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PREFACE
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scanned the old master copies and produced electronic versions in Portable Document
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1. INTRODUCTION

1.1 Notation Conventions

Since sets, vectors and matrices occur together in some of the discussions
in these notes, the following convention is used (there are exceptions):

The elements of a SET are enclosed in BRACES, e.g. A ={a,b,c}

The elements of a VECTOR are enclesed in PARENTHESES, e.q. R = {a,b,c)

“id e f

The elements of a MATRIX are enclesed in BRACKETS, e.g. A =[a b C]
Other notation conventions, which may be unfamiliar to some readers are:

SYMBOL I SM MEANING

{X],...Xn } "The discrete set whose only elements are X], X2”"Xn“

{x;} "The discrete set of all elements X.'" (The rule for i is
specified elsewhere and understood here)

A E{Xi} A is the discrete set of all elements Xi”

A =[a,b] "A is the compact set of all x such that a < kx < b"

A= [a,b) "A is the compact set of all x such that a < x < b"

A = (a,b] "A is the compact set of all x such that a < x < b"

A= (a,b) A is the compact set of all x such that a < x < b"

X e Aor Aax ''x is an element of the set A" or equivalently "A contains
the element x"

'y%A or Aﬁy ''v is not an element of the set A" or equivalently "A does

not contain the element y"

ACB or BDA A is a subset of B'" or equivalently "B contains A"
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"the set of all mappings from the set A to the set B'' (A
mapping relates one and only one element of B to each
element of A).

"f is a mapping of A to B'Y (If A and B are numerical sets
then f is called a function).

"the functional value of the function f'' (x ¢ A is the
argument, f ¢fA - B}is the function, and f(x) ¢ B
is the functional value. A is the domain or definition
set of f, and B is the range or image set of f).

"the set of all real numbers"

fithe set of all positive real numbers'

"the set of all ordered n-tuples of real numbers'!

""the matrix A which has n rows and m columns"

"the augmented matrix formed by the column'vectors of the
matrices A and B" (A and B must have equal numbers of

rows) .

'"the transpose of the matrix A" (found by interchanging rows
and columns of A).

""the inverse of the matrix A" (the inverse exists if and only
if A is nonsingular, that is its determinant is nonzero).

""the identity matrix'" (having diagonal elements equal to
unity, off-diagonal elements equal to zero).

"implies'

if and only if"

Some of the functions which are used in these notes are:

(xgm f(x)
M F(x)

pag )

min  f(x)

"“"the sum of all functional values of f, evaluated over the
domain M"

""the product of all functional values of f, evaluated over
the domain M"

"the maximum functional value of f, evaluated in the domain
MII

""the minimum functional value of f, evaluated in the domain M"



JM f(x)dx

f(x)

w3

[l

< f,g >

'P(F,g)
7 = /() =)

=

..3_
""the integral of f over the domain M"

""the limit of the functional value of f, evaluated as x
approaches a'

“"'the norm of the function f'' (see page 7 )

'"the scalar product of the functions f and g" (see page }7 )
"the absolute value of the function f'' (see page 6 )
"the distance between the functions f and g" (see page 6 )

"the square root of the function f'' (the functional value of
the square root function is always non-negative)

'equality in the mean sense'' (see page 5] )
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1.2 Theory. of Approximation

With the increasing use of computers, the importance of the
theory of approximation increases, too. |t has ceased to be a domain
for pun#or applied mathematicians and has crept into all kinds of
fields. It is not only the vital part of numerical analysis, but is
used whenever we have to deal with functional relations and their
numerical representation. Hence the theory of approximationhas become an
indivisible part of all experimental sciences and a1l branches of
engineering.

The problem of approximation can be defined as follows:
given a function F, defined on a set M (compact or discrete), find
another function of a prescribed general form that would represent the
given function in a specified way. The approximating function can be

represented, without any loss of generality, as a ''generalized

polynomial'':

where c ek € is the set of real numbers) are known as the coefficients
|

of the polynomial and ¢i are the prescribed functions. The degree of

the approximating generalized polynomial may even grow beyond all limits

if we want. The set of the prescribed functions

© = {8y, by -ous 9]

n
has to have certain properties for certain approximations, as we shall
see later. The individual functions ¢i, and therefore even the polynomial

Pn’ may be functions of one, two or n-variables.
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There are three distinctly different categories of
approximations, namely
i) point approximations;
ii) approximations with prescribed properties;

iii) best interval approximations.

i) The point approximations seek to approximate the given
function F at a specified point(%ojsay)in a prescribed way. The best
known technique here is that of Taylor (McLaurin) that seeks the point
approximation to an analytic F such as to have as many common derivatives
with F as wanted. With infinitly many common derivatives, it represents
F on-any interval M, providing F is on M continuous. Pn in this case
is an algebraic polynomial or a power series, i.e., ¢; = Xi. We are
not going to devote our attention to this type of approxiﬁation since
it is sufficiently known.

ii) These are various techniques based on various ideas.

The most widely used of these approximations is the approximation using
"spline functions'', known as spline approximation. The properties of
the approximating function is that it approximates the given F in sections
having common tangent (or even derivatives of higher degrees) in the
points where the sections join. This kind of approximation has recently
become  quite popular because of its ability to lend itself to an easy
physical interpretation. To venture into these approximations is not
the purpose of this course.

iii) The last and by far the most widely used is the best
approximation on an interval. Because of its importance we shall devote

a whole section to it.
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.. 1.3 Best Approximation on an Interval

The problem can be generaly formulated as follows: for the

given function F defined on M find such a P ~-- for a previously selected
® -~ that has the smallest distance from F.

What is the distance between F and Pn? In order to be able
to answer this question we have first to define the’égggg_into which we
are going to measure. It will be the set of all possible functions
defined on the same set M of arguments as F. Such a set (let us denote
it by Gml is known as functional space. Note that Fe Gm’ too.

Once we have got the space to measure the distance in,we can
proceed to define the distance; It can be shown that any function

o (G,H)
that maps a two-tuplé of fdnctions G, H from oﬁr functional spacé Gm,
onto the set of real numbers can be used to measure.the distance,
providing it satisfies the following three conditions:

i) p(G,H) >0 v(p(G,G) = 0) (non-negativeness)

ii) o(G,H) = p(H,G) (symmetry)

iii) p(G,H) < p(G,E) + p(H,g) (triangle rule),
where G,H,E eGm. These condition§ are known as the axiomsfor distance
(or metric).

It can be seen, that the above axioms are satisfied for a
large family of functions. In practice mainly the following two metrics

are used:

i) o(G,H) = max|G-H| ,
XeM

known as the uniform metric and



i) o(c,H) =||e-H]] ,

where ||F|| is the norm of F, is known as the mean-quadratic or least-

squares metric. The use of the first metric leads to uniform_(minimax,
Tchebyshev) approximation while the second leads to mean-quadratic or

least-squares approximation.

1.4 Problems

1. VWhich sets are finite? Which sets are compact?
The people living on the earth. |
All integers between 1 and 100.
All integers. |
[0, 11.
{0, 11.

A

[

A

i

2. Given sets A = {a, b, c} and B = {x, Y, z} which diagrams

define functions?

3. Given sets A = {a, b, ¢} and B = {0, 1} how many different

functions are there from A into B, and what are they (diagrammatically)?

h. List the domain and range for the 24 goniometric functions

(trigonometric, hyperbolic, and their inverses).



2. UNIFORM (TCHEBYSHEV) APPROXIMATION

Tchebyshev has proved that the best fitting P to any F in
the uniform sense ( the Rn that has the smallest uniform distance)
always exists on any M. This proof is based on two wWeierstrass'
theorems telling us that tﬁere is always an algebraic or trigonométric
polynomial Pn that approximates the given fﬁnétion F with an error
£= IF - Pnl smallér than a required value. The degree n of Pn depends
on the required value. | .

On the other hand, there is no satisfactory method that would
solve the problem of finding such a Pn for any ® and F. Tchebyshev
himself has come up with a solution to the seemingly nonsensical problem:
"given F(@) = 0 on M = [-1,1] and & = O%,... X", find the uniformly
best Fitting,Pn+] under the restriction c = 1", (Note that without

n+l

the restriction ¢ = 1 the Pn+l (best fitting) would be identically 0).

n+1

He found that such a Pn+l is given by following relatfons:

]

Pn+](x) = Tn(X) — cos (n arccos X) n > 1

2

]

To(x) 1. %)

*) Note that the degree of an algebraic polynomial, as it is generally
known, differs by 1 from the degree of a generalized polynomial. The
algebraic polynomials with coefficients by the highest degree term equal
to one are known as normalized algebraic polynomials. Note also that

T, for n even is even and for n odd is odd.



Let us agree, from now on that the glgggzgig;polynomials containg x"
will be denoted by subscript n ;ather than n+l. These algebraic
'polynomials became consequently known as Tchebyshev polynomials (of the
Ist kind).
The same problem can be formulated for M = [a,b] which,
after the linear transformatfon

y4 a-‘?_—(a + b + (b-a)X)

(show that this linear transformation transforms the interval [-1,1] D X

to the interval [a,b] D Z) leads to a new system of polynomials

_ (b-a)"

Tn(Z) on

Tn(X) .

The quoted solution to the nonsensicaf looking problem

permits to solve two different categories of problems:

i) Tchebyshev Economization

It can be shown that the best uniform approximation of

the function F(X) = X" on M = [-1,1] by an algebraic polynomial ?n~2

-2

(note thét n-2 is the degree of the algebraic polynomial, i.e., n=2

contains n-1 terms) is given by

~

n
T X Tn(X) .

I-n

n-2 =

The maximum error involved is 2 This fact can be used in }owering

the degree of a given algebraic polynomial by one with the minimum

uniform error.

2 3 L »
Example: PQ(X) =1 - X + éT-— éT—+ éT' is to be lowered by one degree.

The best uniform approximation to Xq, TZ(X) is given by:

~ L I L 2 1 2 1
T2(X)=_x -Th(X)=X - (X" - X +B')=X -7
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10

2 3 -
X X 1 2 1
Hence Pli(X) =~ 1 - X +§—r"’ -3‘~r+T+T (X - 8—)
I SR R I <
h LA 2T 7 LT 3T
The error involved in the approximation is smaller than E%-ZI—h -t

7%5-2 0.005 on M = [-1,1].

Similar treatment can be designed even for M = [a,b] using
the variable Z as described above.

This trick can be used when we waﬁt to represent a function
in the form of truncated power series. The representation is more
uniférm when we truncate the séries further on and lower the degree of
such polynomial than if we truncate the series at the wanted place and

leave it as it is.

Tchebyshev Algebraic Interpolating Polynomial

If we have a continuous function F énd want to inter-
polate it on [a,b] using an algebraic interpolation polynomial of a
prescribed degree n, the interpolation will give the least residual if
we chose for interpolation nodes the root§ of the Tchebyshev polynomial.

The maximum error is then

__yn+l o (n+1)
- (b-a) max ‘f(X)‘
n+1 22n+l (n+1) ! Xela,bl

R
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2.1 Problems

Solved Problems

1. Tchebyshev polynomials. Compute the Tchebyshev polynomials of the first

kind, Tn(x), for degrees n from 0 to 6.

Solution
Tchebyshev polynomials of the first kind are given by

Tn(x) = cos( n arccos x).

Let x = cos O, or @ = arccos X. Then

Tn(x) = Tn(c05 ®) = cos n O.

But
cos nd =cos ( (h-1) 0+0) =cos 0cos (n-1)0 - sind sin (n-1) ©
cos(n-2)0 = cos((n-1)6-0) = cosd cos(n-1)0 #5ind sin(n-1)0
therefore
cos nd = 2 cosO cos(n-1)0 cos(n-1)o - cos(n - 2)o
or Tn(x) = 2 x'Tn_](x) - Tn_z(x).

Now for n = Oand n = 1

cos (0) = 1

Ty (x)
T](x) = cos (arccos x) = x.

Hence using the recursion relation we obtain

Tz(x) = 2 x2 -1

T3(x) = 4 x3—3 X

Th(x) = 8 xLl -8 x2 + 1

TS(X) =16 x° - 20 x> + 5 x

T6(x) = 32 x6 - 48 x4 18 K2 - 1.
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2. Roots of Tchebyshev Polynomials. Compute numerical values for the

roots of the Tchebyshev polynomials of the fisst kind, Tn(x), for degrees

n from 2 to 6.

Solution.
For the roots X, of Tn(x)

Tn(xi) = cos (n arccos xi) =0, x, ¢ [-1, 1]

n arccos x, = arccos 0 = (2i - l)%@: i=1,2,....

arccos X, = (27 -1)
2n

X = cos((2i2~ ])ﬁ’ .
n

There will be n distinct roots xi, for each of i =1, 2,.ii,n.

n X,
2 + cos 45°

3 0, + cos 30°

L + cos 224 , + cos 67f

5 0, + cos 18°, + cos 54°

6 + cos 15°, + cos 45°, + cos 75°
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3. Tchebyshev Economization. Represent the function cos z, z e[ =-m,7 ],

. . n
by the truncated power series Pn(z) =3 (-l)k 2k
k=0 0!

Represent the same function again by applying Tchebyshev economization

n+2(z), obtaining a

to the last two terms of the truncated power series P
second polynomial of degree n. Compare these two approximating polynomials,

taking Pn+2(z) as the standard.

Solution.

The function cos z, z €[ -w,m ] is transformed to cos x, x €[-1,1 ]

by z:= (1/2) (@a+ b+ (b - a) x) = (1/2) ( - w+ w + ( 7w ) x) = wx

o K ("x)2k . A
and thus Pn(x) = i_o' (=1) YT e X ef~1,1] = M
gy 2 (n+1) 1y (n2) 12 (n+2)
and P oap(x) =P, () (0" ()" " -+ (n" (E
[2(n+1)] 1 [2(n+2)] !

= ("]) (n+]) (’n’X)z (n+]) (_-I) (n+2) (TTX)Z (I’H"Z)

CThus |P (x) = P .. (x) +

e w2 [2(n+1)] ! [2(n+2)] 1

(20D (; - (ax)? )

[2(h+1)] 1} (2n+4) (2n+3)
So that
@b 00 |- o [y 2
P - p = -

e n m2 [2(n1)] VA" (2n+h) (2n+3),
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Let gn (x) be the n-th degree polynomial resulting from Tchebyshev

economication of the (n+1) and (n+2) terms of Pn+2(x). Then
max ' 2(n+])‘; N 1
xeM ' X FICT I B =
max
XM l U AN 1
\ —22n+3
Hence max
xeM "
_ (_])(n+1) 2(n+1) ] . (“])nfz 2(n+2) o i |
1 [2(n+1)] 1 ,2n+l [2(n+2)] 1 ,2n+3
) TT2(n+1) . 2 1 ]

C[2(n+1)] ! (3n+h) (2n+3) &b 92N+
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o
And we conclude that Pn+2(x) is better approximated by Pn(x) than by

Pn(x) by a factor of about 2-(2n+l).

L. Tchebyshev Algebraic Interpolating Polynomial. Design an algorithm for

computing the Tchebyshev algebraic interpolating polynomial of degree n for

a given function F(z), z ¢ [a,b].

Solution.
A function F(z) defined on the domain. [a,b] can be approximated by

algebraic polynomials of degree n

k

.
Pn(z) =% ¢ z.

k=0 k
If the cofficients L are chosen such that for (n+1) given basepoint values z,
Pn(zi) = f(zi)

then Pn(z) is called an algebraic interpolating polynomial for F(z). The

Tchebyshev algebraic interpolating polynomial is the one in which the
basepoints z; are chosen to be distributed over [a,b] in the same way
that the (n+1) roots X, of the Tchebyshev polynomial of the first kind,

Tn+](x), are distributed over [-1,1].

Given a function F(z), itsdemaini[a,b], and the degree of polynomial
desired, n, the algorithm to compute the Tchebyshev algebraic interpolating
polynomial contains the following steps:

a) Compute the (n+1) roots x; of T (x) (see problem 2) ;

n+1

b) Compute the equivalent values for z, from
z. =(1/2) (a + b + (b -a) Xi) ;

c) Solve the system of (n+1) linear equations

n
Pn(zi) =k§o c Z; = F(z,), i=1,2,...n+l

for the (n+1) coefficients Co» C19Cp---Cp 3

d) The Tchebyshev algebraic interpolating polynomial is then

n
Pn(z) =3 c zk .

Lr—n

k
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Unsolved Problems.

5. Express the powers of X in terms of the Tchebyshev polynomials of the
6

first kind, from x° to x°.

6. Apply the results of problem 3 to a specific case. Choose a value for
n. Should n be even or odd or does it matter? Compute numerical values

3 ~ : o :
for the (n+1) coefficients of Pn(z) and Pn(z). Compare the ''true' values
of cos z to each of these apprbximations for several values of z. VWhich
approximation has the maximum error for values in the interval [-w, =]?

For values in the interval [-n/2, w/2]7

7. Apply the results of problem 4 to a specific case: LetvF(z) = sin z,

z ¢ [0, n/2]. Should the algebraic polynomial of degree n for this function
contain only odd powers of z, only even powers of z, all powers of z, or
does it matter? Choose a value for n such that the Tchebyshev algebraic
interpolating polynomial approximates F(z) to better than f.lxlo_s.

Compute the coeffﬁc%ents for such a polynomial. Write a computer program
to compute sin z using this polynomial, using the methdd of nested

mutiplication (Horner's Method).

8. Choose any problem from chapters 2 or 3 of Cheney [1966] and solve it.
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3. LEAST SQUARES APPROXIMATION

3.]. Norm And Scalar Product

We call the norh of GEG a function ||G|| that maps the

element of Gm on E and satisfies the following axioms:

i) ]le]] =0 (|]e]] =0 if and on?y'if G(x) = 0 on M)
i) HAGH=V|>\] 1161 for A€E
i) leH]] < Jlsl] + Hnll o, &HE G,

A space Gm in which a norm is defined is said to be a normed space.
The norm in the least-squares approximation is in practice

defined in two different ways

]| = vz W) ex)® e g
X&M
for discrete M and
Hel| = v 7 wx) 6(x)? ax e £
M

for compact M and F integrable in Riemannlssense'(all the integrals
involved in our development are considered Riemannfs),Conceivably, the
integrals could be taken as defined in Lebesgue's sense or other just
as well.) The function W that has to be non-negative on M is known
as weight function. Note that the TchebYshev’s distance p(G,H) can

also be considered as a norm ||G-H||
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Note that the distance !IH-G|| on discrete M is Eucleidean:
p(H,6) =V 1 W) (HX)-600))2 e £
XeM ’
i.e., describes the distance in the common Eucleidean geometric space
with axes Xi scaled inversely proportionate to W(Xi).
In order to simplify this notation in the forthcoming

development, let us define one more operation on the functional space

Gm’ the scalar product of two functions. |If G,H € Gm then

% W(X) -G (X) -H(X)

| /XeM
<G,H =
AN

LM

Ears

W(X) -6 (x) “H(X) dX

is known as scalar product for M discrete or compact respectivély. The
functional space on which scalar product is defined is known as

Hilbertian functional space. (Generally the scalar-product can be

defined in infinitely many ways providing it satisfies the axioms for
scalar product that are somewhat similar to the axioms of metric. In
practice thdugh the two definitions are used almost exclusively. They

are closely related to the selected metric of the functional space.)

For any two G,H € Gm the Schwartz's inequality

- 2

&,6) CH,H > 6, H
is satisfied. This is, of course, true for both definitions of the
scalar product.

If for two functions G,HGGm the scalar product is'zero, they
are known as orthogonal. Consequently, if for a system of functions & €
Gm the following equation is valid

K, # 0o i=]

e . o
<¢i,¢j> _.\\‘0 i) i,j=1,2,...,n
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the system is known as a system of mutually erthogonal functions or

simply an orthogonal system. Note that

Ki = <¢3’¢§> = H(f)ina E+ >

the square of the norm of ¢i’ The above equation is often written
using the Kronecker &, a symbol defined thus
’,rl i=]
§,, = ,
o No a4,

Using this notation, we can rewrite the condition for orthogonality of
<I>€Gm as

| 2 ' -
<¢i’¢j>=”¢iH siJ. i, =1,2,...,n..

If, in addition to the orthogonality, the norms of all the
¢'s equal to 1, the systenﬁI:is said to be orthonormal. For such a

system we have

<d, b.>=6,, i,j=1,2,...,n.

Note that the orthogonality (orthonormality) depends not
only on & but M and W as Wel].' Hence we may have orthogonal (orfhonormai)
systems on one M and not on. another M'. We can also note that an
orthogonal system can be always orthonormalized Ey dividing the

individual functions of the system by their norms.

3.2 Base Funct?éns '\

Providing the prescribed functions ¢ = {¢], ¢2, ceey ¢n }
are linearly independent on Gm’ we talk about the base ®. If and only
if ® is a base, the coefficients of the best fitting polynomial Pn

can be uniquely determined. More will be said about it later.
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\

The necessary and sufficient conditon for ¢], ¢2, cens ¢n

to be linearly independent on Gm is

n
T A, 4., (X)) =0 XeM, )\ieE

if and only if all the A's equal to zero. When the ¢'s create a base

the following determinant, known as Gram.'s determinant, .

bys O2abys 000 wvns by 2

<¢2’ ¢]>!<¢2, ¢2>¢ AR <¢2; ¢n>

L] ¢

G(®) = det (scpi, ¢J.>) = . e e

L3

IR D RIS R I

is different from zero. It can be shown thatfthé’defihit?onfOf'Tinear
dependence‘(ihdependence) using the linear combinationkand using
Gram ‘s determinant‘are equivalent. Let us point out here that if M
is a discrete set of m pbints, the necessary condition (not sufficient!)
for @ to be linearly independent on Gm is that n be smél1er or equal
to n.

We may note at this point that the Gram 's determinant of '
an orthogonal system of functions is given by -

JORIEITNILS

i=1" '
Similarly, én ortHonorhal system hég géﬁ its Gram 's determinant equal to
n

G(‘I))= I 1 =1
i=1

Hence we can see that an orthogoﬁéf (ékth;noféa;)'s9stem canﬁot be
linearly dependent. |f one or more of the norms equal to zero then,
according to defintion, the systém ceases to be orthogonal. This
will be‘the case when the number of functions is Targer'than the

number of points in M, if M is a discrete set.
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3.3 Normal Equations

-

According to the general formulation of the problem of the
best approximation on an interval we shall now be looking for such a

generalized polynomial Pn’ i.e., its coefficients C1sCysevesCps that
would make the distance'llF-Pnll the minimum.

To begin with let us take M to be discreteé THis means that
we should minimize the Eucleidean distance v ¥ W(X) (F(X) -'Pn(X))2
with respect to CysCyseeesC Here, the min?izm of the square root

“obviously occurs for the same argument as the minimum of the function

under the square root sign. We may therefore write the condition as

. ' - 2
C],Q;T...C ek 2 W(x) (ng) Pn(¥))

b 2
Ln. F
o .c sEp ( ’Pn)
n N XeM

n . ,
= cp8ylee s W) FO0 - Ty e gy )7
The extreme (minimum orymaximum) of the above sﬁm occurs
if and only if all its partial derivatives Qith respect to the
individual c¢c's 'goh to Qero. Since the maximuﬁ, Fér F(X) finite,
is achieved for only infinjtelylarge values of c's then wé may see
that any finite solution (values of c¢'s) weAget frém the partial

derivatives equated to zero will furnish the minimum distance rather

than maximum.
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Carrying out the operation of minimization we get:

y n 2
s 1 W) (F(0) - Iocjd (x))°1

i XxeM j=1

1

. _ ! _-a_—- _ )
2 i (wx) (F(x) ? < ¢j (x)) Be ( ? ¢ ¢j (x)1

[

-2 3 [WX) (FX) = 2 e, ¢y (X)) ¢, (X)]
X [RERE

-2z (W) (FX) ¢, (X) - 2 ¢ ¢; x) ¢, (x))]
X V‘J

it

X X J

Here the 2's can be evidently discarded and we get

2 W) FO) ¢, (X)
X X J

H]

But the left hand side is nothing but [F’¢i] and the right hand side

can be rewritten as

2 M) 3 cp gy (X) gy (X) =

I c,
X d J

] i W(x) 4 (X) ¢, (X) = Z Cj.‘¢j’¢?~ .

J
Hence we end up with the system of linear algebraic equations for

N
2’ ' n

n ’ .
z . . N = F," j =
J=1,<£é"¢;:> ‘] “<:’ 0> 1= 2., 0

This system of equations 1s known as the normal equations.

cys

% W(X) z ¢ ¢J. (%) ¢, {x) i=1,2,...

-2 3 W (X) F(X) ¢ (x) + 2 3z W(x) z ¢ "’j (x) ¢ (X) =0 i=1,2,...

3
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If we consider the mean-quadratic distance in Gm for M compact:
2
- = 1 - X
0 (F=p ) = Vi MO (F(X) - P (X)? d

we end up with exactly the same system of equations with the only

difference that the scalar products <@i,¢j), {?,¢;} will be defined as
@ity = Sy W) 0 0095 (X) dx, KF,0, 3 = Sy W) F(X) -4, (X) dX.

The proof of this is left to the reader. Hence if we use only the
general notation for the norm and the scalar product both developments

remain exactly identical.

34 Remarks On The'Normal Equations

We can, first of all, note that the determinant of the

matrix of normal equations

A =[<o,0,5]

is nothing else but our old acquaintance from 3,2, the Gram's.
determinant:

G(8) = det (A) = det @q)i,cpj 5 .
Now, we can see the importance of the requirement that ® be linearly
independent on Gm. The linear independence of @ insures that
G(8) # 0 and therefore the matrix A has an inverse A '. Hence the
system of normal equations has the unique solution

c=A" @l

We may note that if the system & is orthogonal

A = diag [<<bi,¢'kﬂ = diag (||¢i|\2) and the system of normal equations$
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degenerates into an n—tuple of equations containing only one

coefficient each:
2
ol

The solution then is trivial:

ci=<F,¢i))/||d>i|12 i=1,2, ..., n.

For an orthonormal system &, the normal equations degenerate

Ci=@-F',q)i> i=], 2, seey N

still further and we get:

c, = (f,¢i> i=1, 2, ..., n.

" §T‘§”‘Sc‘3mfi:®"h o{f”‘Tz;hel\N@rma\va ‘Equations =

We may wish, for a certain class of problems, to preserve the
inverse of the matrix of normal equations (note that it does not
depend on F in any way) and compute the appropriate coefficients by
multiplying the inverse by<VFj¢$ involving the given F. This may
happen when a multitude of F's is given on a common M and we want to
approximate them all using the same base and weight function.

This idea can be carried further. Let us denote by aij the
elements of A_]. Then we can write

n
c; = j aij4F¢j> i=1,2, ..., n.
j=1
Let us limit ourselves to the discrete M, for the moment, and we get

L W(X) F(X) ¢,(X)
] XEM J

(]
H]

I ™o
o

J

o WX) FX)
X€M j

I Mo

]aij ¢J.(x) i=1, 2,
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n
Denoting I 3| ¢j(X) by fi(X) we can write

c.= I W(Xx) F(x) fi(x) =<F, £.> i=1,2,...,n.
XEM
Here Fi (i=1,2,...,n) are some new functions that are obviously derived
from all the original functions ¢, (i =1,2,...,n.).

The alternative approach would be to define

o) = Wx) £.(X) i

| 1,2,...,n

il

and c; then would degenerate further to

c, = I F(X)'fi(x) i=1,2,...,n .
XeM

Here f's or f's can be stored (they do not depend onkF, only on & and
M) and the coefficients of the best fitting polynomial to any F égnfbe computed
from one of the above simple formulae.

It is left to the reader to prove that for compact M the

following expressions hold:

¢, = kF,fi}
i=1,2, ,N
: (x)

f, = )X .o 0, (X

i i=1 ij 7]

and c, =(F,?i), Wx) =1
i =1,2, ,h

o n
f.o= 3 a., WX) ¢,(X)

i j=1 ij J

They are same as these for discrete M with the»only‘dtfferénce that

the scalar products are defined by integrals instead of summations.
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3.6 Recapitulation of the Least Squarestpproximation

Given 1) A base ¢ = { ¢l’¢2”°°’¢n} ,-a set of n linearly

independent functions from the functional space G s
IR m

2) The function to be approximated, F, defined on the set M,

{ x],X X } M DISCRETE

. -
[a,b] M COMPACT .

M

fit

M

i

3) A weight function W, defined and non-negative on M. Then the
least squares approximation problem is to determine that vector of
coefficients (CI’C2’°°'Cn) which minimizesthe distance with weight function
W, *P(F, Pn)’ defined as

p (F, P ) = [z W(x) [F(x) - F’n(><)]2]”2 M DISCRETE
xeM

o (F,P) = Eva W(x) [F(x) - Pn(x)lzdx]]/z

where the approximating polynomial is

M COMPACT

Pn = I | .ci ¢i

The solution to this problem is the vector (cl,c ..cn) which satisfies

2,
the normal equations '

o< by, gbj? c.

;= <F, ¢j> J=1,2,...,n

where the scalar product with weight function W, < G,H >, is defined as

<G,H> = £ W(x) G(x) HEx) ‘M DISCRETE

XeM
<G,H> =/ W(x) G(x) H(x) dx M COMPACT .

.M
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3.7 Orthogonal And Orthonormal Bases

Going back to the system of normal equétions where we have
left it in {3:%), we may now study it further from the point of view
of the Qrthogona1 and orthonormal bases. It is not difficult to see
the computational advantages an orthogonal (orthonorma]) system of
basic functions has to offer. In addition to this;there is one more
advantage in using an orthogonal (orthonormal) base. We cah add
further (orthogonal or orthonormal) basic functions to the ones for
which tﬁe coefficients have alreédy been computed and determine fhe
new coefficients withouthaving to change the estab}ished ones. Obviously,
this is not the case with a general base o where an addition of new
basic functions changes the whole matrix of normal equations and thus
influences generally all the elements of theiinverse of the original
matrix.

Further, considering a general base ¢, the matrix of normal

equations is non-singular but it still may be ill-conditioned. This

very often happens, for instance, with generalized trigonometric systems .

$ = {cosm]X, sinw,X, cosw,X, sinw,X,..., cosw X, sinwnx‘}

where m],wz,e..,wn are some real numbers. The.use of an orthogonal base
prevents this from happening. As we have seen in (3.4) an orthogonal
base has always a diagonal matrfx of normal equations. A diagonal matrix
cannof be ill-conditioned (nearasingu]ar), It can
only be singular but this is ruled out in our development due to the
definition of an orthogonal system. Note that an orthogonal matrix, ag
usually defined (i.e. the inverse equals the transpose), is equivalent to

an orthonormal matrix in the sense of these notes.
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3.8 Orthogonalization

All the systems of orthogonal algebraic polynomials can be

derived from the system of algebraic functions ¢ E{l,X,Xz; .,Xn} by

orthogonalization. Similarly, every general system of functions

? = {¢] ¢y ...,¢n} can be transformed to an orthogonal system
b 5
s .
§ = {PI’PZ""’Pn} on a certain M and with a certain W. One of the

easiest ways 4o do this ‘is.to use.the Schmidt's - orthogonalization

process. (also called the Gram - Schmidt process) «
The Schmidt's process reads as -follows:

i) thoose

ii) Define’

P2 = ¢2 + UZ’IP] s XEM, o € E .

21

Multiplying this equation by W-P‘ and summiné up a{l the equations .
for all the X's (for M compact we integrate the equation, multiplied
by WP], with respect to X) we get |
PoiPy> = <y Py> bay, < P1sPys -

Here @qb,P]> has to be zero to make the system iﬁorthogonal. Hence the

unknown coefficient o, , can be obtained from
?

<¢22P|>
o = =

2,1 (P],P]>
i11) Define

+a, P.+a. P. 3 XEM, a €E

Py = 3,22 ¥ %31

37 %3 3,2 0 93,1
and get, by the same reasoning as above:

<P3:P2> = <¢3:P2> + 0‘-3’2 <P2’Pé> + 03,] <P]’Pz>

and similarly

3,P = <¢3,P]> + a3 2<P P > + a3 ‘<P], ]> .
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i ' i < = =< P_ = ' =
By virtue of the orthogonality P],P2> <_P2,P}> < P3,P2> < F3,Pf 0

and we obtain

<O3:Py >t oy LPy,Py>=0

§¢3,P]S+'a39fP],Pr>= 0.

Hence v
i} _<‘_¢3’P2'>
3,2 : ,
_ <P2,P2‘>

We then progress the same way ending up with the equations for

coefficients o i=1,2,...,n-1. Evidently, the general formula for
H
an I
Y aJ’l
o ==__<<b'!’Pi>__= <¢°!’Pi>

N A R TR
i’ u
This method can be cobviously used for both compact and discrete M.

3.9 Extension To Three Dimensions

3.9.1 Extension of definitions

The theory of least-squéres approximation as explained 'so far
can be very easily extended inté three-dimensional space (as opposgd to
the two-dimensional we have been dealing with up to now). In three-
dimensional space we shall be dealing with surfaces instead of curves.
Otherwise we have to retain the two parallel streams dealing with either

discrete or compact definition sets.
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Denoting by B the two-dimensional area (either compact

or discrete) we can define the norm:
le]]
for discrete B and

el

for compact 8. Here X is a pair of arguments, (x, y) say. Similarly,

/rowx) 6(x)2
X€eR

/ 1 W) 00 2%dx e e

the scalar product may be defined as

T W(X) G(X) H(X) , B discrete
<G ,Hy= Xep
\ Fg W) e(x) H(X) dx B compact .

G, H are, of course, functions of X defined on 8 , i.e. G, H € GB .
The condition of minimum least-squares distance leads agafn
to the same system of normal equations. The linear indgpendence of the
system of prescribed functions ¢ has to be hencevalso required.
We may notice that if the functions ¢i of the base & can be
expressed as products of two functions of single variable, ¢i(X) =
¥ i(x) . xi(y) say, and if even the weight function W can be split

into v(x) . uly) we get:

<¢i9¢j> = <‘Pi_,¢j?v "<"Xi,Xj>u .

The proof of this is left to the reader.

“3.9.2 Orthogonality in two—dimensfonal space

One may now ask the question whether relations like ortho-
gonality also exist for functions defined on two-dimensional areas.
There is no reason why they should not exist and as a matter of fact

the orthogonality can be defined in exactly the same way as for functions

defined on an 1nterval.

<op00y>= og 112 5
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There is even a very simple relation between orthogonal
systems in one and two dimensional spaces. Let @l = {wl’ ¢2, coy ¢n}
be a system orthogonal on Mywith u and @2 = { X], Xz, cee Xh} be a

system orthogonal on M2 with v. Then the product ¢ of these two

systems is orthogonal on the area M] X M

To show this, let us denote

i

2 B with w’= u ., v,

o; () =y, (- (y) .
Then «
<hiab = <l bs <X Xay =6, w1126 11X |2
i’7] TPTsTu Tk 28 Lt TkE K
5 _
1% e, 117 .

The most widely used two-dimensional orthogonal system in

geodesy are the spherical functions (spherical harmonics) orthogonal on

a sphere (or in any rectangle Z#'by 2'%) with weight W (X) = 1. They -
originate as a product of associated Legendre's functions and the

trigonometric system.

Another applicatidn is in approximating the topographic sur-

face in an arza.. For this purpose any system can be used.
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3.10 Problems

Solved Problems -

1. Given the weight function W(x) = 1 and the definition set

M={-5 -4,-3,~-2,-1,0,1,2,3,4,5} find the numerical functions f] and Fz

which allow the linear approximation of any function F defined on M-

BT e+ c X where <, 1> s &y =< F,f2>-

What property must the definition set M posess in order that this technique

=<F’f

-be applied?

Solution

The linear approximating polynomial is
2

P2 (X) =.Z

i=1

ci¢i(x) = c]¢](x)_+ c2¢2(x) =<

+ C. X
. 2‘.,

hence the base functions are ¢{(x)=1and ¢2(X)%x. The coefficients are the

solutions to the normal equations
2

.E < ¢i’ ¢j> cj = <F’¢i> = 1,2,
J=1
Noting that in this case

C<hysdyr =0 W) ¢, (X)e () =X 1 =11

| I A 1 1
xeM xeM
2

<b,,6,> = W(x)g,(x) ¢,(x) =2 x* =110
xeM : xeM

Gpebyr = gy = B W(x)¢, (x)¢, (x) s x= 0

the normal equations become

0 110 C2 B <F,¢2>
so that
¢, = <F,¢ >/11
c. =

= <F,¢2>/110
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that is, the functional values of functdons F] and f2 are

.F

i

(]/]]) '(l,],]’]:],]’]s]als],]) ’ 'F.'(X) = 1/11,
(]/]]0) (_5’-"’—39“2!—],09]’293’L*!5), FZ(X) = x/110.

1

P

In general, if M is symmetric, that is

i

I x=0
xeM
then
c] = <F’¢1>/n Whel“e ¢(])(x) = ]
CZ = <Fs¢2 >/ZX2 where ¢2(X) = X.

2. Derive a system of orthonormal algebraic polynomials from the system of
algebraic functions ® = {1,xmx2,...,xn}, defined on
Mz {-5,-4,-3,-2,~1,0,1,2,3,4,5} and with weight function W(x) = 1.

Choose your own value for n.

Solution
We select n = 2 and obtain an orthogonal system P by applying the Schmidt

orthogonalization process to ®, that is

P] = ¢] = |
Py = 9y * 0y
Py = 03 % a3,P) + agyPy
where
<¢,, P,>
o, = - ¢J !
Ji <P,, P.> °
i i
Specifically 5
<¢2,P]> _ xeM W(x)¢2(x)P](x) -0
21 <P],P]> xéM W(x)P](x)P](x)

so that P2 = ¢2 , and again
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B £ L. M{x) 95 (x)P, (x) .
32 ° S N =
<Ry ,P,> xEM Wx)P, (XTP, (x)
Ea W(x)d, (x)P.(x)
agy = - PPy M 3T = - 110 =- 10
<P],P]> xEé,;“W(x)P](x)P1(x) 11

so that P, = x2 - 10 and our orthogonal system is P E'{l,x,xzrlo}u :

3

We obtain an orthonormal system P by dividing each element of P by its norm,

that is by
le” = /< Pi’ Pi>
Thus
E] = Pl = 1
T
p. = 2 = x
tle, 1 JTT0
Ppo= 3 = X210
DG
and we have the orthonormal system P = {17717 ,x/¥/170, (xz—lo)//E§§ },
that fis
<Pigpzj> = ﬁzj~

Note the close relationship between these results and those in the

previous problem,
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Unsolved’prpblems

3. Given F(x) defined for x e [=1, 1], approximate F in the least squares

sense by
a) P for ¢ '{1,x,x2, cov, X'} with weight function W(x) = 1
b) P for ¢ 01,%,%2, ...,x" } with weight function W(x) = (1 - x2)"'/2
c) P, for 5 j{:LO,L], ...Lﬁhﬁ (Legendre's polynomials)
d) P for s '{TO,T], "'Tn.} (Tehebyshev's polynomials)

Compare a) with ¢) and b) with d). Choose your own F and n, For the

individual orthogonal polynomials see the Appendix.

Lk, Write debug and document a general least squares approximation
computer program with the following features. |t should approximate

17%9 ...xn}

where the X are not necessarily equidistant. The user should be free

and function F defined on a discrete set of arguments M. = {x

to choose his own base ¢é%¢],¢2, ...¢m} and weight function W. Therefore
the input must include the vectors x and F(x ), the base, and the

wéight function. The output shou]d comprise the best fitting coefficients
CpsCyseeesC and the variance p (F,Pm)/ Ym-m. (For explanation of the
variance see the next section). A check for linear independence of ¢ on

M should be incorporated.
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L, LEAST SQUARES ADJUSTMENT
In this chapter we discuss three least squares adjustments, called the

parametric adjustment, the condition adjustment, and the combined adjustment.

The purpose of this discussion is twofold. First we describe the relation-

ship between the parametric adjustment and least squares approximation.

Second we present geometrical interpretations of each of the three adjustments.
Linear mathematical models and uncorrelated observations are assumed

throughout this chapter. A discussion of least squares adjustments using

non-linear models and correlated observations can be found in Wells &

Krakiwsky, 1971.

L.1 Equivalence of Parametric Adjustment and Least Squares Approximation

The parametric least squares adjustment differs only in intent and
notation from the least squares approximation of a function F defined on a
discrete domain M.

The intent of the least squares approximation is to find an approximating
function Pn for a given function F. The intent of the least squares adjustment
is to find the ""least squares statistical estimates' (in our notation {Ci}) of
unknown parameters(coefficients)which are related to the observed values

(in our notation {F(xj)} ) by a linear (or linearized)mathematical model (or

system of observation equations).
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The connection between the two is simply demonstrated by restating the
least squares approximation in matrix notation. The column vector

[F(x])’F(Xz),...F(Xm)]T = mF1

is called in adjustment the vector of observed values (or misclosure vector

in the case of linearized models). The matrix whose diagonal elements are

the statistical weights attached to the observed yaluesin F

ix,) 0
Wixy) = P
. mm
0 B T oMx)

is called in adjustment the weight matrix, or the inverse of the covariance
matrix of the observables. Note that in this formulation of the adjustment

problem we assume the observations to be statistically independent (P has no

off-diagonal elements). This is not always the case. The matrix whose

column vectors are vectors of functional values for each of the base functions

¢, (Vandermonde's matrix)

0, 0¢)) 6, (%) b, () T
¢, (xz) ¢2(x2) ¢n(x2) = wPh
i‘ (Xin) b, (x@) ¢n(xm) 1

is called in adjustments the design matrix. The vector of coefficients

I T
[CI’CZ’°"Cn] = n

is called in adjustment the wector of unknown parameters.

Note that the vector resulting from the matrix product
AC
is the vector whose elements are the functional values Pnij) of the

approximating function Pn'
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The column vector
V=F~-AC

is called in adjustment the vector of residuals (or discrepancies).

We want to find the coefficient (or unknown) vector € which winimizes the
quadratic form
VI P v =02 (F, AC) = o2 (F,P).

The solution is that value of C which satisfies the normal equations
T

(A" pPA)C=A"PF.

In accordance with adjustment convention, the least squares estimate

. 2,
for the variance factor o, *is

o2 =T p v/ (m-n) = o2 (F,P )/ (n=n) .

The estimate of the covariance matrix of the vector € is then

~

2= 0o (AT pA)”] .

c
If the base & is orthogonal with weight function W then the matrix
- _ <91,6> Gpady> e e <Oy,0 >
APAS a0 <00 e e e <o,,0
o 2°72 2°7n
<¢na¢]> <¢ns¢%> ¢ <¢n,¢n>

is diagonal, and therefore so is its inverse. In this case all cowvariances
between the coefficients c; are zero, that is the coefficients are

statistically independent. |If the base is orthonormal with weight function W,

then AT P A = (AT p A)"‘ = I
and all the individual variances of the coefficients c, are equal to the

variance factor 002. Note that these results depend on the weight matrix P

being diagonal(i.e. having all off-diagonal elements equal to zero).
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4.2 Geometrical Interpretations of the Parametric Adjustment

A vector has both algebraic and geometric meaning. In this section we
investigate the geometric meanings of the vectors involved in the parametric
adjustment. We begin with the vector of observed values mFl’ the weight
matrix um, and the design matrix mAn' The vector of coefficients nC1° is

obtained by solving the normal equations

(AT P A)C = AT PF .
The residual vector mV], is obtained from
V=F-AC
Note that the number of observations, m, must be greater than the number of

coefficients, n. The augmented matrix

[AiF]

contains all the known data (except for the weights in P). The elements of
this data matrix can be considered either to be organized into m-dimensional

column vectors
] _ [} { } i
[A: F] = [A]; Am%m e 'Anl Fl

: vy
or to be organized into (n + 1)-dimensional row vectors, of which there are

m.
Returning momentarily to the notation of the least squares approximation,
we see that the column vectors of [AEF] are the vectors of functional values

>

9.2 (0, (x,), d; (%) 5 e ¢i(x¥ﬁ'\) )

Fz (Flx)), Fley),en Flxg) ).
They can be considered as tables of values which serve to define the

functions ¢i and F.

We will consider two geometries in which A, F and V can be interpreted
as geometrical quantities. In the first geometry, the m row vectors of the
data matrix are considered to be the position vectors of m data points,
plotted in the (n + 1)-dimensional space for which the column vectors are a

basis (that is, the column vectors span this space).
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In the second geometry, the n + 1 column vectors of the data matrix are
considered to be n+l position vectors plotted in the m-dimensionalispace
spanned by the row vectors. These are muiti dimensional geometries,band
can be visually illustrated only if the dimensionality is 3 of less.

Illustrating the first geometry (often called the ''scatter plot") for

the case n=1 and m=b(note n+] space = 2-space), the data matrix is

(o) PG
b 0k) L Fx)
o) 1 )

| |
L ¢~' (X’_*) : F(xh)__
2
5 et

Y
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“I1lustrating the second geometry for the case n =2 and m = 3 (note

m—sﬁace = 3-space): the data matrix is v o -
o () lg) b Rl
¢, (%) E byx) ! Fx,) |+
AR R Ch)

I
+ Row vecior 3

(> NS e s . i sty

Row vecror a.

Row VECTOR§

Note that Geometrical concepts such as parallelism, orthogonality and
fength remain valid in spaces of any dimension even though we cannot

visualize them as above. Some of the terms we use are m-dimensional

hyperspace (a Euclidean space of dimension m), n-dimensional hyper plane

(a Euclidean subspace of dimension n, of a Euclidean space of higher

dimensionality), and m-dimensional hypersphere (a generalization of a sphere

into m dimensions). We will consider these two geometries in detail, but -

will first consider the significance of the weight matrix P.
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L.2.1 Geometrical Interpretation of the Weight Matrix P

We have seen that the statistical meaning of the P matrix is that it is

the inverse of the covariance matrix of the observables. |If P is diagonal,

its elements are the reciprocals of the variances of the observables. Then
the diagonal matrix whose elements are the square roots of the elements of P

]/2) has the reciprocals of the standard deviations

(which we will denote by P
of the observables as elements.

A multivariate statistical distribution is one in which the multivariate
mean is zero and the multivariate variance is unity. It is convenient to
transform the space in whéch the adjustment problem is stated, into a space
in which the multivariate distribution of the observables has been transformed
into the standard multivariate distribution, that is a space which statistically
is hyperspherically symmetric. When introducing the two geometries above, we
specified that the row (or column) vectors of the data matrix be considered
as position (or radius) vectors in our first (or second) geometry. This is
equivalent to transforming the multivariate mean to zero. To transform the
multivariate variance to unity we must transform the weight matrix P into
the unit matrix. We shall call this hyperspherically symmetric space ''tilde
space'' (after the diacritic mark ~).

The matrix operation which accomplishes the statistical transformation
from the problem-space to tilde-space is the premultiplication of the data

matrix by P]/z.

This scales the row vectors of the data matrix by the
reciprocals of the standard deviations of the corresponding elements of F.
Thus

[(AF1 = p'/21AF] = [p1/2 are/2 1.
This transformation also scales the residual vector

V=F-ac=p"2y,
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The adjustment problem is to find the coefficient vector C which minimizes
viv=vlpuy,

and the solution is that vector C which satisfies the normal equations
(A" A) c=A"F.

In tilde-space the weight matrix has been transformed into the unit matrix

P=1.

Note that if P is not a diagonal matrix no immediate geometrical interpretation

or transformation to a statistically symmetric space can be made.

L4.2.2.Geometrical Interpretation of the Approximant Vector and the
Residual Vector.

In this section we will work in tilde-space. Let us take an arbitrary
coefficient vector nC]. To each such vector there corresponds an approximant

vector mGI’ given by
~ n ~
G=AC=71 c, A,
i=1

where ¢, is the ith element of the coefficient vector C, and Ai is the ith

column vector of the design matrix mAﬁ To each approximant vector there

corresponds a residual vector mVl’ given by

~

V=F-aG,.

In the notation of the least squares approximation, G is the vector whose

elements are the functional values of an approximating function Pn’ that is
G = (Pn(x]), Pn(xz)""Pn(xm) ) .

~"~
The first geometry. We have already plotted the row vectors of [A:F]

as position vectors of points in the (n + 1)-dimensional space spanned by
~p
the column vectors of [A:F]. Now let us plot in this same space the row
~p-
vectors of [A:G]. These new data points all lie on a surface in (n + 1)~

space. Because G is a linear combination of the column vectors A?, this
surface is a subspace (hyperplane) of that spanned by the column vectors
~i~
of [AiF]. There is one such hyperplane for each approximant G, or
I

equivalently for each coefficient vector C.
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The residual vector corresponding to an approximant G is the vector whose
elements are the distances from the original set of data points (the row
vectors of [A;E] ) and the new data points (the row vectors of [A;G] ).
Each of these distances is measured perpendicularly to another hyperplane,
that spanned by the column vectors of A.

Thus.in the first.geometry.the parameiric<adiustment‘problem;is to
find that hyperplane (or equivalently that coefficient vector C) which
hest!' approximates the cluster of m original data points, in the sense that
the sum of the squares of the distances from that hyperplane to each data
point, measured orthogonally to a second hyperplane (that spanned by the

column vectors of the given matrix A), be a minimum.

The second geometry. The vector mF] and the n column vectors of mAn

have been plotted in the m-dimensional space spanned by the row vectors of
[AEE]. The n column vectors of A span an n-dimensional subspace (hyperplane)
of this space (which we will call the A hyperplane). Since an approximant
mGl is a linear combinatdon of the column vecbors Ai’ then G lies in the A
hyperplane. The residual vector %0’ then is the distance from a point in

1

this hyperplane to the point whose position vector is F. Obviously the

residual vector is of minimum length (for a given F and given A hyperplane)

if and only if it is the orthogonal distance from the A hyperplane to F
(that is if it is perpendicular to the A hyperplane).

Thus in the second geometry the parametric adjustment problem is to

decompose the given vector F into two other vectors; an approximant vector
G and a residual vector V, that is

~

F=G+V
such that a) G lies in the A hyperplane, that is

G=AC
b) V is orthogonal to the A hyperplane, and thus to every vector in it, and

in particular to the column vectors of A, that is
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It is simple to show that these three-equations are equivalent to the
normal equations. Premultiplying the first by AT and substituting from
the other two we have

ATF= ATgaA"V=AAC+oO
which are the normal equations in our “tilde-space”; ‘This geometry thus
illustrates the meaning of the work ''mnormal'' used fn'”normai equations'.
It refers to the orthogonality (or normality) between the residual vector.
and the approximant vector {or the hyperplane).

in the next sections we will extend the application of this second

geometry to inferpret the condition and combined adjustments.

4.3 The Condition Adjustment

in our second geometry we have seen that in tilde-space the column vectors

~ ~

(AI’AZ"°’An) of the design matrix A form a basis for (span) an n-dimensional

hyperplane (the A hyperplane) in the m-dimensional space spanned by the row

~ )~

vectors of the data matrix [A"F]°

Therefore there must exist (m—n) 1inearlybindependent vectors in m-space,

(éi,ézoo.Bm_n), each of which is orthogonal to each of the column vectors Ai'

That is

é} A =0 for i=1,2,...nand j = 1,2,...,n-n.
If we form the matrix

ﬂT ~ ~ ~
= [8,,6,,...8 1

Then

BA=20
iIf this result is to be valid in both tilde~space and our problem-space then
N
BA=8BA-=
~ 1/2 o~ 1/2 . _ : . - "
But A =P ““A. Hence B=B P , that is the transformation of B to tilde-

space is accomplished by scaling the column vectors of B by the standard

deviations of the correspondihg observables. Continuing in tilde-space, we
~ ~
see that the row vectors of B span an (m-n)-dimensional hyperplane (the B

hyperplane), and that the A and B hyperplanes are orthogonal.
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Premultiplying the equation defining the residual vector V, namely

V=F-AC

by the matrix B, we obtain

~ o~

=BF-BAC=BF.
Geometrically this means that the projection of G onto each of the row vectors
of é is equal to the projection of E onto the same row vectors. However, we
have seen that for the length of Q to be minimized, G must be orthogonal to
A hyperplane. Therefore it must lie 4n the E'hyperplane, that is Q must be
a linear combination of the row vectors of B, or

V=8 K

where the vector of coefficients K is called the vector of correlates.

Substituting this in the previous equation we have
BB K=BF,
the normal equations for the condition adjustment.

Thus the condition adjustment prob]em is to find that vector V (or

equivalently that vector K) such that V lies in the B hyperplane and has the
same projection as the given vector F on each of the row rectors of B which
span the é hyperplane.
Note~ that the condition and parametric adjustments are duals. Any adjustment

problem amenable to solutioniusing one, can also be solved using the other.

k.4 The Combined Adjustment

L.4.1 The Combined Adjustment resulting from Implicit Mathematical Models

The parametric and condition adjustments are used for explicit mathematical
models, and the combined adjustment for implicit mathematical models. Let us
define what is meant by explicit and implicit. If the vector of observed
values F is expressable as a direct function of the vector of unknown
coefficients C, that is

= F(C) ’
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then the relationship (mathematical model) is explicit. However, if F can not
be explicitly expressed as a function of C, that is if the relationship must
be given as

G(F,C) =0
then the relationship (mathematical model) is implicit.

We have seen in the case of an explicit linearrrelationship, the

mathematical model is

F=AC+V,
where A is the design matrix, and V is the residual vector. All adjustment
problems involving such an explicit mathematical model can be handled by both
the parametric and condition adjustments. (Note that the least squares
approximation, as described in these notes, always involves an explicit
mathematical model).

In the case of an implicit linear relationship, F itself will not be

explicitly related to C, but linear combinations of the elements of F will

be. That is,there exists a (design) matrix B such that the misclosure vector

F¥
F* = B F

is explicitly related to C, that is
Fe = A C + V% .

Let m be the number of original observed values, n be the number of
coefficients, and r be the number of linear combinations of the observed
values which are related explicitly to C (i.e. r is the number of equations).
Note that there must be at least one observed value for each equation, that

is
m>r

and there must be more equations than unknown coeffients, that is

r>.n ,
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This would be a parametric adjustment problem if we wished to minimize
the length of the residual vector V¥, whose elements are the residuals
corresponding to the elements of the misclosure vector F*. However we wish
instead to minimize the length of the residual vector V, whose elements are
the residuals of the original vector of observed values F, that is

Ve = B V.

Thus we are unable to use the parametric or condition adjustments without
some modification.

There are two possibilities. The first possibility is to apply the
covariance iaWato;V$ﬁf’B;V to.obtain.the covariance matrix of V* as

T

yx = B3y B

where I,, is the covariance matrix of V. Since the weight matrix we have so

z

vV

far considered is

then
pe=3" = @p 8!

and we proceed to apply*the parametric adjustment to
F = AC + V¥

by choosing that vector C which minimizes the guadratic form
Ve px vk

The solution is that vector C which satisfies the normal equations

T T
A' PXAC=A P*Fx .

The second possibility is to use the combined adjustment, for which the

mathematical model is
F* =AC+ BV
where
F& = B F
and the known quantities are the two design matrices rAh and ?Qm and the

misclosure vector rF?’ so that the data matrix in this case is

[A1BIF]
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The unknown quantities are the vector of coefficients nCI and the residual
vector mV]. The combined adjustment problem is to find that vector C which
minimizes the length of the vector V, or equivalently the quadratic form
VT PV
where um is the weight matrix of the original vector of observed values F.
The solution is that vector C which satisfies the normal equations

W lac=al e ! 8T) Tk

AT 8 p 7' B
(which are the same normal equations as in the first possibility above).
If the weight matrix P of the observed values F is diagonal, then the

statistical transformation to ''tilde-space' is accomplished by the matrix

operations

B=pp /2

v=p2y,
Note that

A=A

Fé = F*

T = v
and in tilde-space

P =1I.

L.L4.2 Geometrical Comparison between Parametric and Combined Adjustments

The difference between the parametric and combined adjustments ean be
explained geometrically rather simply. We will use the second geometry
already described, and we will work in tilde=space.

In the parametric adjustment we are given the data matrix

[ALF]
and the adjustment problem is to decompose the given vector F into two vectors
G A C and Q

~ ~ ~

F=AC+V

such that G lies in the given hyperplane (the A hyperplane) and V is orthogonal

to the A hyperplane. For example
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In the combined adjustment we are given the data matrix

[AlB:F4]
and applying our second geometry, we wish to plot the (n + m + 1) column
vectors of the data matrix as the position vectors of points in the r-
dimensional space spanned by the row vectors of the data matrix. Again, since
n < r, the column vectors of A n define an n-dimensional hyperplane (the A
hyperplane). However there are m 3 r column vectors of ?Em so that only r
of them can be linearly independent, and these column vectors will in general
span all of r-space itself. The combined adjustment problem is to decompose
the given vector F* into two vectors G = A C and V%, that is

F = A C + V¥
such that G lies in the given A hyperplane as before, but V* is not orthogonal

to the A hyperplane. Instead there is a vector of correlates K which is

orthogonal to the A hyperplane, that is

A" K=0
and the vector V¥ is a linear combination of the column vectors of é, where
the coefficients of this linear combination are the elements of a vector Q,

that is

V=BV = 2‘0} Bi
and the elements of V are the projections of K onto each of the column vectors

of é, that is

V=8 K.
The normal equations are obtained by premultiplying the first of the
above equations by AT (B BT)"1 and substituting from the other three equations

ATBB) Fr=aT@e) Tac+aTe) ! v«

where vk = E 0 - é éT K

so that ATee) T ve=aTEBN! B8 K= AK=0.
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5. CONNECTION BETWEEN THE LEAST -SQUARES APPROXIMATION AND INTERPOLATION

Suppoée, in a least-squares approximation problem the number
of basic functions equal the number of points of the discrete M and
W(X) = 1. Then the best-fitting least-squares pol?nomiai is identical
with the interpolating polynomial.

For the interpolating pqunomi31 Pn’ we get the system‘of n

equations for the coefficients:

P, (X)) =

™Mz

] c, ¢i(xj) = F(Xj) ji=1,2,...,n.

i
To show that the same coefficients can be obtained from normal'équations,
let us multiply each equation of the above system by ¢2(Xj), g = 1,2,..,n.
We get

et () 0 0 = PO e (X)) B = 1,2,

When we sum these equations up with respect to j we obtain:
n n

jz] i:_z_:] Cid)i(xj).sz(xj) =.j

It

F X0, (X)) 5

I mMm3

1,2,..,n
1

which can be rewritten as
n

T2 .. (Xo, X)) = T F(X)¢, (X) M= {X,,X ,...,X 3}, &=1,2,...,n.
xeM i=1 ' L XeM L 1772 n
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Interchanging the summations in the left hand term, we get

c, I ¢i(x)¢2(x) = 3 F(X)¢£(X) 2 =1,2,...,n
] XeM XeM

i I R 1

i

" where the summations over X can be interpreted as scalar products for
W(X) = 1. We hence end up with | |
Eepede - g P=t 2.

which is the system of normal equations for the least-squares best-

fitting P (for W(X) = 1). Hence both polynomials are identical.

5.1 Problems
1. Prove by direct computation (choose your own F) that the interpolating
algebraic polynomial of second degree (using three interpolation nodes) is

identical to the best fitting least squares algebraic polynomial of second

degree for F given on three points (M = { x]; Xy x3} ).
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6. APPLICATIONS OF THE LEAST SQUARES APPROXIMATION

6.1 Fourier Series

6.1.1 Generalized Fourier Series

it is conceivable that when working with compact M we may
increase the number of functions in the base beyond all limits, since
a compact set contains infinitely many points. Then the best approximating
polynomial in the least-squares sense becomes an infinite series. |If
the base is, in addition, orthogonal then therseries is known as

generalised Fourier series.

It can be shown that_if the base is complete, i.e. if
there exists no other function apart from f(x) = 0 that is ortho-
gonal to all of the base functions, than the generalised Fourier
series eqﬁals to the given function F in the ''mean sense''. This is
usually written as

F(x) Y im Pn(x)

N>
The equality in the '""mean sense'' becomes the identity when F is
continuous on M . When F is not continuous but differentable at x it

is approximated as shown on the diagram:
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F(0 e Here, as well as in the least-

'f:\-);— qenves
squares approximation, the integrability

of Fon M is a prerequisite. MNote that

- e o

the best approximating polynomials (in
the least-squares sense) for an orthogonal basis can be regarded also

as truncated Fourier series. .
The overall behaviour of the coefficients c; of a generalized

Fourier series, known as Fourier coefficients < =< Fl ¢i>/[!¢i]lz , is

governed by Bessel's inequality

I3 (e, |1 ¢il|)2 < <F, F».

i=]
The equality is valid for continuous F. This can be shown as follows:
< F )¢i>

F-"—(_)Z_OC. d. =%:m§—-*' ¢,
=] | | |.,..]”¢iH I

This equation can be multiplied by W F and integrated with respect

to X over M . We obtain

. <F ¢i>
Sy¥(x) F2(x)dx = L) Fl) 2 ———m ¢ (X)X
o ol .2
b <t H
or  &F,F> = E) —) 000 F() 6, (0 dx = 3 = -
o 11671 e 1]

i

2 2
The Bessel's inequality ensures that the Fourier series converges.
Note that exactly the same treatment can be adopted for two-
dimensional orthogonal systems. The resulting infinite series in two-

dimensions is known as Fourier double-series. The infinite series of

—————— -

spherical harmonics is one possible example.

There is evidently a close relationship between the Fourier
coefficients and the coefficients aji used for orthogonalization (see
3.8), It is left to the reader to interpret the orthogonalization

coefficients in terms of Fourier coefficients.
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6:]:2 'Trigonometric Fourier Series

Perhaps, the most important of all the Fourier series is the
one based on the trigonometric system of functions. It became sub-

sequently known as trigonometric Fourier series. In fact, many authors

when writing about Fourier series mean really trigonometric Fourier series.
Since it is so important we shall state here the particular form of

this Trigonometric Fourier Series,va]though it should be evident from our

earlier explanations. It reads, for an integrable function F defined

it

on M [- 2 ,2]:

F(x) & F (a, cos Lix + b osin L ix)
i=0 po Lk

where

1 .2
T f_.g'F(X) dX

o
1

) n .
a, = ¢ f‘RF(X) cos ¢~ iXdX

- LR sin T ixax
-.2’ )
Note that the Trigonometric Fourier series of an odd function F defined on

b,
i

[~ 2, 2] contains 6nly the sine terms and that of an even function only
the cosine terms. These are usua1ly‘called sine or cosine series
respectively. This is a consequence of a more general feature of all the -
Fourier series based on the commonly used orthogonal systems. We can

see, that the commonly used systems, defined on symmetrical intervals
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and for even weights, can all be split into odd and even functions. It

is known that a product of odd and even functions is an odd function.

A finite integral over a symmetrical interval of an odd function

equals zero. Hence the coefficients by the odd functions become zero

for F even and vice versa. This can be expressed in a form of a

principle that even (odd) function cannot be very well represented

by odd (even) functions or their linear combinations on a symmetrical interval.
In connection with trigonometric Fourier series one should

quote the Riemann's theorem. |t reads: for an absolutely integrable F

(i.e. f: [F(x) | dX exists) the following equality holds

Tim fz F(X) sin deX = 0

W0
even for a » ~» and/or b » ©, |t can also be written as

Tim bi = 0

j->o0
and we can see that the series of b coefficients converges to zero.

It is not difficult to foresee that similar theorems should
be valid for the coefficients of other orthogonal systems too, since
the convergence of the series of the coefficients is ensured. However,
the proofs of these are somewhat involved and not readily accessible

in the literature.

6,1,3, Trigonometric Fourier series in complex form

The trigonometric Fourier series 18 very often formulated
using complex numbers. The reason for it is that the complex form is

much simpler and clearer.
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To arrive at the complex form let us first express the tri-
gonometric functions we shall be dealing with in complex form. Using de
Moivre's theorem we can write:
~int)

(eunt + e

H

cos nt

il

cos I nx !
T —
2

. int -int
(e -e ),

[—

sin nt

w
=
==
%

i
N

i
where we use the index n instead of i in 6.1.2. and | equals now V-1

Hence one term of the trig. Fourier series, known as a trigonometric

term, can be written as:

. . b . .
' . n int ~int n int -int
+ bl + + - =
a cos nt bnS|n nt 5 (e e ) 5T (e e )
a . . b . .
nt - ) nt ~int
=-__|l (el + e lnt) - __!l (el t -e n )
2 ‘e 2
o R + i .
B ?n - ibp int ap + ib, oint
Z 2
e Nt . -int
n -n

Note that the two coefficients Cho €., are complex conjugates. The
subscript -n was chosen to allow the following interpretation.
Substituting the last result back into the original trig. Fourier

series we obtain

o int -int o «© inTx
F(x) &5 (cnem +c e L T L L)
n=0 . N0 n N o .

For the coefficients ¢, we get:

L
-2

O
]

o Ll T oot L fo0 ein T
(an |bn) = 2[2 L7 F(X) cos 2 nXdX- i i f_z f(X) sin ) nXdX]

S B 2 4 ul Ly 1_‘
= [f_gf(x) (cos o X - 1 osin g nX) dx]

Lo
= ~l-f%ﬁf(X) Ny X
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The coefficient c__ can then be easily obtained from c_ being its

complex conjugate.

Note that the complex series is real. It can be shown,
denoting the n-th term of the complex series by fn(x), that fn(x) + fwn(x)

is real for every n =0, 1, 2,... The proof is left to the reader.

6.2 Harmonic Analysis

One special problem of least-squares approximation, harmonic

analysis, is worth mentioning here separately. We speak about harmonic

analysis when the given function F, periodic on M £ [a, bl (i.e. F(x) =
b-a
2n

2n) and we want to approximate it using the best-fitting,in the least-

= F(x + b - a)) is known at 2n + 1 points X, =a+ i (i=0,1, 2,...,

squares sense trigonometric polynomial
ks

(x) = ¥ (a, cos JE+ b, sin j&g), & = &£(x).

P ok

The system® = {1, cos &(x), sin £(x), cos 26(x), ... sin k&(x)} has to
be orthogonal on M.

First of all let us realize that because of the periodicity of

F we have

F(xo) = F(x2n)

so that we have to use only 2n functional values, say F(Xi) i=1,2, ..,
2n. Hence we can accommodate only up to 2n functions in the system ®
and 2k + 1 < 2n. This condition can be rewritten as

k <n~-1/2

The second question is what kind of transformation & = £(x)
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do we have to use to make the system ® orthogonal on
M = {x], Xys vees x2n} ?

We know that the system @(&) = {1, cos &, sin &, ..., sin kg} is ortho-

w » . )
gonal for £. = - m 4+ =i, f=1,2, ... 2n (see 3.7.). Hence the

transformation

X - a_ E+ m
b - a 2m

ensures that the system ®(£(x)) = ®x) will be orthogonal for

b - a
X, = a +

| 7 i, i=1,2, ..., 2n. Therefore

_ 27 _ b -
€= pogx "W (g = Kyx +K

2
is the transformation we are looking for and the trigonometric system
(base) to be used in the problem is

o = H { ‘ R i ‘“}, 4 K N
®= {1, cos (K]x+K2), sin (V]x+K2), cos 2(K]x+K2), .., Sin k(KﬁM+ 2)}

Since the base is-arthogonal on™M ‘we get a diagonal matrix

of normal equations and the coefficients of P2k+l become:
., 2 1 2p
a5 =<F, ]}/H]H "fﬁiilF(xi)

€F, cos j(ISIX+K2)} )
a5 =]|cos j(K,x + Kzﬂlz TR
CF, sin j(K|x+K2)>
*i TR T xR T2

H~s

F(Xi) cos j(K X, + 52)

1 1

=1, 2,.., k .
1 2 ’
T

1S

: F(Xi) sin J(%jxi + Kz),

When evaluating the scalar products we can exploit the

property of the trigonometric functions:

sin JEi = = 51N Jan-i
_]'=],2, -’k)
cos jg; = cos JE, . i=1,2, .., 2n-1,
We can write:
2n . ] n-]( .
;£1F(E) cos jE; =5 I Flg,) + F(Eani)) cos jE. + F(gn) - F(g,)
j=1,2, » k
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B sin g = 1 TE (R - R, ) sin g

The derivation of -the above formula. is left to the reader. We shall
just remark thatthis computational trick reduces the computing time
considerably and is often used whenever we deal with evaluation of
scalar products involving odd and even functions defined on a symmetrical
Mo Note that the problem of harmonic analysis can be also
regarded as the problem of computing the truncated ttig. Fourier

series with the integrals being numerically evaluated using the

rectangular formula. The harmonic analysis has a wide field of

applications whenever the periodic functions are investigated.

6.3 Fourier Integral

If a function F, given on M = (-», ») is on M absolutely

integrable then it can also be represented in terms of the Fourier

integral
F(x) B f: (a(w) cosw x + b(w) sinw x) dw
where
a(w) = %-ITWF(X) cosw xdx
b(w) = %-fwa(x) sinw xdx.

The Fourier integral is obviously a close relative of the Fourier trig.
series. |t can be derived from the trigonometric Fourier series when
the finite interval [~ %, &], for which the trig. Fourier series is
defined,is extended beyond all the limits. We can see that for the

infinite M, the trig. Fourier series ceases to be defined and has to

be replaced by the Fourier integral.
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The only two differences between the trigonometric series and
the integral are:

1) the coefficients a, b in the Fourier integral are con-
tinuous functions of the frequency w as compared to the coefficients as
bn of the series which are discrete functions of the frequency %—n;

2) the summation over the discrete frequencies %-n in the
trigonometric series is here replaced by the integration over the
continuous frequency w.

Fourier integral represents the given function F in the same
way, i.e. in the mean sense, as the Fourier series dves. The same theorems
about representation of odd and even functions by cosine and sine
terms only are valid- even for the integral.

It is left to the reader to show that the Fourier integral

can be written, using complex numbers, as

F(x) & 5° C(w)ei“’x dw

w00

where

clw) = E%»ffm F(x)e—imxdx

6.4 Spectral Analysis

6.5.1 problem of spectral analysis

In dealing with various time series f(t) in practice we are
very often faced with following problem: ''given a time series f(t) defined
on M (discrete) we assume that f can be expressed as

m

f(t) = 3 (ai cos wit+bi sin wit),
i=1
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‘where Wis @y, bi are some real numbers. The task is to evaluate Wiy @,
bi’ i=1,2, ..., m"

If we formulate the problem as a problem of the best least-
squares approximation, we would end up with a system of 3m normal
equations that would not be linear. This is because the'generalized
trigonometric polynomial above contains the frequencies w, as paramaters
within the functions. The solution of such non-linear system of equations
may or may not exist. Even if it did,the numerical computation would
be very awkward and most troublesome.

On the other hand, if the frequencies w; were known, the
coefficients as bi could be determined quite easfly using'the least-

squares technique. They would be furnished by a system of 2m linear

algebraic equations, that usually has a solution.

The problem of finding the unknown frequencies m, constitutes

the proper problem of spectral analysis. Hence the spectfal analysis

can be considered as the first step in the complete decomposition of the
given function f (Usually a time series, hence the use of it) into the
individual trigonometric terms. This type of analysis is of a great
importance and finds applications in electroteqhnique, oceanography,
meteorology, geophysics, biology, medicine, statistics énd many other
fields.

Precise solution of this problem is seldom possible. In the

next section we shall show one of the most widely used techniques

of spectral analysis.
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6.4.2 Fourier spectral analysis

To begin with, let us write the trigonometric Fourier series

of the time function f(t) defined on a finite compact M = [~ 2, 2]:

as
o0 . .
f(t) « % R (cos v cos wt + sin v sin w t)
n h n n
n=0
= FR cos (wt=v)
- n n
where
R cos v = a, R sinv. = b and therefore
n n n n n n
b
2 2 n
R, = /(an + bn)’ v = arctg 3:

Each amplitude Rn is obviously a non-negative real number
that describes the magnitude of the cosinusoidal wave cos (wnt~v ).

These magnitudes can be plotted either against the subscript n:

SLEERENREEN

0 { 2 ‘ N

or against the frequencies 0, = %-n
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This diagram is known as the line spectrum of f and represents the

discrete transformation of f from time space into the frequency space

f(t) > Rlw)

(actually R(wi) in this discrete case).

Such a diagram is evidently able to provide some information about the

contribution of the individual integer frequencies.

The Fourier integral can be interpreted in the same way, to

)

furnish a continuous spectrogramme n %

. : , NPT, |
i.e. for any real value of n in @ =—n,

Not just for integral values of n. R(w) given by

R(w) = 7(a®(w) + b2(w))

is a continuous function of w known as the Fourier transform of f. |Its

graphical representation is called Fourier periodogramme and used

extensively in all kinds of experimental sciences.
If f is known on a finite M only,and this is usually the

~

case with experimental functions, then we define its extension f

?(t) _ f(t) te M
\\\ 0 - t;!'4

rad

and regard the periodogramme of f as an approximation of that of f.
The integrals involved in evaluating a(w), b(w) are generally evaluated

also only approximately since M is seldom compact.

R{w) is then analyzed for peaks or ‘''characteristic peaks''. The number
of these peaks decide the number of terms in the expansion for f(t) in
section 6.4.1. The location of the peaks (w values) become the w, in this

expansion,
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6.5 Problems
1. What does the trigonometric Fourier series of the function F(x) =|sin x|

on xeM = [-m,n] look 1ike?

2. Express the function

in terms of its Fourier integral.

3. What is the line spectrum of

f(t) =% + 3 cos(3t - 5.8) - 2 sin(65t + 3.1) ?
L. Write a computer program to compute the values a(w), b(w), n(w), R (w)
for any function given on an equidistant discrete set M.
5. Using ¢(X) = R(x)»RCY),,v where R is the trigonometric system, design
the algorithm for a computer program that would compute the best fitting
double trigonometric polynomial to any topographic surface given on a
rectangular, equidistant grid. Can you use any other system? What about
mixed algebraic polynomials?
6. Write, debug and document a program that would approximate a function F
given on a grid 5% x 5° on the surface of a sphere by a series of spherical
harmonics. Consider an to be orthogonal on the grid and leave the choice
of the highest order of spherical harmonics up to the user. Include a
check for the proper selection of the highest order. Print out the

estimates of variances of the individual coefficients.
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APPENDIX: SOME ORTHOGONAL SYSTEMS OF FUNCT®HONS

Following are the most widely used systems of functions,
orthogonal on compact sets:

i) Tchebyshev's of 1-st kind, which we have met in 2 -, orthogonal

on M = [-1,1] with W(X) = (1 - x2)"V/2

ii) Tchebyshev's of 2-nd kind:

1

T+k

50.

UK(X) TK+

[ (X)

o

X

_ sin((1+k) arccos X)

/Q - x?)

["],1] with W(X) = (] - XZ)]/Z .

orthogonal on M

i

iii) Legendre's

1 gk
LO(X) =1, Lk(X) =T T

K Z‘I)ky
2 k! dX

(X

orthogonal on M = [-1,1] with W(X) =1 ,

it

iv) Legendre's associated functions

2,2 ¢"
P = (1 - X2 —1 (X)
dX
are orthogonal with respect to n (only for the same value of m)
on M = [-1,1] with W(X) = 1. These are excessively used in geodesy

within the ''spherical harmonics''.

v) Trigonometric system

{1, cos X, sin X, cos 2X, sin 2X, ...}

is orthogonal on M = [-n,n] with W(X) = 1. It can be shown that this

it

system is orthogonal even on discrete equidistant set M = [~m,mor (=m,7]

(note that in this case the interval is open fromone side).
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Other systems for which we are not going to list the
formulae are:
vi) Laguerre's orthogonal on M = [0,») with W(X) = e X,

vii) Generalized Laguerre's orthogonal on M = [0,*) with weight

wix) = x% e—x, where o >-1 is a parameter of the system.
2

viii) Hermite's orthogonal on M & (~»,©) with W(X) = e X

ix) Bessel's orthogonal on M = [0,c] with W(X) = X, where c is a

parameter of the system. They are of the lst, 2nd and 3rd kinds.
x) Jacobi's orthogonal on M = [-1,1] with W(X) = (1-x)% (1+X)8

where o,B>~1 are parameters of the system.

A1l these systems can be also regarded as series of
eigenfunctions of some particular differential equation of 2nd order
(of the Sturm-Luiville's type). Each of them has got its own
"generating function', i.e., a function that developed into power
series has coefficients equal to the individual functions of the
system. For the individual functions in the different systems of
algebraic polynomials, there exist recursive formulae, known sometimes

as Rodriguez's, expressing the n-th element as a linear combination of

(h-1)st and (n-2)nd elements.

1

If a system of functions is orthogonal for XéM = [a,b],

then a system of functions of the argument

E;=oc+-g—:-°‘»(x~a>=k

is orthogonal on M =

! + kZX

a,B]. This equation follows simply from

— O

proportionality equation
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as the reader can easily prove. Note that if a system is orthogonal
on an infinite inierval (Laguer;e's, Hermite's) there does not exist
any linear transformation for the argument that wouldimake the system
orthogonal on a finite interval (b=a = <ewand B-a)/(b-a) > 0).

We may also note that A-times an orthogonal system is

again an orthogonal system as long as A is not a function of X. X can

be even different for different functions of the system.

Many orthogonal systems of functions can be expressed as special

cases of a generalized system of functions called the Generalized

Hypergeometric Series, which is written

Foologso oueeiia s 00000500005 X)

P a P q
N P S S
n=0 -
(), (pz)n---(pq)n n !

where Pockhammer's Symbol (a)r is defined in terms of gamma functions

Y (ot ﬁ)
r T (a)

(o)

and a],az,,..ap and p],pz,...pq are constants.

For example

T (x) = F, (-n,n;1/2; _1-x). ‘Tchebyshev of lIst kind
n 21 5 J . . i :
U_(x) = (n+1) ,F, (-n,n+253/2; 1-x ) Tchebyshev of 2nd kind
. - Kkind
L (x) = F. (-n,n+l131; 1-x ) : Legendre .
n 21 5

Following are tables giving the lower degree polynomials in some of

these systems of orthogonal functions.
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TCHEBYSHEV 1-ST KIND

T:(x) K , Tt(x)'
1 5 l6x5 - 20x3 + 5x
X v 6 32)(6 - 748xll + Iaxz -1
2x% - 1 7 6hx7 = 112x% + 56%° - 7Tx
hx3 - 3x 8 128x5 - 256x° + 160x" - 32x% + 1
8xt - 8x2 4 1 9 256x0 - 576x/ + 432x° ~ 120x° + 9x

T (x) = 2""Tn(x).
TCHEBYSHEV 2-ND KIND

Uk(x) k . : Uk(x)
1 5 32x5 - zllx3 + bx
2X 6 615x6 ~ 80><Ll + 2h4x - 1
hx? - 7 128x/ - I92x5 + 80x° - 8x
8x3 - hx 8 256x8 - h48x® + 240x" - hox? + 1
16xH = 12x% + 1 9 512x7 - 1026x’ + 672x° - 160%° + 10x
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LAGUERRE
k Qk(X)
0 + ]
1 - x + | 1
2 - xzi* by + i
3 x5+ 9x2 - 18x + 6
L xh u~l6x? + 72xz - 96x + 24
[ -+ 25xh- 2000+ 600x° - 600x % 120
HERMITE
k Hk(x)
0 1
1 2%
2 i*xz - 2
3 8x3 - 12x
b L 2
16x 48x° + 120%
5 32%° - 160%5 + 120x
LEGENDRE
K uté(x) k L, (x)
0 ] 5 | (1/8) (63x° - 70x° + 15x)
1 x 6 | (1/16) (231x° - 315x" + 105x% -5)
2 (1/2) (3x% - 1) 7| 1716) (m29x” - 693x> + 315x3 - 35x)
3 (1/2) (5x3 - 3x) 8 (1/128) (645@8 - 12012x6 + 6930x” -
- 1260x2 + 35)
4

(1/8) (35x" - 302 + ) || 9 | (1/128) (1215557 - 25730x + 18018x° -
' - 1620x> + 315x) 3
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