we have computed 

cr 2 of the PDF from example 3.19. 

3.3.4 Covariance and variance-covariance Matrix 

Before we start describing the variance-covariance matrix, 

let us define another statistical quantity needed for this matrix. This 

quantity is called covariance and it is defined for any two components 

xj and xk of a multivariate X as 

cov (3.42) 

We note three things in equation (3-42). First, if j = k 

we see that the expressions for the covariances become identical with 

those for the variances, namely: 
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Secondly, if the components of the multivariate are statistically 

independent, the covariances (j # k) are all equal to zero. To show this, 

let us write 

Finally, noting that for a pair of components of a statistically 

independent multivariate we have 

( 3. 43) 

we can write: 
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. k . k 
O'jk = E*(xJx -xJ j.lk-j.ljX + ].lj].lk) 

'k 
- ].1 E*(xj) k 

= E*(xJx ) - ].I.E*(x) + ].lj].lk k J 

. k . k . k 
= E*(xJx ) - ].lj].lk = E*(xJx) - E*(xJ) E*(x) = 0 

. k 
Hence, for statistically independent components xJ and x , we get 

or more generally, for r independent components we get 

r 
E* ( II 

t=l 

t 
X ) = 

r 
II 

t=l 

(3-44) 

(3-45) 

Equation (3-45} completes the list of properties of the E* operator 

stated in section 3.2.3. 

As we stated in section 3.3.3, the variance (cr2} of a multi-

variate is not enought to fully characterize the statistical properties 

of the multivariate on the level of second moments. To get the same 

amount of statistical information as given by the variance alone (in the 

univariate case), we have to take into account also the covariances. 

The variances and covariances can be assembled into one matrix 

called the variance-covariance matrix or just the covariance matrix. 
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The variance-covariance matrix of a multivariate X is usually denoted by 

~~ and looks as follows: 

0'2 
1 0'12 0'13 crls 

0'21 cr2 
2 0'23 0 2s 

~* = (3-46) 
X 

. 
crsl crs2 0'2 

s 

It is not difficult to see that the variance-covariance matrix 

can also be written in terms of the mathematical expectation as follows: 

~* = E* [(X-E*(X)) (X-E*(X))T] , (3-47) 
X 

which is the expectation of a dyadic product of two vectors. Note 

that the superscript T in the above formula stands for the transposition 

in matrix operation. The proof of equation (3-47) is left to the 

student. 

Note that the variance-covariance matrix is always symmetrical, 

the diagonal elements are the variances of the components and the off-

diagonal elements are the covariances between the different pairs of 

components. The necessary and sufficient condition for the variance-

covariance matrix to be diagonal, i.e. all the covariances to be zeros, 

is the statistical independence of the multivariate. The variance-

covariance matrix is one of the most fundamental quantities used in 

adjustment calculus. It is positive - definite (with diagonal elements 

always positive) and the inverse exists if and only if there is no absolute 

correlation between components. 
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3.3.5 Random Multisample, its PDF and CDF 

Like in the univariate case, we can also define here a quan-

tity n corresponding to the random sample ;, defined in section 3.1.1 

as follows: 

n J::l 
I . 
l t,:S 

Jr•i· I . 2 (_t;l, 

I . 
l «~. s 

t;2, 

1 
t;3, 

2 
F;3' 

s 
F;3, 

E;l 
n -

• • • • • I ) e R 1 
nl 

~2 ) 
n2 

(3-48) ..... , e R 
n2 

n 
• • • • • I 

E;s 
n e: R s 

s 

which is a straightforward generalization of a random sample, and will 

be called a random multisample. From the above definition, it is obvious 

that n has s components (constituents), F,;j, each of which is a 

random sample on its own. The number of elements n. in each component 
J 

F;j may or may not be the same. 

We can also define the definition set as well as the actual 

(experimental) PDF and CDF of a multisample in very much the same was as 

we have done for a random sample. Also, the distribution and cumulative 

distribution histograms and polygons can be used for two-dimensional multi-

samples. The development of these concepts, however, is left to the 

student. 

3.3.6 Mean and Variance-Covariance Matrix of a Multisample 

The mean of a multisample (3.48) is defined as 

... , (3-49) 

where from equation (3-3) we get 
1 nj . . 

M. = .~ 1 E;~ = E(F,;J) e:R, 
J n. J.= J. 

J 
j = 1, 2, ..• , s • ( 3-50) 
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Here, the operator E is defined as a vector of operators E which is 

obvious from comparison of (3.49)with (3.50). Similarly, 

r -2 2 2 2 2 l s = (sl, s2, s3, .•• , ss) = - - 2 s 
E (n-M) e: R , ] 

where from equation (3-6), we get 

n. 
J 2 1 s. = L 

n. i=l 
J 

J 

j 2 
(E;.-M.) 

l. J 
=E(E;j-M.) 2 e: R, j = 1, 2, •• , s. 

J 

-

( 3-51) 

(3-52) 

We can also define the standard deviation S of the multisample n as 

(3-53) 

Example 3.20: Let us determine the mean M, the variance s2 and the 

standard deviations of a multisample n = (t;1 , t; 2 , t; 3), 

where 

sl = ( 2, 3, 4, 7, 4) , 

s2 = (6, 4, o, 3, 2) and 

s3 = ( 5; 2, 5, 5, 8) . 
Here we have n1 = n2 = n3 = 5. The mean M is given from 

equation (3-49) as 
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The members Mj, j = 1, 2, 3 are computed from equation (3-50) 

as follows: 

n 5 
M = 1:._ 1:1 ~:- = 1:. 1: ~:-

l nl i=l ~ 5 i=l ~ 

= l (2 + 3 + 4 + 7 + 4) 20 4 ' 5 = 5 = 

M2 = t (6 + 4 + 0 + 3 + 2) = l~ = 3, 

M3 = t (5 + 2 + 5 + 5 + 8) = ~ = 5 , 

and we get 

_, 
M = (4, 3, 5) , 

The variance "82 is given from equation (3-51) as 

~ 2 2 2 
8 = (81, 82, 83) • 

The members 8~, j = 1, 2, 3 are computed from equation (3-52) 

as follows: 

2 1 nl 1 2 1 5 1 2 
8 =--- 1: (~;-M1 ) =- r (~. - 4) 

1 nl i=l ~ 5 i=l ~ 

1 14 
= 5 [4 + 1 + 0 + 9 + 0] = 5 = 2.8 ' 
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82 = 1 [(3}2 + (1}2 + (-3)2 + (0}2 + (-1)2] 
2 5 

= ; [9 + 1 + 9 + 0 + 1] = 2 ~ = 4.0 

s~ = t [(0)2 + (-3)2 + (0)2 + (0)2 + (3)21 

1 18 
= 5 [0 + 9 + 0 + 0 + 9] = -s = 3.6 , 

and we get 

-2 s = (2.8, 4.0, 3.6) • 

2 Taking the square root of the individual members Sj' j = 1, 2, 3, 

we obtain the standard deviation s as 

-S = (s1 , s2 , S3) = (1.67, 2.0, 1.9) • 

If the jth and kth components of a multisample have the same 

number of elements, say n, we can write the covariance Sjk between these 

two components ~j and ~k as: 

( 3-54) 

which can be rewritten as: 

Note that the covariance Sjk' as defined above, depends on the ordering of 
. k 

the elements in both components ~J and ~ , whereas the means Mj and ~ and 

h . 2 d 2 d t e var~ances sj an sk o not. Therefore, to obtain a meaningful covariance 
. k 

sjk' each of the components ~J and ~ should be in the same order as it 

was acquired. This can be visualized from the following example. Assuming 

that the elements of ~j are observations of one vertical angle, and the 

elements of ~k are the corresponding times of the observations. Clearly, 

to study the relationship (covariance) between the observation time and 

the value of the observed vertical angle, the matched pairs must be 

respected. 
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~~-l: 21~: Let us determine the covariances between the different 

pairs of components of the multisample n given in example 3.20. 

The covariances 8jk are computed from equation (3-54} as follows: 

1 5 1 2 ] 
812 = 821 = 5 i~l[(~i-4 ) (~i-3 ) 

= ~ [(-2)(3) + (-1)(1) + (0)(-3) + 

+ (3)(0) + (0)(-1)] 

= 1 [-6-1+0+0+0] = -T = - 1.4, 
5 5 

813 = 831 = ~(-2)(0) + (-1)(-3) + (0)(0) + 

+ (3)(0) + (0)(3)] 

l . 3 
= - [ 0+3+0+0+0] = - = 0.6 and 

5 5 -

823 = 832 =? (3)(0) + (1)(-3) + (-3)(0) + 

+ ( 0 )( 0) + ( -1 )( 3)] 

1 ( 3]• -6 = 5 0 - 3 + 0 + 0 - = ~ :::: -1.2 • 

Finally, we can assemble the variance covariance matrix En 

the multisample n: 

62 
1 612 613 61. s 

821 
82 

2 823 62 s 

E = n 

8sl 8s2 
82 

s 

of 

(3-54) 

Having defined the mean and the variance-covariance matrix of 

a multisamp1e 1e·t us stop and reflect for a while. We have stated in 

3.3.3 that the expansion from one to s dimensions defied a straight-

forward ~eneralisation of one dimensional variance. We had to introduce 

the variance-covariance matrix to describe ~he statistical properties 
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of a ~ultivariate on the second moments level. Turning to the relationship 

sample - univariate we discover· that this is not paralleled in the multi-

dimensional case either. While formulae for the mean and the variance 

of a sample and a univariate were equivalent, those for a multisample 

and a multivariate are not. While equivalent formulae to (3-34), (3-35) 

and (3-42) can be devised for the multisample, the ones used mostly in 

practice ((3-49), (3-51) and {3-54)) correspond really to (3-40), (3-41), 

and (3-43) valid only for statistically independent multivariate. 

This, together with the difficulty with the computation of 

multisample covariances, i.e., the necessity to have the same number 

of elements in any two components, leads often in practice to the 

adoption of an assumed variance-covariance matrix. Decisions connected 

with the determination of the multisa~ple variance-covariance matrix 

are among the trickiest in adjustment calculua. 

Example 3.22. Let us determine the variance-covariance matrix of the 

multisample n introduced in example 3.20. In this case, we 

have the variances computed in example 3.20, the results 

were: 

82 = 2 8 1 . ' 
2 

82 = 4.o and 

Also, we have the covariances computed in example 3.21, the 

results were: 

812 = 821 =- 1.4, 

823 = 832 =- 1.2. 

813 = 831 = 0.6 and 

Therefore, the required variance-covariance matrix will be: 



3.3.7 Correlation 

2.8 

E = -1.4 n 
0.6 

-1.4 

4.0 

-1.2 

81 

0.6 

-1.2 

3.6 

Although the covariances of a multisample do not play the same 

role as the covariances of a multivariate, they still can serve as a 

certain measure of statistical dependence. We say that they show 

the degree of correlation between the appropriate pairs of components. 

The degree of correlation as a measure of statistical dependence, 

may, of course, vary. We can see that the covariance Sjk E R may attain 

any value. Hence it is not a very useful measure because we cannot 

predetermine the value of the covariance corresponding to the maximum 

or complete correlation. For this reason, we use another measure, the 

correlation coefficient, which is usually denoted by p, and is 

defined as 

( 3-57) 

It can be shown that pjk varies from -1 to+l. 

Based on the use of the correlation coefficient is the correlation 

calculus, a separate branch of statistics. It will suffice here to say 

that we call two components ~j and ~k of a multisample n: 

( i) totally uncorrelated, if pjk = 0 , 

(ii) correlated, if IPjkl < 1 , 

(iii) totally positively correlated, if pjk = 1 , 

(iv) totally negatively cor'related, if pjk = -1 . 
Note that for the multivariate, the expression for pjk is written completely 

analogous to equation (3-57). 
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Example 3.23: Let us discuss the degree of correlation between the 

different pairs of components of the multisample n which is 

used in examples 3.20 to 3.22 inclusive, and whose variance-

covariance matrix is given in example 3.22. 

The correlation coefficients pjk are computed from equation (3-57) 

as follows: 

Note that: 

Since 

- 1.4 4 = 1.67 . 2 = - o. 2 

0.6 = = 1.67·1.9 0.19 ' 

-1.2 
2 • 1. 9 = - 0.31 . 

jpjkl < 1, j, k = 1, 2, 3, j :j: k, 

thus the components ~ 1 , ~2 and ~ 3 of the given multisample n 

are all correlated. 

Example 3.24: Let us discuss the degree of correlation between the 

1 2 components ~ and ~ , and between ~l and ~ 3 of the multi-

1 2 3 sample n = (~ , ~ , ~ ), where: 

1 
~ = (2' 1, 3, 5, 4), 

~2 = ( 4' 2. 6,_ 10, ._at~ ...... 
1;3 = (-4, -2, -6, -10, -8). 
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By computing the means and variances of .;J, j = 1, 2, 3 

similarly to example 3.20, and the covariances 812 and 813 

similarly to example 3.21, we get the following results: 

Hence 

Ml = 3, M2 =6· and M3 

82 = 2, 82 =8 and 82 
1 2 3 

81 = ·12~ s2 = 
8 = 4 and 12 

83 = 2 12 ' 

813 = -4. 

812 4 
P12 = 8 •S = ...,l-2 ....... -2._,1 .... 2 = + l, 

1 2 

= -6, 

= 8 ' 

which means that .;1 and .;2 are totally positively correlated, 

and 

~13 
P13 = S ·S = 

1 3 

_4 
- 1 ' 

which means that .;1 and ~:; 3 are totally negatively correlated. 

At this po.int it is worthwhile mentioning that the computa-

tions of the means, variances, covariances ~d correlation coefficients 

of the constituents of a multisalple are always preferably performed in a 

tabular form for easier checking· The following table is an example of 

such an arrangment using the two constituents .;1 and ~2 of the multi-

sam~le introduced in example 3.20. 
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t;1 F;2 1 
( ~ .-M1) • 

:t 

1 1 (E.l-M )2 F.:: 2 (~~-M2)2 '( ~i-112) ~. ( F;i -M1) (t,;i-M2) 
~ "i 1 ~ 

2 -2 4 6 3 9 -6 

3 -1 1 4 1 1 -1 

4 0 0 0 -3 9 0 

7 3 9 3 0 0 0 

4 0 0 2 -1 1 0 

-
E 20 14 15 20 -7 

. --- -·--·-

il'!.1 = ~ ( 20) = 1.~' 
1 M = - ( 15) = 3 ' 2 5 

2 1 = 2.8, 2 1 = 4 s1 = 5 (14) 82 = "5 (20) ' 

s1 = /2.8 = 1.67 ' s = llt = 2 .2 ' 

1 
812 = 5 (-7 ) = -1.1~, 

and 

-1.4 = - 0.4? p12 = 1.67 . . 2 -
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,61, 70, 102, 107, 113, 114) 117,'119, 120, 126, 120, 129, 129, 13:2, !37, 
i3V, 130~ 130, 142, 143, 146, 1~6, 1·17, 1471 148, 149, 149, 150, 150, 153. 
153, 156, 157, 158, 150, 159, 159, 159, 162, 162, 164, 166, 166, 166, 167, 
16!>, 169, 169, 169, 170, 170, 171, 17~; 172, 172, 173, 173, 175, 175, 176, 
176, 1.76, 17.7, 177, 178, 179, 180, 180, 181, 181, 181, 182, 183, 184, 184, 
l85, 186, 187, 188, 188, 190. 192, 102, 193, 194, 194, 194:, 195, 195, 195, 

··1nn 10~ 10°. 1n~ 900 •01 ~01 9 01 9 09 9 09 •o• •O·' •o~ ~os 9 09. · ::JO, I., "'' iT1..1 1 - , - , - , - , - "'"":t - ....-, ... ·-:> 1 - ·!:': - u 1 - 1 ..,.. • , 

90!) "09 21. 216 <:11!) 919 219 •)•)1 2?9 9"'3 2"'7 "33 ·~-.t. 2'-'6 93~, - I .- • J ~~ J ~ I • I I -- J IW-1 ,.,_, l .- t - .. J --'*'J 0 t .-. I 

240, 247, 254, 262, 270 

Required: (i) Glassify this sample according to your own choice, and 

then draw its: distribution histogram, distribution polygon, cumulative 

histogram, cumulat'ive polygon. 

( ii) :Oet:ermine the mean, standard deviation, median and range 

of the sample; then plot these quantities on your histograms and 

polygons. 

(iii) Det~rmine the probability of the height being in between 

121 and 174 ems, by using your distribution histogram, your distribution 

polygon, the cumulative histogram, the cumulative polygon, the actual 

sample. Then compare the results. 

(3) Verify the results given in Example 3.18 for the mean, the variance 

and the third moment about zero of the triangular PDF. 



(l) 

3.4 Exercise 3 

The following table gives the weights as recorded to the nearest 

pound for a random sample of 20 high-school students: 

138 150, 146' 158, 150 

146 164 138 164 164 

150 146 158 173 150 

158 130 146 150 164 

Required: (i) Compute the mean, the standard deviation, the median 

and the range of this random sample using both the original sample 

and its definition set. 

(ii) Compute the experimental probabilities of the 

individual elements and then construct the corresponding discrete 

PDF and CDF of the sample. 

(iii) Compute the probability that the weight of a high

school student is less than or equal to 150 pounds. 

(iv) Compute the probability of the student weight to be 

in the interval [158, 173]. 

(2) The following table gives the observed heights in em of a random 

sample of 125 nine years old pine trees. 
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(4) Verify the results given in Examples 3.17 and 3.18 for the 

probabilities P( )J-cr ~ x ~ ]J+cr), P( ).l-2cr ~ x ~ )J + 2cr) and 

P(JJ-3cr ~ x ~ )J + 3cr)using the rectangular and the triangular CDF s 

respectively ~ather than the corresponding PDF s.) 

(5) Let x be a random variable whose PDF is given by: 

< h, for ( -3 ~ x .::_ 7) 
4> (x) = 

0, everywhere else. 

~.9.ui.red: (i) Determine h. 

(ii) Compute the mean and the standard deviation of x. 

(iii) Construct the CDF of x. 

( iv) Use both the PDF and CDF' to determine the following 

probabilities: P(x~1.5), 

P(x.?_2.5), 

P( -1 .::_ X _-:_ 4) , 

P( JJ-2cr::_ x _-:_ JJ+2cr) • 

(v) Compute the 3-rd and 4-th moments of the PDF about 

zero. 

(6) Let x be a random variable having the following PDF: 

¢(x) < k·x , for (O < x < 2) 

= 0 , everywhere else. 

B.eS!.ulr_e_£_: ( i) Determine the mean, the variance and the standard 

deviation of x. 

( i.i) Compute the probability P( 1 _-:_ x .::_ 1. 5) • 
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(7) Let x be a random variable whose PDF is given as: 

1 3 
k + 5o x - 5o , for ( 3 ~ x ~ 8) 

1 13 ¢(x) k-50x+ 50 , for (8..::_x~l3) 

0 , everywhere else. 

Be!!~ired: (i) Determine the mean and the standard deviation of x. 

(ii) Compute the probabilities: P(5.5 ..::_ x ~ 10.5), P(x ~ 9), 

P(x,.::. 7), P(].l - cr..::_ x ~ J.l + cr) . 

( ) 1 2 3 1 8 Given a multisample n = (t; , t; , t; ), where~ = (4.2, 3.7, 4.1), 

t;2 = (26.7, 26.3, 26.6), and ~ 3 = (-17.5, -17.0, -18.0). 

Required: (i) Compute the mean of n . 

(ii) Compute the variance-covariance matrix of n. 

(iii) Compute all the correlation coefficients between 

the different pairs of components of n. 

(9) Given a bivariate X = (x1 , x2 ) with PDF 

\~ 
lx1-gl + 1 f ( lxl-ql < s 16, and 
s2t 1213 st 6h ' or 

lx2-rl < t 13) 
¢(X) 

, everywhere else, 

where q, rare some real numbers and s, t are some positive real 

numbers. 

Required: (i) Compute the mean of X. 

(ii) Compute the variance-covariance matrix of X. 
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4. FUNDAMENTALS OF THE THEORY OF ERRORS 

4.1 Basic D:efinitions 

In practice we work with observations which are nothing else 

but numerical representation of some physical quantities,.e.g. lengths, 

angles, weights, etc. These observations are obtained through 

measurements of some kind by comparison to predefined standards. In many 

cases we obtain several observations for the~ physical quantity, which 

are usually postulated to represent this quantity. 

There is a different school of thoughts claiming that no 

quantity can be measured twice. They say that if a quantity is measured 

for the second time, it becomes a different quantity. Philosophically, 

the two approaches are very different, however, in practice they coincide. 

They vary in assuming different things (hypotheses), but they lead to 

the same results. 

The observations representing the same quantity may or may not 

have some spread or dispersion (by spread we mean that not all the 

observations are identical). For instance, when we measure the length of 

the side of a rectangle using a graduated ruler, we will have two possi

bilities (see Figure 4.la, b). 

a) b) 

Figure 4·.1 
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First, if the length of that side is exactly equivalent to an 

integer number of graduations (divisions) on the ruler, the measurement 

of it will not produce any spread. This is simply because the beginning 

of the side will be at a graduation line of the ruler, and at the same 

time the end of the side will be at another graduation line, and hence 

we get always the same result. On the other hand, if the end of the 

side is located between two division lines on the ruler, there will be 

a fraction of the smallest division on the ruler to be estimated. The 

estimates(observatiom) will differ, s~ due to different observers, and 

hence we shall get a spread. 

Usually, the spread and its presence depend on many other 

things like: the design of the :experiment, measuring equipment, precision 

required, atmospheric conditions, etc. If we know the causes that 

influence the spread, we can try to account for them in one way or the 

other. In other words, we will apply certain corrections to eliminate 

such unwanted influences which are usually called systematic errors. 

Examples of systematic errors are numerous like: variation of the length 

of a tape with temperature, variation of atmospheric conditions with 

time, etc. 

In practice, this is possible if we can express such corrections 

mathematically as functions of some measurable physical quantities. In 

some cases, the systematic errors remain constant in both magnitude and 

sign during the time of observations , e.g. most of the instrumental 

systematic errors.. In such cases, we can eliminate these systematic 

errors by following certain ·· teclmiques in making the observations. For 

example, the error in the rod reading due to the inclination of the line 
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of sight of the level, with respect to the bubble axis, can be eliminated 

by taking the backsight and the foresight at equal distances from the 

level. 

Further, we shall assume that there are no blunders (mistakes) 

in the observations. These blunders are usually gross errors due to the 

carelessness of the observer and/or the recorder. The elimination of 

blunders has to be carried out before starting to work with the observations. 

The ways for intercepting blunders are numerous and are as different as 

the experiments may be. We are not going to venture into this here. 

4.2 Random (Accidental) Errors 

Even after eliminating the blunders and applying the appropriate 

corrections to eliminate the systematic errors, the observations repre-

senting a single physical quantity usually still have a remaining spread, 

i.e. are still not identical, and we begin to blame some unknwon or 

partly unknown reasons for it. Such remaining spread is practically 

inevitable and we say that the observations contain random or accidental 

errors. 

The above statement should be understood as follows: given a 

finite sequence L of observations of the same physical quantity ~·, i.e. 

we assume that the individual elements~., i = 1, 2, .•• , n represent the 
~ 

same quantity t; where ~· is the unknown value, and can be written as: 

n = nl + E: ~ - 1 2 n ~i ~ i' L- I I •••I • 
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The quantities e's are the so-called random (accidental) errors*. 

The sequence 

( 4-3) 

(or the sequence L, equation (4-l), for this matter) is declared a random 

sample as defined earlier in section 3.1.1. This random sample has a 

parent random variable, as defined in section 3.1.2. 

It should be noted that the term "random error" is used rather 

freely in practice. 

4_.3 Gaussian PDF. Gauss Law of Errors 

The histograms (polygons) of the random samples representing 

observations encountered in practice generally show a tendency towards 

being bell-shaped, as shown in Figure 4.2 a,b. 

Figure 4.2 

* It may happen, and as a matter of fact often does happen, that we are 
able to spot some depen~ence of e (for whatever this means) on one or 
more parameters,.e.g. temperature, pressure, time, etc., that had not 
been suspected and eliminated before. Then we s~ that the e's change 
systematically or predictably with the parameter in question, or we say 
that there is a correlation between the e 's and the parameter. Here, we 
may say that the observations still contain systematic errors. In such a 
case we may try to eliminate them again, after establishing the law 
governing their behaviour. 
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Various people throughout the history have thus tried to 

explain this phenomenon and establish a theory describing it. The 

commonly accepted explanation is due to Gauss and Laplace independently. 

This explanation leads to the derivation of·the well known model - the 

Gaussian PDF. The assumptions,,.due to Hagen, necessary to be taken into 

account, along with the derivation of the law, due to de Moivre, are 

given in Appendix I. Here we state only the result. 

The Gaussian PDF,G(C;E) is found to be (equation (I-ll), 

Appendix I) : 

G(C; e)=~~ exp (-2e2/C), I ( 4-4) 

where its argument E is the random error, i.e. a special type of random 

variable with mean eqlal to zero, and C is the only parameter of the dis-

tribution. The Gaussian PDF is continuous and is shOwn in Figure 4.3. 

Figure 4.3. 
From the above Figure we note the following characteristics of 

the Gaussian PDF, 

( i) G is symmetrical around 0. 

(ii) The maximum ordinate of G is at E = 0, and equals /( 2/lJrr )) , which 

varies with the parameter C, see Figure 4.2b. 

(iii) G approaches the E axis asymptotically as E goes to ~ =. 
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(iv) G has two points of inflextion at e: = + tC/2. 

The shape of G reflects what is known as the "Gauss law of a 

large sample of errors", which states that: 

( i) smaller errors are more probable than the larger errors, 

(ii) positive and negative errors have the same probability.* 

Note··that since G is a PDF it satisfies the following con-

dition: 
00 

f G(C ;E) de: (4.5) 

4.4 Mean and Variance of the Gaussian PDF 

Since G is symmetrical around zero, it is obvious that its 

mean~ equals zero (see section 3.2.5). 
-- E 

Recalling 

The variance cr 2 of G is again obtained from 
E 

that 

00 

f 
0 

00 

2 
a = e: 

2 
E* ( e: -~ ) = 

E 
f 

2 e: G( C; e:) de: 

00 

ig_ f 
2 exp (-2e: 2/C)de:: = E C'IT 

-oo 

f1f 2 2 2 (a> 0), t exp (-a t ) dt = ' 4a3 

we get from equations (4.6) and (4.7) 

(4.6) 

* The same result can be obtained using slightly weaker (more general) 
assumptions through the "central limit theorem". 



where 

Hence, 

and we get 
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=--
3 ' 2a 

2 
a = lc . 

12 · clc c 
= 21lc • 21l2 = 4 

2 
C = 4cr~ • (4-8) 

2 . 
Consequently, the variance cr , or rather the standard deviation cr ~ can 

~ . ~ 

be considered the only parameter of G. Substituting equation (4-8) into 

equation (4-4) we get: 

---------------------------r 
1 2 ·~ 

exp (-£ /(~J) • 
a~ .f'2,-} 

(4-9) 

Note from equation (4-8) that ~ = IC/2, which equals to the abscissas 

of the two points of inflextion of G. 

Example 4.1. Let us compute, approximately, the probability P(-cr < £ < cr) 
- E- - ~ 

assuming that £ has a Gaussian PDF. We first expand the function 

2 2 exp (-£ /2cr£) to be able to integrate equation (4-9). Recall 

that: 

exp (y) z: ~ = ey = l+y + 2! + 3! + 

Hence 
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2 2 2 4 6 
exp ( -€ /(2o )) = 1 - _e - + ....£_4 _....£__ +· 

E 2 6 2og Bog 48oe: 

and 

Thus: 

E: 

3 5 = __1_ [ 20 ~:~ 12 • 2oe_ + _L . 2oe: 

o(21T) ~ 2o 3 Bo ~ 5 
e: e: 

7 
1 2oE' + ] 

- 48o6 • 7 ••• 
e: 

= ~~~1. - 0.167 + 0.025- 0.003] 
(J {C 1T. 

e: 

= i:-,; [0.855] ;. 0.683 

P(-o < e: <a) ;. . 0.683 • 
e:- -e: 

By following the same procedure, we can find that: 

P(-2oe: ~ e: 1.. 2oJ ,; 0.954, 

P( -3oe: ~ e: ~ 3oJ ;. 0 •. 991· 
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4.5 Generalized or Normal Gaussian PDF 

The Gaussian PDF (equation (4.9)) can be generalized to have an 

arbitrary mean ~ . This is achieved by the transformation 
y 

Y = e: + ~ y ' ( 4-10) 

in equation (4-9), where y is the argument of the new PDF- the generalized 

Gaussian. Such generalized Gaussian PDF is usually called normal PDF and 

is denoted by N, where: 
2 

(y-~ ) '-T). 2 . 
y 

( 4-11) 

The name "normal" reflects the trust which people have, or 

used to have, in the power of the Gaussian law (also called the "normal 

law") which is mentioned in section 4. 3 . If the errors behave according 

to this law and display a histogram conforming to the normal PDF, they 

are normal. On the other hand, if they do not, they are regarded as 

abnormal and strange things are suspected to have happened. 

The normal PDF contains only two parameters - the mean ~~and 

the standard deviation J,• Hence, it is well suited for computations. 

Note here that the family of G(~; e:) is a subset of the family 

of N(~, ~; y). Also note that the following condition has to be satis

fied by N: 

The formula for the normal CDF corresponding toN is given as: 
2 

1 y . (x-lly). 
'!'N(y) = ali";) L"'exp(- 2 ) dx' 

y 2o 
.Y 

where x is a dummy variable in the integration. 

( 4-12) 
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For the generalized (normal) Gaussia~PDF, it can be again 

shown that: 

P ( 1-l -a < y < 1-l + a ) = 0. 683 .. y y- - y y ' 

P(J..l -2a < y < 1-l + 2a ) · 0.954 y y- - y y 

and 
P( J..l -3a < y < ll + 3a ) ; 0. 997 .. y y- - y y 

(Compare the values to the corresponding results of the triangular PDF 

in example 3.18). 

4.6 Standard Normal PDF 

The out.come t of the following linear transformation 

x - 1-lx 
t =--....;;;;. ( 4-13) 

is often called the standardized random variable, where x is a random 

variable with mean J..l and standard deviation a • Note that the above 
X X 

standardization processdces not require any specific distribution 

tor x. 

The transformation of the normal variable y (equation (4-10)) 
y-]J 

to a standardized normal variable t = ~results in a new PDF 
a 

l exp (-t2/2) = N(O, l; t) = N(t), 
1(21T) 

'-------~-----------·-····--··-

( 4-14) 

whose mean J..lt is zero and whose standard deviation at is one. This 

PDF is called the standard normal PDF, a particular member of the family 

of all normal distributions. 
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S:dtnce both the parameters lit~· '.0 and crt' • -l;~ are. determined once 

for all, the standard normal PDF is particularly suitable for tabulation 

due to the fact that it is a function of t only. An example of such 

tabulation is given in Appendix II-A, which gives the ordinates of the 

standard normal PDF for different values oft. Note again that 

00 l 
£oo N(t)dt = /(2n) 

The CDF corresponding to N (t) is given by 

l ft 
2 

I!'N(t) = 1(2n) exp (- L) dx, 
-"" 2 (4-15) 

or 

l 1 ft 
2 

I!'N(t) =- + 1(2n) exp (- ~ )dx, 2 0 
( 4-16) 

where x is a dummy variable in the integration. Again, the CDF of 

the standard normal PDF is tabulated to facilitate its use in probability 

computations. Appendix II-B is an example of tabulated I!'N(t) using 

equation (4-15), which gives the accumulated areas (probabilities) 

under the standard normal PDF for different positive* values of t. 

Appendix II-C contains a similar table, but it gives the values of 

the second term in equation (4-16) only, for different values of t. 

Hence, care must be taken when using different tables for computations. 

* For negative values of the argument t the cumulative probability 
P(t <-t ) = I!'N(-t ) is computed from ~N( t ) through the condition: 

- 0 0 0 

~ (-t ) = l - ~ (t ) . N o N o 
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The second term in equation (4-16) is usually known as 2~2 
erf (t), i.e. 

1 1 
~N(t) = 2 + 212 erf (t), ( 4-17) 

where, erf (t) is known as the error function, and is obviously given by 

l erf (t) = -J; !~ exp (- }- )dx • I (4-18) 

This erf (t) is also tabulated*. 

In order to be able to use the tables of the standard normal 

PDF and CDF for computations concerning a given normal random variable 

x, we first have to standardize x, i.e. to transform x to t using 

equation (4-13), then enter these tables with t. Thus, if we want, 

for instance, to determine the probability P(x < x ) 
- 0 

X-j..l X -J..I 
P(x < X ) = P(--X < 0 X ) 

-o cr- cr • 
X X 

we have to write: 

(4-19) 

This is identical to the probability :P(t ~ t 0 ) that can be obtained 

from the standard normal tables. 

Example 4. 2 

N(\:) 

0 0·4 

Figure 4.4 - i 

t 

Suppose that the height h of a student 

is a normally distributed random 

variable with mean J..lh = 66 inches and 

standard deviation crh = 5 inches. Find 

the approximate number K out of 1000 

students h inches tall: 

( i) h ~ 68 inches (Figure 4. 4 -:i.) j 

(ii) h ~ 61 inches (Figure 4.4-ii)j 

* In most of the computer languages, this error fun:tion, erf (t).is a 
built-i.n function. Hence it can be called as any lJ.brary subroutJ.ne 
and evaluated ~ore precis~ly than using the corresponding t~bles. 



Figure 4.4-ii 

N{\:) 

1.72 t 

Figure 4. 4-iii 

N{t) 

.. 0.'34 0 o.s t 

Figure 4 .11.-i v 
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(iii) h ~ 74.6 inches (Figure 4. 4-iii)) 

(iv) [64.3 .:_h.:_ 70] inches (Figure 4 •. 4-iv). 

Solution: We are going to use the 

Table in Appendix II-B. 

(i) P(h .:_ 68) = P(t .:_ 68- 66 ) 
5 

= P(t .:_ 0.40) = 0.6554 • 

Hence, K1 = (0.6554)(1000) ; 655 students. 

(ii) P(h _< 61) = P(t < 61- 66 ) 
- 5 

= P(t .:_ -1) = 1-P(t .:_ 1) 

= 1. - 0.8413 = 0.1587 • 

Hence, K2 = (0.1587)(1000) = 159 students • 

(iii) P(h _> 74.6) = P(t > 74 •6- 66 
- 5 

= P(t ~ 1.72) 

= 1. - P(t .:_ 1.72) 

= l. - 0.9573 = ~. 

Hence, K~ = (0.0427)(1000); 43 students. 

(iv) P(64.3.:. h.:_ 70) = 

= p (64.3-66 < t < 70-66 
5 - - 5 

= p (-0.34.:. t.:. 0.80) 

= P(t .:_ 0.80) - P(t .:_ -0.34) 

= P(t .:_ 0.80) - (1-P(t .:_ 0.34) 

= 0.7881- [1-0.6331] 

= 0.7881- 0.3669 = 0.4212 • 

Hence K4 = ( 0. 4212 )( 1000) = 1+21 students. 



N(t) 

0.6'554 

figUf_e 4. 5-i 
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For the normal random variable h 

given in example 4.2, determine the 

student's height H such that: 

( i) P(h < H ) = 0.6554 (Figure ir .• 5- i) • - l ) 

(ii) p (h 2. H2 ) = 0.25 (Figure 4. 5-ii) • . j 

(iii) p (h..:_ H3 ) ::: 0.20 (Figure 4·5-iii)· 
I 

(iv) P(H4 _:. h..:_ H5 ) = 0.95, 

where H4 = f.lh -K and H5 = f.lh +K. (Figure 4, 5-iv) • 

Solution: Again in this example, we 

are going to use the standard normal 

CDF table given in Appendix II-B. 

( i) P ( h ..:_ H1 ) = P ( t ..:_ t l) == 0. 6 55 4 . 

From the above mentioned table, we 

get t = 0 .l+, that corresponds to 
l 

probability P = 0.6554. But we know 
Hl-f.lh 

that t = • 
l crh 

From example ir.-2 we have f.lh = 66 inches 

and. ah = 5 inches. Hence, 
H -66 1<•. 

tl = 5 = 0.4 

from which we get 

H1 - 66 = 5(0.4) = 2, 

i.e. 
H1 = 66 + 2 = 68 inches, 

which is identical to the first case 

in example 4. 2; however, what we are 

doing here is nothing else but the 

inverse solution. 
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But: 

and we get 

By interpolation in the above mentioned 

table we get t 2 ' 0.675 which 

i.e. H2 = 66 + 5 (0.675) 

= 66 + 3.375 = 69.375 inches 

By examining the above mentioned table 

we discover that the smallest probabil-

ity reading is 0.50, since it considers 

only the positive values oft. Therefore 

we have to write: 

and we get 

P(t <-t ) = 1 - 0.20 = 0.80. 
- 3 

By interpolation in the above mentioned 

table we get: (-t3 ) = 0.842, which 

corresponds to P = 0.80. Then we have: 
H -66 

t3 = 35 = -0.842 

and, H3 = 66-5(0.842) 

= 66-4.210 = 61.79 inches. 
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-t 0 
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(iv) P(H4 < h < H ) 
- - 5 

= P(-t < t < t ) = 
0- - 0 

0.95, 

where K K t =-=-. 
o crh 5 

The above statement means that: 

P(t < t ) - P(t <-t ) = 0.95. 
- 0 - 0 

However, from the symmetry of the 

normal PDF we get: 

and we get: 

= l. - 0.95 = 
2 

P(t < t ) = 0.95 + 0.025 = 0.975, 
- 0 

or P(t < t ) = 1. - 0.025 = 0.975. 
- - 0 

0.025 

From the above mentioned table we get: 

t = 1.96, which corresponds to 
0 

P = 0.975, and we have: 

K -
t 0 = 5 = 1.96 , 

i.e. K = 5(1.96) = 9.80. Consequently: 

and 



105 

Example 4.4: Let us solve example 4.1· again by 

using the standard normal CDF tables. 

Recall that it was required to compute 

P(-cr < e: <a ), where e: has a 
E: - - E: 

Gaussian PDF (i.e. its ~e: = 0). We 

can write: 

P(-cr < e: < a ) 
E: - - E: 

-0' ... () 0' - 0 
= P( ~ .::_ t < e: )) 

0' 0' 
E: E: 

Figure 4.6 = P(-1 .::_ t .::_ 1), see Figure 4.6. 

Further we can write: 

P(-1 .::_ t .::_ 1) = 2P(O .::_ t .::_ 1). 

From the table given in Appendix II-C, 

we get: 

P(O .::_ t .::_ 1) = 0.3413. 

Hence, 

= 0.6826 = 0.683, 

which is the same result as obtained 

in example 4.1. 
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4.7 Basic Hypothesis (Postulate) of the Theory of Errors, 

Testing 

We have left the random sample of observations L behind in 

section 4.2 while we developed the analytic formulae for the PDF's 

mostly used in the error theory. Let us get back to it and state the 

following basic postulate of the error-theory. A finite sequence of 

observations L representing the same physical quantity is declared a 

random sample with parent random variable distributed according to the 

normal PDF N(~t' crt; t). Other PDF's are used rather seldom. The 

validity of this hypothesis may or may not be tested, on which topic 

we shall not elaborate here. 

The mean ML of the sample L is said to approximate (the word 

estimate is often used in this context) the mean ~t of the parent PDF, 

2 Also, the variance s1 of the sample L is said to 

estimate the variance cri of the parent PDF. 

Considering the original sample 

L = ( t . ) = ( t'+e . ) , i = l , 2 , ••• , n , 
~ ~ 

we get: 

l n l n l l n 
M1 =-f. £. =- .2:1 (£1+e.) =- (n£') +- .E1 e.; = £1 + M 

n i=l ~ n ~= ~ n n ~= .... e 
(4-20) 

SLnce the random errors c.'s are postulated to have a parent Gaussian 

PDF N(O, cre; e),which implies that ~e = 0, then we should expect that 

M + 0 and we can write equation (4-20) as: 
£ 

(4-21) 
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keeping in mind that by the unknown value £'we mean the unknown mean 

~£ of the parent PDF of £. We say that the mean ~ of the sample L 

approximates (estimates) the value of the mean ~£ of the parent PDF of £. 

Similarly, we get 

2 1 n (.ti-~)2 1 
n 2 1 

m 2 s 2 
SL = n i~l =- i~l[ti-(.t'+ ME)) = - k .( c:. - M ) = 

n m.i=l ~ E £ 

The above result indicates that the variance 2 s1 of the sample L is 

identical to the variance s2 of its corresponding sample of random errors 
£ 

c:. This is actually why si is sometimes called the mean sguare error of 

the sample, and is abbreviated by MSE. Also, s1 is known as the root 

~ean square error of the sample, and is abbreviated by RMS. According 

to the basic hypothesis of the error-theory we can write equation (4-22) 

as: 

( 4-23) 

which states that si estimates the variance o~ of the parent PDF of 

. . . ' 
:Sxample 4.5 

£ ) • 
n 

Assume that the sample L: (2, 7, 6, 4, 

2, 7, 4, 8, 6, 4) is postulated to be 

normally distributed. Let us tr~~sform 

(4.22) 

this sample in such a way that the transformed 

sample will have: 

(i) Gaussian distribution 

(ii) Standard normal distribution. 
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Solution; ·First we compute the mean~ 

and the variance si of the given sample 

as follows: 

1 10 
l 

M = 10 i~l ~. - (50) = 5, 
1 J. 10 

According to the basic postulate of the 

error-theory we can say that: 

~~ = ~ = 5 and o2= o~ ; s1 = 2, 

where~£ and o2 are respectively the 

mean and the standard deviation of the 

parent normal PDF N( ~ 2 , o £,; ~.) assumed 

for the given sample. The parameters 

~£and o2 will be used for the required 

transformations as follows: 

( :i.) The Gaussian distribution G( o ; E), 
e 

where o~ = o2 = 2, has an argument e 

obtained from equation (4-10) as: 

Hence the transformed sample that has a 

Gaussian PDF is: 

e =(e.), i = l, 2, ... , 10 ·,i.e.: 
J. 

~ - (-3, 2, l, -1, -3, 2, -1, 3, l, -1). 



109 

(ii) The standard normal distribution 

N(t), has an argument t obtained from 

equation (4-13) as: 

R..-)..ln R-.-5 
t . : ~ ;v : _].__ • 1 2 10 
~ (j £ 2 ' ~ = ' ' ... ' . 

Hence, the transformed sample that has 

a standard normal PDF is T - ( t i), 

i = 1' 2' ... ' 10 i.e.: 

T- (-1.5, 1, o.5, -0.5, -1.5, 1, -o.s, 

1.5, 0.5, -0.5). 

4.8 Residuals, Corrections and Discrepencies 

As we have seen, we are not able to compute the unknown 

value £'or )..1 £. All w·e can get is an estimate £ for it from the 

following equation 

£: M_ = £'+ M = £'+ E *) --r, e: ' ( 4-24) 

-and hope that e:, in accordinace with the basic postulate of the error-

theory, will really go to zero. 

The residual ri is defined as the difference between the 

observation £. and the sample mean£, i.e. 
J. 

* From now on, we shall use the symbol i for the mean ~ of the sample 
L. The "bar" above the symbol will indicate the sample mean to make 
the notation simpler. 
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Residuals with inverted signs are usually called corrections. It should be noted 

that a residual, as defined above, is a uniquely determined value and not 

a varia:bl e. The observed value £. is fixed and so is the mean £ for the 
~ 

particular sample. In other words, for a given sample, the residuals can 

be computed in one way only. Note that the differences (£. - £) = r. are 
~ ~ 

called residuals and not errors, because errors are defined as s. = ( 9. •• - J1 n) 
l l lv 

and Jl£ may be different from £. 

In practice, one often hears talks about "minimized residuals", 

"variable residuals" etc. which are not strictly correct. If one wants 

to regard the "residuals as variables" the problem has to be stated differ-

ently. The difference v. between the observed value £. and any arbitrarily 
l ~ 

assumed (or computed) value £0 , i.e. 

(4.26) 

should be called discrepency, or misclosure, to distinguish it from the 

residual. These discr~pencies are obviously linear functions of £ 0 jtheir 

values vary with the choice of £0 • Hence one can talk about "minimization 

of discrepencies", "variation of discrepencies" etc. Evidently, residuals 

and discrepencies are very often mixed up in practice. 

At this point it is worthwhile to mention yet another pair of 

formulae for computing the sample mean £ and the sample variance s 2 Such 
L 

simplified formulae facilitate the computations especially for large samples 
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whose elements have large numerical values. The d.evelopment of these 

formulae is done analogically to the formulation of equations (4.20), 

(4.22), (4.25) and (4.26). Here we state only the results, and the 

elaboration is left to the student. 

and 
I = ! 0 + V , 

n 
I:. 

i=l 

2 
r. , 

l. . 

(4.27) 

(4.28) 

where: i 0 is an arbi tra:rily c.rosen value, usually close to I J 

and 

- 1 v=
n 

n 
I: 

i=l 
v. 

l. 

r 1. = i. - i = v. 
l. l. 

, 

-- v. (4.30) 

Example 4.6: The second column of the following tab1e is a sample of 10 

observations of the same distance. It is required to compute 

the sample mean and variance using the simplified formulae 

given in this section. 

We take ! 0 = 

- 1 v =-10 

972.0 m, 
10 1 
I: v. = 10 (10.50) = 

i=l l. 

1.05 m, 

I = ! 0 + v = 972.0 + 1.05 = 973.05 m2 

MSE= 
_:;) 1 10 2 1 2 or:; = IQ I: r i = 10 (o • 5730) = 0. 0573. m 

1=1 

and RMS = SL = 0.24 m. 

One of the checks on the computations is that 

see the fourth colt·~ of the given table. 

n 
I: 1' = o, 

. 1 i J.= 
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._ 
- i 2 4 No. . . 1. •·· ' - R.o r = R.. "· . .. :~.v .= 1. r. . 10 l. i J. 

(m) l. l. J. - (m2) (m) = v. - v 
J. 

1' 972.89 0.89 -0.16 256 

2 973.46 1.46 0.41 1681 

3 973.04 1.04 -0.01 1 

4 972-73 0.73 -0.32 1024 

5 972.63 0.63 -0.42 1764 

6 973.01 1.01 -0~04 16 

7 973.22 1.22 0.17 289 

8 973.10 1.10 0.05 , 25 

9 973-30 1.30 0.25 625 
' 

10 973.12 1.12 0.07 49 

I 

l:e 10.50 -0.95 5730 

+0.95 

= o.oo 

4.9 Other Possibilities Regarding the Postulated PDF 

The normal PDF (or its relatives) are by no means the only bell-

shaped PDF's that can be postulated. Under different assumptions, one can 

derive a whole multitude of bell-shaped curves. Generally, they would 

contai.1 ~ than two parameters which is an advantage from the point of 

view of fitting them to any experimental PDF. In other words the additional 

parameters provide more flexibility. On the other hand, the computations 
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with such PDF's are more troublesome. In this context let us just mention 

that some recent attempts have been made to design a family of PDF's that 

are more peaked than the normal PDF in the middle. Such PDF's are called 

"Leptokurtic". This more pronounced peakedness is a feature that quite 

a few scholars claim to have spotted in the majority of observational 

samples. We shall have to wait for any definite word in this domain for 

some time. 

Hence, the normal is still the most ~opul~r PDF and likely to remain 

so because it is relatively simple and contains the least possible number 

of parameters - the mean and the standard deviation. 

4.10 Other Measures of Dispersion 

So far, we have dealt with two measures of dispersion of a sample 

namely: The root mean square er·ror (RMS) mentioned in section 4. 7, and 

the range (Ra) mentioned in section 3.1.5. Besides the RMS and the range 

of a sample the following measures of dispersion (spread) are often used. 

The averag~ or :mean error a of the sample L is defined as 
e 

1 
a = e n 

n 
E 

i=l 
1£. - il = 1 

l. n 
(4.31) 
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which is the mean of the absolute values of the residuals. 

The most probable error p , of the sample L, is defined as the 
e 

error for which: 

P(lrl < P) = P(lrl "p) =0.50 e . e · 
.. 

! ( 4. 31) 

I 
which means that there is ·50.%. probability that. the resid:ual is smaller and 

50% probability that the residuAl is larger than Pe· 

The most probable error of a random sample can be computed by constructing 

the CDF of the corresponding absolute vaJues of the sample residuals, and 

take the value of r which corresponds to the CDF = 0.5 as the value of p • 
e 

Both a and p can be defined for the continuous distributions as e . e 

well. For instance, by considering the normal PDF, N(~ ,a ; x),we can 
X X 

write: 

a = f lxl ~ (x) dx e 
- CIO 

1 = --=---
a I( 21r 

X 

oo (x-~ )2 
I I x I exp (- - ~ ) ' dx • 

-oo 2a 
X 

(4.33) 

Similarly for pe' by taking the symmetry of the normal curve into account, 

we can write: 

P(x < ~X - p ) = 1{1 (~ - p ) .:: 
e N X e 

c~x-pe) 
2 

1 (x-~ ) 
= exp (- X ) dx = 0.25 (4.34) a l(27r) ! 

X _CIO 2a 2 
X 

and 

P(x < ~ + p ) = I{IN(~ + p ) = 0.75 - x e x e (4.35) 

where I{IN is the normal CDF. 
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It can be shown for the normal PDF N(Jl a · x) that "a " "a " and "p " x' x' x ' e e 

are related to each other by the following approximate relation: 

or 

a : a ~ p x e e 
,;, 1. 0 : 0. 80 : 0. 67 . 

(4.36) 

The relative or proportional error r , of the sample L, is defined 
e 

as the ratio between the sample RMS and the sample mean, i.e. 

r e = s1 I I. (4.37) 

In practice, the relative error isusually usedto describe the uncertainty 

of the result, i.e. the sample mean. In that case, the relative error is 

defined as: 
.... J-.1-e_=_S_Q_/_:€___,1 

(4.38) 

where S is the standard deviation of the mean I and will be derived later 
I 

in Chapter 6 .. In this respect, one often hears expressions like "proper-

tional accuracy 3 ppm (parts per million)", which simply means that the 

relative error is 3/106 = 3 · 10-6. It should be noted that unlike the 

other measures of dispersion, the relative error is unitless. 

The idea of the confidence intervals is based on the assumption 

of normality of the sample, i.e. the postulated parent normal PDF 

(N (I, SL;t)) for the random sample L. It is very common to represent the 

sample L by its mean I and its standard deviation s1 as 

l [ I + SL ] I 
or 

and refer to it as the "68% confidence interval" of L This is based on 

the fact that the probability P(\1 2- a2 .::_ t .::_ 1-1 2 + ai~ is approximately 0.68 for 
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the normal PDF (see section 4.5). 

Similarly) one can talk about the "95% confidence interval") 

the "99% confidence interval") etc. In general, the confidence interval 

of £ is expressed as: 

(4.40) 

where K is determined in such a way as to make 

P(J.lR.- KcrR. ~ £ ~ J1£+KcrR.)eqi::tal.to 0.95, 0.99, etc. 

The values (I - KS1 ) and (I + KS1 ) are called the lower and the 

upper confidence limits. 

Example 4.1: Let us compute the average error,the relative error and the 

95% confidence interval for the sample of observations L 

given in example 4.6. 

The average error is computed using equation (4.31) and the 

fourth column of the given table in example 4.6 as: 

1 10 1 
a = - l: I r. I = 10 (1. 90) = 0.19 m • 

e 10 i=l ~ 

The relative error of the sample is computed from equation 

(4.37) and the results obtained in example 4.6 as: 

I - 0.24 • 
re = 81 R. = 913.05 247 ppm 

The 95% confidence interval of R. is 

[I - K s < £ < I + K s ] . 
L - - L 

where the number K is computed so that 

P(Jl 2 - Kcr 2 ~ R. ~ J.l£+ KcrR.) = 0.95 . 

This is identical to the probability P(-K < t < K) obtained 

from the standard normal tables (see example 4.3) the last 

case). Hence we can write: 
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Figure 4.7a 
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P(-K < t < K) = P(t < K) - P(t < -K) = 0.95 

from which we get 

P(t < K) ~ 0.975, 

Using the table for the standard normal variable of Appendix 

II- B we get: 

K = 1.96. 

(In practice K = 2 is usually used for the 95% confidence 

interval. ) The 95% confidence interval of ..t then becomes 

[973.05- 1.96 (0.24) ~ 2 ~ 973.05 + 1.96(o.24)]) 

that is: 

[972.58 < 2 < 973.52] m 

or 

[973.05 + 0.47] m. 

Given a random variable x assumed to have a normal distri-

bution N (35, 4; x), compute the most probable error. 

From the assumed PDF we have: 

~ = 35 and cr = 4. 
X X 

The most probable error p is computed so that 
e 

P(ll - p < X < 11 + p ) = 
~x e ~x e 

t 
= P(-t < .t < t ) = 0.50, (Figure 4.7a) 

p- p 

where t 
p cr 

X 

The above probability statement can be rewritten as· (equation 

(4.35)): 
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P(x < y + p ) = P(t < t ) = 0.75 
- x e - p 

(Figure 4. 7b) . 

From the table in Appendix II - B, we obtain t = 0.675 
p 

corresponding toP= 0.75. Hence, 

p = 4 t = 4 (0.675) = 2.7 . e p ---

Note that in the second case of example t~.3, the value 3.375 

is nothing else but the most probable error of the given random 

variable h. 

4.11 Exercise 4 

1. Prove that the Gaussian PDF given by equation ( lt .• t~), has two points of 

inflection at abscissas + IC/2. 

2. For the Gaussian PDF given by equation (!~ .• 8), determine approximately 

the probabilities: P(-2o < s < 2a ) and P(-3a < s < 3a ) 
S E E E 

by integrating the PDF, then check your results by using the standard 

normal tables. 

3. Prove by direct evaluation that the standard normal PDF has a standard 

deviation equals to one. 

l~. Show that the standard deviation a, average error a and the most proe 

bable error p of the normal PDF satisfy the following approximate 
e 

relations: 

a a 
e 

1.0 0.80 ~' o. 67. 
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5. Determine: the average error, the most probable error, the relative 

error and the 90% confidence interval of the random sample given in 

the second problem of exercise 3, section 3. ~ .. 

6. Assume that the sample H = (-5, -4., -3, -2, -1, 0, l, 2, 3, L~, 5) is 

hypothesized (postulated) to have a Gaussian distribution. 'rransform 

this sample so that the transformed (new) sample will have: 

(i) Normal distribution with mean equal 10. 

(ii) Standard normal distribution. 

T. Gi.ven a random variable x distributed as N (25, 10; x), determine the 

following probabilities: 

(i) P(x ~ 28.5) j (ii) P(x 2 22.5), 

(iii) P(x ~ 21.5), (iv) P(l6.T5 < x < 23.82)J 

( v) P ( J x-25j < 1. 25) . 

8. For the random variable in the previous problem, determine the values 

Z. such that 
l 

( i) P(x < Zl) 

( ii) P(x < Z3) 

( v) P(jx-25j 

= 0.65, 

= 0.33 

> z ) = 
- 5 

(ii) P(x ~ z2 ) = 0.025 ' 
~ ( iv) P(jx-25! _: Z4) = 0.33 

0.50. 
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/' 
/ 

D 

h 

- , . - ~. 

The above figure shows a surveying technique to determine the height h 

of ~ tower CD, which cannot be measured directly. The observed quantities 

are: 

~ = the horizontal distance AB > 

a ,S = the horizontal angles at A and B J 

e = the vertical angle of D at B . 

The field results of these observations are given in the following table: 
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Field Observations 

.l(m) a 13 e 

P-45.63 65° 32' 03" 37° 13' 08" 42° 53' 15" 

.55 32 04 13 11 52 30 

.59 31 59 13 10 53 00 

.65 32 01 13 . 13 51 00 

.58 31 58 13 06 52 15 

13 12 52 45 
.. 

51 .15" 

53 00 

51 45 

52 15 

Average temperature during the observations time was T = 20° F. 

The following information was gi•ren to the observer: 

(i, The micrometer of the vertical circle of the used theodolite was not 

adjusted to read 00' OO" when the corresponding bubble axis is 

horizontal; it reads- (00' 30"). 

(ii) The nominal length of the used tape is 20m at the calibration temper-

ature T0 = 60° F, and the coefficient of expansion of the tape material 

is y = 5 • 10-5 / 1° F • 



122 

Required 

( i) Compute the estimated values for the quanti ties 9.-, a, (3 and 6 • 

(ii) For each of the above observed quantities compute its standard de-

viation and its average error. 

(iii) Compare the precision of these observed quantities (by comparing 

the respective relative errors). 

(iv) Assume that each of these observed quantities has a postulated normal 

parent PDF, construct the 95% confidence interval for each quantity. 

(v) Compute the estimated value of the tower's height h to the nearest 

centimeter. 
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5. LEAST-SQUARES PRINCIPLE 

5.1 The Sample Mean as 

"The Least 89-uares Estimator" 

One may now ask oneself a hypothetical question: given the 

sample L = (~.), i = 1, 2, .•• , n, what is the value ~0 that makes the 
]. 

summation of the squares of the discrepancies 

0 v. = 2. - ~ , i = 1, 2, ... , n, 
]. ]. 

( 5-l) 

the smallest (i.e. minimum)? 

The above question may be stated more precisely as follows: 

Defining a "new variance" 8*2 as 

2 1 n 2 1 n 
S* =- I (2.-2°) =- .I 

n i=l J. n J.=l 
2 v. 
]. 

(5-2) 

find the value 2° that is going to give us the smallest (minimum) 

value of 8*2 . 

Obviously, such a question can be answered mathematically. 

From equation (5-2), we notice that 8*2 is a function of 2°, .which is 

the only free variable here: and can be written as 

(5-3) 

We know that: 

Hence, by differentiating equation (5-2) with respect to 2° and equa~-

ting it to zero, we get: 
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1 n -2 n 
=- E [2(i.-R.0 )(-l)] =- E (i.-i0 ) = 0 , 

n i=l ~ n i=l ~ 

n 
E (i.-i0 ) = 0 • 

i=l ~ 

The above equation can be rewritten as: 

which yields 

n 
E 

i=l 

n· 
R.. = E 
~ i=l 

0 0 
R. = ni , 

o 1 n 
R. =- E R.. - R. 

n i=l ~ 
(5-4) 

The result (5-4) is nothing else but the "sample mean" I again. In 

other words, the mean of the sample is the value that minimizes the 

sum of the squares of the discrepancies making them equal to the 

residuals,(see section 4.8). 

This iE the reason why the mean I is sometimes called the 

least-squares estimation (estimator) of i, i.e. of ~i ; the name being 

derived from the process of minimization of the squares of the discre

:pancies. We also notice that i minimizes the variance of the sample if 

we want to regard the variance as a function of the mean. 

Note that the above property of the mean is completely indep

endent of the PDF of the sample. This means that the sample mean I is 

always "the mi:"l.imum variance estimator of R." whatever t.he PDF may be. 
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5. 2 The Sample Mean as 

"The Maximum Probability Estimator" 

Let us take our sample L again, and let us postulate an underlying 

parent PDF to be normal (see section 4.5) with a mean ~ = ~0 and a 
~ 

variance cr~2 given by: 
n 

2 , 2 1 l: 
crn = S* = -n . (~. -

"' ~=1 ~ 

We say that the normal PDF, N(~~' cr~; ~) ; N(~0 , S*; ~) is the most 

probable underlying PDF for our sample L (L = (~. ), i = 1, 2, •.. n) 
~ 

if the combined probability of simultaneous occurrence of n elements, 

that ~the normal distribution N(~0 , S*; ~),at the same places as Lis 

maximum. In other·words, we ask that: 

P[ ( ~. < ~ < L + 8~.)' i = 1, 2 •• n] = 
1. 1. 1. 

n 
= II N( ~o' S*; L) . 8~. 

i=l 1. ~ 

be maximum with respect to the existing free parameters. By examining equation 

(5.6), we find that the only free parameter is ~0 (note that S* is a function 

of ~0 ), and hence we can write the above combined probability as a function 

of ~0 as follows: 

P[ (~. < ~ < ~ + 8~.), i = 1, 2, ••• , n] = A (~0 ) 
1. - - i ~ . 

(5.7) 

Note that 8~'s are some values depending on L and therefore are determined 

uniquely by L. 
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We shall show that the value of ~0 satisfying the above condition 

is (for the postulated normal PDF) again the value rendering the smallest 

value of S*. We can write; 

n 
[ A ( ~ 0 ) J = max 

~0 sR 
I II N(~0 , S*; ~.) 8~.] 

1. 1. i=l 

n l n (~. -~0)2 
II II exp (- 1. = max-, 

~0 sR i=l S*I(27T) i=l 28*2 

l )n 
n (£.-~0)2 

[( S* II exp ( - 1. 
= max 

0 ll(21r) 
i=l 2S* 2 

Q, sR 

) 8~. 1 
1. 

8~.] (5.8) 
1. 

n 
Here II 

i=l 
8~. is determined by L, and hence does not lend itself to maximiza-

1. 

tion. It thus can be regarded as a constant, i.e. 

max [ A ( ~ 0 )] =max 

R. 0 sR 

n 
II 

i=l 

(!l,.-.Q.o)2 
exp ( - 1 2 ) ] . 

2S* 
(5.9) 

Let us denote the second term in-the RHS of equation (5.9) by Q, which can 

be expressed as: 

Q = 

This implies that: 

£n Q = .Q.n 

or 

n 

.Ill 1.= 

n 
II 

i=l 

(~.-~o)2 
exp ( -x. ) , where x. = -1---~-

1. 1. 2S*2 

exp ( -x.)) = 
1. 

n 

n 
E 

i=l 
tn ( exp ( -x. ) ) , 

1. 

Q = exp ( E ( -x. ) ) , 
i=l 1. 

(5.10) 

(5.11) 
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From equations (5-9) ' ( 5-10) and (5-ll) we get: 

n (,Q,.-,Q,o)2 
l n 

IT exp (- J. ) = exp [-- i: 
i=l 28*2 28*2 i=l 

The condition (5-9) can be then rewritten as: 

[ ( l ) 
n 

S*I(2'TT) 

From equation (5-5), we have: 

n 
l: 

i=l 

(,Q,.-,Q,o)2] 
J. 

Hence by substituting this value into equation (5-13) we get: 

l n 
max [ A ( ,Q, 0 ) ] = max [ ( ) exp ( - ~) ] • 

,Q, 0 ER ,Q, 0 ER S*/(2'TT) 

(5-12) 

Since the only quantity in equation ( 5-14) that depends on ,Q, 0 is S*, we 

can write: 

[;x.(,Q,O)J =max 
,Q, 0 ER 

n 
[(..1.)] = 

S* 

=min [(S*)n ]. 
,Q, 0 ER 

( 5-15) 

Because S* is a non-negative (quadratic) function of ,Q,0 , the minimum of 

(S*)n will be attained for the same argument as the minimum of S* (see 

Figure 5-l. 

Figure 5-l 
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Finally, our original condition (equation (5-9) can be restated as: 

which implies that 

that is: 

as* as*2 
--=--= 

n 
a -I. 

ato i=l 
2 v. :::: 
]. 

( 5-16) 

0 ' 

0 . (5-17) 

Obviously, the condition (5-17) is the same condition as that of the 

"minimum variance" discussed in the previous section, and again we have 

0 -R, = ll, • 

We ha.ve thus shown that under the postulate for the underlying 

PDF, the mean 1 of the sample 1 is the ~aximum probability estimator for 

5/,. As a matter of fact, we would find that the requirement of maximum. 

probability leads to the condition 

(5.18) 

for quite a large family of PDF's, in particular the s~etrical PDF's. 

If one assumes the additional properties of the random sample as 

mentioned in 3.2.4 .. then additional features of the sample mean can 

be shown. This agajn is considered beyond the scope of this course. 

5.3 Least-Squares Principle 

We have shown that the sample mean renders always the minimum sum 

o.:f squares of discrE)ancies and that this property is required, for a lar~e 

family of postulated PDF's, to yield the maximum probability for the underlying 
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PDF. Hence the sample mean ~' which automatically satisfies the condition 

of the least sum of squares of discrepancies, is at the same time the 

most probable value of the mean ~~ of the underlying PDF under the con

dition that the underlying PDF is symmetrical. This is the necessary 

and sufficient condition for the sample mean to be both the least squares 

and the maximum probability estimator, i.e. for both estimators to be 

equivalent. 

The whole development we have gone through does not say any-

thing about the most probable value of the standard deviation a~ of the 

underlying PDF*). a~ has to be postulated according to equation (4.23). 

The idea of minimizing the sum of squares of the discrepancies 

is known as the least-squares principle,and has got a fundamental 

importance in the adjustment calculus. We shall show later how the 

same principle is used for all kinds of estimates (not only the mean of 

a sample) and how it is developed into the least-squares method. However, 

the basic limitations of the least-squares principle should be born in 

mind, namely 

(i) A normal PDF (or some other symmetrical PDF) is postulated. 

(ii) The least-squares principle does not tell anything about the 

best estimator of a~ with respect to the mean ~~ of the 

postulated PDF. 

*) Some properties of the standard deviation s can be revealed if the 
additional properties of the random sample are assumed (see 3.2.4). 
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5.4 Least-Sqaures Principle for Random Multivariate 

So far, we have shown t.hat the least-squares principle spells 

out the equivalence between the sample mean 9., and the estimate for the 

parent population mean ~9., determined from the condition that the sum of 

discrepancies be minimum. We have also shown that 9., is the most probable 

estimate for P9., providing the parent population is postulated to have 

normal or any other synunetrical PDF. We shall show now that the same 

principle is valid even for random multisample if we postulate the under-

lying PDF to be st.atistically independent (see Section 3. 3. 2) . 

Denoting the multisample by Land its components by Lj, j = 1, 

2, ... , s, and remembering that each Lj is a sample on its own, we can 

write: 

(Ll, 2 L s) "} L L , • ., " I 

Lj (X,j j Q,j ) 
s 

9.,2' ... , sR 1' n. 
J 

( 5-19) 

Assuming a particular value L for the multisample L, where 
0 

L = (Q,l, Q,2, 
• • • I 

Q, s) t:Rs 
0 0 0 0 

(5-20) 

is a numerical vector (sequence of real numbers), the associated dis-

crepancies V, which can be regarded as a multisample as well, are: 

l 2 s 
·- (V , v , ... I v ) ( 5-21) 

Here, each Vj, j 1, 2, •.. , sis a sample of discrepancies on its own, 

i.e. 

.... ' (5-22) 
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Making use of formula (3-52), we can write analogically to (5.2) 

S*~ 
J 

1 =-
n. 

J 

( 5-23) 

. 2 
'l'he minimization of the variances, i.e. minimization of each E[ (V'J) ] , 

is equivalent to the minimization of each s~2 , or as we usually write: 
J 

(min [E(V'j )2 ], j = 1, 2, .. , s);;:; min [trace Hi'J *}, 
L ER 8 L ERS 

(5-24) 

0 0 
...... 

where L/r:;' is the variance-covariance matrix of the mu.ltisample L (see 

section 3.3.6). By carrying out this operation,similar to section 5.1, 

w·e w:i.ll find that the vector 

( 5-25) 

sati.sfi.es the cond:i.ti.on ( 5-2l~). On the other hand, the result ( 5-25) 

is nothing else but the mean E of the multi sample, i.e. : 

L = E c:Rs • 
0 

(5-26) 

Postulating a normal PDF, N(~j, S~; ~j), for each component Lj 
0 J -of the mu.ltisample L, the multivariate PDF of the parent population can 

be written as: 

~ 
s 

Q, j ) ~(£) = IT N(£j, S*. 
j=l 0 j ' 

(£j-£j) 
2 

s l 
IT [-

" 0 
] ' ( 5-2'7) = exp 

j=l s~l(2rr) 2S~2 
J J 

where Q,j is the random variable having mean ~j and standard deviation s~·. 
0 J 

Following a similar procedure as in section 5.2, we end up again with 

with the discovery that the vector 

( 5-28) 

*) Trace of a matrix is the sum of its diagonal elements. 
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maximizes the probability that the members of the parent population will 
,_. 

occur at the same places as the members of the multisample L. 

- s Hence LER is, _under the above conditions,*)the 
_, 

maximum probable estimator for the mean ~ of the postulated parent 

multivariate PDF, where 

( 5-29) 

5.5 Exercise 5 

1. Prove that the mean~ of a continuous PDF, ~(x), defined as: 

00 

~ = J x ~ (x) dx 

minimizes the PDF variance cr2 , defined as: 

as* ---
2. Prove that---= 0, is the necessary and sufficient condition for the 

&Q.o 

rectangular (uniform) PDF, R( .Q.0 _, __ S*; .Q.), to be the most probable 

underlying PDF for a sample L with mean i and variance s2. Note 

that the analytic expression for the uniform PDF is given in example 

3.17, section 3.2.5. 

3. Prove that the ·same helds fC~r· t~..e triangular_--

PDF, T(.Q.0 , S*; .Q.),using its analytic expression given in example 

3.18, section 3.2.5. 

*) It can be shown that L is the maximum probability estimator of ~ even . when 
we postulate a statistically dependent multi dimensional PDF from a certain 
family of PDF's. 
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6. FUNDAMENTALS OF ADJUSTMENT CALCULUS 

6 .1 Prima.ry and Derived Random Samples 

So far, we have been dealing with random samples (multisamples) 

that had been obtained through some measurement or through any other data 

collecting process. These samples may all be regarded as primary or original 

random samples (multisamples). 

In practice, we are often interested in other samples that would 

be derived from the primary samples by means of a computation of some kind. 

Such samples may be called derived random samples (multisamples). 

From the philosophical point of view, there is not much difference 

between these two, since even the "primary" samples may be regarded as 

derived from the samples of physical influences or physical happenings. 

However, it is necessary to distinguish between them to be able to speak 

about the transition from one to the other. 

6.2 Statistical Transformation, Mathematical Model 

The transition from a primary to a derived sample (multisample) 

along with the associated variances and ~ovariances~be called statistical 

transformation. We have already met two examples of such transformation 

although applied to random variable rather than sample (see sections 4.5 and 

4.6), namely the transformation of the Gaussian PDF to the normal and to 

the standard normal PDF's, respectively. 

Such statistical transformation may not always be as simple as 

in the above two cases. As a matter of fact, it may not be even possible 

to derive the sample at all from the primary sample which is usually 
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the case with multisamples. In other words, it might not be possible to 

express the derived sample explicitly in terms of the primary sample. 

Let us consider a primary multisample L = (Li), i = 1, 2J ... ,s, 

that has s constituents. Each constituent Li = (~ki), k = 1, 2, 

is a random sample on its own and represents a distinct physical quantity 

i 
~i (i.e. the observations ~k , k = 1, 2, ..• ,ni are all representing the 

same physical quantity t. ). Now, we may be interested in deriving a multi
~ 

sample X having n constituents, ie. 

X ::::: (Xj) . 1 2 ' J = ' >. • • ,n' 
from the original multisample L; noting again that each constituent Xj 

represents a distinct physical quantity xj, j = 1, 2, ... ,n. The formulae 

(relationships) relating the physical quantities ~ and 

x, where 

and (6.1)* 
X = ( xl ' x2 ' . • . 'xn ) 

are called the mathematical model for the statistical transformation; and 

is usually expressed as: 

l F ( .Q. , x) = 0 J 

where F denotes the vector of functions f., i = 1, 2, 
~ 

components)that can be established between ~ and x. 

(6.2) 

. . . ' r(having r 

To be able to derive x from ~, the mathematical model (6.2) should 

be formulated as: 

x = F (t), (6.3) 

* Note that ~ and x are nothing else but the multivariates corresponding 
to the multisamples L and X respectively. 
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which gives x as explicit function of t. 

Example 6.1: After having measured the two perpendicular edges a and b 

of a rectangular desk (see Figure 6.1), suppose that we 

b 
are interested in learing something about the length of 

,. ' the diagonal d, and about the surface area cc of this disk. 

d d 
" ex.. In this case, the mathematical model will be written as: 

1/ 
/ 

x = F ( t) , where 
Figure 6.1 

x = ( x1 , x2 ) = ( d, a. ) , and 

To derive the components of x from t we write: 

a. = f 2 (a, b) = ab • 

In vector notation, we can write: 

x=[::l = [:1 = 

The possibility .of e•rrying out the statistical transformation depends 

basically on three factors: 

(i) complexity of the mathematical model, ~.e., the possibility of expressing 

x explicitly in terms of L (x:. F(t)); 

(ii) "completeness" of the primary multisa.mple L, i.e. whether all its con-

stituents have the same number of elements in order to deduce the variance-

covariance matrix ~1 ; 

(iii) our willingness to match the individual s-tuples of elements from the 

primary multisa.mple L with then-tuples of elements from the derived 

multisa.mple X, which creates much of a problem. 
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Particularly the last two factors are so troublesome that we 

usually do not even try to carry out the transformation and put up with 
~ 

some ~tatistical estimates, i.e. representative values E(X) and E for . X 

the derived multisample instead. To do so, we first evaluate E(L) and 

E1 for the primary multisample L, from which we then compute the statistical 

estimates E(X) and EX for X. 

According to the basic postulate of the error theory and to make 

the subsequent development easier, we generally postulate at this stage the 

PDF of the parent multivariate to the multisample L and assume 

- -
E(L) = E*(£), EL = E*t' E(X) = E*(x), and EX= E~ (6.4) 

in very much the same way as we postulated 

i· = p and S = a 
£ L R. 

for the univariate case as discussed in section 4.7. This postulate allows 

us to work with continuous variables in the mathematical model and write it 

as: 

F(L, X) = 0 (6.5) 

understanding tacitly that each value X has· its counterpart L. 
- A 

From now on·, we shall write E for E(L),a.nd .X for the statistical 

estimate of . X • Hence the mathematical model (6.5) becomes 
.. 

F(L, X) = 0 , (6.6) 

which consists of r functional relationships between L and X. 
.. 

· From the point of view of the mathematical molel F(L, X) = 0, 

the statistical transformation can be either solvable (if s > n) or unsolvable 

(if s < n). If it is solvable then we may still have~ distinctly different 

cases: 
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" (.i) ei·ther the model yields only one solution X (when r = s = n) by 

using the usual mathematical tools, i.e., X is uniquely derived from 

-L; 

(ii) or the mathematical model is overdetermined (when r, s > n) and cannot 

" be resolved for X at all by using the ordinary mathematical tools, 

since an infinite number or different solutions for X can be found. 

The first case we have met in example (6.1) where the determina-

t.ion of X from L does not present any problem from the statistical point of 

view. The only problem is to obtain L:X from L and L:L. This problem, known 

as propagation of errors, will be the topic of the next section. 

If the model is overdetermined, or as we often say, if there are 

£~9unda~cies, (redundant or surplus observations) then the problem of trans-

- " 
forming (L, l:L) + (X, l:X) constitutes the proper problem of adjustment.*) 

6.3 ?ropagation of Errors 

6.3.1 Propagation of Variance-Covariance Matrix, Covariance Law 

The rela·tionship between EX and EL for a mathematical model 

F (L, X) = 0 

is known as the propagation of variance-covariance matrix. Such relationship 

can be deduced explicitly only for explicit relations 

" X = F (L) • 

To make things easier, let us deduce it first for one particular explicit 

-relation, namely the linear relation between X, and L, i.e. 

* It has to be mentioned here that in practice we are in both cases working 
with E- and ~>, the variance-covariance matrices of L and X rather than 
l,L, EXLbelong~ng to the samples L and X. The expressions for l,E' l:~ are 
derived in 6.4.4. 
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where B is indeed an n by s matrix composed of known elements *). Note 

that X is determined uniq~ely, as required. We want to establish the 

transition 

E1 = E( (L-L) (L-E)T) ~ l: X ,where E = E(L). (6.8) 

We can write: 

(6.9) 

Here X = BL, and according to the postulate introduced in section 6.2 

we can write: 

E(X) 
Hence 

- -= E(B L + C) = B E (L) + C = B L + C. 

EX = E ( (BL 

= E (B(L E) (B(L- E))T) 

=BE ((L E) (L- E)T) BT = B(E1 ) BT, 

I Ex = B EL BT. I 
This formula (6.10) is known as the law of propagation of variance--

covariance· matrix, or simply the ·covariance law. 

(6.10) 

*) This matrix B, which determines the linear relationship between X and 
L is sometimes called' the "design matrix" ,"the matrix of the coefficients" 
of the constituents of L in the linearized model, or simply the "coef
ficients matrix". 
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Assume that the variance-covariance matrix of a given 

multisample L = (R.l, .Q,2' .Q,3) was found to be 

3 2 0 

L:L = 2 3 1 

0 1 4 

If a multisample X= (x1 , x2 ) is to be derived from L 

according to the following relationships: 

X = 1 

determine the variance-covariance matrix L:X of X. 

It can be seen that the above relationships between the 

components of X and L are linear, and our mathematical 

model can be expressed as: 

X= B L 
2,1 2,3 3,1 

i.e. 

{::1 f: 
0 -:] f ::1 

= 
1 

This indicates that the coefficients matrix B is given 

[: 
0 

-3 I B = 
1 0 • 

by: 
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The variance-covariance matrix ~X of X is given by equation 

(6.10) i.e., in our case: 

i.e. 

~ = B 
X 

2,2 2,3 3,3 3,2 

0 -31 . r~ ~ ~ '1 r ; i J 
0 0 1 4 t-3 0 1 

-1 -121 { ~ i] = [39 5] 
1 -3 0 5 23 7 

Now we shall show that the propagation of variance-covariance 

matrix can be deduced even for a more general case, namely the non-linear 

-relation between X and L, i.e. 

X = F (L) (6.11) 

when F is a function with at least the first order derivative. Here we 

have to adopt another approximation yet. We have to linearize the relation 

(6.11) using, for instance, Taylor's series expansion around an approximate 

value 1° for L . 

where 

X= F(L0 ) + dF (L - L0 ) +higher order terms, 
dL JL = L0 

dF 
I 

dL L= 
(L - L0 ) = 

Lo 

s 
L: 

i=l 

C!F -, 
dR,. R,. = 

~ ~ 
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Taking the first two terms only, which is permissible when the values of 

the elements in~1 are much smaller than the values of 1i' we can write: 

(6.12) 

where B is again ann by 
ax. 

s matrix but this time composed from all the partial 

~ 
derivatives alj 

.Q, =.Q.o 
j j 

*).Applying the expectation operator we obtain 

realizing that E(F(L0 )) = F(L0 ) and E(L0 ) = L0 (because L0 is a 

selected vector of constant values) 

(6.13) 

Subtracting (6~13) from (6.12) we get: 

X E (X) . B(L- E(L)) = B(L- L) (6.14) 

and we end up again with 

Ex 
. (6.15) 

resi:tzing that EX-E(X) = EX 

* Explicitly' if we have 

xl xl (.Q.l' Q,2' ' 
Q, ) 

s 
x2 x2 (.Q.l' .R.2' . ' 

.Q, ) 

X 
s 

= = 

X X (tl, .Q,2' . ' 
.R. ) 

n n s 

:- :,t'lleta.' .. the matrix B will take the form: 

ax1 ax1 ax1 

a.R.l a.Q.2 a.Q. 
s 

B = ax:2 ax2 ()X2 

a.R.l al2 a.R. 
n,s s 

. . . . 
ax ax ax n _!l n 
a.R.l a.R.2 a.R. • s 
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Hence the linear case may be rega:cded as one particular instance(special 

case)of the more general explicit relation, yielding therefore the same 

law for the propagation of variance-covariance matrix, i.e., the same 

covariance law. It should be noted that the physical units of the individual 

elements of both matrices B and E1 must be considered and selected in 

such a way to give the required units of the matrix EX 

Example 6.3: Let us ;!:;·ak.e .again the example . 6.1 and form the variance 

covariance matrix EX for the diagonal d and the area a of 

the desk in question. We have: 

EL = [s~ sabl 

sab s~ J 
and the model is non-linear, although explicit, i.e. 

X = F ( L) , or ( d, a ) = F (a, b) • 

We have to linearize it as follows: 

0 0) X = (d, a) = (d , a + B [(a, b)- (a0 , b0 )], 

where (do, ao) = F(a0 , b 0 ), and 

r Ml B = aa 3b 

a a a a 
. -

a~ ab • 

~ere: 

Hence, the matrix B in this case takes the form: 

B = 
2,2 

a. 



Example 6.4: 

and by applyi.ng · the covariance law (equation ( 6.15 )) we 

get: 

I: = ·. t!~ sd•l B I: BT = X 
82 

L 
8ad a 

t~d b~dJ [ s; 8ab] r a/d :} = 
8ba 

82 b/d b 

= 

Let us assume that the primary multisample L = (a, b) which 

we have dealt with in Examples 6.1 and 6.3 is given by: 

L = {a, b} = {(128.1, 128.1, 128.2, 128.0, 128.1), (62.5, 

62 • 7 , 62 • 6 , 62 • 6, 62. 5 )} , in e~ntil!letres • 

Accordingly, the statistical estimate of the derived 

quantities will be 

i =l~J.. = [II (a)~ + ~1>) 2]].; 
· a'· a b 

where a and bare the estimates (means) of the two:meas'U.r.ed 

sides of the desk. From the given data we get 

a = 128.1 em. and b = 62.58 em. 

Hence 

• 
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X= 

= [
142. 57 em l 

· 8016. 50 cm2 

After computing the variance-covariance matrix E1 we get 

·ro.oo4 0 l em 2 
~L = 0 0.0056 

which indicates that the constituents a and b are being taken 

as statistically independent. 

Evaluating the elements of the B matrix (as given in Example· 

.6. 3) we get: 

-a 
" 

B = a 

b 

b 
A 

d = -a 

I 0.898 
62~58 

o.439l 

128.1 

in which the elements of the first row are unitless, and 

of the second row are in em. 

Finally ~X is computed as follows: 

~ = B X 
~ BT 
L 

[0.898 0.4391 ro.~o4 0.~056] = 
62.58 128.1 

= [0.0043 
0. 5397 

0.5397 ] [ 2 
107 . 5627 , with units ~:3 

Furthermore 

sd = l(o.oo43) = o.o66 em., 

S = 1(107.5627) = 10.37 cm2 
a 

[ 0.898 
0.439 

62.581 
128.1 

=~] em • 



145 

6.3.2 Propagation of·Errors,;,'¢1ncorrel.._teQ. C$-se 

If X contains one component only, i.e. x, the matrix B in the formulae 

( 6.10) or ( 6.15) degenerates into a 1 by s matrix, i.e. into a row vector 

B s [B1 , B2 , •.• ,Bs], and 

EX = BI:LBT 

becomes a quadratic form which has dimensions 1 by 1. Then· 

2 s . 
X 

If, moreover, 1 is assumed uncorrelated, we have 

r1 = diag (S~ , si 
1 2 

' . 

which is a diagonal matrixJand we can write 

8.2 = 
X 

s 
I: B~ si 

i=l l i' 

. . ' 

(6.16) 

(6.17) 

(6.18) 

This formula is known as the law of propagation of MSE' s or simply the 

law of propagation of errors. The law of propagation of errors is hence 

nothing else~ but a special case of the propagat~on of variance-covariance 

matrix. 

The law of propagation of errors has many applications in 

surveying practice as well as in many other experimental sciences. 

Example 6.5: In figure 6.2, we. assume a plane-triangle in which 

the angles a and {3 whose estimat,ed values are: 

- 32° 15' 20 11 
' with s 4" a = = 

a ' 
s = 75° 43' 32" ' with se = 3" ' are e>bserved 

Also, assume that a and {3 are independent, i.e. s 
a{3 = o. 

Let us estimate the third angle y ,along with its standard 

Figure 6. 7. 
error S ,as follows: 

y 
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c 

A 

Figure 6.3 
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r = 18o0 - (a + s) = 72° 1, "o8 J 

82 = (ay)2 82 + (ar)2 82 
y aa a a~ s 

= (;.,1) 2 (4) 2 + (-1) 2 . (3) 2 = 16 + 9 = 25 ) 

that is: 8 = 5" • y 

Figure 6.3 shows a levelling line between two bench marks 

A, C, with observed level differences h. of the individual 
l. 

sections with length ~i' i = 1, 2, •.. ,s. Assume that 

all the h.'s are uncorrelated and the M8E of h. is propor-
1. l. 

t ,\ 1 t k • 82 
1. on a · o .II(, i 1 1. • e • h . = k ~., where k is a constant. 

l. 
l. 

Let us deduce the exPression for the M8E of the overall level 

difference ~H between A and C where: 

s 
~H = HC - HA = r hi • 

i=l 

The mathematical model in this case is 

+ ••• + h 
s 

Hence: 

2 (a~H)2 : 2· (~)2 82 
8~H = sh + dh dhl h2 1 2 

= ( 1) 2 (k~l) + ( 1)2 ( k~2) + • 

s s 
= r k ~. =k z ~. ' 

i=l l. i=l l. 

+ • . . 

which means that the M8E of ~H equals to the constant of propor-

tionality k multiplied by the total (overall) length of the 

levelling line A - C. 
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Let us consider the example 6.3 and assume that the errors in 

a, b are uncorrelated i.e. 8ab = 0 as we did in Example 6.4. Then we can 

treat d and OG separately (if we are interested in their individual M8E' s 

alone) and we get by applying the law of propagation of errors: 

82 = (~)2 82 + (~)2 82 = 1 (a282 + b282) 
d a a a <lb b ~ a b 

82 = (~)2 82 + (~)2 82 = b282 + 282 
a aa a <lb b a a b 

Note that the same results can be obtained from Example 6.3 immediately by 

putting 8 ab = 0. 

On the otber hand, if we are interested in the covariance 8da 

between the two derived quantities d and ~ , we have to apply the covariance 

law (equation 6.15) and we will end up with 

8 da = a~ ( 8 a 2 + sb 2) ' 

that is Sda ~ 0, and ~X (X= (d, a)) is not a diagonal matrix, even though 

the ~L of the primary multisample is diagonal i'.e .. Sab = 0, see the 

results obtained in ·E:xample 6. 4 • This is a very important discovery and 

should be taken into consideration when using the derived multisample 

X = (d, a) for any further treatment in which case we cannot assume that 

d and a are uncorrelated any more and we must take the entire ~X into 

account. 

Example 6. 7: Let us solve Example 6.2 again, but this time we will 

consider the primary multisample L = (~1 ,~2 ,~ 3 ) as 

uncorrelated and its ~L is: 
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~L = r3~ 300 0041 " l = diag (3, 3, 4). 

From example 6. 2 we have: 

B =[~ 0 ~3] 
=d X= [ =~l l 

Hence: 

I = X 
Bl: BT 

L ) 

= [: 
0 -:] 3 0 0 l 2 

L:x 
l 0 3 0 0 l 

0 0 4 -3 0 

=[3: l:l r 82 8xh] = xl 

8 82 
x2xl x2 

which again verifies the fact that even when ~L is diagonal 

the !'X is not. 

On the other hand we can treat x1 and x2 separately by using 

the law of propagation of errors (since L is uncorrelated) 

to get 82 and 82 separately; for instance , 
xl x2 

axl 2 2 
ax 

82 
ax 

82 2 + (_1)2 + (_1)2 8 = (a;-) 8 "R; 
xl l l a.Q.2 ,11_2 at3 ,11_3 

= (1) 2 (3) + (o) 2 (3) + (-3) 2 (4) 

= 3 + 0 + 36 = 39, 
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c 

Figure 6.4 

which is the same value as we got by applying the covariance 

law above. 

To determine the two sides AC = z and BC = y of the plane 

triangle shown in Figure 6.4, the length AB = x along with 

the two horizontal angles a and S were observed and their 

estimates were found to be: 

x = 10 m, with S = 3 em, 
X 

- 90° with s 2 " a = = ' a 

i3 = 45° with ss = 4" ' 
s -1 

2 and = arc sec 
aS 

s = s 0 = . 
XCI. x(3 

It is required to compute the statistical estimates for 

y and z along with their associated variance-covariance 

matrix~ in cm2 , where 

X = (y, z). 

First, we establish the mathematical model which relates the 

primary and derived samples, i.e., 

X= F (L), where 

From the sine law of the given triangle we get: 

y-· 
sin a. 

2< ~ = _..;..._ = _:;;;.__ 
sin S sin y 

. 
' 

however the angle y is not observed, i.e. it is not an 

element of the primary sample, therefore we have to sub-

stitute for it in terms of the observed quantities, say 

a and (3 by putting 
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sin y =sin (a+ S), 

and we get: 

sin a y = X --~~~-
sin (a + S) 

sin S 
Z = X --~~~--

sin (a + S) • 

By substituting for a, S and x, we get 

"' y = 10 \I 2 = 10 ( l. 414) = 14.14 m 1 

"' z = 10 m. 

Our mathematical model then can be written as: 

(a, S, 

(a, S, 
x)1 = [x 
x) x 

sin a/ sin (a + S)J 

sin S/ sin (a + S) 

To compute LX = B LL BT , we have to evaluate the matrix 

-B "W<nic-b: is ·of the form 

~ 2:/. 'Oy 
'Oet ' as ax \ 

B = 
az az 'Oz 
a a ' as a:x: 

z -y 

sin(a + s) tan (a + S) X 

= 
-z z 

tan (a +S) sin ( et' + S) X 

From the given data, the matrix E1 takes the form 



IL 

82 
a. 

= ssa. 

s 

4 

= -1 

0 

xa. 
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sa.s 

s2 
s 

8xs 

-1 

16 

0 

s a.x 

s Sx. 

s2 

0 

0 

9 

X 

(It is very important to maintain the same seQuence of the 

elements of the primary sample in both matrices B and ~L 

to give a meaningful ~X.) 

Now matching tbe units of the individual elements of B and 

~L' keeping in mind that ~X is reQuired in cm2 , results in 

scaling the B matrix to 

z ( 100) -Y(lOO) 

p" sin(a. + S) p"tan(a. + S) 

B = 
-Z(lOO) y( 100) 

p"tan(a. + S) p"sin(a. + S) 

where p" = 206265 = 2.105 arc sec. 

Evaluating the elements of the above 

¥... 
X 

z 
X 

B matrix 

[0.007 0.007 1.414] 
B = 

0.005 0.010 1.000 

and conseQuently 

we get: 
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L:x =[· 007 
.005 

.007 

.010 

1.4141 

1. 000 J 
i.e. 

and 

.[18. 0009 

12.7272 

12.7272] 

9.0016 

S = 118 = 4.2 em 
y 

S = l9 = 3 em. 
z 

J 

r 4 -1 0] l ~1 1~ ~ ~.007 .007 
1.414 

. [.18 13] 
13 9 

cm2 

.005 J .010 
1.000 

' 

The results of the above example show that the high precision 

) 

in measuring the angles a and S has insignificant effect on the estimated 

standard errors of the derived y and z lengths as compared to the effect of 

the precision of the measured length x. Hence, one can use the error 

propagation to detect the main deciding factors in the primary sample on 

the accuracy of the derived quantities and decide on the needed accuracy 

of the observations. This process is usually known as pre-analysis which 

is done before taking any actual measurements by using very approximate 

values for the observed quantities. This results in accepting specifications 

concerning the observations techniques to achieve the required accuracy. 

Some more details about it are given in section 6.3.5. 
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6. 3. 3 Propagation of Non-Random Errors, propagation of Total :Errors 

The idea of being able to foretell the expected magnitude of 

the MSE (as a measure of random errors) of a function of observations -

this is essentially what the law of propagation of errors is all about -

is often extended to non-random errors. These non-random errors are 

sometimes called systematic errors, for which the law governing their 

behaviour is not known. Hence, the values of such non-random errors 

used in the subsequent development are rather hypothesized (postulated) 

for the analysis and specification purposes. 

The problem may be now stated as follows: let us have an 

explicit mathematical model 

X = f (L) , (6-19) 

in which x is a single quantity, f i.s a single-valued function and 

L = (~1 , ~ 2 , ••. , ~s) is the vector of the different observed quantities 

that are assumed to be uncorrelat~d. We are seeking to determine the 

influence of small, non-random errors o ~. in each observation R.. on the 
1 1 

result x. This influence will be denoted by o • 
X 

The problem is readily solved using again the truncated 

Taylor's series expansion, around the approximate values 1° = (~~' R.~, ... ,~~), 

from which we get: 

. 
f(L0) of (L-1°) X = + aLl 

L = 10 

s of 0 + L: (~.-~~) (6-20) = X F.i R, i=l J. • = ~~ J. J. 
J. J. 
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By substituting o~. for (~.-~?) and 0 for (x-x0 ) in equation (6-20) 
l l l X 

we get: 

0 = 
X 

a~. *) ' 
l 

(6-21) 

which is the formula for the propagation of non-random error. 

Note in formula ( 6-21) , the sign~ of both the partial 

derivatives (~~i) and the non-random errors o~i' haveto be considered. 

(Compare this to formula ( 6-18) .) 

We may also ask what incertitude can we expect in x if the 

observations ~. are burdened with both random and non-random errors. 
l 

In such a case we define the total error as: 

I T = l(a 2 + 82 ) ~ (6-22) 

with o being the non-random error and 8 being the M8E. Combining 

the two errors in x as given above and using equations (6-18) and (6-21) 

we get: 

or 

s of 2 s 
T = /[~;1 a:r- ali) + z: 

X ~ l i=l 

s af 2 2 2 = I[ z: ( (-;-;;-) ( o ~. +8. ) } + 
i=l o~i l l 

s 2 
T = ·'j t l: ( ..u:_) 

x i=l a~. 
l 

2 
T .. + q] ' 

l: 

0~.] 
J 

( 6-23) 

where q may be regarded as a kind of "covariance" between individual non-

random errors, and T. is the total error in the observation~ .• 
l l 

*For the validity of the Taylor's series expainsion, we can see that 
the requirement of o~i being small in comparison to ~i is obviously 
essential. 
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As we mentioned in section 4.2, the non-random (systematic) 

errors may be known or assumed functions of some parameters. In this 

case their influence o on x can be also expressed as a function of the 
X 

same parameters. 

Example 6.9: Let us solve Example 6.2 again considering the primary 

multisample L = (~1 , ~2 , ~3 ) to be uncorrelated with variance-

covariance matrix: 

and having also non-random (systematic) errors given as: 

same units as the given standard errors,. 

It is required to compute the total error in the derived 

quantities: x1 and x2 according to the mathematical model 

given in Example 6.2. 

The total errors are given by equation (6-22) as: 

We have: 

3 ax1 
2 

82 82 = I: (aT"") = 39 ' xl i=l ~. 
~ ~ 

3 ax2 
2 

82 = L: (aT) 82 = 15 . 
x2 i=l ~. 

~ ~ 



The influences o and o- due to the given non-random errors 
xl x2 

in L are computed from eguation (6-21) as follows: 

Hence, 

3 
0 = L: 
xl i=l 

= (1)(-1.5) + (0)(2) + (-3)(0.5) 

= -1.5 + 0 - 1.5 = - 3 

3 3x2 
0 = L: o.Q.. 
x2 i=l ().Q., l 

l 

= (2)(-1.5) + (1)(2) + (0)(0.5) 

= -3 + 2 + 0 = - 1 • 

the reguired total errors will be: 

T = IK-3) 2 + 39] = 1[48] = ~ 
xl 

T = 1[{-1) 2 + 15] = 1[16] = ~· 
x2 

' 

Example 6.10: Consider again Example 6.6. In addition to the given 

information, assume that each height difference h. has got 
l 

a non-random (systematic) error expressed as oh = k'h., 
l i l 

where k' is another constant, a constant of proportionality 

between h. and oh . Determine the total error in LlH where 
l . 

l s 
LlH = H -H = L: h. = h + h + ... + h 

C A i=l l 1 2 s 

The total error in LlH is given by: 
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In Example 6.6, we found that: 

s 
where k was a constant and iAC = E i. is the entire length of 

i=l ~ 

the levelling line AC. 

We can now compute o~H as follows: 

where 

and 

o~H = 
s 
E 

i=l 

a~H 

3h. 
~ 

oh. 
~ 

a~H a~H a~H --=--= ... =--= 1' 3h1 3h2 3h6 

= k'h. 
~ 

Then we get 

s s 

o ~H = i~l ;'.~: .•. k.'' i~l hi = k' ~H. 

Finally, the expression for the total error in ~H will be: 

6. 3. 4 Truncation and Rounding 

In any computation we have to represent the numbers we work with, 

whioh may be e~toer irrational like n, e, 12, or rational with very 

many decimal places like 1/3, 5/11, etc., by rational numbers with a 

fixed number of figures. 

The representation can be made in basically two different 

ways. We either truncate the original number after the required number 
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of figures or we round off the original number to the re~uired length. 

The first :process can be mathematically described as: 

(6-24) 

where a is the original number assumed normalized*), n is the re~uired 

number of decimal :places and Int stands for the integer value. 

Example 6.11: ~ = 3.141592 ••••. , n = 3 and we get: 

7T = ~ = T 

4 ) -3 = Int (31 1.592 ..• 10 

= 3141 • l0-3 

= 3.141. 

The second :process, i.e. the rounding-of~ can be described 

by the formulae: 

I a ,;, ~ = Int (a•lOn + 0.5)/lOn \ 

in which all terms are as described above. · 

Example 6.12: ~, n = 3 and we get: 

1T = TIR = Int (TI•l03 + 0.5) l0-3 

= Int (3141.592 + 0.5) 

( 4 ) -3 = Int 31 2.092 .•. 10 

= 3142 . l0-3 

= 3.142. 

( 6-25) 

l0-3 

It can be seen that the errors involved in the above two 

alternative :processes differ. Denoting the error in "a" due to 

* To normali.ze the number, say 3456.21, we write it in the form 3.45621 • 103. 
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truncation by 8 and the error due to rounding by 8 'we get: 
~ ~ . 

8 = a - ;, E [0, 10-n) 
aT 

8 =a- ~ E [-0.5 10-n, 0.5 10-n) 
~ 

and we may postulate that-8 has a parent random variable distributed 
aT 

according to the rectangular (uniform) PDF (see section 3.2.5): 

( -n ) R 0.5 10 , o; 8 
~ 

(6-26) 

while 8 has parent PDF: 
~ 

( 6-27) 

as shown in Figure 6.5. 

R 

0 0 

PDF of rounding errors PDF of truncation errors 

Figure 6.5 
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From example 3.17, section 3.2.5 we know that 0 = q/13, where q equals 

half of the width of the R. -n In our case, obviously q = 0.5 10 so 

that (J = -n 0.289 10 . 

Beeause of their different means, the error in truncation 

propagates according to the "total error law" and the errors in rounding 

propagates according to the "random error law". Hence, if we have a 

number x: 

where 

.x=f(L), 

L=(.Q..), 
l 

i = l, 2, ... ,s 

( 6-28) 

is a set of s numbers to be either truncated or rounded off individually, 

we can ~orrite the formulae for the errors in .x due to truncation and 

rounding errors in the individual .Q.~s as follows: 
l 

s 
= l[(l: lL 

i=l at. 
l 

l 
12 

s 
l: 

i=l 

(6-30) 

This indicates clearly that the error in .x due to the rounding process 

is less than the corresponding error due to truncation; and this is 

w·hy we always prefer to work with rounding rather than truncation. 

Example 6.13: Let us determine the expected error in the sum .x of 
1000 

a thousand numbers ai~.x = i~l ai, if 

( i) the individual values a. were truncated to five decimal 
l 

places; 
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(ii) the individual values a. were rounded-off to five 
~ 

decimal :places. 

Solution: 

(i) The error 8 due to the truncation of individual a. is 
XT ~ 

computed from equation (6-29) as follows: 

1000 
8 =I{[ E ~X . (0.5 . l0-5)] 2 + 
~ i=l oai 

1000 ~x 2 1 10 
+ .E (-~ -) ( 12 10- )} 

~=l oai 

=1{[0.5 . l0- 5 . 103 ]2+ _! . lo-10 . 103} 
12 

I{~ . lo-4 + _! . l0-7} = 4 12 

= l{lo-8 (2500 + 0.833)} 

• 0.005001 = 0.005 . 

(ii) The error 8 due to the rounding bf individual a. is 
~ ~ 

computed from equation (6-30) as follows: 

1000 
(lL) 

2 
l 10-10)} 8 = I{ E (-. 

XR i=l a a. 12 
~ 

I{ (looo) l 10-10)} = (-. 
12 

= l{lo-8 (0.833)} 

. 0.000091 ' 

which is much smaller than the corresponding 8 
XT 
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6.3.5 Tolerance ~imits, Specifications and Preanall!!!_ 

Another importantant application of the propagation laws for 

errors is the determination of specifications for a certain experiment 

when the maximum tolerable errors of the results, which are usually 

called tolerance limits, are known beforehand. Such process is known 

as pre-analysis. The set-up of the specifications should therefore 

result in the proper design of the experiment, i.e. the choice of 

observation techniques, instrumentation, etc., to meet the permissible 

tolerance limits. 

The specifications for the elementary processes should account 

for both the random and the inevitable non-random (systematic) errors. 

This is, unfortunately, seldom the case in practice. It is usual to 

require that the specifications are prescribed in such a way as to meet 

the tolerance limits with the probability of approximately 0.99. If 

we hence expect the random errors to have the parent Gaussian PDF, 

the actual results should not have the total error, composed of the non-

random error o and 2. 5 to 3 times the RMS , which corresponds to 

probability of 99% •larger than the prescribed tolerance limits, i.e. 

I T ~ 1{0 2 + (3a ) 2), (6-31) 

Example 6.14: Assume that we want to measure a distanceD = 1000 m, 

-4 with a relative error (see 4.10) not worse than 10 , using a 

20 m tape which had been compared to the "standard" with a 

precision not better than 3cr < 1 mm, i.e. tolerance limits 

of the comparison were ~ l mm • Assume also that the whole 

length Dis divided into 50 segments d., i = l, 2, .•• , 50, 
~ 



each of which is approximately 20 m. Providing that each 

segment d. will be measured only twice: forward F. and 
1 1 

backward B., what differences can we tolerate (accept or 
1 

permit) between the back and forth measurements of each 

segment? 

Solution: 

The tolerance limits in D, i.e. the permissible total 

error in D, is given by 

-4 T = lOOCm 10 = 0.10 m = 10 em. D . 

This total error TD is given by 

where cD is the non-random (systematic) error in D, aD is 

the random error in D and the factor 3 is used to get probability 

> 99% according to the assumed Gaussian PDF. Knowing that 

we get: 

where 

Hence, 

50 
D = L: d~, 

i=l ... 
1 where d. = -2 (F.+B.) 

1 1 1 

50 

50 3D 
L: ad. i=l 1 

cd. 
1 

L: 
i=l 

1· c. < 50 mm = 
1-

5 em. 
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Thus, we must require that: 

or 

2 75 cm2 , :8-,.33 2 
aD !.. -9 = _.. - em 

in order to meet the specifications. 

2 em 

Denoting the MSE in the individual segm~nts di·by 

ad = ad (all assumed equal) we get 
i 

2 50 2 
a = t a 
D i=l di 

from which we obtain 

Rememb.ering that each segment di is given by: 

' 1 
d. = 2 (F. +B.) , 

1. 1. 1. 

and denoting the MSE in either F i or Bi (both assumed equal) 

by a we get: 

ad. 2 adi 2 2 2 2 
<aF1

) 
2" 

ad =a = aF + (air") aB 
i d i i i i 

(1)2 a2 + 
2 2 

= (1) a 2 2 

and 



2 2 
o ~ 2od = 2(0.lb) = 0.33 em. 

Recalling that we want to know what differences between the 

forth and back measurements can we tolerate, and denoting 

such differences by ~., we can write: 
2 

Then: 

2 2 
a~. = 0~ 

2 

~. =F.-B. 
2 2 2 

3~. 
2 

3~. 

(3F~) 
2 

+(3B~) = oF. 
2 2 2 

= (1)202 + (-1)202 

2 = 2o • 

2 2 
OB 

Thus, we end up with the condition: 

2 2 - ~ 2 
o~ ~ 2o = 2(0.33) = 0.66 em 

or 

o~ ~ 0.816: 0.8 em. 

2 

This means that if we postulate a parent Gaussian PDF for 

the differences ~' the above o~ is required to be smaller 

or equal than the RMS of the underlying PDF. Consequently, 

the specifications will be as follows: We should get 68% 

of the differences ~'s with~ o~, i.e. within+ 0.8 em, and 

95% of~ within~ 2o~, i.e. within~ 1.6 em. These specifications 

are looser than a man with an experience in practice would expect. 

It illustrates the fact that in practice the specifications are 

very often unnecessarily too stringent. 
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6.4 Problem of Adjustment 

6.4.1 Formulation of the Problem 

Let us resume now at the end of section 6.2 where we have 

defined the proper problem of adjustment as the transition 

" ( E, E1 ) + (X, EX) ( 6. 32) 

for an overdetermined mathematical model 

F(L, X) = 0 • (6.33) 

By "overdetermined" we mean that the known E contains too many components 

to generally f.it the abbve model for whatever X we choose, i.e. yielding 

infinite number of solutions X • The only way to satisfy the model , 

i.e. the prescribed relations,is to allow some of or all the E to change 

slightly while solving for X. In other words, we have to regard E as 

an approximate value of some other value L which yields a unique solution X 

and seek the final value L together with X. 

Denoting 

L - E = v (6.34) 

we may reformulate our mathematical model (6.33) as: 

" 
F(L, X) = F(L + V, X) = 0 (6.35) 

where V is called the vector of discrepancies. 

Note that V plays here very much the same role as the v's 

have played in section 4.8. From the mathematical point of view, there 

is not much difference between V and v. However, from the philosophical 

viewpoint, there is, because V represents a vector of discrepancies of 



s different physical quantities (see also section 5.4)while v was a vector 

of discrepancies of n observations of the same physical quantity. To 

show the mathematical equivalence of these two we shall, in the next 

section, treat the computation of a sample mean as an instructive adjust-

ment problem. 

6.4.2 Meafi,of a·sample as an Instructive Adjustment Eroblem,weights 

Let us regard a random sample L = (~1 , ~2 , ... ,~n) of n 

observations representing one physical quantity L as uncorrelated estimate 

of the mean . Further we shall denote the definition set of L by 1, 

where 1 = (11 , 1 2 , ... ,1m) consists of only m distinctly different 

values of ~'s. Let us seek an estimate x, satisfying the mathematical 

model 

X = ~ (6.36) 

representing the identity transformation. Evidently, the model is 

overdetermined because the individual 1., j = 1, 2, .• 'Jm, are 
J 

different from each other and cannot therefore all satisfy the model. 

So, we reformulate the model as: 

j = 1, 2, ... , m (6.37) 

where the v's are the discrepancies. We have to point out that, although 

we seek now the same result as we have sought in section 4.7, t.he formu-

lation here will be slightly different to enable us to use analogies later 

on. While we have been taking all the n observations into account in section 

4.7, we shall now work only with them distinctly different values 1., 
J 
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j = 1, 2, ••• ,m, that constitute the sample L*t 
Thus we shall have to compute the mean I from the second 

formula introduced in section 3.1.3 (equation (3.4)}, i.e.: 

i = 
m: -
I: t j P(ij·· }= j=l. ~ i."J PJ ' .1=1 

(6.38) 

rather than the first (equation (3.3)) as used in section 4.T. Here, 

according to section 3.1.3, Pj = cj/n with cj, being the count of the 

same values tj in the original sample t•containing all n observations. 

Hence Pj are the experimental (actual) probabilities. In other words, if· 

we wish x to equal i, the.model (6.37} yields the following solution: 

X= 

or 

in vector notation, 

m 
I: . 'l pj J 

j=l . .1 
(6.39} 

(6.40) 

The coefficients Pj are called weight coefficients,or simply 
..... 

weights,and xis called the weighted mean- analogy borrowed tram mechanics 

(see section 3.1.3}. Note that, with the weights being nothing else but 

the experimental probabilities, we put "more weight" on the val.ues with 

which we are more "certain", i.e. which are repeated more often in the 

sample, which is intuitively pleasing. 

* L = (i , "i , • • • , "i ) can be regarded in this context as a sample of 
"groupe~" o~servation~, i.e. each constituent t , j = 1, 2, • ·• .,m, 
has a count ( frequenby). cj associated with itjin the original sample 
L • 
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In our slightly different notation even the least-squares prin-

ciple, as formulated in section 5.3, would sustain a minor change. While 

k . such no t k we were see ~ng N as o rna e 

1 n 
l: 

n . 1 
~= 

2 1 n o 2 
v. = l: (~ - ~ ) . 
~ ; i=l i (6.41) 

minimum, we would have to write now the·condition of minimum variance as: 

m 2 
min [ l: P.v. 

~o8 R j=l J J 
(6.42) 

where v:j = ~. - ~0 • In matrix notation, (6.42) becomes: 
J 

( 6. 43) 

where P is a diagonal matrix, i.e. 

(6.44) 

The latter formulation, i.e. equations 6.42 and 6.43 is more 

general since we can regard the former formulation, i.e. euqation 6.41 as 

a special case of (6.42) and not vice-versa. We have 

1 
n 2 n 2 
l: V, = l: P.v. 

n i=l ~ i=l 
~ ~ 

which implies that P. = l, fori= 1, 2, ••• , n are equal weights for all 
~ n 

the observations i!. Hence we shall use (6.43) exclusively from now on. 
~ 

The same holds true even for the two formulae for i and we shall use 

equation (6.40). 

Note that once we apply the condition 6.43, the discrepancies 

cease to be variable quantities and become residuals (see 4.8). We shall 

denote these residuals by v. 
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Equation 3.7 can now bF> obviously written as 

s 2 
m A 2 

= E P. v 
L j=l J j (6.45) 

or in matrix notation, 

[ s 2 = VT PV. l L 
(6.46) 

Consequently, we shall restate the least-squares principle as follows: 

T the value x that makes the value of the quadratic form V PV the least 

ensures automatically the minimum variance of the sample L. This property 

does not depend on any specific underlying PDF. If L has got normal 
A 

parent PDF (or any symmetric distribution), xis the most probable estimate 

of x, which is sometimes called the maximum likelihood estimate of x. 

6.4.3 Variance of the Sample M.ean 

We have shown that the simple problem of finding the mean of 

a sample can be regarded as a trivial adjustment problem. Hence we are 

entitled to ask the question: What will be the variance-covariance matrix 

of the result as derived rrom the variance-covariance matrix of the original 

sample ? In other words, we may ask what value of variance can be as soc-

iated with the result - the mean of the sample. 

The question is easily answered using the covariance law 

(section 6.3.1). We have established that (equation 6.40): 

A T-
x =P L • 

Hence, by applying the covariance law (equation 6.15)we obtain: 
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l:" = Bl: -BT = 
X L 

= s~ 
X 

i.e. 

s* = ( 6. 4 7) 
X 

Here l:L is not yet defined. All we know is that L- (i1 , i 2 , •. im) 

is a sample of "grouped" observations £. with different weights (observed 
~ 

probabilities) P. associated with them. Let us hence assume these obser
~ 

vations uncorrelated and let us also assume that there can be some 

"variances" S~ attributed to these observations. In such a case, the 
R,i 

-variance covariance matrix of L can be expressed as 

l:- diag 2 2 s~ ) = (Si I s- , • • • I L £2 R, 
1 m 

(6.48) 

Substituting (6.48) into (6. 47) I we get: 

s~ 
m 2 s2-= l: P. *) . 

X j=l J £. 
J 

( 6. 49) 

On the other hand the value of x (i.e. the sample mean) can be 

computed using the original sample of observations, L = (t1 , t 2 , ... , tn), 

i.e. the ungrouped observations ti' i = 1, 2, ... , n, which all have equal 

experimental probabilities (equal weights) of 1/n, yielding: 

X = 1 
n 

n 
l: 

:.i=l 

1 
£. = 
~ n 

Hence, we can compute the variance of the mean, i.e. 

(6. 50) 

2 
S", again by applying 

X 

the law of propagation of errors on (6.50), and we get: 

X 

n 
l: 

i=l 

2 
= (!) 

n 

n 
l: 

i=l 
(6.51) 

*It should be noted here that since L = <i1 , i 2 , ••. , i) is a sample of 
group observations, for which a differen~ weight Pj (ex~erimental proba
bility) is ~ssociated with each_element £., j = 1, 2, ••. , m, the individual 
variances s I assigned to the t. are, inJgeneral, different from each other, 
i.e. they j vary with the grortps of observations. 
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in which all the 'varianc~ s~. are again assumed to have the same value 
~ 

and equal to the sample variance s2L given by 

Equation (6.51) then gives: 

s~ = 
X 

n 
2: 

i=l 

A 2 
( ~. ;;.. x) . 

~ 
(6.52) 

(6.53) 

which indicates that the variance of the sample mean equals to the variance 

of the sample computed from equation (6.52) divided by the total number 

of elements of the sample*~ 

We thus ended up with two different formulae, (6.49) and 

(6.53), for the same valueS~. In the first approach, we have regarded 
X 

the individual observations (really groups of observations having the same 

value) as having different variances s21 associated with them. The second 
j 

approach assumes that all the observations belong to the same sample with 

2 variance SL. Numerically, we should get the same value of S~ from both 

formulae, hence 

m 

2: 
.··j=l 

(P 2 
j 

2 
2 8L s- ) =
~. n 
~ 

Let us write the left hand side. of ( 6. 54) in the form: 

m 
I: 

j=l 
(P 2 

j 

X 

(6.54) 

* In terms of our previous notation, we can write the variance of the 
sample mean as 

n • 
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and the right hand side in the form: 

8 2 
1 

n 8 2 
L L: (l) --= n n i=l n 

Using the oame manipulation as in section 6.4.2 when dealing with the 

V's and ~'s, and also earlier, in section 3.1.4 when prooving equation 

(3.4), the right hand 

1 
n 

side can be 
2 

n 8L 
E (-) = 

i=l n 

rewritten as: 

m 82 
E [P. (_&_)] 

j=l J n 

in which P. has the same meaning as in (6.49). 
J 

Now, the condition (6.54) becomes: 

m 82 
L 

E [ PJ. (--;-) ], 
j=l 

which can 

K, j = 1, 2, ... , m, 

(6.55) 

(6.56) 

where K is a constant value for a specific sample that equals to the 

variance of the sample mean. From (6.56) we get: 

8t = 
j 

K 
p ' 

j 
j = 1, 2, .•. , m, (6.57) 

which shows that in order to get the correct result from (6.49) we have to 

assume that in the first approach the individual observations have 

variances inversely proportional to their weights. 

This result is usually expressed in the form of the following 

principle: the weight of an observation is inversely ;proportional to its 

variance, i.e. 

(6.58) 
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We can also write using equation (6.57): 

= 1·s2 = K 
0 

(6.59) 

2 
where s0 , constant for a specific sample, is known as the variance of unit 

weight. It can be interpreted as the variance of an imaginary observation 

whose weight equals to one. In the case of sample mean I, S0 equals to si. 

From equations (6.46) and (6.53) we can write: 

S~ = ~lPv ( 6. 60) 
x n 

This result will be often referred to in the subsequent development. 

We have to point out that the whole argument in this section 

hinges on the acceptance of the "variances" s~. and s2R:.. They have been 
1 1 

introduced solely for the purpose of deriving formulae (6.53) ,(6.58) that 

are consistent with the rest of the adjustment calculus •. The more rigorous 

alternative is to accept the two formulae by definition. 

6.4.4 Variance Covariance Matrix of the Mean of a Multisample 

We have seen in section 6.4.3 that the mean I of a sample L 

has also a standard deviation Si associated with it. This standard devi

ation is l(n)-times smaller than the standard deviation SL of the sample 

itself and can be interpreted as a measure of confidence we have in the 

correctness of the mean ~. Evidently, our confidence increases with the 

number of observations. 

We can now ask ourselves the following question: Does the mean 

-L of a multisample L also have a variance-covariance matrix associated with 

it? The answer is - there is nothing to prevent us from defining it by 

generalising the discovery from the last section. We get 

s2-
~1 

s- -
~1 ~2 

s- -
~l~s 

E- = s- - s2- s- - (6.61) 
L ~2.Q,l ~2 .Q,l~s 

s- - s2-
2s 21 

Q, 
s 



where 

and 

l 82 
n. !/.,. 

1 1 
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= Ls n. !/.,,!/.,, 
1 1 J 

Here we have to require again that ni = nj, i.e. that both components of 

the multisample have the same number of elements (see section 3.3.5). 

Obviously, if this requirement is satisfied for all the pairs of components 

we have 

and 

= n = n s 

(6.62) 

By analogy, the variance-covariance matrix obtained via the 

covariance law (see section 6.3.1) from the variance-covariance matrix of 

the mean of multisample is associated with the mean of the derived multi-

sample, or statistical estimate X. We say that 

r "" = BEEBT I (6.53) 

is the variance-covariance matrix of the statistical estimate X, i.e. of 

the solution of uniquely determined mathematical model 

X = F(L) • 

Similar statements can be used for other laws of propagation of errors. 

Development of these is left to the student, who should also compare results 

of this sections with the solution of Example 6.14. 
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Example 6.15: Let us take again the experiment described in Examples 

6.1, 6.3 and 6.4. This time we shall be interested in 

deriving the variance-covariance matrix EX of the solution 

vector X. 

Solution: First we evaluate EE from eq. (6.61). We obtain 

2 1 2 o.oo4 cm2 2 S- = - S = 5 = 0.0008 em ) 
a 5 a 

__o -..;....;· 0;..:0;..::.5.;:;.6 ...:c;::;m=--2 2 - 5 = 0.0011 em 

Since Sab = 0 we get 

E- = [ 0. 0008 0 ] 

L 0 0.0011 

2 1 
em = 5 ~L • 

NowJZ::X can be evaluated from eq;u.ation,(i).;6s) and-we have 

or 

zA = fo. ooo81 

X 0.01079 

2 em 0.1079 cm3 
4
] 

21.51254 em 

Thus the standard deviations of the estimates d and aare 

given by 

em , 1(0.00081 cm2): 0.028 

1(21-.51254 cm4 ) = ..;..4.;...;.6....;.4....;c=m'-2 • 

6. 4. 5 The Method of L.east-s quares, Weight M.atrix 

The least~squares principle as applied on the trivial identity 

transformation 1i.e. the sample mean,can be generalized for other mathematical 

models. Takiqs the general formulation of the problem of adjustment as 
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described in section 6.4.1, i.e. 

[ F(L + v' X) = 0' I 
we can again ask for such X that would make the value of the quadratic 

form of the weighted discrepencies, VTPV, minimum, i.e. 

min 
A n 
XER 

(6.64) 

The· condition (6. 64) for the majority of mathematical models, is enough to specify 

such X =X uniquely. The approach to adjustment using this condition became 

known as the method of least-squares. 

The question remains here as how to choose the matrix P. In 

the case of the sample mean we have used 

2 2 
P = diag (K/Sl , K/S l , 

l 2 

2 . . . , K/S l ) , 
m 

that is 

2 
1/S I ) . 

m 

Using the notation developed for the multisample, this can be rewritten as: 

Q (6.65) 

which indicates that the matrix P is obtained by multiplying the constant 

K by the inverse of the variance-covariance matrix of the means of observa-

tions. This is in our case a diagonal matrix as we have postulated the 

sample L to be uncorrelated. 

We again notice that, mathematically, there is not much dif-

ference between a sample and multisample - they can be hence treated in much 

the same way. Thus, there is not basic difference between the apparently 
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trivial adjustment of the sample mean and the general problem of adjust-
A' 

ment. The only difference is that in the first case X is a vector of one 

component, while generally it may have many components. 

This gives a rise to the question of what would be the role of 

K (K having been a scalar equal to s? in the adjustment of the mean of sample), 
X 

in the least squares method, where X has several constituents. Let us just 

say at this time that we usually compute the weight matrix P, as it is called 

in the method of least-squares,as 

p = K l: -1 
E (6.66) 

where K is an arbitrarily chosen constant, the meaning of which will be 

shown later. This can be done because, as will also be shown later, the 

solution X is independent of K since it does not change the ratio between 

the weights or variances o:t:. 4he individual observations. 

In this course we shall be dealing with only two particular 

mathematical models which are the most frequently encountered in practice. 

In these models, we shall use the following notation: 

n for the number of constituents of the primary or original multisample L; 

u for the number of constituents of the derived, or unknown(to be derived) 

. multisample X; 

r for the number of independent equations ~elationships) that can be for-

mulated between the constituents of L and X. 

Moreover, we shall consider these models to be linear. 

The first model is 

A X = L , (6.67) 
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in which A is an n b u matrix, X is a u b 1 vector and L is an n by 1 

vector (n = r > u) • The adjustment of this model is usually called 

parametric adjustment, adjustment of observation equations, or adjustment 

of indirect observations, etc. 

The second model is 

BL = C (6. 68) 

in which B is an r by n matrix, Lis n x 1 and Cis r x 1 vectors (r < n). 

The adjustment of this model is known as conditional adjustment, adjustment 

of condition equations, etc. 

The two mathematical models are evidently quite special since 

they are both linear. Fortunately many problems in practice, although 

non-linear by nature, can be linearized. This is the reason why the two 

treated models are important. 

6.4.6 Parametric Adjustment 

In this section, we are going to deal with the adjustment of 

the linear model (6.67), i.e. 

AX + C = L (n > u) (6.69) 

which, for the adjustment, will be reformulated as: 

AX - (L + V) = 0 

or 
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v = AX - L*) • (6. 70) 

Here A is called the design matrix, X is the vector of unknown 

parameters, L is the vector of observations, (L = L* - C where L* is the 

mean of the observed multisample), and Vis the vector of discrepancies, 

which is also unknown. The formulation (6.70) is known as a set of 

observation equations. 

" We wish to get such X = X that would minimize the quadratic 

form VTPV in which P is the assumed weight matrix for the observations 

L (see the previous section). This quadratic form, which is sometimes 

called the quadratic form of weighted discrepancies, can be rewritten 

using the observation equations (6.70) as 

- T -= (AX - L) P(AX - L) 

= ((AX)T- LT) (PAX- PL 

T T -T T T -T -
= X A PAX - L PAX - X A L + L PL (6.71) 

-1 
From equation (6.66) we have P = K E_ , where K is a constant scalar and 

L 

Er; is the variance-covariance matrix of L. Since E- is symmetric, the 
L 

weight matrix P is symmetric as well and PT = P. We can thus write 

since it is a scalar quantity. 

Substituting (6.72) into (6.71) we get 

* If we have a non-linear model 
L = F (X) 

it can be easily linearized by Taylor's series expansion, i.e. 

o ClF 
L = F(X ) + -~ 

ClX X=Xo 

0 
(X-X ) + • • • I 

in which we 
L-F(XO) and 

neglect the higher order terms. 
A ( a matrix) for ClF/ClXIx=xo we 

0 Putting l\X for X-X , l\L for 
get 

l\L ,;, Al\X • 
This is essentially the same form as equation (6.69). However, in this 
case we are solving for the corrections l\X to the approximate value x0 of 
the vector X, instead of solving for X itself. 
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(6.73) 

The quadratic function (6.73), called sometimes the variations 

function, is to be minimized with respect to X. This is accomplished by 

equating all the partial derivatives to zero, i.e. 

i = 1' 2' ... , u, (6. 74) 

and we obtain, writing d/dX for the whole vector of partial derivatives 

d/dXi, 

which can be rewritten as: 

or by taking the transpose of both sides we get: 

r (A TPA) X = A TPL 1 +) (6. 75) 

This system of linear equations is called the system of normal equations 

which can be written, as often used in the literature, in the following 

abbreviated form: 

~ 

N X= U (6.76) 

where N = (ATPA) is known as the matrix of coefficients of the normal 

equations, or simply the normal equation matrix and U = ATPL is the vector 

of absolute terms of the normal equation. 

The system of normal equations (6.76) has a solution X 

* From matrix algebra we know that if A is a symmetric matrix and X is a 
vector we get: 

d 
ax AX 

+ Note that the normal equatiomcan be obtained directly from the mathemati-
cal model by pre-multiplying it by ATP • 
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given by 

(6. 77) 

if the normal equation matrix, N = ATPA, has an inverse. Note that N 

is a symmetric positive definite matrix.*) 

To discuss the influence of the weight matrix P on the solution 
A 

vector X, let us use a different weight matrix, say P', such that 

P' = yP (6. 78) 

where y is an arbitrary constant. Substituting (6.78) into (6.77) we get: 

X' = (ATP'A)-l (ATP'L) 

= (ATyPA)-l (ATyPL) (6. 79) 

1 T -1 T -= (A PA) y(A PL) 
y 

A 

= X 

This result indicates that the factor K in equation (6.66) for computing 

the weight matrix P from LL' can be chosen arbitrarily without any influ-
A 

ence on X, which really verifies the statement we have made earlier, in 

section 6.4.4. 

It should be noted that the vector of discrepancies V as defined 

in (6.70), becomes after minimization of the vector of residuals (see 4.8) 

of the observed quantities. As such, it should be again denoted by a 

different symbol, say R, to show that it is no longer a vector of variables 

A 

(function of X) but a vector of fixed quantities. Some authors use V 

for this purpose and this is the convention we are going to use (see also 

6.4.2). 
A 

The values v. are computed directly from equation (6.70) in the 
~ 

-same units as these of the vector L. Then the adjusted observations will 

be given by £ = L + V. 

* ATmatrix say N, is positive definite if the value of the quadratic form 
Y NY is positive for any vector Y (of the appropriate dimension) . 
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We should keep in mind that one of the main features of the 

parametric method of adjustment is that the estimate of the vector of 

unknown parameters, i.e. X, is a direct result of this adjustment as 

given by equation (6.77). 

At this stage, it is worthwhile going back to the trivial 

problem of adjustment- the sample mean. According to the equation (6.79), 

we can choose the weights of the individual observations to be inversely 

proportional to their respective variances with an arbitrary constant K 

of proportionality. This indicates that the weights do not have to equal 
n 

to the experimental probabilities for which E P = 1, as we required 
i i=l 

in sections 6.4.2 and 6.4.3. In this case, the observation equations 

will be 

x = ~l + v1 , with weight p1 , 

A 

x = t + v , with weight P . n n n 

Or, in matrix form 

A - A 

AX = L + V 

where 

1 ~ 

1 iJ. 
2 -A = L 

. 
1 t 

n 
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with weight matrix, P = diag (P1 , P2 , · •· , Pn). 

Substituting in equation (6.77) we get the solution, i.e. the weighted 

mean of the sample, as 
n 

A 

X= 

L: p.L 
i=l ~ ~ 

n 
L: p. 

i=l ~ 

(6.80) 

n 
which agrees with the result in section 6.4.2. _,when L:pi 

i=l 
equa]s to one. 

Formula (6.80) is the general formula used to compute the weighted mean 

of a sample of weighted observations. 

Exa;mple 6.16: 

G 
Figure 6.6 

Let us have a levelling line connecting two junction points> 

G and J, the elevations of which,HG' HJ,are known. The 

levelling line is divided into three sections d1 , d2 and d3 

long. Each level difference h1 , h2 and h3 was observedJwith 

- -resUlts h1 , h2 and h3 • The observations h. are considered 
~ 

uncorrelated with variances proportional to the corresponding 

lengths d., i = l, 2, 3. 
~ 

It is required to determine the adjusted values of the 

elevations of points land 2, i.e. H1 and H2 respectively, 

using the parametric adjustment. 

Solution 

From the given data we have:number of observations n=3 ; 

number of unknowns u = 2. Therefore, we have.one redund-

ant observation. The independent relationships between 

the observationsand the unknowns are written as follows 

(each relation, corresponds to one observation,): 



The above relations can be rewritten in the general form 

used in the previous development: 

where X = 

A X = L 
3,2 2,1 3,1 

(Hl' H2) and 

Hl = hl + HG = Ll 

-H + H2 = h2 = L2 1 

-H = h - H = L 
2 3 J 3 

) 

Putting this in matrix form, we get 

1 0 

[ ::l = -1 1 

0 -1 

The corresponding set of observation equations are: 

Hl = HG + ( hl + v 1 ) ' 

-Hl + H2 = ( h2 + v 2) ' 

H2 = -HJ + (ii3 + v3) . 

These observation equations can be written in matrix form 

as: 

V = A X E 
3,1 3,2 2,1 3,1 
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where: 

vl 

[ ::1 
(iil + HG) 

v = v2 X = 1 = ii2 
3,1 2,1 

v3 (h3 - HJ) 

and the design matrix A is given by 

'A = r-~ ~1 
3,2 0 -1 • 

-We assumed that the observed values hl' h2 and h3 are 

uncorrelated. We will also assume that HG and HJ are 

errorless, Hence: 

L:- = diag (S-2 2 S-2 ' S- ' 1 h. h2 h3 l 

But S-2 is proportional to d., i = 1, 2, 3; h. l 
l 

thus 

Further, we choose K: =1 and we get 

-1 . 1 1 L) p = K L:- = d1ag (d, d' . 
1 1 2 d3 

Applying the method of least-squares the normal equations 

are 
A 

N X = u 

where 
2,2 2,1 2,1 ' 

N = ATPA 

[: 
-1 

_: J 
1 

0 0 1 0 
= dl 

1 1 0 
d2 

0 -1 1 

0 0 
1 

0 -1 
d3 

This giv:es 
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(L 1 1 
+d), --

N 
dl 2 d2 

= 1 1 2,2 1 
' ( -- - + -) 

d2 d2 . d3 

and 

r: _:l 
1 

T- -l 
dl 

0 
U = A PL = 1 

1 0 
d2 

0 0 

Hence 

u = 

A 
The solution X is given by 

(\ -1 
X = N 

where 
2,1 2,2 

-1 dl d2 d3 
N = (dl+ d2+ d3) 

u 
2,1 

(L + L) 
d2 d3 

1 (.L + L) 
d2 ' dl d2 

0 (hl + HG) 

0 h2 

.L (ii3 - HJ) 
d3 

Performing the multiplication N-1u and realizing that 

Uow, we compute the residuals vi from the equation 

V = AX - L and find 

i = 1, 2, 3. 
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Figure 6.7 
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Finally, we compute the adjusted observations from 

L=L+V. 

Remembering that HG and HJ are assumed errorless we get: 

h. = h. + v.' 
l. l. l. 

i = 1, 2, 3. 

A local levelling network composed of 6 sections,shoWn in 

Figure 6.7,was observed. Note that the arrow heads indicate 

the direction of increasing elevation • The following 

table summarizes the observed differences in heights h. 
l. 

along with the corresponding length of each section. 

- ii. length 1. Section ; , St~tions l. 

No. from to (m) (km) l. 

1 a c 6.16 4 

2 a d 12.57 2 

3 c d 6.41 2 

4 a b 1.09 4 

5 b d 11.58 2 

6 b c 5.07 4 

2 
Assume that the variances Sh., i = 1, 2, .•. , 6, are 

" l. 

proportional to the corresponding lengths t.. The elevation 
l. 

H of station a is considered to be 0 metres. It is 
a 

required to adjust this levelling net by the parametric 

method of adjustment and deduce the least-squares estimates 
A A 

Hb, He, and Hd for the elevations flb' He and Hd of the 

p6ints b, c, and d. 
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Solution: 

From the given data we have - number of independent obser-

vat ions: n = 6, number of unknowns: u = 3. Hence we have 

3 redundant observations, i.e. 3 degrees of freedom . 

Our mathematical model in this case is linear, i.e. 

where 

A X = · L 1 
6,3 3,1 6,1 

X = (~, He, Hd) • 
3,1 

The 6 independent observation equations will be(one 

equ~tion for each observed quantity): 

hl + v·l = H H = H o.o = H c' c a c 

h2 + v 2 ::: Hd H ::: H - o.o = Hd, a d 

h~ + v ::: Hd H 
3 c 

h4 + v4 ::: ~ H ::: ~- o.o ::: ~ ' a 

h5 + v = Hd ~' 5 

E6 + v · = H 
6' c - ~ . 

The above set of equations can be rewritten i<l the following 

form, after substituting the values of h.: 
]. 

/. 

6.16 v = H , 
1 c 

A 

v2 ::: Hd 12.57 

·'· A 

v3 = -H + Hd 6.41 ' c 
A 

v4 = Hb 1.09 

'· " v = -~ .... Hd 11.58 ., 
:J 

/'. 

v6 = -~ + H 5.07 c 

In matrix form we can write 



190 

v ... A X E 
6,1 6,3 3,1 6,1 

where 

vl 6.16 

v2 12.57 

v3 H 6.41 
b 

v = v4 X = E = 1.09 
6,1 3,1 

H 6,1 c 11.58 v .. 
) 

Hd 
v6 5.07 

and the design matrix, A,is 

0 1 0 

0 0 1 

0 -1 1 
A = 

6,3 1 0 0 

-1 0 1 

-1 1 0 

since we have no information about the correlation between 

h., we will treat them as uncorrelated. Hence, the variance
l. 

covariance matrix EE of the observed quantities will be: 

EE = diag (~, 2, 2, 4, 2, 4) 

6,6 

understanding that· the constant factor K is assumed one. 

The corresponding weight matrix is given as: 

p = diag (0.25, 0.5, 0.5, 0.25, 0.5, 0.25). 
6"6 

The normal equations are 

N X & u 
3,3 3,1 3,1 

yielding the solution 

X -1 u = N 
3,1 3,3 3,1 

where 
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N = AT P. A 
3,3 3,6 6,6 6,3 

Thus: 

[: 

0 0 1 -1 

-:] 
0.25 0 0 0 0 0 

N = 0 -1 0 0 0 0.5 0 0 0 0 

1 1 0 1 .0 0 0.5 0 0 0 
l( 

0 0 0 0.25 0 0 

0 0 0 0 0.5 0 

0 0 0 0 0 0.25 

0 1 0 

0 0 1 

0 -1 1 
X 

1 0 0 

-1 0 1 

-1 1 0 

and 

[ 0 0 0 
0.25 -0.5 

-0.25 J 0 1 0 

N ;: 0.25 0 -0.5 0 0 0.25 0 0 1 

0 0.5 0.5 0 0.5 0 0 -1 1 

1 0 0 

-1 0 1 

-1 1 0 

Finally: 

ll.OO -0.25 -0.5 ] 
N = 

3,3 -0.25 1.00 -0.5 

-0.5 -0.50 1. 50 

Note that N is a symmetric,positive-definite matrix. 
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-1 
N 

3,3 
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[
1.6 0.8 

= 0.8 1.6 
o.8 o.8 

0.81 
0.8 

1.2 

T -Computing U =A PL , we get. 

U=l0.~5 
0 0 0.25 -0.5 

3,1 0 

and 

u 
3,1 

0 -0.5 0 0 

0.5 0.5 0 0.5 

[ 
-6.78501 

= -0.3975 . 
15.2800 

-0.25] 
0.25 

0 

Performing the mult~plication N-l U, we get 

[
1.6 

x = o.8 
3,1 o. 8 

0.8 

1.6 0.8 -0.3975 = o.8J [-6. 785ol 

0.8 1.2 15,2800 

6.16 

12.57 
6.41 

1.09 
11.58 

5.07 

X as: 

[ 
1.051 
6.16 

i2.59 

Therefore, we have obtained' the following· estimates 

~ = 1.05 m, 

H = 6.16 m, c 

H = 12.59 m. 
d 

By substituting the values of X we get the residual vector 

-V for the observed h. from the equation 
l. 

V = A X - L . 
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193 

Namely: 

o.oo m 

0.02 m 

v = 0.02 m 
6,1 -0.04 m 

-0.04 m 

0.04 m 

The adjusted observations h are computed from: 

6.16 

12.57 

6.41 
A 

h = 1.09 + 

11.58 

5.07 

+ v. 
~ 

0.00 

0.02 

0.02 

-0.04 
I l-0.04 

0.04 

i = 1, 2, •.• , 6 

6.16 

12.59 

6.43 

= 1.05 

11.54 

5.11 

The computations can be checked by deriving the heights of 

points b, c and d from Ha using the adjusted hi. The resulting values 

must not differ from the adjusted values Hb' He and Hd. 

6.4.7 Variance-Covariance Matrix of the Parametric Adjustment Solution 

Vector, Variance Factor and Weight Coefficient Matrix 

"' The parametric adjustment solution vector X is given by equation 

(6.77), i.e. 



194 

This can be written as: 

X= BE (6.81) 

where 

(6.82) 

The variance-covariance matrix EX of the solution vector X can be easily 

deduced by applying the covariance law (equation (6.15)) on (6.81); 

we get: 

LX= BEE BT. 

From equation (6.66), we have 

p = KI:--1 
L 

and inverting both sides we obtain 

-1 EL = K P , 

Substituting (6.82) and (6.84) into (6.83) we get 

EA = (N-lATP) K p-l (N-lATP)T. 
X 

Both P and N are symmetric matrices, so that we can write: 

PT = P, T N .( -l)T · -1 N = and N = N • 

substituting this into (6.85) we get 

that is 

On the other 

E" = K N-l AT P P-l P A N-l 
X 

= K 

("X 
-1 (ATPA)-l, 1 = K -N = K 

hand, by. putting p ·= 
,;.1 

in (6.86) KL-
L 

we get 

E" =! K (AT E--1A)-l = (ATEE -lA)-1 , 
X 1C L 

(6.83) 

(6.84) 

(6.85) 

(6.86) 

(6.87) 

which shows that EX does not depend on the choice of the factor K. In fact, 

this statement is valid only if we know the correct values of the elements 
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of LE • Unfortunately, however, LE is often known only up to a scale factor, 

i.e. we know the relative variances and covariances of the observations 

only. This means that we have to work with the weight matrix -1 KE-
L 

without knowing the actual value of the factor K. Therefore ~X cannot be 

computed from equation (6.87). 
"T " 

If we develop the quadratic form V PV *)considering the obser-

"' vations L to be influenced by random errors only, we get an estimate K 

for the assumed factor K given by 

VTPV = ( n - u) ~ • (6.88) 

The multiplier in the right-hand side is nothing else but the difference 

between the number of independent observations and the number of unknown 

parameters, i.e. the number of redundant observations, which is sometimes 

denoted by'lif»and called the number of degrees of freedom, i.e. 

df=n-u. (6.89) 

df must be greater than zero in order to be able to perform a least-squares 

adjustment. Hence equation (6.88) becomes 

K = (6.90) 

Usually)in the literature, K is known as the a priori variance factor and 

K is called the least-squares estimate of the variance factor,or,simply, 

estimated or a posteriori variance factor~ T.h& estimated variance factor 

can be now used instead of the a priori one, yielding an estimate of ~X 

* Here, the vector V is the vector of residuals from the least squares 
adjustment . 
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" " -1 K(ATPA)-l l:" = K N = 
X 

"T" 
(ATPA)-l V PV 

= df (6.91) 

which is known as the estimated variance-covariance matrix of x. 
To discuss the influence of the chosen variance factor K in 

the weight matrix P -1 " = K Z:L on Z:x, as defined by (6.91), we take another 

factor, say K ' • 

(6.91) we get: 

-1 
We obtian P' = K'Z:- = yP. 

L 

"T " 
~~ = y (V PV) ~ ( Tp )-1 = ~" 6x df Y A A 6x 

Substituting in equation 

The above result indicates that fx given by equation (6.91) is independent 

of the choice of the a priori variance factor K. We recall that the same 

" holds true for the estimated solution vector X (equation 6.79). 

It often happens in the adjustment calculus, that we have to use 

the estimated parameters X in subsequent adjustments as "observations". 

Then we have to take into account their respective weights. We know that 

the weight matrix of an observation vector must be proportional to the 

inverse of its variance-covariance matrix (equation 6.66). Thus, we can 

see that the matrix of normal equations, N, can be immediately used as the 

weight matrix of the vector X, since the inverse N-l is proportional to the 

variance-covariance matrix Z:~. 
-1 

Accordingly, the matrix N is known also 

as the weight coefficient matrix and the square roots of its diagonal 

elements are called (Hansen's) weight coefficients. 

" -1 Note that X is called uncorrelated when N is diagonal, i.e. 

when N is diagonal. In such a case, we can solve the normal equations 

separately for each component of X which satisfies our intuition. The 

" " correlation of X is only remotely related to the correlation of L. X 
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will be uncorrelated if L is uncorrelated, i.e. P is diagonal, and if the 

design matrix A is orthogonal. On the. other hand, N may be diagonal 

even for some other general matrices P, A. 

Let us now turn once more back to the "adjustment'~ of the 

sample mean (see 6.4.3). It is left to the student to show that the 

normal equations degenerate into a single- equation, namely equation ( 6. 40) 

On the other hand, using eq. (6.91), we obtain the estimated variance of 

the mean x as 

(6.92) 

Evidently the estimated variance of x differs from the variance sA 2 
X 

(see eq. 6.60) in the denominator. By analogy we define a new statis
A 2 

tical quantity, the estimated variance s1 of a sample L 

n 
l: 

i=l 
(~. _ I)2 = 1 

1. n - 1 

n 
l: 

i=l 
(6.93) 

(compare with eq. 3.6) which is used in statistics wherever the mean I of the 

sample L is also being determined. It is again left to the student to 

show that using the estimated variances for the grouped observations (see 

6.4.2) the formula(6.92)(instead of 6.60) can be derived using the argumentation 

of 6.4.2 and 6.4.3. 

The estimated variances of the sample L and its mean R. can be 

also computed using non-normalized weights,.i.e. 

n 

weights p. for which 
.l. 

l: pi ~ 1 (see 6.4.6). It can be shown that the appropriate formulae are 
i=l 

1 = n - 1 

n 
l: 

i=l 
(6.94) 
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and 
A 2 1 

n A 2 
S- = E pi ~ (6.95) 
~ (n-1) n i=l z pi 

i=l 

To conclude this section, let us try to interpret the meaning 

of the variance factor K, introduced for the first time in 6.4.5. Let 

us take, for simplicity, an experiment yielding a unit matrix of normal 

equations, i.e. N = I. What would be the variance-covariance matrix 

of the solution vector X? It will be a diagonal matrix 

This implies that all the variances s~2 of the components of X equal to 
X. 

l 

K. Since the square roots of the diagonal elements of N (all equal to 1) 

A can be considered as the weights P. of the components x. of X we can also 
l l 

write: 

2 2 2 
pl sl = P2S2 = •.• = Pnsn = K 

(6.97) 

Comparison with equation (6.59) gives some insight into the role the 

variance factor K plays. It can be regarded as the variance of unit 

2 weight (see 6.4.3) and is accordingly usually denoted by either S or 
0 

cr 0
2 (in case of postulated variances). This is .again intuitively pleasing 

since it ties together formulae (6.66) and (6.65), where K can be also 

2 equated to S • 
0 

A A 2 
Analogically, we denote K by either S 

0 

A 2 
or cr 

0 
A 2 A 

By adopting the notation cr for K, and further by denoting the 
0 

-1 weight coefficient matrix of the estimated parameters X, i.e. N , by Q, 

the equations (6.90) and (6.91) become: 
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~ 2 vrpv 
(6.98) cr =--

0 df 
~ 2 

(6.99) ~A = cr Q. 
X 0 

Example 6.18: Let us compute the estimated variance-covariance matrix 

" ~" of the adjusted parameters X in example 6.16. The 
X 

~A matrix is computed fro~ equation (6.99). First, from 
X 

the above mentioned example we have: 

AT HJ - HG - thi 
v = ._.;;_ _ _;;,__;;;;._;;;;...._ [ dl ' d2 ' d3 J ' 

1,3 ~d. 
l. l. 

p . 1 1 1 
3,3 ;:: .-diag [d, d' d] 

1 2 3 

and df = n - u = 3 - 2 = 1. 

Hence, 

and 
A 2 
cr 

0 

As we have seen, 

-1 dl 
Q = N = 

2,2 

[1, 1, 1], 

- 2• 
(HJ - HG -~hi) / 
-1 l. 

N = Q is given by 

d2 d3 d2 + d3 

~:ldi d2d3 

L 
d2 

We thus obtain finally 

" 2 
~A = cr Q = X o 

(HJ- HG -1{hi)2 

~.d. 
l. l. 

1 

d2 

dl + d2 
• 

dld2 



200 

Example 6.19: Let us compute the estimated variance-covariance matrix 
~ A 

~X of the adjusted parameters X in example 6.17. We 

are going to use equations (6.98) and (6.99). First, from 

the above mentioned example we have 

"T v = [o.oo, o.o2, o.o2, -o.o4, -o.o4, o.o4] 
1,6 

in metres, 

P = diag [0.25, 0.5, 0.5, 0.25, 0.5, 0.25] 
6,6 

in m-2- and 

df = n - u = 6 - 3 = 3. 

Hence 

and 

= 0.002 .!. 
3 -

Also, from example 6.17, we 

-1 [1.6 0.8 
Q = N = 0.8 1.6 

3,3 o.8 0.8 

Finally, 

10.67 

0.00067 ( uni tless) • 

have 

o.BJ 2 0.8 in m . 
1.2 

5.33 5·33] 
~" ~ 2Q = 10-4 5.33 10.67 5.33 2 = in m , X 0 

3,3 

or"" [10.67 
'Ei = 5. 33 

5.33 

5.33 

5.33 
10.67 

5.33 

5.33 8.0 

~:~~ ] in cm2 • 

8.0 
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6.4.8 Some Properties of the Parametric Adjustment Solution Vector 

It can be shown that the choice of the weight matrix P of the 

observations E (proportional to the inverse of variance-covariance matrix 

~L) and the choice of the least-squares method (minimization of VTPV) 

to get the solution X = X ensures that the resulting estimate X has got 

the smallest possible trace of its variance-covariance matrix LX. In 

other words: taking P = ~ 2 ~L-l and seeking min VTPV, provides such a 
0 XERU 

solution X that satisfies at the same time the condition 

min trace LX . 
Xt::Ru 

(6.100) 

This is a result similar to the consequence of the least squares principle 

applied to random multivariate (section 5.4) and we are not going to prove 

it here. 

Similarly, it can be shown that for uncorrelated multisample of 

observations L = (L1 , L2 , ... , Ln) which are assumed to be normally 

distributed with PDF given by: 

n 1 
q,(LJ3;L) = II 

i=l s.I(27T) 
~ 

exp [ -

we get the most probable estimate of L0 if the condition min VTPV 
XERu 

is satisfied. This can be verified by writing 

1 
q,(L0 ;,S;L) = ---=-n--

(27T)n/2 II S i 
i=l 

1 exp [--
2 

n 
L 

i=l 

1 = n 
II 

i=l 

1 T 
exp [- 2; V PV] , 

s. 
l 

(6.101) 
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T 
which is maximum if both V PV and trace (EX) are minimum. This is valid 

for any fixed K. 

6.4.9 Relative Weights, Statistical Significance of A Priori and A 

Posteriori Variance Factors 

We have seen in section 6.4.6 that the choice of the a priori 

variance factor cr 2 , or~. does not influence the estimated solution 
0 

... 
vector X. Also, in section 6.4.7 we have seen that the same holds true 

even for the estimated variance-covariance matrix EX. Hence, for the 

purpose of getting the solution vector X 

2 -l any relative weights, i.e. P = cr0 EL , 
along with its EX' we can assume 

with cr 2 chosen arbitrarily. On 
0 

T 
the other hand, t~e~mai"irix of no}"lna;l':lquations, i.e. N =A PA, and the 

estimated variance factor, 

2 selection of cr • 
0 

i.e.' 
... 2 AT A 

cr = V PV/df, are influenced by the 
0 

These features of ~ 2 are used in practice for two different ·o 

purposes. First, is to render the magnitude of the elements of the 

normal equation matrix N such as to make the numerical process of its 

inversion the most precise. This is accomplished by choosing the value 

2 of cr such as to make the average of the elements of N close to one. 
0 

The second purpose is to test the consistency of the mathe~atical 

model with the observations and to test the correctness of the assumed 

variance-covariance matrix E1. Usually, if we do not have any idea 

2 about the value of the variance factor cr , we assume 
0 

after performing the least-squares adjustment, we get 

2 as an estimate of the assumed cr 
0 

The ratio~ 2/cr 2 , provides some 
0 0 
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testimony about the correctness of LL and the consistency of the model. 

This ratio should be approaching 1. By assuming in particular, a 2 = 1, 
0 

we should end with &2 = 1 as well. 
0 

If this is not satisfied, we start 

looking into the assumed LL and use the obtained cr~ from the adjustment 

instead of a2 in computing the weights. If the resulting new variances 
0 

and covariances of the observations are beyond the expected range known 

from 'experience, we have to start examining the consistency of the math-

ernatical model with the observations, i.e. if it really represents the 

correct relationship between the observed and the unknown quantities. 

This approach is also used to help detecting the existing 

"systematic errors" in the observations L, that manifest themselves as 

deviations from the mathematical model. These deviations cause an 

"overflow" into the value of the quadratic form VTPV and con~equently, 

"2 into a • 
0 

The theoretical relation between the a priori and a posterior 

variance factors allows us to test statistically the validity of our 

hypothesis. However, this particular topic is going to be dealt with 

elsewhere. Let us just comment here on the results of the adjustment 

of the levelling network discussed in Examples 6.17 and 6.19. In corn-

puting the weight matrix P, we assumed 

obtained &2 ~ 0.00067. Thus the ratio 
0 

a2 = 1. After the adjustment we 
0 

a 2;cr2 equals to 1500 which is cone o 

siderably different from 1. This suggests that the variance-covariance 

matrix E- was postulated too "pessimistically" and that the actual variances 
L 

of the observations are much lower. 
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6.4.10 Conditional Adjustment 

In this section we are going to deal with the adjustment of 

the linear model (6.68), i.e. 

B L = c ' (r < n), (6.102) 

which represents a set of "r" independent linear conditions between n 

observations L. Note that C is an r by 1 vector of constant values 

arising from the conditions. 

For the adjustment, the above model is reformulated as: 

B (L + V) ~ C = 0 

or, as we usually write it 

B- ·v + w = 0 *)) (6.103) 

where: (w= BE-c. (6.104) 

The system of equations (6.103) is known as the condition 

e~uations, in which B is the coefficient matrix, V is the vector of dis-

crepencies and W is. the vector of constant valu~s ~. We re9all that "n" is 

the number of observations and "r" is the number of j,ndependent 

conditions. It should also be noted that no unknown parameters,.i.e. 

·.rector X, appear in the condition equations. The discrepencies V are 

the only unknowns 

* If we have a non-linear model F(L) = 0, it can be again linearized by 
Taylor's series expansion, yielding: 

F(TJ) = F(L0 ) + ~~ I (L-1°) + • • • ' 
1=1° 

in which we again neglect the higher order terms. Putting V = (1-1°), 
B for aF /3L and W = F(L0 ), we end up with the lineariz.=d condition 
equations of the form: BV + W = 0 J which is the same as ( 6 .103} .. 
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" We wish again to get such estimate V of V that would minimize 

T 2 -1 the quadratic form V PV, where P = a E- is the assumed weight matrix 
o L 

of the observations L. The formualtion of this condition, . . T 
L e • mJ.n V PV, 

Ve:Rn 
is not as straightforward, as it is in the parametric case (section 6.4.6). 

This is due to the fact that V in equation (6.103) can not be easily 

expressed as an explicit function of B and w. However, the problem can 

be solved by introducing the vector K of r unknowns, called Lagrange's 
r,l 

multipliers or correlates*). We can write: 

min VTPV =min [VTPV + 2KT (BV + W)] (6.105) 
Ve:Rn Ve:Rn 

since the second term on the right hand side equals to zero. Let us 

denote 

To minimize the above function, we differentiate with respect to V and 

equate the derivatives to zero. We get: 

which, when transposed, gives PV + BTK = 0. 

" The last equation can be solved for V and we obtain: 

lV = -P-1 BT K .} (6.106) 

This system of equations is known as the correlate equations. 

Substituting equation (6.106) into (6.103), we eliminate V: 

B(-P-l BT K) + W = 0 , 

or 

·~-lBT) K = W l (6.107) 

This is the system of normal equations for conditional adjustment. It is 

usually written in the following abbreviated form: 

* This is why the conditional adjustment is sometimes called: adjustment 
by correlates. 
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M K = W, (6.108) 

where 

(6.109) 

The solution of the above normal equations system forK yields: 

(6.110) 

Once we get the correlates K, we can compute the estimated residual vector 

V from the correlate equations (6.106). finally the adjusted observations 
.... 
1 are computed from 

L=L+V. (6.111) 

In fact, if we are not interested in the intermediate steps, 

the formula for the adjusted observations 1 can be written in terms of the 

original matrices B and P and the vectors :E and C. We get 

where: 

1 = 1 + v 

= 1 - P-l BT K 

= 1 - P-lBT(BP-lBT)-l (B L - C) . 

It can also be written in the following form: 

[ L = ( I - T ) L + HC ) \ 

I is the identity matrix , 

(6.112) 

(6.113) 

(6.114) 

Example 6.20: Let us solve example 6.16 again, using this time the"con-

ditional method of adj.ustment. We have only one condition 

equation between the observed height differences h., i = 1,2,3, 
l. 

and we thus note that the number of degrees of freedom 
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is t.he same as in example 6.16. Denoting HJ - HG by [!H, the 

existing condition can be written as: 

L:h. = llH. 
l 

After reformulation we get: 

which ~an be easily written in the matrix form as 

B v + w = 0 
1,3 3,1 1,1 

where 

[ vl 
B = [1, 1, 1], v = v2 

v3 

and 

w = ii + 112 + h 
3 -llH 

= L. h. - llH . 
i l 

The weight matrix of the observations is given by (see 

example 6 .16) : 

P (l 1 L) 
3,3 = diag dl' d2!' d3 

and 

The system of normal equations for the correlates K is given 

by equation (6.108) as 

.M K = w 
1,1 1,1 1,1 

where 

L:d .• 
i l 
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The solution for K is 

-1 1 
K = M W = 'i:'A'" .d. 

1 1 

U:ii. - AH). 
i 1 

The estimated residuals are then computed from equation 

(6.106) as: 

A -1 T 
V = -P B K 

=-

--

and we get: 

v. = 
,J. 

dl 0 

0 d2 

0 0 

dl 

d2 

d3 

AH - th. 
l. J. 

L: 
idi 

0 

0 

d3 

~h. -
1 J. 

L: d. i 

d.' 
1 

J. 

1 r- AH .h. -
1 

e J. 

Ea. 
1 1 

1 

H 

This is the same result as obtained in example 6.16 when 

using the parametric adjustment (note that AH=H -H). 
J G 

In this particular problem, we notice that the adjustment 

divide the misclosure, i.e. ( dH -E. h.), to the individual 
l. 1 

observed height differences proportionally to the corresponding 

lengths of levelling sections, i.e. inversely proportionally 

to the individual MSE's. The adjusted observations are given 

by equation (6.1~1) i.e. 
" L = L + v ' 

or 

i = 1' 2' 3. 
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This yields: 

llH 
h. h. = + 

~ ~ 
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- Eh. 
~ ~ 

~d. 
~ ~ 

d •• 
~ 

Finally, the estimates of the unknown parameters, .i.e. 

" " " 
X= (H1 , H2 ) , are computed from the known elevations 

and the adjusted observations h., as follows: 
~ . 

H ::a 
1 HG + hl 

- dl 
(llH - ~iii J = HG + hl +--

~d. ~· 

~ ~ 

and 

H2 = HJ - h3 

H - h -
d3 

(llH - Eh. ) • = J 3 BU. ~ ~ 

i ~ 

The results are again identical to the ones obtained from 

the parametric adjustment. 

Example 6.21: Let us solve example 6.17 again, but this time using the 

b 
conditional adjustment. The configuration of the levelliqg 

network in question is illustrated again in Figure 6.8, 

for convenience. 

From the above mentioned example we have: 

No. of observations, n = 6, 
c 

No. of unknown parameters, u = 3. 

Figure 6.8 Then df = 6 - 3 = 3, and we shall see that we can again 

for.mulate only 3 independent condition equations between 

the given observations. 
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By examining Figure 6.8, we see that there are 4 closed 

loops , namely: (a - c - d - a) , (a - d - b - a) , 

(b- c -d-b) and (a- c - b -a). 

This means that we can write 4 condition equations, one 

for each closed loop. However, one can be deduced from 

the other 3, e.g. the last mentioned loop is the summation 

of the other three loops. 

Let us,for instance, choose the following three loops: 

loop I = a - c - b - a , 

loop II = a - c - d - a > 

loop III = a - d - b - a • 

These loops give the condition equations as follows 

(hl + vl) - (h6 + v6) 

(hl + vl) + (h3 + v3) 

Then we get 

(h4 + v4) = 

(h2 + v2) = 

(h4 + v4) = 

v 1 - v 2 + v 3 + (hl ii2 + h3) = 0 J 

v 2 - v4 - v 5 + (ii2 - ii4 - ii5) = 0 • 

0, 

o, 

0. 

The above set of condition equations can be written in the 

matrix notation as 

B V + W = 0 , 
3,6 6,1 3,1 

where: 
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1 0 0 -1 0 

B = 1 -1 1 0 0 
3,6 

0 1 0 -1 -1 

VT = (vl, v2, v3, v4, v5, v6) 
1,6 

and rl _ ii4 _ ii6)

1 w = (hl - h2 + h3) 
3,1 (h - h4 - h ) 

2 5 

Substituting the observed quantities 

into the above vector we 

w = 
3,1 

0.0 

0.0 

-0.1 

get 

in metres • 

-1 

0 

0 

h. i = 1, 2, 
II II II ' 6' 1 

The weight matrix P of the observations is formulated as: 

(see example 6.17): 

P = diag (0.25, 0.5, 0.5, 0.25, 0.5, 0.25) 
6,6 

and 

-1 P = diag (4, 2, 2, 4, 2, 4). 
6,6 

The normal equations for the correlates K are 

M K = W 
3,3 3,1 3,1 

where 
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By inverting M we get: 

0.15 

-0.1 

-0.1 

12 4 4 

4 8 -2 

4 -2 8 

-0.1 -0.1 

0.2 0.1 

0.1 0.2 

The solution Tor K is given by 

r 
0.15 

-1 
K = M W = -0.1 

3,1 -0.1 

-0.1 -0.11 
0.2 0.1 

0.1 0.2 
[ 

o.ol o.o = 
-0.1 

1 
o. 011 

-0.01 • 

-0.02 

The estimated residuals are computed from equation (6.106): 

= o.oo 

0.02 

0.02 m 

-0.04 

-o.o4 
0.04 

and are again identical with the results of example 6.17. 

The adjusted observations will be. 

L = E + V , i.e. 

~1 6.16 o.oo 6.16 

~2 12.57 0.02 12.59 

~3 6.41 0.02 6.43 
= + = }i 1.09 -o.o4 1.05 ,..4 

~5 11.58 -0.04 11.54 

h6 5.07 0.04 5.11 

in metres. 
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Finally, to compute the estimated elevations of points 

b, c, and d, i.e. Hb , He and Hd, we will use the given 

elevation H and the adjusted observations h .• a ~ 

For instance; 

~ = Ha + h4 = 0.0 + 1.05 = 1.05 m, 

He = Ha + h1 = 0.0 + 6.16 = 6.16 m, 

Hd = Ha + h2 = 0.0 + 12.59 = 12.59 m. 

These are obviously identical with the corresponding results 

of the parametric adjustment. 

Note again that when computing the estimates of the unknown 

parameters from the adjusted observations we can follow any 

route in computing them. They all lead to the same answer. 

6.4.11 Variance-Covariance Matrix of the Conditional Adjustment Solution 

The formula for the variance-covariance matrix LL of the adjusted 

observations - the "result" of the conditional least squares adjustment -

can be developed by applying the law of propagation of variance-covariance 

matrix (equation 6.15) on equation (6.113). In this equation, the matrices 

I,T,H are, obviously, fixed. Similarly, the vector C is considered as a 

vector of theoretically deduced, and therefore errorless, values, then 

LC will be zero. Hence, we get: 
" 

~-- = (aL) (aL)T 
"L at LE aL 
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T T = L- - IL- T - TL-I + TL-T • (6.115) 
lr L L L 

T It is not difficult to see that both (HET ) and (TLEI) are square symmetric 

matrices, hence we can write: 

T = L-- TL- (2I- T ). (6.116,) L L 

Recalling, from equation 6.114, that T = P-l [BT(BP-lBT)-lB] and 

2 -1 knowing that P = cr0 LE , i.e. 

LE = cr 0
2 P-1 , then by substituting these quantities into equation (6.116) 

we get: 

(6.ll7) 

Noting that 

we get finally 
r-~-LL_=_cr o-2-P--1-(-I--_B_T_( B-P---1-BT_) ___ l_B_P ___ l_) -.-,] 

(6.118) 

Here, similar to the parametric adjustment, to obtain the estimated 

. . t. "" 2 . t d f 2 h var~ance-covar~ance ma r~x we use cr ~ns ea o cr , were: 
0 0 
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cr 

0 

and we end up with 
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L~ = ; 2 (P-1 - p-1 BT (BP-lBT)-1 BP-1)' 
L o 

or,in an abbreviated form: 

LA = ; 2 (I - T)P-l *) . 
L o 

(6.119) 

(6.120) 

(6.121) 

Analogous to the parametric adjustment, it also can be shown 

that the estimate L assures the minimum trace of its variance-covariance 

matrix L£· Under the same assumptions as stated in section 6.4.8, the 

estimate L is also the most probable estimate of L. 

Regarding the correlation between the adjusted observations 

"' "' L, we can see that L will be uncorrelated if:(i) Lis uncorrelated and 

(ii) the coefficient matrix B is orthogonal. If these two conditions 

are satisfied then T and P-l will be diagonal matrices. On the other 
A 

hand, we can experience uncorrelated L even for some other general T and 

P. 

Finally, we note that again the choice of the a priori variance 

factor cr 0
2 does not influence the estimated LL defined by equation (6.121). 

"' Example 6.22: Let us determine the variance-covariance matrix LA for the 
L 

conditional adjustment formulated in example 6.20. 

We have 
b.H - ~h. 

~ ~ d i 1, 2, 3, v. = = 
~ ~d. i 

~ ~ 

1 1 1 and p = diag (d, ' d). 
3,3 l d2 3 

Thus we get 

* It can be shown that similarly LA = ~ 2 TP-1 
v 0 
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AT A (tlH - :EE. )2 
"2 VPV 'l 
0 = ---- = ------~~ 

o r 4:d. 
l l 

The required variance-covariance matrix is given by equation 

6.121, i.e. 

First we compute T = P-lBTM-1B. We recall from example 

6.20 that M-l = 1/ Z:d. , 
1 1 i l 

B = [1,1,1] 
1,3 ' 

Hence, 

dl 0 0 

T = 0 d2 0 

0 0 d3 

and we obtain 

Further we get 

(I - T) P-l = 

where a.. = 
l 

Finally we get: 

1 [ LJ [1, l, l] 

l 
I: d. 
l l 

l 

dl dl 

d2 d2 

d3 d3 

a.l a.l 

C/.2 a.2 

a.3 a.3 

i = 1, 2, 3. 
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E h 
- 2 (I - T) P-l = cr 

3,31 0 

2 al al 

(AH - Eh·) • l. 
l. = a2 a2 

Ed. 

al 

a2 

i l. 

a a3 3 
a 

3 

.1\ 

Example 6.23: Let us determine the variance-covariance matrix 2-'\ 
L for 

the conditionally adjusted levelling net of example 6.21. 

We have 

"'T v = [0.00, 0.02, 0.02, -0.04, -0.04, 0.04] 
1,6 

in metres, 

6~6 = diag [0.25, 0.5, 0.5, 0.25, 0.5, 0.25] 

. -2 1.n m · and 

r = df = n - u = 6 - 3 = 3. 

Hence, 

hT " 
V PV = 0.002 (unitless), 

"T A 
" ! V PV 0 002 cr ;i:- = · = 0.00067 (unitless). o .~ r 3 

The required E£ matrix is computed again from equation 

6.121 as 

where 

" 2 1 E" = cr (I - T) P
L o 

6,6 

-1 P = diag [4, 2, 2, 4, 2, 4] 
6,6 
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and T is computed from 

-1 (BTM-1B). T = p 

6,6 

From example 6.21, we have: I 0.15 
-0.1 

-0.1 l -1 (BP-lBT)-1 = -0.1 0.2 0.1 M = 
-0.1 0.1 0.2 

and 

[~ 
0 0 -1 0 -n B = -l 1 0 0 

3,6 1 0 -1 -1 

Hence J 

(BTM-1B) = 

0.15 -0.1 0.1 -0.05 0 -0.05 

-0.1 0 •. 2 -0.1 -0.1 -0.1 0 

0.1 -0.1 0.2 0 -0.1 0.1 = 
-0.05 -0.1 0 0.15 0.1 0.05 

0 -0.1 -0.1 0.1 0.2 -0.1 

-0.05 0 0.1 0.05 -0.1 0.15 

and: T -1 (BTM-1B) = p = 
6,6 

0.6 -0.4 0.4 -0.2 0 -0.2 

-0.2 0.4 -0.2 -0.2 -0.2 0 

= 
0.2 -0.2 0.4 0 -0.2 0.2 

-0.2 -o.4 0 0.6 0.4 0.2 

0 ..,.Q,:2: -0.2 . 0.2_ 0.4 -0.2 . ' 

-0.2 0 o.4 ().2 -o.4 0.6 
'-

Hence 

(I - T) -1 p = 
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1.6 -0.8 0.8 -0.8 0 -0.8 

-0.8 1.2 -0.4 -0.8 -0.4 0 

0.8 -0.4 1.2 0 -0.4 0.8 

-0.8 -0.8 0 1.6 0.8 0.8 

0 -0.4 -0.4 0.8 1.2 -0.8 

-0.8 0 0.8 0.8 -0.8 2.4 

Finally we get 

L:~ = ~ 2 
(I - T) P-l as (J 

L 0 

6,6 

10.72 -5.36 5.36 -5.36 0 -5.36 

-5.36 8.04 -2.68 -5.36 -2.68 0 

= lo-4 5.36 -2.68 8.04 0 -2.68 5.36 

-5.36 -5.36 0 10.72 5.36 5.36 

0 -2.68 -2.68 5.36 8.04 -5.36 

-5.36 0 5.36 5.36 -5.36 16.08 

in metres squared. 

By dropping the scalar -4 2 10 we get the results in em . 

The comments stated at the end of section 6.4.9 regarding 
~ 2 2 

the value of a versus the assumed v~lue of 1.0 for a 
0 0 

hold true here as well. 
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6.5 Exercise 6 

1. To determine the height h of a wall shown in the Figure, the 

horizontal distance t and the vertical angle 8 were observed and 

found to be: 

t = 85.34 m, with S£ = 2 em. 

8 = 12° 37' 30" , with S- = 10" . 
8 

Required: Compute the statistical estimate for h 

along with its RMS. 

2. To determine the distance P1P2 = c, which cannot be measured directly 

due to the existence of some obstacle as shown in the Figure, the 

following measurements were taken: 

plp3 = 

y = 

Reguired: 

with S- = 3 a 

b = 40 m, with s"b = 4 

60°' with s- = y 
25". 

Compute the distance 

em, 

em, 

plp2 

standard error to the nearest mm. 

and its 

3. Determine the standard error of the estimated hedght h of the tower 

given in Problem number 9, Exercise 4, s~ction 4.11. Consider all the 

measured ~uantities, namely t, a, S and 8 to be uncorrelated. 

4. From a point P0 in the x-y coordinate system shown below, a distance 

d = 5637.8 mandan azimuth T = 49.9873 grads (100 grads= 90 degrees) 

to a second point P1 were measured. The relative error of d is 

1.2 · 10-4 . The RMS ofT is 0.08 centigrads (1 grad= 100 centigrads). 
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Required: Compute the following: 

" ·" 
( i) The coordinate difference_s ( l:::.x, l:::.y) 

between points P0 and P1 . 

(ii) The variance-covariance matrix EX, 
" " 2 

where X = (t::.x, !:::.y), in m , 

(iii) The RMS of l:::.x and !:::.y respectively. 
- - .... 

b.)l. 

(iv) The correlation coefficient 

between l:::.x and l:::.y. 
~----------------~~x 

5. The shown traverse consists of two legs P0 P1 and P1P2. 

(x , y ) of the initial point P as well as the (x, y) 
0 0 0 

the reference mark R are considered to be 

error-free (errorless), i.e. fixed 

quantities. The measured quantities 

are the horizontal angles sl and s2 

and the horizontal distances d1 and d2 

respectively. 

x = 100.0 m 

x = 150.0 m 
0 

~1 = 750 

s2 = 21o0 

d:1 = 100 m 

The available data are: 

with 

with 

and 

y = 200.0 m 

y 0 = 150.0 m 

s- = 3" 
sl 

s- = 2" 
s2 
d2 = 200 m. 

The coordinates 

coordinates of 

The standard error of the observed distance is to be calculated according 

to the formula 

Sd( em) = 1. 0 -(em) ·+ d(m) . 10-2 . 
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Required: Compute the following: 
A 

(i) The estimated coordinates (x1 , y1 ) of point P1 , along with their 

associated variance-covariance matrix E(A A ) • 

A A xl, Yl 
(ii) The estimated coordinates (x2 , y2) of point P2 and their 

variance-covariance matrix E(A ~ )' 
x2, Y2 

Note that the coordinates are required to the nearest rom and the 

2 variances and covariances are required in em • 

(iii) Discuss the correlation among the estimated coordinates x1 , y1 , 

x2 and y2. 

6. Having an intersection problem, as shown in the Figure, i.e. 

observing the two horizontal angles S and a from the two known stations 

P1 (x1 , y1 ) and P2 (x2 , y2 ) in order to determine the (x, y) coordinates 

of an unknown station P. 

Given: the following data: 

x.:j.. = 200.0 m 

Yll=C :] r: (>cp 'j,) 
'P (x]ij) 

E -
2 ----9 

(xl, 
em ' yl = 500.0 m I 

x2 = 546.4 m =l -o.j E - - ) 2 em 
y2 = 300.0 m (x2, y2 -0.5 3 

L~ a = 90° s- = 3" ~ (x,}1J 
a and s- -= 0 . 

s = 60° s- = 2" o(.~ 
s 

Required: Compute the estimated (x' y) coordinates of the unknown 

station P, in metres, and their associated variance-covariance matrix 

E A A 

(x' y) 
in em 2 
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7. Consider problem number 1 of this exercise. Assume that the observed 

quantities ~ and 8 have got also non-random (systematic) errors of 

-1 em and 5" respectively. Compute the expected total error in the 

derived height h in centimetres. 

8. Determine the expected error in the sum of a hundred numbers in the 

following two cases: 

( i) each individual number is to be rounded-off to three decimal 

places. 

(ii) each individual number is to be truncated to three decimal 

places. 

Then compare and comment on the results. 

9. To determine the height h of a tower, the 

/ 

/ 
/ 

proposed, in whiCh a, S, 8 and a are the 

quantities to be measured. The approxi-

mate values of these quantities were 

obtained from a preliminary investigation 

and found to be: 

a = 100 m. 

Providing that the horizontal angles a and S are to be measured with 

a precision of 2" (i.e. s- ,; s-- ~ 2"), what are the required precisions 
a S 

in measuring both the horizontal distance a and the vertical angle 8 

(i.e. Sa and s8) such that their contributions to the standard error Sh 
of the derived height h - which is specified not to be worse than 

2.45 em - will be the same. 
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10. Assume that the horizontal angles in a triangulation network are to 

be measured using two theodolites, "I" and"II", of different quality. 

These two theodolites were tested by measuring one particular angle 

several times, from which it was found that the standard deviation 

of one observation, i.e. the standard deviation of the sample,observed 

with theodolite "I" was s1 = 1':5 and with theodolite "II" 
l 

was s1 = 2': 5. If it is specified that all the angles of the net-
2 

work are required to have a standard deviation of the mean, i.e. 

SI, not worse than o': 5, how many times should we measure each angle 

when using theodolite number"I" and when using number "II"? 

11. The following observations of the length of an iron bar in metres 

are made on a comparator: 

3.284, 3.302, 3.253, 3.273, 3.310, 3.321, 3.304, 

3.295, 3.263, 3.270. 

Required: (i) the length of the bar (i.e. the mean) 

(ii) the RMS of one observation j 

(iii) the standard deviation of the mean. 

12. The following table shows the means I. of the daily measurements of 
~ 

the same distance t during a five day period, along with their 

respective standard errors S- • 
t. 
~ 

Day Mon. Tues. 

I. (m) 101.01 100.00 
~ 

SI _(em) 2 1 
~ 

Wed. Thurs. Fri. 

99.97 99-96 100.02 

4 5 3 
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Required: Compute the weighted mean of the distance ~' say i, along 

with its associated RMS, i.e. Si. 

13. Given a gravimetric network, as shown in the figure below, determine 

the gravity values g1 and g2 at points P1 and P2 respectively, 

with their variance-covariance matrix. The gravity 

g = 979832.12 mgal at the initial 
0 

point P is known. 
0 

The following table gives the observed 

gravity differences with their signs, 

along with the time needed for each 

observation. 

Station 
From To I:J.g (mgal) 

p pl - 9.82 
0 

p2 Po -27.78 

pl p2 +38.42 

b.T (hr) 

2.5 

1.5 

2.0 

Assume that the observed differences I:J.g's are uncorrelated, and their 

variances are proportional to the corresponding time intervals b.T. 
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14. GiYen a leYelling net as shown in the 

Figure, the eleyations HA, HB of 

points A and B are considered as 

known and errorless: 

HA = 300.000 m, 

HB = 302.245 m. 

A 

The following table giYes the obserYed 

height differences h.'s along with the 
J.. 

length t 1 of each section. 

Section Station h. 
No. From To J.. 

(m) 

1 pl B 1.245 

2 A pl 0.990 

3 pl p2 0.500 

4 p2 B 0.751 

5 p3 B 1.486 

6 p3 p2 0.740 

t. 
J.. 

(km) 

1.0 

0.5 

1.0 

1.0 

0.5 

1.5 

Note that the arrows in the giYen figure indicate the directions of 

increasing eleYations. The aboYe ob.serYations are considered 

uncorrelated with~. proportional to ~i. 
J.. 

Required: Perform a parametric least squares adjustment of the aboYe 

leYelling net and find out the following: 
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~ fi ~ 

(i) The estimated elevations H1 , H2 and H3 of points P1 , P2 and P3. 

(ii) The adjusted values of the given six height differences. 

(iii) The estimated variance-factor §2 and compare it with the assumed, 
0 

apriori variance factor s2 ; comment on the results. 
0 

(iv) The estimated variance-covariance matrix ~X of X = (H1 ,H2 , H3 ). 

15. Adjust the levelling net given in problem no. 14 again by using the 

conditional method of adjustment. Replace the requirement no. iv 

by computing the estimated variance-covariance matrix E£ of the 

adjusted height differences. Compare the results of the other three 

requirements with the corresponding results from the parametric 

adjustment. 

16. Two physical quantities Z and Y are assumed to satisfy the following 

linear model 

Z = aY + S , 

where a and S are constants to be determined. The observations Y. 
l 

and Z. obtained from an experiment are given in the following table. 
l 

y l 3 4 6 8 9 ll 14 

z 1 2 4 4 5 7 8 9 

Assume that the Y's are errorless, and the Z's were observed with equal 

precision. 
A 

Reguired: Determine a and S which provide the best fitting line 

between Z andY, in the least squares sense. 
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17. Solve problem No. 16 again, but this time consider the Z's error-

less, and the Y's with equal variances. Compare the results for 

& and S with the corresponding results from problem No. 16. 

18. The given figure shows a triangulation 

network with fixed base AB = 2 km. The 

eight numbered angles in the Figure 

are all measured, each with a 

different number n. of observations 
]. 

as shown in the following table: 

B 

A 

Angle n. Mean value of the angle 
]. 

No. 

1 2 82° 07' 09'!50 

2 2 28 22 17.70 

3 5 110 29 25.02 

4 3 125 53 33.67 

5 2 25 44 09.30 

6 2 29 19 17.50 

7 5 55 03 29.32 

8 3 68 33 32.33 

Assume that all the measurements were done with the same instrument 

and under similar circumstances. (~: the weight of each angle 

will be proportional to the corresponding number of repetitiomn.). 
]. 

c 

D 

Required: (i) Neglecting the spherical excess in this network, compute 
...... 

the distance CD using the adjusted values of the observed angles. 
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(ii) Considering the fixed base AB to be errorless, find 
A 

the estimated relative error of the estimated length CD. 

19. The given figure shows a braced quadrilateral ABCD in a triangulation 

network, in which all the directions marked by arrowheads were 

measured with the same precision. c 
The base AB = 25 km is assumed 

errorless. The spherical excess 2S 

s in the four formed triangles 

is computed approximately and 

given by: 

MBC, s = 3'! 126 

D.ABD, E: = 1'! 556 7 
12 13 

6GBD, E: = 3'!085 9 

D.ACD, E: = 1'!515 
A D 

The results of the direction observations are summarized in the 

following table . 

... , 
.. 

Occupied Target Direction Observed Direction 
Station Station No. 

.. B 7 00° 00' oo':oo 
A c 8 91 30 30.35 

D 9 125 53 33.91 

c 30 00 00 00.00 
B D 36 28 22 l/.26 

A 38 110 29 2T.l3 

D 26 00 00 00.00 
c A 27 29 19 17.52 

B 28 35 03 26.80 

A 11 00 00 00.00 
D B 12 35 07 29.00 

c 13 68 33 32.60 
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Required: (i) Perform a conditional adjustment and find out the 

adjusted values of the observed directions, along with their 
A 

estimated variance-covariance matrix r£ . 

(ii) Using Legendre's theorem for the spherical triangleJ 

i.e. by subtracting one third of the spherical excess from each 

adjusted angle and then solv:i.rg the triangle as if it was a plane 
,.... 

triangle compute the side CD from the known base .AB and the 
.......... 

adjusted directions. Then check the computed CD by following another 

route in its computation. 

(iii) Compute the estimated relative error of the estimated 

::::::::: 
length CD. 

20. The given figure shows a 

triangulation network with 

two fixed (errorless) stations 

A and E whose x and y 

coordinates are: 

X y 

A: 0. 0 m, 0.0 m, 

E: 200.0 m, 0.0 m. 

B 3 12 D 

The 14 marked directions (with arrowheads) were observed with the 

same precision. The results of the observations are tabulated below. 
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Occupied Target Direction Observed Directions 
Station Station No. 

A 
B 1 00° 00' oo'!o 
c 2 60 00 10.0 

D 3 00 00 00.0 
B c 4 6o 00 05.0 

A 5 119 59 50.0 

A 6 00 00 oo.o 
c B 7 59 59 55.0 

D 8 120 00 00.0 
E 9 180 00 05.0 

E 10 00 00 oo.o 
D c 11 59 59 45.0 

B 12 119 59 55.0 

E 
A 13 00 00 00.0 
D 14 60 00 15.0 

Reguired: Prepare the input for a computer program performing 

a parametric least squares adjustment using the directions (not the 

angles) to estimate the unknown coordinates of points B, C and D by 

providing the following: 

(i) The number of unknown parameters and the number of degrees of 

freedom. 

(ii) The non-linear mathematical model. 

(iii) The approximate values for the ,x, y coordinates of points B,C,D. 

(iv) The linearized form of the mathematical model, i.e. V = A~X-~E. 
giving the symbolic elements of the vectors V and ~X and the 

numerical values of the elements of the design matrix A and the 

vector ~E. 
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(v) Construct the variance-covariance matrix E~E of the obser

vations assuming the standard errors in directions to equal 

2". 
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APPENDIX I 

Assumptions for and Derivation of the 

Gaussian PDF 

The derivation of the Gaussian PDF presented here is.due to G.H.L. 

Hagen (1837). The first formulation of the normal law, however,originates 

with De Moivre (1733). 

(i) Let us assume that m independent physical causes are influ-

encing the measurement. Let each cause contribute an elementary error 

either +~ or -~ towards the overall error s. Any value of s can thus be 

expressed as a combination (there are n = ~ such combinations) of m 

elementary errors! ~. We note first that the span of s is <-m~, m~>. 

Further, we realize that s can attain only a value of an integral mu+tiple 

of ~. It is not difficult to see that any two adjacent values of s differ 

by 2~ since one is obtained from the other by replacing -~ by +~ and vice-

versa. Dividing the range of E 

Ra (s) = m~ - (-m~) = 2m~ 
by the step of s, i.e. 2~, we discover that s can attain any of the following 

m + 1 values 

s. = (2. - m)~ 
~ ~ 

i = 0, 1, ... m, (I-1) 

corresponding to particular distinguishable combinations of the m elementary 

errors. 

(ii) Let us regard now the set D of all permissible values of E 

D - {E -~ € ' • • • 
0 1 ••• 'e;. } 

m 



234 

the probability space of the random sample consisting of all the 2m 

combinations e. Obviously, many of the 2m combinations have the same values, 

because there are only m + 1 different values available. The counts, ci' 

of the individual values e. (see section 3.1.1) can be computed using the 
l 

combined probability (see section 2.3): 

c.=(~)= m (m-1) (m-2) ..• (m-:i+l) = 

l l i ( i-1) ( i-2) . . . 1 

m 
II 

j=m-i+l 

The actual probability of any value e. is then given by 
l 

(see section 3.1.2). 

c 
P(.e.) = i = (~)/2m 

l . l ' n 

j/ 
i 
II 

j=l 
j. (I-2) 

(I-3) 

(iii) The above formula describes the actual PDF of our sample e 

in the discrete probability space D. Since our ultimate aim is to derive 

the analytic expression for the "corresponding" (we shall see later what 

is meant by corresponding) continuous PDF, we want to be able to express 

P as a function of e. rather than i. The easiest way to do it is to use the 
l 

finite differences. 

Let us: .define 

oP(e.) = P(e.)- P(e. 1) 
l l l-

and we get from e~uation (I-3) 

Obviously, the ratio oP (e.)/P(e.) is then given by 
l l 
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6P(e.)/P(e.) = 1- i/(m-i+l). 
~ ~ 

( I-4 )( 

On the other hand, i can be expressed as a function of E. from equation 
~ 

(I-1) 

or 

Renoting 

2i - m = E. I !J. 
~ 

6e =2/J. and substituting for i in equation (I-4) we obtain 

6P(e) = l _ e/6e + m/2 

P(e) m - e/oe- m/2 + 1 

= 1 + m/2 - e/8e - e/6e- m/2 

1 + m/2 - e/8e 

= 1 - 2e/8e 2E - OE = _______ ..;;..__ 

1 + m/2 - e/oe ( 1 + m/ 2) 0 E - E 

(iv) The next step in the development is to convert the discrete 

PDF, P(E), to a continuous PDF, i.e. to derive the "corresponding" continuous 

PDF. The "corresponding" PDF is assumed to be the PDF of such a variable 

e which is defined the same way as the· discrete e in (i) with the exception 

that m is let to grow beyond all limits, i.e. m ~ oo, By letting m grow 

we would obtain infinitely large values of E (see equation (I-1». This 

would contradict our experience teaching us that the errors are always finite 

in value. Hence, we have to adopt another assumption and that is that as 

m grows to infinity, the absolute value o.f elementary error t:. grows to zero, 

making the product m!J. in equation (I-1) always .finite. 
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Accepting these two assumptions we can write the finite difference 

equation as 

lim 

m+oo 

0£ + 0 

oP( e:) 
P( E) 

=-.lim 
2E - oe: 

m+oo 
(l+m/2) oe: - e: (I-5) 

0£ + 0 

which is nothing else but an ordinary differential equation for the con-

tinuous PDF P(s). It can thus be re~Titten as 

d P( £) 

P(e:) 

2£ - de: - - ~----~-------

(1 + m/2) de: - s 

To simplify the solution of this differential equation let us multiply 

both the numerator and denominator of the right hand side by de: and assume 

that mde: 2 is c-onst8.l'lt We further assume 

Then we can write -

dP • -p=- 2 e:de: 
C/2 

4 = - - e:de: c (I-6) 

(v) We can now finally solve the differential equation. It is 

solvable by direct integration and we get 

!~ = - !~ e:de: + const. 

4 e:2 . - c:2 + const. 

Denoting the integration constant by tn K we finally obtain 

P: K exp (-2e:2/C). (I-7) 
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The question now arises whether we are free to regard both K and 

C as two independent parameters of the above PDF. We know that the basic 

equation for a PDF, i.e 

00 

P(E) (I-8) J de: = 1 
_oo 

has to be satisfied. Substituting for p into the basic equation we get 

00 00 

P(e:) 2 
f de: = J K exp (-2e: /C) de: = -00 -00 

00 

J 2 = K exp (-2e /C) de = 1 
-oo 

00 

1 I I 2 and K = exp (-2e /C) de . 
-oo 

Hence the answer is that K must not be regarded as an independent parameter. 

It is a function of C and can be evaluated by solving the integral above. 

We obtain 

f 
-00 

and K =.;.L 
err • 

00 2 
2 !0 exp (-2~:: /C) de 

The Gaussian PDF can then be written as 

/2 2 
P(t:) = G (C;e) = vcn exp (-2e /C) 

and we can see that it is a one-parametric PDF. 

= .; Crr 
2 

(I-9) 

(I-10) 

(I-ll) 



t 0 

0.0 .3~)89 

0.1 .3970 
0 ') .3910 
0.:3 .3814 
0.4 .3683 

0.5 .3521 
0.6 .3332 

I 
0.7 .3123 
e.s .2897 
0.9 .2661. 

! 
1.0 .2·i20 
1.1 .21.79 
1.2 .1942 
1 'J .u .1714 
1.4 .1497 

1.5 .1295 

l 1.6 .1109 
1.7 .0940 
l.R .0790 
1.9 .0656 

2.0 .0540 
2.1 .0440 
2.2 .0355 
2.3 .0283 
2.4 

~ 
.0224 

?..5 .01.75 
2 " .. t> .0136 
2.7 .0104 
2.8 .0079 
2.9 .0060 

3.0 .0044 
3.1 .0033 
3.2 .002<1 
'} ry u.,_, .OD17 
3.t! .0012 

~.5 .0009 
3.(3 .0006 
3..7 .OfJO'i 
:l.8 .0003 
:J.9 .0002 
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APPENDIX II - A 

r,RDINATES OF THE 

STANDARD NORMAL CURVE 

1 t 2 
Y = -= exp (- 2) V27r 

·- __ ...... 

1 2 3 .. 4 5 

.3989 .3989 .3988 .3986 .3984 

.3965 .3961 .3956 .3951 .3945 

.3902 .3894 .3885 .3876 .3867 

.3802 .3790 .3772 .3765 .3752 

.3668 .3653 .3637 .3621 .3605 

.3503 .3485 .3467 .3448 .3429 

.3312 .3292 .3271 .3251 .3230 

.3101 .3079 .3056 .30:34 .3011 

.2874 .2850 .2827 .2803 .2780 

.2637 .2613 .2589 .2565 .2541 

.2:396 .2371 .234'7 .2323 .2299 

.2155 .2131 .2107 .2083 .2059 

.1919 .1895 .1872 .1849 .1826 

.1691 .1669 .1647 .1626 .1604 

.1476 .1456 .1435 .1415 .1394 

.1276 .1257 .1238 .1219 .1200 

.1092 .1074 .1057 .1040 .1023 

.0925 .0909 .0893 .0878 .0863 

.0775 .0761 .0748 .0734 .0721 

.0()44 .0632 .0620 .0608 .0596 

.0529 .0519 .0508 .0498 .0488 

.0431 .0422 .0413 .0404 .0396 

.0347 .0339 .0332 .0325 .0317 

.0277 .0270 .0264 .0258 .0252 

.0219 .0213 .0208 .0203 .0198 

.0171. .0167 .0163 .0158 .01.54 

.0132 .0129 .0126 .0122 .0119 

.0101 .0099 .0096 .0093 .0091 

.0077 .00'75 .0073 .0071 .0069 

.0058 .0056 .0055 .0053 .0051 . 

.0043 .0042 .0040 • 0039 .0038 

. 0032 .0031 . .0030 .0029 .0028 

.0023 .0022 .0022 .0021 .0020 

.0017 .0016 .0016 .0015 .0015 

.0012 .0012 .0011 .0011 .0010 

.00.08 .0008 .0008 .0008 .0007 

.0006 .0006 .0005 .0005 .0005 

.0004 .0004 .0004 .0004 .0004 

.0003 .0003 .0008 .0003 .0002 

.0002 .0002 .0002 .0002 .0002 

6 7 8 9 

.3982 .3980 .3977 .3973 

.3939 .3932 .3925 .3918 

.3857 .3847 .3836 .3825 

.3739 .3725 .3712 .3697 

.3589 .3572 .3555 .3538 

.3410 .3391 .3372 .3352 

.3209 .3187 .3166 .3144 

.2980 .2966 .2943 .2920 

.2756 .2732 .2709 .2685 

.2516 .2492 .2468 .2444 

.2275 .2251 .2227 .2203 

.2036 .2012 .1989 .1965 

.1804 .1781 .1758 .1736 

.1582 .1561 .1539 .1518 

.1374 .1354 .1334 .1315 

.1182 .1163 .1145 .1127 

.1006 .0989 .0973 .0957 

.0848 .08:33 .0818 .0804 

.0707 .0694 .0681 .0669 

.0584 .0573 .0562 .0551 

.0478 .0468 .0459 .0449 

.0387 .0379 .0371 .0363 

.0310 .0303 .0297 .0290 

.0246 .0241 .0235 .0229 

.0194 .0189 .0184 .0180 

.0151 .01.47 .0143 .0139 

.0116 .0113 .0110 .0107 

.0088, .0086 .0084 .0081 

.0067 .0065 .0063 .0061 

.0050 .0048 .0047 .0046 

.0037 .0036 .0085 .0034 

.0027 .0026 .0025 .0025 

.0020 .0019 .0018 .0018 

.0014 .0014 .0013 .0013 
.0010 .0010 .0009 .0009 

.0007 .0007 .0007 .0006 

.0005 .0005 .0005 .0004 

.0003 .0003 .0003 .0003 

.0002 .0002 .0002 .0002 

.0002 .0002 .0001 .0001 



t 0 

0.0 .5000 
0.1 .5398 
0.2 .5793 
0.3 .6179 
0.4 .6554 

0.5 .6915 
0.6 .7258 
0.7 .7580 
Q.8 .7881 
0.9 .8159 

1.0 .8413 
1.1 .8643 
1.2 .8849 
1.3 .9032 
1.4 .9192 

1.5 .9332 
1.6 .9452 
1.'7 .9554 
1.8 .9641 
1.9 .9713 

2.0 .. 9772 
2.1 .9821 
2.2 .9861 
2.3 .9893 
2.4 .9918 

2.5 .9938 
2.6 .9953 
2.7 .9965 
2.8 .9974 
2.9 .9981 

3.0 . .9987 
3.1 .9990 
3.2 .9993 
3.3 .9995 
3.4 .9997 

3.5 .9998 
3.6 .9998 
3.7 .9999 
3.8 .9999 
3.9 1.0000 
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APPENDIX II - B 

AREA-S UNDER THE 
. ST'ANDAR.D NORMAL CURVE· 

· • ··· from--co. to-t · 

·:·~~··:' ;~(~~!_'~~2f~~·( ~~2i~. 
. .. Y\W'aJ~L£;. ,.,, 

;..-· •· .. ~,.· :. .. ,,:;~·;·.w.::._:.:(:"··.-·..-..\~~~.:;.~ ...... ,.. ·~ ........... : ...... -

1 2 3 4 5 

.5040 .5080 .5120 .5160 .5199 

.5438 .5478 .5517 .5557 .5596 

.5832 .5871 .5910 .5948 .5987 

.6217 .6251? .6293 .6331 .6368 

.6591 .6628 .6664 .6700 .6736 

.6950 .6985 .7019 .7054 .7088 

.7291 .7324 .7357 .7389 .7422 

.7612 .7642 .7673 .7704 .7734 

.7910 .7939 .7967 .7996 .8023 

.8186 .8212 .8238 .8264 .8289 

.8438 .8461 .8485 .8508 .8531 

.8665 .8686 .8708 .8729 .8749 

.8869 .8888 .8907 .8925 .8944 

.9049 .9066 .9082 .9099 .9115 

.9207 .9222 .9236 .9251 .9265 

.9345 .9357 .9370 .9382 .9394 

.9463 .9474 .9484 .9495 .9505 

.9564 .9573 .9582 .9591 .9599 

.9649 .9656 .9664 .9671 .9678 

.9719 .9726 .9732 .9738 .9744 

.9778 .9783 .9788 .9793 .9798 

.9826 .9830 .9834 .9838 .9842 

.9864 .9868 .9871 .9875 .9878 

.9896 .9898 .9901 .9904 .9906 

.9920 .9922 .9925 .9927 .9929 

.9940 .9941 .9943 .9945 .9946 

.9955 .9956 .9957 .9959 .9960 

.9966 ,9967 .9968 .9969 .9970 

.9975 .9976 .9977 .9977 .9978 

.9982 .9982 .9983 .9984 .9984 . 

.9987 .9987 .9988 .9988 .9989 

.9991 .9991 .9991 .9992 .9992 

.9993 .9994 .9994 .9994 .9994 

.9995 .9995 .9996 .9996 .9996 

.9997 .9997 .9997 .9997 .9997 

·.9998 .9998 .9998 .9998 .9998 
.9998 .9999 .9999 .9999 .9999 
.9999 .9999 .9999 .9999 .9999 
.9999 .9999 .9999 .9999 .9999 

1.0000 1.0000 1.0000 1.0000 1.0000 

6 7 8 9 

.5239 .5279 .5319 .5359 

.5636 .5675 .5714 .5754 

.6026 .6064 .6103 .6141 

.6406 .6443 .6480 .6517 

.6772 .6808 .6844 .6879 

.7123 .7157 .7190 .7224 

.7454 .7486 .7518 .7549 

.7764 .7794 .7823 .7852 

.8051 .8078 .8106 .8133 

.8315 .8340 .8365 .8389 

.8554 .8577 .8599 .8621 

.8770 .8790 .8810 .8830 

.8962 .8980 .8997 .9015 

.9131 .9147 .9162 .9177 

.9279 .9292 .9306 .9319 

.9406 .9418 .9429 .9441 

.9515 .9525 .9535 .9545 
,9608 .9616 .U625 .9633 
.9686 .9693 .9699 .9706 
.9750 .9756 .9761 .9767 

.9803 .9808 .9812 .9817 

.9846 .9850 .9854 .9857 

.9881 .9884 .9887 .9890 

.9909 .9911 .9913 .9916 

.9931 .9932 .9934 .9936 

.9948 .9949 .9951 .9952 

.Q961 .9962 .9963 .9964 

.9971 .9972 .'9973 .9974 

.9979 .9979 .9980 .9981 

.9985 .9985 .9986 .9986 

.9989 .9989 .9990 .9990 

.9992 .9992 .9993 .9993 

.9994 .9995 .9995 .9995 

.9996 .9996 .9996 .9997 

.9997 .9997 .9997 .9998 

~9998 .9998 .9998 .9998 
.9999 .9999 .9999 .9999 
.9999 .9999 .9999 .9999 
.9999 .9999 .9999 .9999 

1.0000 1.0000 1.0000 1.0000 



t 

0.0 
0.1 
0.2 
0.3 
0.4 

.0.5 
0.6 
0.7 
0.8 
0.9 

1.0 
1.1 
1.2 
1.3 
1.4 

1.5 
1.fl 
1.7 

.· 1.8 
1.9 

2.0 
2.1 
2.2 
~.3 

2.•i 

2.5 
2.6 
2.7 
2.8 
2.9 

3.0 
3.1 
3.2 
3.3 
3.4 

3.5 
3.6 
3.7 
3.8 
·~.D 

AREAS 
under the 

STANDARD 
NORMAL CURVE 

from 0 to t 

0 1 2 

.0000 .0040 .0080 

.0398 .0438 .0478 

.0793 .0832 .0871 

.1179 .1217 .1255 

.1554 .1591 .1628 

.1915 .1950 .1985 

.2258 .2291 .2324 

.2580 .2612 .2642 

.2881 .2910 .2939 

.3159 .3186 .3212 

.3413 .3438 .3461 

.3643 .3665 .3686 

.3849 .3869 .3888 

.4032 .4049 .4066 

.4192 .4207 .4222 

.1332 .4345 .4357 

.4452 .4463 .4474 

.4554 .4564 .4573 
.4641 .4649 .4656 
.4713 .4719 .4726 

.4772 .4778 .4783 

.4821 .4826 .4830 

.4861 .4864 .4868 

.4893 .4896 .4898 

.4918 .4920 .4922 

A938 .4940 .4941 
.4953 .4955 .4956 
.4965 .4966 .4967 
.4974 .4975 .4976 
.4981 .4982 .4982 

.4987 .4987 .4987 

.4990 .4991 .4991 

.4993 .4993 .4994 
.4995 .4995 .4995 
.4997 .4997 .4997 

.4998 .4998 .4998 

.4998 .4998 .499~) 

.4999 .4999 .4999 

.49()9 .4999 .4999 

.5000 .5000 .5000 

3 

.0120 

.0517 

.0910 

.1293 

.1664 

.2019 

.2357 

.2673 

.2967 

.3238 

.3485 

.3708 

.3907 

.4082 

.4236 

.4370 

.4484 

.4582 
.4664 
.4732 

.4788 

.4834 

.4871 

.4901 

.4925 

.4943 

.4957 

.4968 

.4977 

.4983 

.4988 

.4991 

.4994 
.4996 
.4997 

.4998 

.4999 

.4999 

.4999 

.5000 
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APPENDIX II - C 

A 
0 . t 

4 5 6 7 8 9 

.0160 .0199 .0239 .0279 .0319 .0359 

.0557 .0596 .0636 .0675 .0714 .0754 

.0948 .0987 .1026 .1064 .1103 .1141 

.1331 .1368 .1406 .1443 .1480 .1517 

.1700 .1736 .1772 .1808 .1844 .1879 

.2054 .2088 .2123 .2157 .2190 .2224 

.2389 .2422 .2454 .2486 .2518 .2549 

.2704 .2734 .2764 .2794 .2823 .2852 

.2996 .3023 .3051 .3078 .3106 .3133 

.3264 .3289 .3315 .3340 .3365 .3389 

.3508 .3531 .3554 .3577 .3599 .. 3621 

.3729 .3749 .3770 .3790 .3810 .3830 

.3925 .3944 .3962 .3980 .3997 .4015 

.4099 .4115 .4131 .4147 .4162 .4177 

.4251 .4265 .4279 .4292 .4306 .4319 

.4382 .4394 .4406 .4418 .4420 .4441 

.4495 .4505 .4515 .4525 .4535 .4545 

.4591 .4599 A608 .4616 .4625 .4633 
.4671 .4678 .4686 .4693 .4699 .4706 
,4738 .4744 .4750 .4756 .4761 .4767 

.4793 .4798 .4803 .4808 . .4812 .4817 

.4838 .4842 .4846 .4850 .4854 .4857 

.4875 .4878 .4881 .4884 .4887 .4890 

.4904 .490() .4909 .. 4911 .4!>13 . .4916 

.4927 .4929 . 4931 .4932 .4934 .4936 

.4945 .4946. .4948 .4949 .4951 .4952 

.4959 .4960 .4961 .4962 .4963 .4964 

.4969 .4970 .4971 .4972 .4973 .4974 

.4977 .4978 .4979 .4979 .4980 .4981 

.4984 .4984 .4985 .4985 .4986 .4986 . 

.4988 .4989 .4989 .4989 .4990 .4990 

.4992 .4992 .4992 .4992 .4993 .4993 
• .;,994 .4994 .4994 .4995 .4995 .4995 
.4996 .4996 .4996 .4996 .4996 .4997 
.4997 .4997 .4997 .4997 .4l:l97 ..1!)98 

.4998 .4998 .4998 .4998 .4998 .4998 

.4999 .4999 .4999 .4999 .4999 •. 4999 

.4999 .4999 .4999 .4999 .4999 .4999 

.4999 A999 .4999 .4999 .4999 .4999 

.5000 .5000 .5000 .5000 .5000 .5000 
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