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PREFACE 
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1) Euler's equations of rotation 

1. 1) Definition of coordinate systems 

Let us consider a physical body B in a three dimensional space. 

In order to be able to describe its motion in the space let us define the 

following two Cartesian coordinate systems: 

i) S = (C; x,y,z), fixed, rectangular, positive, centered on 

C with axes x,y,z; 

ii) 5 1 = (T; t;,n,rJ, rectangular, positive and 11 linked with B". 

LetT be, for simplicity, the center of gravity of 8 and let t;,n,s -axes 

be oriented so far arbitrarily. 

We shall be denoting the vectors expressed inS by Latin letters 

and the vectors expressed in S! by Greek letters. Besides, we are going 

to distinguish between free vectors 

-+ 3 -+ -+ 3 -+ a = L: ak ek (X = L: (lk E:k 
k=l k=l 

and position (radius) vectors 

-+ -+ -+ -+ -+ Here, by e 1, e2 , e3 we denote the unit vectors in x,y,z - axes and e: 1, e:2 , 

-+ 
e: 3 the unit vectors in t;,n,s - axes. 

Since we are going to talk about dynamics, we shall have to 

consider all the problem from the point of view of time. 

1 .2 Dynam~c system 

When we let the individual vectors be time dependent we may 

regard the description of the individual points ( and the body B) as a 
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description of a dynamic system. When we talk about time variable vectors, 

we really talk about following functions: 

and similarly 

where all the individual quantities vary with time. The position vectors 

varying with time can be regarded, from the dynamic point of view, as 

motions. 

Here, when talking about ~k(t), tk(t) we talk really about 

vectors varying with respect to the other coordinate system and not 

within the coordinate system they represent. Note that it is rather 

difficult to visualize the system s• linked with B if the body B is not 

rigid. We shall see later how this difficulty can be overcome. 

1.3 Relative and absolute velocities 

Let us assume now that all the time functions we shall be 

dealing with are smooth and have first and second derivatives with respect 
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• 'It 

since, as we have said earlier, ~k = 0, ~k = 0 (k = 1 ,2,3). The function . 
~is usually called absolute velocity (velocity with respect to the 

-;'c 

"absolute" system of coordinates S) and p is known as relative velocity 

(taken with respect to the relative systemS'). 

The question often arises in dynamics as to what an absolute 

velocity a relative motion p has. In order to be able to answer this 

important question let us investigate the absolute (dot) time derivative 

of a vector expressed in S'. We have . . . * . 
+ + + * + + + + 
01. = l: Ql.k Elk + l: Ol.k E:k = l: Ol.k 8 k + l: Ql.k E:k = 01. + l: Ql.k 8 k 

k k k k . 
where + ~ 0 if S' 11moves" with s. E:k respect to 

Taking the second term in the above equation we can write, 
+ 

denoting it by, say S + 

6 l: Ql.k 
dek 

= dt k 

and + 
++ dE:k + 

sl = S·e = l: Ql.k dt 8 1 1 k + 
++ dE:k + 

s2 = S·€ = l: Ql.k --E: 2 k dt 2 
+ 

s3 = t.¢3 l: Ql.k 
dE:k + 

= dt "83 
k 

On the other hand, we have 
+ + + 

d (e:k. e:k) + dr::k 
= 2E:k dt = 0 dt 

because 
+ + 
E:k E: = 

k 1 

Hence, we obtain for, say s 1: 
+ + 

dr::2 + dr::3 + 
sl = 01.2 crt 8 1 + 01.3 crt 8 1 

But, we also can write 
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(~k . ~.) + + d de:k de:. 
J + + __j_ 0 j .p k = E: . + E:k = 

dt dt J dt 

which again follows from 

+ + 
0 j .p k E:k E: . = 

J 

Substituting this result into the equation for s1 we obtain 

and analogously 

. 
Denoting the scalars + + 

e:3·e:l by w3' wl' w2 

respectively, we can rewrite the above equations as 

+ Defining a new vector w in 5 1 

these three scalar equations can be again represented in form of one 

vector equation: 

or 
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where n is the antisymmetric tensor 

-w 
3 

0 

belonging to w. 
• -+ We can then write f ina 11 y for a. 

* "i~ -+ -+ -+ -+ -+ -+ 
a. = a. + w x a. = a. + na. 

Note that applying this formula, valid for any free vector in s•, 
-+ to w we get 

. * * -+ -+ -+ -+ -+ 
W = W + W X W = W 

This result can now be utilized to answer the original question what is 

the absolute velocity of a point, whose motion is known in the relative 

sense only. 

From the diagram we can write 

Hence . 
-+ -+ -+ 
r = rT + p p p 

But from the formula for the 

absolute time derivative of a vector 

expressed in s• we have . * -+ -+ -+ -+ 
pp = pp + W X pp 

so that 
• • * -+ -+ -+ -+ -+ r = rT + pp + W X p . p p 

Suppose now that the point P is a part of the physical body B . 

Then the last equation can be given the following physical interpretation. 

The absolute velocity of P (with respect to S; i.e., the absolute space 

around the body) is composed of three individual velocities: 



6 

. 
i ) -+ the translation velocity of the body B (or its center r -T 

of gravity T which means the same) with respect to S; 
'i'C 

i i ) -+ the translation velocity of P within B (with p - respect p 

toT) that describes the expansion or contraction of B; 

* 
-+ -+ . 
w x Pp, the term we shall try to interpret now. i i i ) 

Let us assume the body B to be for a moment rigid; i.e., Pp = 0, 

and it does not have any translation velocity with respect to S; i.e., . 
rT = 0. Without any loss of generality, we can now place C to coincide 

with T and get 

Hence, the absolute velocity of P will reduce to . 
-+ -+ -+ 
rp = W X Pp' 

and the only freedom left for the point P is rotation aroun~ T at a constant 

distance but in any direction. . 
-+ -+ -+ This means that both w and Pp are perpendicular to rp. 

Moreover . 
v = lrl = 1~1 It pi sin(1~p> 

-= WPp sin WPp• 

..... 
But pps1nwrp is the perpendicular 

distance of P from~. From the elementary physics we know that the 

tangential velocity v of a particle rotating around a center of rotation 

with angular velocity w1 in a distance r• is given by 

-+ Therefore the vector w has to be interpreted as being always coincident 

with the instantaneous axis of rotation of Band having the absolute value 

given by the instantaneous angular velocity of B. It is consequently known 
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as the vector of rotation of B. It is easily seen that its meaning does 

not change even for the general case of translating, non-rigid body. The 

third velocity in the gernal formula can be then understood as the 

rotational velocity of B. 

1.4 Relative and absolute accelerations 

It is not difficult to see how we go about defining the second 

time derivatives of the individual vectors with respect to their alternative 

systems of coordinates. 
.. ** + + 

Let us just say here that we can define a, a, 
.. ** + + 
r' P 

in the same way as we have done for the first derivatives. The last two 

quantities are known as absolute and relative accelerations respectively. 

Same question arises here as how to express the absolute 

acceleration of a point (motion) known in s• only. We again write first 

using the formula for 

Applying the same rule 

...... 
1\ 

. . ;'\• . 
+ + + + + + a=a+wxa+wxa 

+ a and taking its derivative 

* + have applied to a as we to .,, . 
'"* i'C 

+ + + + a = a + w x a 

with respect to S. 

+ a we get 

.-;, * *i" i'\ ";~ 

( + (~ + ~) + + + + + But a + ~ + w x ~ = a + w x a + w x a ** * '"· + + + + +_j+ = a + w x a + w x a ~ a 

On the other hand . ;'\ ";~ 

~ X ~ • ~ X (~ + ~ X ~) = ~X~+~ X (~X~). 

Hence we obtain finally 
* . .. ** + + 

a = a + + + + + + (+ + 2w x a+ w x a+ w x w x a). 

Therefore, we can write for the absolute acceleration of P 
'i'c* "/\ 

+ + + + + + + + -+ + (+ + ) r p = r T + p p = r + p p + 2w X p p + W X p p + W X w X p p 

which is the formula we are looking for. 
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We may note that for a rigid body B, Pp = Pp = 0 and the 

formula becomes simpler. However, we may, of course, interpret the point 

Pas moving with respect to B (whatever that means). Then the term 
-;':. 

-+ -+, k I 1 2w x Pp 1s nown as the Coriolis acce eration. It can be seen that the 

Coriolis' acceleration is zero when P does not move with respect to B(S') 

or when it moves parallel to the instantaneous axis of rotation. The . 
-+ -+ ] term w x Pp does not have any fixed name in physics. C. Lanczos [1949 , 

however, suggested to call it Euler's acceleration. It remains to be seen 

whether this name will be generally adopted or not. 

1.5) Moment of motion 

Q 

It is known from elementary mechanics that the vector quantity 

. 
-+ -+ -+ -+ 
MPQ = (rp - rQ) x rp mp 

where P,Q are two points and mp is the 

mass attributed to P ("mass of P"), 

is the moment of motion of P with 

respect to Q. Here Q is regarded as 

immobile inS. We can easily see that if Q is chosen so that it coincides 

with C, the origin of S, we have specially: . 
-+ -+ -+ 
MPC = rp x rp mp. 

We can define the moment of motion of a physical body B with 

respect to a point Q as the sum of the moments of motion of all the points 

in B. This may be written formally as . 
-+ -+ -+ 

{{rp- rQ) x rp mp} . 

In particular, if B is an area integrable in Riemanian sense we may express 

the mass of any differential subarea dB as crdB , where cr is known as the 

-+ 
density of Band can be regarded as a function of Pp· Providing cr has in 
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B only finitely many surfaces of discontinuity, the above moment can be 

written 

The moment of motion of such a physical body, which we are going to 

assume always from now on, will be given by . 
MBC = J (1 x 1 cr) dB. 

B 

1.6) Moment of force 

The vector 

defines the physical quantity known in mechanics as the ~ent 2f force, 

acting on P, with respect to Q. The force fp acting on P is defined as .. 
fp = 1P mp 

Rigorously, one should speak here only about 11Newtonian forces•• that are 

defined by the above formula. 

As a special case, we get 

Analogously to§ 1.5, we can define the moment of force, acting 

on the physical body B, with respect to Q as 

In particular 

NBC = J (1 x 1 cr) dB . 
B 

We can show that the moment of (Newtonian) force is an absolute 

time derivative of the moment of motion Jor both a point and a rigid 

physical body. To prove that, let us take for instance the moment of the 

rigid physical body £with repsect to a motionless point Q: 
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. 
-+ J -+ -+ -+ MBQ = B {(r- rQ) x r 0} dB. 

Its absolute time derivative reads: 

~ d (J -+ ~ [ -+ ~ ) MBQ = dt B r x r 0 dB - ·Br Q X r 0 da 

. . .. 
J -+-+-+-+ J-+-+ = 8{r x r + r x r} 0dB - B rQ x r ~ dB 

since d0 dt = 0 due to the rigidity of B. But here . . 
1x1=o 

and we end up with expression 

• • 
M8Q = JB {(1- 1Q) x t ct} dB 

-+ which is nothing else but NBQ as defined earlier. 

From now on we shall be talking only about rigid physical bodies 
";'\ ·lt* 
-+ -+ * for which Pp = Pp = u, P 6 B and 

1.7) Tensor of inertia, its use in formulating the moment of motion of 
a rigid body 

Let us now express the moment of force acting on the rigid body 

B with respect to C using the vector of rotation of B. Substituting for . 
-+ • h • f 7"1 r 1n t e express1on or "Be the final equation from § 3 we obtain . 

-+ J -+ -+ MBC = B {r x (rT -+ -+) + w X p 0} dB. 

The absolute position vector 1 can be also substituted for using the 

relation 

and we get 

-+ -+ -+ 
r = rT + p 
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0 

~Be= f8 {(tT + p) x (tT + ~ x p) a} dB 

0 

= f 8 (tT X tT a) dB+ f 8 {tT x (~ x p) a} dB+ 

0 

f + + f + (+ +) + 8 {p x rT ~} dB + 8 {p x w x p cr} dB. 

0 

Here tT' tT'~ can be considered constant from the point of view of the 

integration because these quantities describe some properties of the whole 

body as such. Denoting the mass of B by a, i.e., 

Jl. = fs adS, 

we can hence rewrite the above equation as follows 

From elementary mechanics we know that the position vector of 

the center of gravity is given by 

+ 1 J + Pr = J..l 8 pad B. 

But due to our particular choice of s•, pT = 0 and we have 

f8 pcrdB = o. 
Hence we finally get 

0 

+ + + f + (+ +) MBC = rT X rT ~ + B {p x w x p a} dB. 

We have seen in § 1.3 that a vector (cross) product of two 

vectors can be also written as the product of the antisymmetric tensor 

belonging to the first vectorJwith the second vector. In order to be able 

to utilize this knowledge, let us rewrite the subintegral vector function 

of the last equation as 
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Expressing the vector product in the brackets using the antisymm~tric 

tensor R 

0, 

R = 1::' 

we may write 

0, 

l;:' 

n 

-E;: 

0 

q = - p x R~cr = - R(R~)cr 

2-+ = -R wcr 

2 For R = R·R we obtain 

2 2 
-~:: -n ' 

R2 = nt;;, 

c::t;;, 

t;;n, 

2 2 
-E;: -c:: ' 

c::n, 

as the reader can easily verify. 

l;:C:: 

nc:: 

2 2 -n -t;; 

Substituting this result back into the integration we get 

f -+ f 2-+ f 2 -+ B qdB = - B R wcrdB = 8-R crdB · w. 

The integral in the last equation is known as the tensor of inert:f,,a of B 

(evaluated inS') and can be explicitly written as 

f 2 2 8 (~:: +n )crdB, J8t;;ncrdB, J8t;;c::adB 

1 = f 8l;ncrdB, fs(t;;2+c::2)crdB, f 8nc::6dB 

f 8 ~c::crdB, f8nc::crdB, f ( 2 2) · .. 
8 n +t;; ads: 
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It is obviously symmetrical and is very often denoted thus 

A, -D, -E 

= -D, B, -F 

-E, -F, c 

Its diagonal components (elements) are known as moments of inertia 

with respect to the individual aKes ~' n, ~. The off-diagonal components 

are usually called products of inertia or devtation moments. We may note 

that for a differently selected S1 we would have a different tensor of 

intertia. Ac~ually, it is easily seen that the tensor of inertia can be 

determined for any point in or outside B and its components depend also 

on the choice of the direction of the individual axes. The developed 

tensor of inertia is known as the central tensor of inertia because it is 

related to the center of gravity. 

Turning back to the original moment of motion we can now 

rewrite it as . 
+ + + + 
M ~c = r T x r fl + ~w. 

Comparing this equation with the equation of the moment of motion of a 

point we can see that the moment of motion of a rigid body is given by the 

sum of (i) the moment of motion of the center of gravity of B (with the 

mass of the whole body attributed to it); 

(ii) the moment of motion of the body with respect to its own 

center of gravity. The last sentence can be easily verified by writing 

the equation above for C = T: 
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1.8) Euler's equation in general form 

We are now finally in a position to formulate the Euler's 

equation expressing the moment of force (acting on a rigid body) with 

respect to its center of gravity as a function of the vector of rotation . 
of the body. We have shown in § 1.6 that MBQ = N6Q. In particular, we 

have 

-+ 
Taking the formula for MBC derived in I 1.7 and applying to it the rule 

developed in§ 1.3 for evaluating the absolute time derivative of a 

vector expressed in 5 1 (here we realize that y~ is a vector expressed in 

S 1 ) we obtain 

Here, y is, of course, taken as time-independent since B is rigid. 

Taking especially C = T we get 
,~ 

-+ ..... -+ -+ 
N BT = ~w + w x yw 

This is the famous Euler's equation in its general form. It may be 

understood as describing the rotation Z of a rigid body around the 

instantaneous axis of aotation going through its center of gravity T 

as a function of the mass distribution within B (expressed by means ofy) 

and the moment of external forces (with respect toT) acting on the body. 

Note that in § 1.3 we have derived: 
. * -+ -+ w = w . 

Hence the absolute and relative angular accelerations are identical. Thus 

the Euler's equatton can be used to describe the rotation of B with 

respect to S also. However, we are not going to do this here. 
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1.9) Ellipsoid of inertia and principal axes of inertia 

It is known from mechanics that the moments of inertia of a 

rigid body B with respect to all possible axes going through a point Q, 

when we interpret the reciprocals of their square roots as lengths on the 

appropriate axes, create an ellipsoidal surface.centered on Q. This 

ellipsoidal surface is known as the ellipsoid of inertia belonging to Q 

of e. In a Cartesian system concentric with the ellipsoid, say 

511 _ (Q;X,Y,Z), the ellipsoidal surface is given by 

AX2 + BY2 + cz2 - 2DXY - 2EXZ - 2FYZ = 1 • 

The shape, orientation and size of the ellipsoid of inertia 

vary from point to point. We sometimes talk about points where the 

ellipsoid degenerates to two-axis ellipsoid (rotational) or a sphere 

as speroidal or spherical points. If Q happens to coincide with the 

center of gravity then we talk about the central ellipsoid of inertia. 

It can be shown that the central ellipsoid of inertia is the largest of 

all - it has the largest possible voiliume. 

In order to see what is the connection between the ellipsoid 

of inertia and the tensor of inertia let us consider the central 

ellipsoid of inertia so that both the ellipsoid and the tensor are 

related to the same point T. To begin with, we can show that the 

following equation is the equation of an ellipsoid: 

++ 
P'jP = 1 

+ + + + where p =~El + nE 2 + ~8 3 is a position-vector. We have 

~P = (A~ - Dn - E~)~l + (-D~ + Bn - F~)~2 + 

+ (-E~ - Fn + C~)$3 
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-+ 
and multiplying this vector by p again we get: 

2 2 2 
~'fP = A~ - D~n - E~r; - Dnt,; + Bn - Fnr; - Er;~ - Fr;n + Cr; 

= A~ 2 + Bn 2 + Cr; 2 - 2D~n- 2Et,;r;- 2Fnr; = 1. 

Hence the central tensor of inertia~ describes an ellipsoid in the way 

shown above. Similar property holds true for the tensor of inertia at 

any other point. 

1 .10) Natural system of coordinates linked with a physical body, 
principal moments of inertia 

It is known from analytical geometry that if the axes of the 

ellipsoid coincide with the axes of the Cartesian system used to 

describe it, its equation reads: 

Let us then take our tensor of inertia y, find its eigenvalues Al, A2 , A3 

from the well-known algebraic equation of third order 

det (ty -Al) = 0 

where cis the identity matrix and A the variable. Then we can evaluate 

-+s -+1 -+1 the eigen-vectors s 1, s 2 , s3 ofjf from the known equations 

1\1~• = 
.J i 

and take these 

= 1 ,2 ,3 

they will create an orthogonal, positive vector basis 

in S!-- as new Cartesian axes. The new system can be denoted by 

511 _ (T;~•,n•,r;•). The tensor~ in this new coordinate system 511 will 

look thus: 

)1,1' 0, 0 A I' 0, 0 

'J = 0, A2' 0 = 0, B I' 0 

0, 0, A3 o, 0, c I 
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It is not difficult to see that the equation of the central ellipsoid of 

inertia in 511 will acquire the following form: 

~I AI 
' 0, 0 

++ 
PYP = nl 0, B1 ' 0 Tll 

z:;1 0, 0, C1 

~I 

= Tll 

z:;l 

This can be interpreted as follows--the eigenvectors of the 

tensor of inertia coincide with the three axes of the ellipsoid it describes. 

In addition, the diagonal elements A1 ,B 1 ,C 1 of the diagonal form of the 

tensor of inertia, known in mechanics as the principal moments of inertia, 

are equal to the squares of the reciprocal values of the individual axes 

of the ellispoid. The principal moments of inertia have the property that 

one of them is the largest and one is the smallest of all possible moments 

of inertia of the point. Hence the directions with respect to which they 

are taken (the eigenvectors or the principal axes of inertia) have to 

coincide with the geometric axes of the ellipsoid of inertia. Since not 

only the directions of the axes but also their lengths are the same we can 

finally conclude that the ellipsoid 

is the ellipsoid of inertia. In our particular case we shall be, of course, 

speaking about the principal central moments of inertia and central 

ellipsoid of inertia. We can also note, that the principal moments of 

inertia describe the inertial properties of B (with respect to the point 

where the tensor of inertia is evaluated) uniquely. The products of 
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inertia can then be regarded as virtual 

only and depending on the choice of 5 1 • 

On the other hand, since we have to 

know 6 quantities to determine an 

ellipsoid uniquely we have to know 

either the 3 directions of the axes 

and their magnitudes or all 6 elements 

of the tensor of inertia. 

The system 511 is known as the natural system of coordinates 

linked with B. It can be considered as natural because it is uniquely 

defined by the inertial properties of B alone and does not need the 

identification of a three points otherwise necessary to define a Cartesian 

system within B. We may note that it would also be natural to use 

this system for describing a non-rigid body. 

1. 11) Simplification of Euler's equation 

Going now back to the Euler's equation ( § 1. 18) we can see that 

there is nothing to stop us in formulating them in the natural system of 

coordinates. We recall, that the axes~. n, ~inS' were oriented arbitrarily 

(see§ 1. 1). Hence we can specify their orientation now and understand, 

from now on, that 5 1 is the natural system of coordinates. 

Then we can write the Euler's equation as follows: 

* A,O,O A,O,O 

+ O,B,O 

* o,o,c O,O,C 
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This vector differential equation is usually written as a system of three 

scalar differential equations of first order for the components of the 

vector of rotation. They are known as the Euler•s differential equations 

for the rotation of a rigid body and read 

To recapitulate,we may say that the Euler 1s equations describe 

the rotation of a rigid body around an instantaneous axis of rotation 

going through its center of gravity as caused by the moment N of external 

Newtonian forces (with respect to T) in the natural coordinate system. 

We can note that each equation can be derived from another by cyclic 

exchange of the individual quantities. They are, needless to say, 

completely equivalent to the general form derived in§ 1 .8. They are 

sometimes referred to as the equations of a gyroscope. The system of 

Euler•s equations is solvable for only a narrow family of special cases. 
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2) The earth-pole wobble 

2. 1) The rigid earth as a gyroscope 

We can now apply the theory to the idealized earth. The earth 

may be, in the first ap~roximation considered a huge rigid gyro spinning 

around its instantaneous axis of rotation, going through its center of 

gravity, with a period of one sidereal day. This is, of course, not the 

only motion the earth undergoes but only one of a whole series of motions 

(rotation around the sun, rotation around the center of our gallaxy, etc.). 

The daily spin can be studied from the point of view of the space around 

the earth. Studies of this kind reveal the precession and nutation of 

the earth axis of rotation. These motions are not, however, the object 

of our interest at this moment. 

The purpose of our study is the axis of rotation (spin) as 

viewed from the point of view of the earth. We again recall that the 

vector~ and its time derivatives in the Euler equation are taken with 

respect to the natural system of coordinates related to the body -- the 

earth in our case. Hence, the solution of the Euler•s equation provides 

us directly with the vector of rotation as viewed from the earth. 

In the first approximation, the earth can be regarded as a 

force-free gyro, i.e. as if no external forces exert any moments (with 

respect to its center of gravity) on it. Moreover, in the first 

approximation, two of its moments of inertia can be regarded equal since 

the earth is approximately rotationally symmetrical around its axis of 

rotation. Let us then call the semi-minor axis of the central ellipsoid 

of inertia (ellipsoid of rotation) by~ and the other two axes, the 
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orientation of which we do not have to specify, by ~ and n· The Euler•s 

equations then can be written as 

dw 
A d~ + (A - C) w~w~ = 0 

dw 
~ edt = 0 . 

2.2) Solution to the Euler•s equations for rigid earth, Euler•s period 

The Euler•s equations describing the approximate rotation of the 

earth (as viewed from the earth) can now be solved. Solving the third 

equation first, we get 

w~ = canst. = ~ . 

Further, denoting the ratio (C-A)/A by h we can rewrite the first two 

equations as 

Wi; + h~w = 0 
n 

w - h~w = 0 
n ~ 

To solve this system of linear differential equations of first 

order we transform It Into two linear differential equations of second 

order 

2 2 
w~ + h ~ w~ = 0 

w + h2n2w = 0 
n n 

by differentiating the first (second) equation and substituting for ~n(~~) 

Into the second (first) equation. Note that we use the dot to describe . -;': 
-+ -+ 

the relative time derivative since w = w,as we have seen in § 1 .3. The 

second derivative should be understood relative as well. 
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Evidently, both equations are equations of simple harmonic 

motions. Solving the first equation, we get 

W~ = K COS (h~t + w), 

where K and w are some integration constants. Substituting this result 

back into the first equation of first order above, one obtains 

Hence 

w = K s i n ( hll t + w ) . n 

Needless to say that identical solutions w~,wn are obtained when we solve 

the equation for w first. 
n 

We may note, to begin with, that the instantaneous angular 

l+wl velocity of a rigid earth should be constant: 

2 2 2 2 2 2 w =w +w +w =K +]l =canst. 
~ n z; 

+ 
Besides, we can see that the instantaneous axls of rotation w travels 

around the principal axis of inertia z; in a circular cone. Both components 

(w~ ,wn) have the same amp 1 i tude and a phase-! ag of 90°. In addition, it 

can be seen that the motion is anticlockwise when viewed from the North: 

~ - 'Z.--·--e-·-·-·~ 

/T~· 
. ' F / . 

j/?' ~~ 
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Finally, we can determine the period 

PE = 2rr/(~h) 

of the wobble, Taking~= w~ ~ 2rr/(1 sidereal day) -- based on the 

consideration that the overwhelming part of the actual angular velocity 

of the earth can be taken with respect to ~ (K in angular units is very 

small indeed) --and h ~ 1/305 [Melch~or, 1966] as determined from the 

precession and nutation of the earth, we get 

P - 303 solar days. E 

This period was first derived by Euler and under his name it is still 

known. It is the period of the earth-pole wobble (free nutation, free 

motion) of the rigid earth. 

The value of K can be determined from experimental data, ~depends 

on the choice of time-origin. 

2.3) Non-rigid earth, Chandler•s period 

It was established by Chandler [1891] that the fact that the 

actual period of the pole-wobble is longer than predicted by some 40%. 

The explanation for it was given by Newcombe [1892] as the non-rigidity 

of the earth. The value of the increase factor is given by [Tomaschek, 1957] 

1 I ( 1 - 1.07 k) 

where k is a function describing the ratio of the additional potential 

produced by a dQformation to the potential of the deforming force. This 

function was first introduced by Love [190~] and became known as second 

Love•s number. There is also the first Love•s number h which we are not 

dealing with here. The theoretical development behind the above formula 
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is somewhat involved and is left untouched in this treatise. Let us just 

mention that the value of k depends on the frequency of the deforming 

force--the earth responds elastically to short periodic stresses and 

plastically to long periodic stresses. The two Love's numbers together 

with two other functions describe fully the elastic properties of the 

earth. 

There are basically two types of observations allowing us to 

determine the value of k. One is the earth-tides observations, second is 

the polar-wobble. Analyses of both indicate approximately the same value 

for k, namely 0.28 - 0.29 [Munk and Macdonald, 1960; Melchior, 1966; 

Jeffreys, 1970]. The corresponding period 

PC= PE/(1 - 1.07 k) 

known as Chandler's, is then somewhere between 433 to 439 solar days. 

2.4) Excitation and damping of the wobble 

We have seen in the case of a rigid earth with no external forces 

that the amplitude of the wobble, K, should remain constant. The fact 

that the earth is not rigid as well as the presence of external forces 

caused by the attraction of the celestial bodies should theoretically 

lead to the damping of the amplitude. It is a well-known principle in 

dynamics that wherever the energy of the dynamical system is dissipated 

the consequence is damping of the motion of the system. Here we can 

identify two sources of dissipation--tidal friction and internal fr,iction. 

Once again, the mathematical tools in proving the above are too complicated 

to allow us to prove it here theoretically. Let us just state that the 

quantitative estimates of the parameters involved are so far very imprecise 

and not convincing [Jeffreys, 1970]. 
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In spite of this theoretical prediction, the actually observed 

amount of wobble (amplitude) does not seem to decrease significantly over 

an extended period of time. The most sensible explanation for this 

disagreement is that besides damping, there exists another mechanism that 

excites the wobble. So far none of the existing theories (hypotheses) 

explains the excitation mechanism satisfactorily. The largest amount of 

credibility can be probably associated with the hypothesis that the earth 

pole wobble is somehow linked with the major tectonic earthquakes 

[Mansinha and Smylie, 1967]. 

2.5) Observations of the actual wobble 

At the end of 19th century, the IAU decided to set up an 

international cooperative program--International tatitude Service (ILS)-­

to observe the actual wobble, determine its period and amplitude and 

thus add some valuable information to our knowledge of the earth. The 

observations began in 1899 simultaneously at 5 stations located on the 

same parallel ~ = ~ 39° 08 1 (Mizusawa-Japan, Kitab-USSR, Carloforte-ltaly, 

Gaithersburg-USA, Ukiah-USA). The network of the 11 latitude stations•• has 

grown since to over 40 stations today distributed not only on the Northern 

but also Southern hemispheres, under the auspicies of two agencies--the 

ILS (also called IPMS--International Polar Motion Service) and BIH 

(Bureau International de 1 1 Heure). 

The lat:itude stations are continuously (more precisely--as 

often as they can) determining their instantaneous astronomic latitudes 

using a common set of stars and either PZT (Photographic Zenith Telescope) 

or panjon•s astrolabium for an instrument. The results of the observations 

are then sent to the respective international bodies to either Mizusawa or 

Paris. There the variations of latitude are adjusted and iNterpreted in 
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terms of Cartesian coordinates X,Y describing the hodograph of the vector 

~in a plane tangent to the earth ellipsoid at the mean-pole, see e.g. 

[Krakiwsky and Wells, 1971]. These ••coordinates of the instantaneous pole 11 

are published periodically in two different modes i) predicted positions, 

extrapolated from the observed data; 

computed from the actual observed values. 

ii) actual positions, 

Unfortunately, the adjustment procedure has changed several times 

during the existence of the international services [Munk and Macdonald, 1960]. 

Therefore, the published actual positions cannot be regarded homogeneous 

for the whole period of 72 years. 

2.6) Results of analyses of the observed wobble 

In order to determine the period PC and the amplitude K (and 

the phase-lag~) the data describing the actual positions of the pole have 

been analyses by scores of various scholars. The period can be determined 

from the data using one of the many methods for spectral analysis (technique 

designed to determine an unknown frequency or period of a given time-series). 

The numerical values for the Chandler 1s period vary with different authors 

from 420 to 440 days [Munk and Macdonald, 1960]. 

The mean amplitude for a certain span of data can then be 

determined using the least-squares approximation seeking the best-fitting 

periodic curves (for both constituents X and V) with period PC. The 

results indicate an average value of K of the order of 0.2 11 • This angular 

value corresponds to a displacement of the instantaneous pole of rotation 

on the surface of the earth of about + 6.5 m. 

The results invariably confirm the anti-clockwise polarity of the 

motion--as predicted by theory, see;§ 2.2. The sense of the motion can 
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be determined from the phase-lags of the two constituents X,Y. Contrary 

to predictions, the hodograph is not completely circular, or put in other 

words, the circular 11 Chandlerian motion•• (as the free nutation is sometimes 

known as) does not account fully for the actual ••motion••. 

There are other components of the actual hodograph that need 

some attention. Three more motions can be distinguished in the actual data: 

i) seasonal variation; 

ii) secular variation; 

iii) irregular fluctuations. 

We shall now deal with these individually. 

2.7) Seasonal variations 

On the spectra of the constituents X,Y of the actual wobble, one 

can clearly see an annual peak indicating the presence of an annual motion. 

According to Orlov [1961], the magnitude of the annual component also varies 

with time within 40 to 120 msec of arc in both directions X and Y. The 

annual motion is then elliptical rather than circular and is again positive 

(anti clockwise). 

The origin of this annual component is very probably linked with 

the annual atmospheric changes. However, the mechanism of how the changes 

influence the wobble is as yet unclear. The author•s own hypothesis, based 

on somewhat limited experiments [Vanf~ek, 1971], is that the annual motion 

(or at least its large portion) is only virtual. In other words,it is not 

a real motion of the pole but reflects the annual variation of the local 

verticals of the observing station. The variation of the vertical is then 

inevitably interpreted as the variation of the local latitude and thus 

transmitted to the international center where they are reinterpreted in 

terms of polar wobble. The local verticals change irregularly from station 

to station--this is why they may be interpreted as part of the wobble; in 
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case the changes were the same for all the stations, they would cancel out 

and would not be interpretable globally--due to the variations of the local 

equipotential surface. This, in turn, can be attributed to the variations 

of ground water and snow distribution as well as the other crustal 

tilts. 

2.8) Long-term variations 

Presence of long-term variations in the polar wobble has been long 

suspectedJagain on the basis of the spectral analyses testimony. For a 

long time though, the span of available observation data was thought to 

be too short to allow any quantitative estimate of any such variations. 

Recently, Markowitz [1968] discovered a 24-year period using 60 

years of data and a specially designed technique dealing with the 5 

principal latitude stations. His discovery was given a confirmation by 

the author•s finding [Vanf~ek, 1969], based on the results of 

spectral analyses of the BIH data. The theoretical 

explanation for this long periodic component is being sought in the 

mantle-core coupling [Busse, 1969]. For the final word we shall probably 

have to wait for some time. 

Into the same category of motions falls the drift of the pole. 

The drift is thought to be (at least partly) due to the crustal displacement 

such as the continental drift, isostatic movements, etc. It is presently 

assumed to be of the order of 3.2 msec of arc per year [Markowitz, 1968] 

corresponding thus to the displacement of the pole on the earth surface 

by some 0.1 m per year. This motion, though has really nothing to do with 

the vector of rotation. It reflects the motion of the principal axis of 

inertia with respect to the observing stations. To be more precise, it 

reflects the motions of the observing stations with respect to the 
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principal axis of inertia that has to be considered the only 11 fixed 11 axis 

of the earth--see § 1. 10. 

2.9) Irregular fluctuations 

Besides the described, more or less, regular motions, we experience 

some irregular fluctuations in the actual data. Some of them can be 

attributed to certain combinations of random errors in the individual 

observations, some of them are probably due to as yet unknown global 

influences. Nothing definite can be said about thei~ fluctuations yet. 
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