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PREFACE 
 

In order to make our extensive series of lecture notes more readily available, we have 
scanned the old master copies and produced electronic versions in Portable Document 
Format. The quality of the images varies depending on the quality of the originals. The 
images have not been converted to searchable text. 
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J. INTRODUCTION 

l.l Notation Conventions 

Since sets, vectors and matrices occur together in some of the discussions 
in these notes, the following convention is used (theee are exceptions): 

The elements of a SET are enclog;ed in BRACES, e.g. A ::{a,b,d 

The elements of a VECTOR are enc lo.s,ed in PARENTHESES, e.g. 1.. = :(a,b,c) 

The elements of a MATRIX are encl&&ed in BRACKETS, e.g. A =[a b c 1 - d e f 
Other notation conventions, which may be unfamiliar to some readers are: 

SYMBOLISM 

{Xl, ... xn} 

{X.} 
I 

A ::{X.} 
I 

A =[a,b] 

A - [Ej 'b) 

A - (a, b] 

A - (a, b) 

x £ A or A 3 x 

yf.A or A~IY 

A¢·'8 or B)A 

t1EAN I NG 

"The discrete set whose only elements are x1, x2, .. Xn 11 

11The discrete set of all elements X. 11 (The rule fori is 
specified elsewhere and understood here) 

"A is the discrete set of all e 1 emen t s ~i'.. 11 

I 

IIA is the compact set of a 11 X such that a < x < b" 

"A is the compact set of a 11 x such that a < x < b" 

"A is the compact set of all x such that a < X < b" 

IIA is the compact set of a 11 X such that a < x < b" 

"x is an element of the set A" or equivalently "A contains 
the element x" 

"y is not an element of the set A" or ~·qui va 1 ent 1 y "A does 
not contain the element y11 

I lA is a subset of B" or equivalently 118 contains A" 



{A -+ B} 

f E:{A -+ B} 

f (x) 

A n m 

[A i B] 

AT 

A 
-1 

I 

=+ 
iff or* 

- 2 -

"the set of a 11 mappings from the set A to 1he set B11 (A 
mapping relates one and only one element of B to each 
element of A). 

"f is a mapping of A to B"i (If A and Bare numerical sets 
then f is called a function). 

"the functional value of the function f" (x e: A is the 
argument, f e:fA-+ B}is the function, and f(x) e: B 
is the functional value. A is the domain or definition 
setoff, and B is the range or image set of f). 

"the set of all real mumbers" 

r'the set of all positive real numbers" 

"the set of all ordered n-tuples of real numbers" 

"the matrix A which has n rows and m columns" 

"the augmented matrix formed by the column·vectors of the 
matrices A and B" (A and B must have equal numbers of 
rows). 

''the transpose of the matrix A" (found by interchanging rows 
and columns of A). 

11 the inverse of the matrix A" (the inverse exists if and only 
if A is nonsingular, that is its determinant is nonzero). 

11 the identity matrix" (having diagonal elements equal to 
unity, off-diagonal elements equal to zero). 

11 imp1 ies" 

"if and only if" 

Some of the functions which are used in these notes are: 

: E f (x) ''the sum of a 11 functional values of f, evaluated over the 
·.~EMf domain M" 

.J&VH f (x) "the product of a 11 functional values off, evaluated over 
the domain W' 

ma~ Xt 
f (x) "the maximum functional value of f, evaluated in the domain 

M" 

min f (x) "the minimum functional value of f, evaluated in the domain M'' ){£tf.: 



J f (x)dx 
. ;; :H 

1 i m t (x) 
x+a 

II f II 
< f ,g > 

I f I 

- 3 -

11 the integral of f over the domain M" 

"the limit of the functional value off, evaluated as x 
approaches a" 

"the norm of the funct l on f 11 (see page 7 

11the scalar product of the functions f and g 11 (see page }7 ) 

"the abso 1 ute va 1 ue of the function f 11 (see page 6 ) 

: p(f,g} "the distance between the functions f and g" (see page 6 ) 
y,_ 

(f = v'(f) =(-F) 1''i:he square roo' of the function f" (the functional value of 
the square root function is always non-negative) 

"equality in the mean sense" (see page 51 ) 
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With the increasing use of computers, the importance of the 

theory of approximation increases, too. It has ceased to be a domain 

for pur~or applied mathematicians and has crept into all kinds of 

fields. It is not only the vital part of numerical analysis, but is 

used whenever we have to deal with functional relations and their 

numerical representation. Hence the theory of approximationhas become an 

indivisible part of all experimental sciences and ~1 branches of 

engineering. 

The problem of approximation can be defined as follows: 

given a function F, defined on a set M (compact or discrete), find 

another function of a prescribed general form that would represent the 

given function in a specified way. The approximating function can be 

represented, without any loss of generality, as a ''generalized 

po lynomi a 1 .. ": 

p = 
n 

n 
L: 

i=l 
c. ¢. 

I I 

vJ'lere c E:E (E is the set of real numbers) are known as the coefficients 
i 

of the polynomial and ¢i are the prescribed functions. The degree of 

the approximating generalized polynomial may even grow beyond all limits 

if we want. The set of the prescribed functions 

has to have certain properties for certain approximations, as we shall 

see later. The individual functions ¢., and therefore even the polynomial 
I 

P , may be functions of one, two or n-variables. 
n 



rh~re;ilt'e three distinctly different categories of 

approximations, namely 

i) point approximations; 

ii) approximations with prescribed properties; 

iii) best interval approximations. 

i) The point approximations seek to approximate the given 

function Fat a specified point(tcisay)in a prescribed way. The best 

known technique here is that of Taylor (McLayrin) that seeks the point 

approximation to an analytic F such as to have as many common derivatives 

with F as wanted. With infini'lelymany common derivatives, it r.e:presents 

F on any t~ter~al M, providing F is on M continuous. P in this case 
n 

is an algebraic polynomial or a power series, i.e., ~· =Xi. We are 
I 

not going to devote our attention to this type of approximation since 

it is sufficiently known. 

ii) These are various techniques based on various ideas. 

The most widely used of these approximations is the approximation using 

"spline functions", known as spline approximation. The properties of 

the approximating function is that it approximates the given F in sections 

having common tangent (or even derivatives of higher degrees) in the 

points where the sections join. This kind of approximation ~s recently 

bece~ quite popular because of its ability to lend itself to an easy 

physical interpretation. To venture into these approximations is not 

the purpose of this course. 

iii) The last and by far the most widely used is the best 

approximation on an interval. Because of its importance we shall devote 

a whole section to it. 
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... 1-}. Best Approximation on an I nterva 1 

The problem can be generaly formulated as follows: for the 

given function F defined on M find such a P -- for a previously selected 
n 

~ -- that has the smallest distance from F. 

What is the distance between F and P ? In order to be able 
n 

to answer this question we have first to define the space into which we 

are going to measure. It will be the set of all possible functions 

defined on the same set M of arguments as F. Such a set (let us denote 

it by Gml Is known as functional space. Note that F £ G , too. 
m 

Once we have got the space to measure the distance in,we can 

proceed to define the distance. It can be shown that any function 

p (G, H) 

that maps a two-tuple of functions G~ H from our functional space Gm' 

onto the set of real numbers can be used to measure the distance, 

providing it satisfies the following three conditions: 

i) p(G,H) > 0 (p(G,G) = 0) (non-negativeness) 

ii) p(G,H) = p(H,G) (symmetry) 

iii) p(G,H) ~ p(G,E) + p(H,E) (triangle rule), 

where G,H,E e:Gm. These conditions are known as the axioms'for distance 

(or metric). 

It can be seen, that the above axioms are satisfied for a 

large family of functions. In practice mainly the following two metrics 

are used: 

i) p(G,H) = max!G-H! 
Xe:M 

known as the ~niform metric and 
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ii) p(G,H) =IIG-H!I, 

where IIFII is the ~ofF, is known as the mean-quadratic or least­

squares metric. The use of the first metric leads to unifor~ (minimax, 

Tchebyshev) approximation while the second leads to mean-quadratic or 

least-squares approximation. 

1.4 Problems 

1. Which sets are finite? Which sets are compact? 

The people living on the earth. 

All integers between 1 and 100. 

All integers. 

A- [0, 1]. 

A- {0, 1}. 

2. Given sets A - {a, b, c} and B ~· {x~ y, z} which diagrams 

define functions? 

c 

3. Given sets A ~ {a, b, c} and B ~ {0, 1} how many different. 

functions are there from A into B, and what are they (diagrammatically)? 

4. List the domain and range for the 24 goriiometric functions 

(trigonometric, hyperbolic, and their inverses). 
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2. UNIFORM (TCHEBYSHEV) APPROXIMATION 

Tchebyshev has proved that the best fitting P to any F in 
. n 

the uniform sense (the~ that has the smallest uniform distance) 
n 

always exists on any M. This proof is based on two Ykierstrass 1 

theorems telling us that there is always an algebraic or trigonometric 

polynomial 

e:= IF - p I n 

P that approximates the given function F with an error 
n 

smaller than a required value •. The degree n of P depends 
n 

on the required value. 

On the other hand, there is no satisfactory method that would 

solve the problem of finding such a P for any wand F. Tchebyshev 
n 

himself has come up with a solution to the seemingly nonsensical problem: 

"given F(4>) = 0 on M:: [-1,1] and~:: {l,X, .•• ,Xn}, find the uniformly 

best fitting.Pn+l under the restriction cn+l = 1''. (Note that without 

the restriction cn+l = 1 the Pn+l (best fitting) would be identically 0). 

He found that such a Pn+l is given by following relations: 

P n+l (X) = T (X) 
n 

1 
== n-T cos 

2 
(n arccos X) n > 1 

T (X} = 1 • *) 
0 

*) Note that the degree of an algebraic polynomial, as it is generally 
known, differs by 1 from the degree of a generalized polynomial. The 
algebraic polynomials with coefficients by the highest degree term equal 
to one are known as normalized algebraic polynomial?. Note also that 
Tn for n even is even and for n odd is odd. 



Let us agree, from now on that the algebraic polynomials containg Xn 

will be denoted by subscript n rather than n+l. These algebraic 

polynomials became consequently known as Tcheb~shev polynomials (of the 

1st kind). 

The same problem can be formulated for M _ [a;b} which, 

after the linear transformation 

1 Z = 2 (a + b + (b-a)X) 

(show that this linear transformation transforms the interval [-1,1] ~X 

to the interval [a,b] s z) .leads to a'new system of polynomials 

T (Z) = (b-a)" T (X) • 
n 2n n 

The quoted solution to the nonsensical looking problem 

permfts to solve two different categories of probl~ms: 

i) Tchebyshev Economlzation 

It can be shown that the best uniform approximation of 

the function F(X) = Xn on M = [-1,1] by an algebraic polynomial t n-2 

(note th~t n-2 is the degree of the algebraic polynomial, i . e., r . 
n-2 

contains n-1 terms) is given by 

T = Xn - T (X) • n-2 n 

The maximum error involved Is 21-n. This fact can be used in lowering 

the degree of a given algebraic polynomial by one ~ith the minimum 

uniform error. 

x2 x3 x4 
Example: P4 (X) = 1 -X+ 2T- 3T + ~ is to be lowered by one degree. 

The best uniform approximation to x4 , T2(X) is given by: 



lO 

Hence 

1 1-4 1 The error involved in the approximation is smaller than i.iT. 2_ =-= 
234! 

= 1 ~2 ~ 0.005 on M:: [-l ,1]. 

Similar treatment can be designed even forM- [a,b] using 

the variable Z as described above. 

This trick can be used when we want to represent a function 

In the form of truncated power series. The representation is more 

uniform when we truncate the series further on and lower the degree of 

such polynomial than if we truncate the series at the wanted place and 

leave it as it is. .. 

i) Tchebyshev Algebraic Interpolating Polynomial 

If we have a continuous function F and want to inter-

polate it on [a,b] using an algebraic interpolation polynomial of a 

prescribed degree n, the interpolation will give the least residual if 

we chose for interpolation nodes the roots of the Tchebyshev polynomial. 

The maximum error is then 

(b-a)n+l 

Rn+l = 22n+l (n+l) 
max 
Xda ,b] 

. , (n+l) 
\ f (X) I 
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2.1 Problems 

Solved Problems 

1. Tchebyshev polynomials. Compute the Tchebyshev p&tynomials of the first 

kind, T (x), for degrees n from 0 to 6. 
n 

Solution 

Tchebyshev polynomials of the first kind are given by 

T (x) =cos( n arccos x). 
n 

Let x = cos 8, or 8 = arccos x. Then 

But 

therefore 

T (x) = T (c6s 8) = cos n 8: 
n n 

cos n8 =cos ( (n - 1). 8 + 8 ) =cos 8 cos (n-l)e - sine sin (n-1) 0 

cos(n-2)8 = cos(Xn-1).-0) = cos8 cos(n-1)8 •~i~ne sin(n-1)8 

cos n8 = 2 cos8 cos(n-1)0 cos(n-1)0- cos(n - 2)0 

or T (x) = 2 x T 1 (x) - T 2 (x). n n- n-
Now for n = 0 and n = 1 

r 0(x) = cos (0) = 1 

T 1 (x) = cos (arccos x) = x. 

Hence using the recursion relation we obtain 

r 2 (x) 2 X 
2 = -

r 3(x) = 4 x3-3 x 

r 4(x) 8 X 
4 8 x2 + 1 = -

r 5(x) = 16 x5 - 20 x3 + 5 X 

r 6 (x) 32 X 
6 

LIB X 4 + 18 X 
2 - 1 • = -
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2. Roots of Tchebyshev Polynomials. Compute numerical values for the 

roots of the Tchebyshev polynomials of the fisst kind, T (x), for degrees 
n 

n from 2 to 6. 

Solution. 

For the roots x. of T (x) 
1 n 

T (x.) =cos (n arccos x.) = 0, x. 8 [-1, 1] n I I I 

0 ( • 1)'tf%f(.·· n arccos xi = arccos = 21 - 1t' 

all'<!r¢os x1 = (2 i ':"' 1) 1r 

2n 

There will ben distinct roots x., for each of i = 1, 2,lll,n. 
I. 

n XI 

2 + cos 45° 

3 0, :!:' cos 30° 

4 :t COS 22 .f-D + cos 67 r -
5 0, ± cos 18°, + cos 54° 

6 + cos 15°' + cos 45°, + cos 75° -

= r,, 2, .... ·n 
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3. Tchebyshev Economization. Represent the function cos z, z E[ -w,w ], 
n 

by the truncated power series P (z) = ~ 
n · k=O 

Represent the same function again by applying Tchebyshev economizat"ion 

to the last two terms of the truncated power series P0 +2 (z), obtaining a 

second polynomial of degree n. Compare these two approximating polynomials, 

taking Pn+2 (z) as the standard. 

Solution. 

The function cos z, z d -w,w ] is transformed to cos x, x d-1 ,1 ] 

by z·., = (1/2) (a + b + (b - a) x) = (1/2) ( - n+ n + ( n+n ) x) = wx 

n 
and thus P (x) ~ ~ · · (·l)k 

n k=O 

(7l'x)2k 
(2k) I , x € [ ~ 1 , 1] : M 

and 

So that 

Pn+2(x) = p, :(k}' + (-l)n+l { x)2(n+1) 
n [2 (n+ 1)] I 

{-1) (n+2) (x)~Hn+2) +--...,..;._ __ _,_...._ __ _ 

[2 {n+2)] 

max 
XEM 

= 

= 

~· (-l) (n+l) {7l'x)2(n+1) 
+ 

(~l)(n+2) (7l'x)2(n+2) 

[2 (n+2)] [2 (n+1)] 

hrx) 2 (n+J) 

[2 (n+ 1)] ! 
2 ) - (7l'X) 

(2n+4) (2n+3) 
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let~ (x) be the n-th degree polynomial resulting from Tchebyshev n 

economicatlon of the (n+l) and (n+2) terms of P0 +2(x). Then 

max 
xe:M 

max 
xe:M 

Hence max 
xe:M 

= 

= 

2 (n+ 1) · T (x) 
x - 2 (n+1) 

x2{n+2) 
- T 2 {n+2) (x). 

~n {x) - Pn+2 (x) 

(-1)(n+1) 2 (n+ 1) 

[2 (n+l)] 

1T 
2 (n+l) 

= 

·= 

(-1) n+2 2(n+2) 
+ 

22n+1 ··· [2'(n+2) J ! . 

2 
1T 1 

[2 (n+ 1)] (- (2n+4)., (2n+3) +)( 22n+1. 

1 

22n+3 

~ 
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,... 

And we conclude that Pn+2 (x) is better approximated by Pn(x) than by 

P (x) by a factor of about 2-(Zn+l). 
n 

4. Tchebyshev Algebraic Interpolating Polynomial. Design an algorithm for 

computing the Tchebyshev algebraic interpolating polynomial of degree n for 

a given function F(z), z E [a,b). 

Solution. 

A function F(z) defined on the c;lamafn. [a,b] can be approximated by 

algebraic polynomials of degree n 

n· 
P (z) = E 

n k=o 
If the cofficients ck are chosen such that for (n+l) given basepoint values zi 

P (z.) = f (z .1 ) n 1 

then Pn(z) is called an algebraic interpolating polynomial for F(z). The 

Tchebyshev algebraic interpolating polynomial is the one in which the 

basepoints zi are chosen to be distributed over [a,b] in the same way 

that the (n+l) roots x. of the Tchebyshev polynomial of the first kind, 
I 

Tn+l (x), are distributed over [-1 ,1]. 

Given a function F(z), i·tsdol!'atn.:]a,b], and the degree of polynomial 

desired, n, the algorithm to compute the Tchebyshev algebraic interpolating 

polynomial contains the following steps: 

a) Compute the (n+l) roots xi of Tn+l (x) 

b) Compute the equivalent values for z. from 
I 

z. =(1/2) (a+ b + (b -a) x.) • 
I I J 

(see problem 2) • 

' 

c) Solve the system of (n+l) linear equations 

n k 
P (z.) = I: ck z. = F (z 1) , i = 1 , 2, ••• n+ I 
n 1 k=o 1 

for the (n+l) coefficients c , c 1,c2 •.. c • 
o n ' 

d) The Tchebyshev algebraic interpolatLng polynomial is then 

( n k 
P z) = E c z 

n ~~-n k 
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Unsolved Problems. 

5. Express the powers of x in terms 9f the Tchebyshev polynomials of the 

first kind, from x0 to x6. 

6. Apply the results of problem 3 to a specific case. Choose a value for 

n. Should n be even or odd or does it matter? Compute numerical values ,.., 
for the (n+l) coefficients of P (z) and P (z). Compare.the "true11 values 

n n 

of cos z to each of these approximations for several values of z. Which 

approximation has the maximum error for values in the interval [-'If, 'If]? 

For values in the interval [-TI/2, 'lf/2]? 

7. Apply the results of problem~ to a specific case~ Let F(z) = sin z, 

z s [0, n/2]. Should the algebraic polynomial of degree n for this function 

contain only odd powers of z, only even powers of z, all powers of z, or 

does it matter? Choose a value for n such that the Tchebyshev algebraic 

interpolating polynomial approximates F(z) to better than 1 .lxl0-5. 
( 

Compute the coefHcients for such a polynomial. Write a computer program 

to compute sin z using this polynomial, using the method of nested 

mutiplication {Horner's Method). 

8. Choose any problem from chapters 2 or 3 of Cheney [1966] and solve it. 
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3. LEAST SQUARES APPROXIMATION 

~.1. Norm And Scalar Product 

We call the norm of G e Gm a function IJG II that maps the 

element of G onE and satisfies the following axioms: m 
i) jjGjj .::_ 0 (jjGIJ = 0 if and only if G(x) - 0 on M) 

i i) II AG II = I A I II G II for A£ E 

i i i) 

A space Gm in which a norm is defined is said to be a normed space. 

The norm in the least-squares approximation is in practice 

defined in two different ways 

IIGII =IE W(X) G(x) 2 e E+ 
xeM 

for discrete M and 

IIGII =.; J W(X) G(X) 2 d)( G:E+ 
M 

for compact M and F integrable in Riemanntssense (all the integrals 

involved in our development are considered Riemann's). Conceivably, the 

integrals could be taken as defined in Lebesg·ue's sense or other just 

as well.) The function W that has to be non-negative on M is known 

as weight function. Note that ·the Tchebyshev's distance p(G,H) can 

also be considered as a norm I jG-Hj I . 
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Note that the distance I IH-G! I on discrete M is Eucleidean: 

p(H,G) =I E W(X}" (H(X)-G(X)} 2 E E+ 
xeM 

i.e., describes the distance in the common Eucleidean geometric space 

with axes x1 scaled inversely proportionate to W(Xi)~ 

In order to simplify this notation in the forthcoming 

development, let us define one more operation on the functional space 

Gm' the scalar product of two functions. If G,H e G then m 

(G, H) == 

I E W(X)·G(X)·H(X) 
XEM · 

"'! W (X) •G (Ji) • H (X) dX 
; . M 

,~; 

is known as scalar product for M discrete .or compact respectively. The 

functional space on which scalar product is defined is known as 

Hi lbertian functional space. (Generally the scalar- product can be 

defined in infinitely many ways providing it satisfies the axioms for 

scalar product that are somewhat similar to the axioms of metric. In 

practice though the two definitions are used almost exclusively. They 

are closely related to the selected metric of the functional space.) 

For any two G,H E Gm the Schwartz 1s inequality 

is satisfied. This is, of course, true for both definitions of the 

scalar product. 

If for two functions G,HeGm the scalar product is zero, they 

are known as orthogonal. Consequently, if for a system of functions ~.C. 

Gm the following equation is valid 

/ Ki -# 0 t=j 
<cf>.,cf>.> =\.. . 

I J '- O i~J 
i,j = 1,2,.· .. ,n 
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the system is known as a system of mutually orthogonal functions or 

simply an orthogonal sxstem. Note that 

th f th orm of ~ The above equation is often written e square o e n ~i · 

uiing the Kronecker 5, a symbol defined thus 

i=j 

i :F j • 

Using this notation, we can rewdte the condition for orthogonality of 

(p(Z Gm as 

<<J>., cp.>= 11<~>.11 2 5 .. 
I J I I J 

i,j = 1,2, •.. ,n. 

If, tn addition to the orthogonality, the norms of all the 

cp's equal to 1, the systemi is said to be orthonormal. For such a 

system we have 

i,j = 1,2, ..• ,n. 

Note that the orthogonality (orthonormality) depends not 

only on 41 but M and W as we 11. Hence we may have orthogona t (orthonormal) 

systems on one M and not on another M'. We can also note that an 

orthogonal system can be always orthonormalized by dividing the 

individual functions of the system by their norms. 

3.2 Base F~nctfons · \ 

Providing the prescribed functions q, = H 1, <1> 2 , ••• , <~>n} 

are linearly independent on G , we talk about the base til. If and only 
m 

if ~ is a base, the coefficients of the best fitting polynomial P 
n 

can be uniquely determined. More will be said about it later. 



19 

The necessary and sufficient conditon for cfll~ $2' •.• ' <fl n 

to be 1 i nearly il)dependent on G m is 

n 
E L cp, (X) = 0 XEM, LEE 

i = 1 
I I I 

if and only if all the A 1 S equal to zero. When the ~·s create a base 

the following determinant, known as Gram:.'s determfnant, ~ 

(cfl 1' cp 1> .• (cp 1' tP2>' ••• , .<<ll 1' $ n> 
<tP2' cp t>' <<1>2 t tP2>. • •• ' <<Pz, <fln) 

• • • 
G{¢>) = det { ~., <P. >) = • • I J • • • 

<cfln' <Pl~'<:c!ln, cfl2>' . .. ' <«P , <P > n n 

is different from zero. It can be shown tnat~the deftnttfon'.of linear 

dependence (independence) using the linear combination and using 

Gram 's determinant are equivalent. let us point out here that if M 

Is a discrete set of m points, the necessary condition (not sufficient!) 

for I to be linearly independent on Gm is that n be smaller or equal 

to n. 

We may note at this point that the Gram 's determinant of 

an orthogonal system of functions is given by 

G (I) = 
n . 2 
II II</> • II . 

i= 1 . I . 

Similarly, an orthonormal system has got its Gram 's determinant equal to 
n 

G ( ITI) = II 1 = 1 • · 
i=l 

Hence 1r1e can see that an orthogona 1 (orthonorma 1) system cannot be 

linearly dependent. If one or more of the norms equal to zero then, 

according to defintion, the system ceases to be orthogonal. This 

will be the case when the number of functions is larger than the 

number of points in M, if M is a discrete set. 
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3.3 Normal Equations 

According to the general formulation of the problem of the 

best approximation on an interval we shall now be looking for such a 

generalized polynomial Pn, i.e., its coefficients c 1,c2 , ••• ,cn, that 

would make the distance I jF-P I I the minimum. n 

To begin with let us take M to be discrete. This means that 

we should minimize the Eucleidean distance l E W(X) (F(X) - P (X)) 2 
XEM n 

with respect to c1,c2 , •.. ,cn. Here, the minimum of the square root 

·obviously occurs for the same argument as the minimum of the function 

under the square root sign. We may therefore write the condition as 

.to in . p2 (F ,P ) = min E W(X) (F(X) p (X)) 2 
c 1 ' c2 , ... c e: E n c 1 ,c2 , .•. cne:E n n . Xe:M 

n 
Min I: I: W(X) (F(X) = cl ,c2' •.• e:ne:E - c. 

X~M i=l I 

The extreme (minimum cr.-maximum) of the above sum occurs 

if and only if all its partial derivatives with respect to the. 

individual c's go to zero. Since the maximum, for F(X) finite, 

is achieved for only infinitelylarge values of c's then we may see 

that any finite solution (values of c's) we gei from the partJal 

lf>i 

derivatives equated to zero will furnish the minimum distance rather 

than maximum. 

(X)) 2 
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Carrying out the operation of minimization we get: 

= 

= 

= 

d 
a c. 

I 

2 1: 
X 

-2 

- 2 

L: 
X 

1: [W(X) (F(X) - E cj <Pj (X)) 2] 
X~M J=l 

[W(X) (F (X) d 
c j 4> J (X))] - E c. </>J (X)) - (- L: 

j J ac. • 
I J 

[W(X) (F(X) - L: c. <PJ (X)) 4>· (X)] 
j J I 

E [W(X} (F(X) <Pi {X) - E c. <Pj (X) <I> i (X)) J 
X j J 

= - 2 E W (X} F (X) </>. (X) + 2 E W(X) E c. <jlj (X) !fl. (X) = 0 
X I X j J I 

Here the 2's can be evidently discarded and we get 

E W{X) F(X) 4>. (X) == E W(X) E cj $. (X) <l>i (X) 
X 1 X J J 

i=1,2, .•. ,n. 

i = 1,2, ... , n. 

But the left hand side is nothing but [F,<f>i1 and the right hand side· 

can be re\'1/r i tten as 

E W(X) E c. 4>· (X) 4>· (X) = L: cj E W(X) <f>. (X) <I>· (X) = L: c1· <(>. ,<f>?' • 
X jJJ I j X J 1 j J 1 

Hence we end up with the system of linear algebraic equations for 

• 0 " ' 
c : n 

n . 
E 4 1 ,</>, c'. = ./F, ·cp.1'-j=l X J.(' J . "'-.: i/ 

i=l,2, ••. ,n.· 

This system of equations 1s Known as tne normal eguattons. 
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If we consider the mean-quadratic distance in G forM compact: m 

we end up with exactly the same system of equations with the only 

difference that the scalar products(~.,~.), IF,~.) will be defined as 
I J "\ I 

~ •. ,<j>.>= !M. W(X)·<j>.(X)·¢.(X) dX, LF,¢.)= f.:', W(X)·F(X)·<j>.(X) dX. 
~ I J I J ""' I rr I 

The proof of this is left to the reader. Hence if we use only the 

general notation for the norm and the scalar product both developments 

remain exactly identical. 

We can, first of all, note that the determinant of the 

matrix of normal equations 

A =IT<¢, ,¢j>3! 

is nothing else but our old acquaintance from .:.~3i2 .. , the Gramr's 

determinant: 

G(fk) = det (A)= det ~<j>i,¢j>). 

Now, we can see the importance of the requirement that ~be 1 inearly 

independent on G . The linear independence oft insures that m 

G(~) ~ 0 and therefore the matrix A has an inverse A-l. Hence the 

system of normal equations has the unique solution 

We may note that if the system 4! is orthogonal 

A= diag(<¢i,¢ 1 t>]= diag (!!<Pi!! 2) and the system of normal equations 
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degenerates into ann-tuple of equations containing only one 

coefficient each: 

II ~ . 11 2 c . = ~tF", ~ .1 > I I 
= 1, 2, ... , n. 

The solution then is trivial: 

i=1,2, ... ,n. 

For an orthonormal system~, the normal equations degenerate 

still further and we get: 

We may wish~ for a certain class of problems, to preserve the 

inverse of the matrix of normal equations (note that it does not 

depend on F in any way) and compute the appropriate coefficients by 

multiplying the inverse by<;F~~~ involving th~ given F. This may 

happen when a multitude of F 1s is given on a common M and we want to 

approximate them all using the same base and weight function. 

This idea can be carried further. 

elements of A-l. Then we can write 

Let us denote by 

a .. <,.f ,~ ·> 
I J J 

i=l,2, ... ,n. 

a .. 
lj 

the 

Let us limit ourselves to the discrete M, for the moment, and we get 

n 
c. = 2: a .. E W(X) F (X) <P j (X) 

I 
j=l IJ XEM 

n 
= E W{X) F (X) 2: a .. q, j (X) = 1' 2, ••. ' n. 

XEM j=l IJ 
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n 
Denoting ~ aiJ' ¢.(X) by f. (X) we can write 

j=l J I 

c. = 
I 

E W(X) F(X) fi (X)= ~f, fi) 
xeM 

i=l,2, ... ,n. 

Here f. (i=l ,2, ... ,n) are some new functions that are obviously derived 
I 

from all the original functions ¢i (i = 1,2, ... ,n.). 

The alternative approach would be to define 

,.. 
f. (X) = W(X) f. (X) 

I I 
= 1,2, ... ,n 

and c. then would degenerate further to 
I 

c. = 
I 

d 
E F(X) f. (X) 

XEM 1 
i = 1 ,2, ... ,n 

,.,., 
Here f 1s or f 1 s can be stored (they do not depend on F, only on ~ and 

M) and the coefficienttof the best fitting polynomial to any F ~·.ah be, computed 

from one of the above simple formulae. 

It is left to the reader to prove that for compact M the 

following expressions hold: 

c. = ~F, f i> 
I 

n = 1,2, ... ,n 

f. = ~ a .• ¢ j (X) 
I j=l IJ 

and c. =<F,f.)., W(X) = 1 I I 
= 1 ,2, .... ,n 

n r. = E a .. W(X) ¢.(X) 
I j=l I J J 

TFiey are same as these for di:screte M witfi tFi.e only difference that 

tfie scalar products are defined by tntegrals instead of summatrons, 
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3.6 Recapitulation of the Least Squares Approximation 

Given 1) A_base I~ { t 1,t2 , ••• ,tn} ,.a set of n linearly 

independent functions from the functional space G , 
· .• c m 

2) The function to be approximated, F, defined on- the .set M, 

M _ { x 1 , x2 , ••• , xm} 

t1 _ [a,b] 

M DISCRETE 

M COMPACT 

3) A weight function W, defined and non-negative on ~. Then the 

least squares approximation problem is to determine that vector of 

coefficients (c 1,c2 , ••• cn) which minimizeSthe distance with weight function 

W, 'p(F, Pn)' defined as 

P (F, Pn) = [1: W(x) [F(x)- Pn(x)l 2) 112 
xe:M 

P (F,P) ~ [r W(x) [F(x) - P11 (x)] 2dx] 1' 2 
n ;M 

where the approximating polynomial is 

n 
p = E 

n 

M DISCRETE 

M COMPACT 

The solution to this problem is the vector (c 1,c2 , ••• c0 ) which satisfies 

the normal equations 

< t., lfl.::r c.= <-·F, t.> 
I ,J I J j = l,2, ••. ,n 

where the scalar product with weight function W, < G,H >, is defined as 

<G,H> - 1: W(x) G(x) H~x) 
xe:M 

<G,H> - f W(x) G(x) H(x) dx 
M 

'M DISCRETE 

M COMPACT. 



3.7 Orthogonal And Orthonormal Bases 

Going back to the system of normal equations where we have 

left it in (3.4 ), we may now study it further from the point of view 

of the orthogonal and orthonormal bases. It is not difficult to see 

th~ computational advantages an orthogonal (orthonormal) system of 

basic functions has to offer. tn addition to thisJthere is one more 

advantage in using an orthogonal (orthonormal) base. We can add 

further (orthogonal or orthonormal) basic functions to the ones for 

which the coefficients have already been computed and determine the 

new coefficients withouthaving to change the established ones. Obviously, 

this is not the case with a general base~ where an addition of new 

basic functions changes the whole matrix of normal equations and thus 

influences generally all the ~lements of the inverse of the original 

matrix. 

Further, considering a general base~. the matrix of normal 

equations is non-singular but it still may be ill-conditioned. This 

very often happens, for instance, with generalized trigonometrfc systems 

where w1,w2 , ... ,wn are some real numbers. The use of an orthogonal base 

prevents this from happening. As we have seen in (3.4) an orthogonal 

base·has always a diagonal matrix of norma~ equations. A diagonal matrix 

cannot be i1 1-.cond it i oned Cnear~s ing.u 1 ar), It can 

only be singular but this is ruled out in our development due to the 

definition of an orthogonal system. Note that an orthogonal matrix, as 

usually defined (i.e. the inverse equals the transpose), is equivalent to 

an orthonormal matrix in the sense of these notes. 
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3.8 Orthogonalization 
• 

All the systems of orthogonal algebraic polynomials can be 

derived from the system of algebraic functions~ ={l,X,X2 , ••• ,Xn} by 

ortho9onalization. Similarly, every general system of functions 

~ = {cfit,<~>z,···,<fln} can be transformed to an orthogonal system 
N 

f = {Pl ,P2'"' ,Pn} on a certain M and with a certain W. One of the 

easiest ways ~to do, this ·ts. to ·use ... :the Schmidt) s' ·, orth_ogona 1 i zat ion 

process. (also called the Gram- Schmidt process). 

The Schmidt's process·reads as·,follows: 

i) ~hoose ' 

.. ) I I · Define 

X t M, E E • 

Multiplying this equation by W·P 1 and summing up all the equations 

for all the X1 s (forM compact we integrate the equation, multiplied 

by WP 1, with respect to X) we get 

~P2,Pl> = <$2,Pl> + a21 < Pl,Pl>. 

Here l<Pz ,P 1 >has to be zero to make the system f orthogonal. Hence the 

unknown coefficient a 2 , 1 can be obtained from 

iii) Oefi ne 

and get, by the same reasoning as above: 

and similarly 
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By virtue of the orthogonality <P 1,P2 >=<.P2 ,P 1 >=<·P3 ,P2 >=<'P3,Pf' = 0 

and we obtain 

Hence 

a 3,2 

We then pr6gress the same way ending up with the equations for 

coefficients a • i==1,2, .. ,,n-·1. Evidently, the general formula for n,1 

any a .. is 
J ' I 

a. . 
J • I 

<¢.,Pi> 
= - __,L_::: 

< p .• p. "> 
. I I 

This method can be,,obvi()l,lSly used for both compact and discrete M. 

3.9 Extension To Three Dimensions 

3.9.1 Extension of definitions 

The theory of least-squares approximation as explained ·so far 

can be very easily extended Into three-dimensional space (as oppos~d to 

the two-d i mens i ona 1 we have been dea 1 i ng with up to now). In thl-ee-

dimensional space we shall be dealing with surfaces instead of curves. 

Otherwise we have to retain the two parallel streams dealing with either 

discrete or compact definition sets. 
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Denoting by the two-dimensional area (either compact 

or discrete) we can define the norm: 

IIGII = .; E W(X) G{X) 2 E E+ 
Xef3 

for discrete S and 

IIGII = .; If!> W{X) G(X) 2dx E E+ 

for compact B. Here X is a pair of arguments, (x, y) say. Simi.larly, 

the scalar product may be defined as 

I~ W(X) G(X) H(X) 
.G H. Xf:B 

< ' >= 
\ 18 W(X) G(X} H(X) dX 

f!> discrete 

B compact • 

G, H are, of course, functions of X defined on B , i.~. ~' H E G8 • 

The condition of minimum least-squares distance leads again 

to the same system of normal equations. The linear independence of the 

system of prescribed functions ~has to be hence also required. 

We may notice that if the functions~· of the base~ can be 
I 

expressed as products of two functions of single variable, ~.(X) = 
I 

~ 1(x) • x 1 (y) say, and if even the weight function W can be split 

into v(x) • u(y) we get: 

<~i'~j?> = -:=~~·~/'v ·<·xi,xj>u • 

The proof of this is left to the reader. 

c·J.9.2 Orthogonality in two-dimensional space 
. . 1. • 

One may now ask the question whether relations like ortho­

gonality also e~ist for functions defined on two-dimensional areas. 

There is no reason why they should not exist)and as a matt~r of fact 

the orthogonality can be defined in exactly the same way as for functions 

defined on an interval: 

<:' 4> .• 4>J. > = 114> . 11 2 0 •. 
I I I J 
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There is even a very simple relation between orthogonal 

systems in one and two dimensional spaces. Let cf! 1 = {1jil' w2 , .•• , tpn} 

be a system orthogonal on MJ with u and 412 = { :xl' :x2' ... ,. X } be a ·n . 

system orthogonal on ~12 with v. Then the product 4i of these two 

systems is orthogonal on the area Ml X M 5 B 2 - with W = u . v. 

To show this, let us denote 

Then 

The most wide 1 y used two-dimension a 1 o·rthogona 1 sys tern in 

geodesy are the spherical functions (spherical harmonics) orthogonal on 

a sphere (or in any rectangle z~v::by .. 2:11)_.with we_ight W (X) =.1. They 

originate as a product of associated Legendre's functio-ns and the 

trigonometric system. 

Another application is in approximating the topographic sur-

face in an ar~a.. For this purpose any system can be used. 
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3.10 Problems 

Solved Problems 

1. Given the weight function W(x) = and the definition set 

M = { -5, -4,-3,-2,-1,0,1,2,3,4,5} find the numerical functions f 1 and f 2 

which allow the linear approximation of any function F defined on M· · 

P2.; c 1 + c2.x where c 1 = < F,f 1> , c2 = < F,f2>. 

What property must the definition set M posess in order that this technique 

·be applied? 

Solution 

The linear approximating polynomial .is 
. . 

2 
P 2 (x) = E c1 cJl i (x) = c1 cp 1 (x). + c2cp2 {x) = c1 + c2~ 

i=l 

hence the base functions are cpj(~)=land cp2 (~)~.x. The· coefficients are the 

solutions to the normal equations 

2 
E 

j=l 
< cp., ~.>e.= <F,<Jl.> 

I J J I 

Noting that in this ca~e 

<~,,ct>,~ = r: W(x) ct> 1 (x)~ 1 (x) 
xeM 

<cf>2,cf>2> = r: 
xe:M 

W(x)cp2 (x) <Pz(x) 

i = 1,2. 

= E = 11 ::: 

XEM 

= r: 2 110 X = 
xeM 

<cf>l,cf> 2> = <<Jl 2 ,ct> 1> = r: W(x)cp 1 {x)~ 2 (x) =Ex= 0 
xeM xe:M 

the normal equations become 

[1: 11:] [ ::] =fF '~1>] 
<F,$2> 

so that 

c1 = <F ,cp >/11 

c2 = <F,4>2>/110 
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that is, the functional values of funct~ons f 1 and f 2 are 

f 1 = (1/11) ·• (1,1,1,1,1,1,1,1,1,1,1), f 1 ~x) = 1/11. 

f2 = (1/110) (-5 , - !:1 , - 3 , - 2 , - 1 , 0 , 1 , 2 , 3 , 4 , 5 ) , f 2 (.x) = x711 0 • 

In general, if M is symmetric, that is 

E X = 0 
XE:M 

then 

c1 = <F,¢ 1>/n 

2 c2 = <F,¢2 >/Ex 

where ¢tl\ (x) = 

where ¢2 (x) = x. 

2. Derive a system of orthonormal algebraic polynomials from the system of 

algebraic functions 

M = {-S,-Lf,-3,-2,-1 ,0, 1 ,2,3,4,5} and with weight function W(x) = 1. 

Choose your own value for n. 

Solution 

We select n = 2 and obtain an orthogonal system P by applying the Schmidt 

orthogonalization process to~' that is 

pl = ¢1 = 

p2 = ¢2 + ~2lpl 

where 
<¢., P,> 

a" =- J I 
j'i <P., P.> 

I I 

= - xiM W(x)¢2 (x)P 1 (x) 

x~M W(x)P1 (x)P1 (x) 

so that P2 = ¢2 , and again 

= 0 
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-
<¢3,P2> -

x~M Wt~~¢ 3 (x)P2 (x) 
= 0 C/.32 :;= = 

x~M W (x) P 2 (x~TP; (x) 
<~2'P2> 

a.31 = - <¢3,P1> = - x~M ;W (x) ¢3 (x) P 1 (x) 
= - 110 = - 10 

<P1 ,Pl> x~ii(W(x)P 1 (x)P 1 (x) -1-1 

so that P3 = x2 - 10 and our orthogonal system is P ~ {l,x,x2~10} 
-

We obtain an orthonormal system P by dividing each element of P by its norm, 

that is by 

lJP.jj = l--< P., P.> 
I I I 

Thus 

= 1 
,.~..-,·--

nT 

= .. ,X 

= 2 
X - 10 

v'1f.s~r~·"c~;::• ' 

and we have the orthonormal system P ~ {1/rrr- ,x/lfnD, (x2-10)/~ }, 

that is 

f~ote the c 1 ose .re 1 at tonsh ip between these resu 1 ts and those in the 

previous problem, 
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Unsolved,P[?blems 

3. Given F(x) defined for x e: £ .... ], 1], approximate F in the least squares 

sense by 

a) for { 1 ,x ,x 2 n with weight function W(x) p ~ ••• , X } = n , 
b) p for ~ {l,:x,x 2 n } with weight function W(x) ( 1 ... ,x = - X n ' 
c) p for 

~ · P·e 'L 1 , •• , Ln J (Legendre 1's polynomials) n n 

d) p for 
~ n {TO,Tl, . • .Tn } (Tehebyshev 1 s polynomials) 

Compare a) with c) and b) with d). Choose your own F and n. For the 

individual orthogonal polynomials see the Appendix, 

4. Write debug and document a general least s~uares approximation 

computer program with the following features. It should approximate 

and function F defined on a discrete set of argumentsM = {x1,x2 , ... xn} 

where the x are not necessarily equidistant. The user should be free 

to choose his own base ~~i~ 1 ,~ 2 , ···~m} and weight function W. Therefore 

the input must include the vectors x and F(x ), the base, and the 

2)-1/2 

weight function. The output should comprise the best fitting coefficients 

c1,c2, ... ,cm and the variance p (F,Pm)/ Jfll')lll. (For explanation of the 

. variance see the next section). A check for linear independence of~ on 

M should be incorporated. 
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4. LEAST SQUARES ADJUSTMENT 

In this chapter we discuss three least squares adjustments, called the 

parametric adjustment, the condition adjustmentL-and the combined adjustment. 

Jhe purpose of this discussion is twofold. First we describe the relation-

ship between the parametric adWustment and least squares approximation. 

Second we present geometrical interpretations of each of the three adjustments. 

Linear mathematical models and uncorrelated observations are assumed 

thnoughout this chapter. A discussion of least squares adjustments using 

non-linear models and correlated observations can be found in Wells & 

Krakiwsky, 1971. 

4.1 Equivalence of Parametric Adjustment and Least Squares Approximation 

The parametric least squares adjustment differs only in intent and 

notation from the least squares approximation of a function F defined on a 

discrete domain M. 

The intent of the least squares approximation is to find an approximating 

function P for a given function F. The intent of the least squares adjustment 
n 

is to find the "least squares statistical estimates•• (in our notation {ci}) of 

unknown parameters{coefficient~which are related to the observed values 

(in our notation {F(x.)}) by a linear (or linearized)mathematical model (or 
J 

system of observation equations). 
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F (x.) = ~ c. ~. (x~) . 
J i=l I I J 

The connection between the two is simply demonstrated by restating the 

least squares approximation in matrix notation. The column vector 

T 
[ F (x 1 ) , F (x2) , ... F (xW\)] = m F 1 

is called in adjustment the vector of observed values (or misclosure vector 

in the case of linearized models). The matrix whose diagonal elements are 

the statistical weights attached to the observed valUe? in F 

W(x 1) 0 

W(x2) = p 
m m 

0 W(x ) m 

is called in adjustment the weight matrix, or the inverse of the covariance 

matrix of the observables. Note that in this formulation of the adjustment 

problem we assume the observations to be statistically independent (P has no 

off-diagonal elements). This is not always the case. The matrix whose 

column vectors are vectors of functional values for each of the base functions 

~. (Vandermonde's matrix) 
I 

~1 (xl) ~2(xlt) 

~l(x2) ~2(x2) 
" . • 

~ (xm) 
n 

A = m n 

is called in adjustments the design matrix. The vector of coefficients 
[ ~- ] T cl,c2, ... cn =ncl 

is called in adjustment the vector of unknown parameters. 

Note that the vector resulting from the matrix product 

A C 

is the vector whose elements are the functional values f!l ... -1x.) of the 
n'' J 

approximating function P . 
n 
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The column vector 

V = F - A C 

is called in adjustment the vector of residuals (or discrepancies). 

We want to find the coefficient (or unknown) Vector C(!Wfl~cf\:i:illttiJn>izes the 
,_, -~, . .,.-·' :· ... · _., . . . 

quadratic form 

VT P V = p2 (F, AC) = p2 (F,P }. 
n 

The solution is that value of C whtch satisfies the normal equations 

(AT P A) C =AT P F. 

In accordance with adjustment convention, the least squares estimate 

' 2 . for the variance factor CJo ··1s 

"2 T 2 
CJo = V P V/(m-n) =a (F,P )/(m-n) . n 

The estimate of the covariance matrix of the vector C is then 

E = ;o 2 (AT PA)-l • 
c 

If the base @ is ortho anal with wei ht function W then the matrix 

AT P A= 
<!fll ,!fi, > <~1 ,!fi2> . . " <~ 1 '~n> 
<!fi2,!fi)> <¢'2'~2> .. ,. # <<P2,<P > 

• • ., n 
<!fin,!fil> <!fin,!fi~> • • • <!fi ,<P > n n 

is diagonal, and therefore so is its inverse. In this case all coQariances 

between the coefficients c. are zero, that is the coefficients are 
I 

statistically independent. If the base is orthonormal with weight function W, 

then 

and all the individual variances of the coeffieients c. are equal to the 
I 

variance factor 
, 2 
CJo • Note that these results depend on the weight matrix P 

being diagonal (f.e. having all off-~iagonal elements equal to zero). 
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4.2 Geometrical Interpretations of the Parametric Adjustment 

A vector has both algebraic and geometric meaning. In this section we 

investigate the geometric meanings of the vectors involved in the parametric 

adjustment. We begin with the vector of observed values mF 1, the weight 

matrix P , and the design matrix A . The vector of coefficients ncl, is m m m n 

obtained by solving the normal equations 

T T (A P A)cC = A P F . 

The residual vector mvl, is obtained from 

V = F - A C 

Note that the number of observations, m, must be greater than the number of 

coefficients, n. The augmented matrix 

[AI F] 
I 

contains all the known data (except for the weights in P). The elements of 

this data matrix can be considered either to be organized Into m-dimenslonal 

column vectors 

[AlF] = 
I 

I I I I 
[Al• A-.'11 ••• •A I F] 

I '1'1 I n1 

or to be organized into (n + !)-dimensional row vectors, of which there are 

m. 

Returning momentarily to the notation of the least squares approximation, 

we see that the column vectors of [AlF] are the vectors of functional values 
I 

~ i = ( <P i (x 1 ) ' <P i (x2) ' · • · <P i (xlfl;) ) 

F = (F(x1), F(x2), ... F(xWt) ). 

They can be considered as tables of values which serve to define the 

functions <P· and F. 
I 

We will consider two geometries in which A, F and V can be interpreted 

as geometrical quantities. In the first geometry, them row vectors of the 

data matrix are considered to be the position vectors of m data points, 

plotted In the (n + 1)-dimensional space for which the column vectors are a 

basis (that is, the column vectors span this space). 
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In the second geometry, the n + 1 column vectors of the data matrix are 

considered to be n+l position vectors plotted in them-dimensional space 

spanned by the row vectors. These are multi dimensional geometries, and 

can be visually illustrated only if the dimensionality is 3 or less. 

Illustrating the first geometry (often called the 11scatter plot11 ) for 

the case n=l and m=4(note n+l space= 2-space), the data matrix is 

~ 1 (xl) F (x1) 

cp 1 <*z> F(x2) 

~ 1 (x3) F(x3) 

cpl(x4) F(x4) 

F 

+ 

A, 



39 (a) 

'Illustrating the second geometry for the case n == 2 and m == 3 (note 

m-space = 3-space): the data matrix is 

cpl (xl) <Pz(xl) F (x 1) 

<1>1 (x2). <1>2 ~x2) F(x2) • 

cpl (x3) cp2("3) F(x3> 

~OvJ l/tiic.701t 3 

Note that Geometrical concepts such as parallelism, orthogonality and 

length remain valid in spaces of any dimension even though we cannot 

visualize them as above. Some of the terms we use are m-dimensional 

hyperspace (a Euclidean space of dimension m), n-dimensional hype~plane 

(a Euclidean subspace of dimension n, of a Euclidean space of higher 

dimensionality), and m-dimensional hypef'sphere (a generalization of a sphere 

into m dimensions). We will consider these two geometries in detail, but· 

will first consider the significance of the weight matrix P. 
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4.2.1 Geometrical Interpretation of the Weight Matrix P 

We have seen that the statistical meaning of the P matrix is that it is 

the inverse of the covariance matrix of the observables. If P is diagonal, 

its elements are the reciprocals of the variances of the observables. Then 

the diagonal matrix whose elements are the square roots of the elements of P 

(which we will denote by P112) has the reciprocals of the standard dev~ations 

of the observables as elements. 

A multivariate statistical distribution is one in which the multivariate 

mean is zero and the multivariate variance is unity. It is convenient to 

transform the space in which the adjustment problem is .stated, into a space 

in whxch the multivariate distribution of the observables has been transformed 

into the standard multivariate distribution, that is a space which statistically 

is hyperspherically symmetric. When introducing the two geometries above, we 

specified that the row (or column) vectors of the data matrix be considered 

as position (or radius) vectors in our first (or second) geometry. This is 

equivalent to transforming the multivariate mean to zero. To transform the 

multivariate variance to unity we must transform the weight matrix P into 

the unit matrix. We shall call this hyperspherically symmetric space 11tilde 

space 11 (after the di~critic mark-). 

The matrix operation which accomplishes the statistical transformation 

from the problem-space to tilde-space is the premultiplication of the data 

matrix by P112 . This scales the row vectors of the data matrix by the 

reciprocals of the standard deviations of the corresponding elements of F. 

Thus 

This transformation also scales the residual vector 

v = F -A c = P112 v. 



The adjustment problem is to find the coefficient vector C which minimizes 

\fTv=VTPV, 

and the solution is that vector C which satisfies the normal equations 

(.~T A) c = AT F. 
In tilde-space the weight matrix has been transformed into the unit matrix 

p = !. 
Note that if P is not a diagonal matrix no immediate geometrical interpretation 

or transformation to a statistically symmetric space can be made . 

. 4.2.2.Geometrical Interpretation of the Approximant Vector and the 
Residual Vester~ 

In this section we will work in tilde-space. Let us take an arbitrary 

coefficient vector nc 1• To each such vector there corresponds an approximant 

vector mGl, given by 
n 

G = A C = E c 1 Ai 
i=l 

where c. is the ith element of the coefficient vector C, and A. is the ith 
I I 

column vector of the design matrix A. m n To each approximant vector there 

corresponds a residual vector mvl, given by 

V=F-G. 

In the notation of the least squares approximation, G is the vector whose 

elements are the functional values of an approximating function P , that is 
n 

-I-
The first geometry. We have ~lready plotted the row vectors of [A:F] 

as position vectors of points in the (n + I)-dimensional space spanned by 
_,-

the column vectors of [A•F]. Now let us plot in this same space the row 
I -, . 

vectors of [A•G]. These new data points all lie on a surface in (n + 1)-
' 

space. Because G is a linear combination of the column vectors Ar, this 

surface is a subspace (hyperplane) of that spanned by the column vectors 
_,_ 

of [A•F]. There is one such hyperplane for each approximant G, or 
I 

equivalently for each coefficient vector C. 
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d . t an approximant G is the vector whose The residual vector correspon 1ng o 

elements are the distances from the original set of data points (the row 
- t 

of [~~~] ) and the new data points (the row vectors of [A:G] ). vectors 1 

Each of these dlstances is measured perpendicularly to another hyperplane, 

that spanned by the column vecGors of A. 

Thus in the first, geometrv.". the parametric. <;\dj~;~stment prob 1 em is to 

find that hyperplane (or equivalently that coefficient vector C) which 

llbestll approximates the cluster of m original data points, in the sense that 

the sum of the squares of the distances from that hyperplane to each data 

1 d I 1 ne (t hat spanned by the point, measured orthogonal y to a secon ,,perp a 

column vectors of the given matrix A), be a minimum. 

Th4 second geometry. The vector mFl and the n column vectors of mAn 

have been plotted in the m-dimensional space spanned by the row vectors of 
- r "' 

[AoF]. Then column vectors of A span ann-dimensional subspace (hyperplane) 
I 

-
of this space (which we will call the A hyperplane). Since an approximant 

mGl Is a linear combination of the column vec~ors A1, then G lies in the A 

hyperplane. The residual vector ffiVi then is the distance from a point in 

this hyperplane to the point whosa poiition vector is F. Obviously the 
-

residual vector Is of minimum length (for a given F and given A hyperplanel 

if and only if it is the orthogonal distance from the A hyperplane to F 
-

(that is if it is perpendicular to the A hyperplane). 

Thus in the second geometry the parametric adjustment problem is to 

decompose the given vector F into two other vectors; an approximant vector 

G and a residual vector V, that is 

F = G + V 

such that a) G lies in the A hyperplane, that is 

G = A C 

b) V is orthogonal to the A hyperplane, and thus to every vector in it, and 

in particular to the column vectors of A, that is 



It is simple to show that these three.equations are equivalent to the 

normal equations. Premultiplying the first by AT and substituting from 

the other two we have 

-T - -r -r - -T -
A F = A G + A V = A A C + 0 

which are the normal equations in our 11 tilde-space". This geometry thus 

illustrates the meaning of the work "norma1 11 used in ."normal equations". 

It refers to the orthogonality (or normality) between the.resldual vector 

and the approximant vector (or the hyperp'lane). 

In the next sections we will extend the application of this second 

geometry to i~terpret the condition and combined adjustments. 

4.3 !he Condition AdJustment 

In our second geometry we have seen that in tilde-space the column vectors 
..., ...., .... ~ 

(A 1 ,A2 , .•. A11 ) of the design matrix A form a basis for {span) an n-dimenslonal 

hyperplane (the A hyperplane) in the m-dlmensional space spanned by the row 
_,_ 

vectors of the data matrix [A 1 F]. 
I 

Therefore there must exist (m-n) linearly independent vectors In m-spaceJ 
..... ..., ""' 

(B 1,s2 ••. B )~each of which is orthogonal to each of the column vectors A •. m-n 1 

That is 

-r -
B. A. :::: 0 

J I 

If we form the matrix 

Then 
B A = 0. 

for 1=1 ,2, ... n and j "", l ,2, .• ,. ,m-n. 

If this result is to be valid in both tilde-space and our problem-space then 

,.; ,v~ 

BA=,SA=O. 

But~- P112A. Hence~= B P- 112 , that is the transformation of B to tilde-

space is accomplished by scaling the column vectors of B by the standard 

deviations of the corresponding .observables. Continuing in tilde-space, we 
N ~ 

see that the row vectors of B span an (m-n)-dlmensional hyperplane (the B 

hyperplane), and that the A and B hyperplanes are orthogonal. 



Premultiplying the equation defining the residual vector V, namely 

V = F - A C 

by the matrix B, we obtain 

BV=BF-BAC=BF. 

Geometrically this means that the projection of V onto each of the row vectors 

of B is equal to the projection of F onto the same row vectors. However, we 

have seen that for the length of V to be minimized, V must be orthogonal to 
,., 

A hyperplane. Therefore it must lie 'n the B hyperplane, that is V must be 

a linear combination of the row vectors of B, or 

v = BT K 

where the vector of coefficients K is called the vector of correlates. 

Substituting this in the previous equation we have 
- -T 
BB K=BF, 

the normal equations for the condition adjustment. 

Thus the condition adjustment problem is to find that vector V '(or 
equivalently that vector K) such that V lies in the B hyperplane and has the 

same projection as the given vector F on each of the row rectors of B which 

span the B hyperplane. 

Not~0 that the condition and parametric adjustments are duals. Any adjustment 

problem amenable to soluti&cnusing one, can also be solved using the other. 

4.4 The Combined Adjustment 

4.4. 1 The Combined Adjustment resulting from Implicit Mathematical Models 

The parametric and condition adjustments are used for explicit mathematical 

models, and the combined adjustment for implicit mathematical models. Let us 

define what is meant by explicit and Implicit. If the vector of observed 

values F is expressable as a direct function of the vector of unknown 

coefficients C, that is 

F = F (C) , 
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then the relationship (mathematical model) is explicit. However, ifF can not 

be explicitly expressed as a function of C, that is if the relitionship must 

be given as 

G(F,C) = 0 

then the relationship (mathematical model) is implicit. 

We have seen in the case of an explicit linearreelationship, the 

mathematical model is 

F =A C + V, 

where A is the design matrix, and V is the residual vector. All adjustment 

problems involving such an explicit mathematical model can be handled by both 

the parametric and condition adjustments. (Note that the least squares 

approximation, as described in these notes, always involves an explicit 

mathematical model). 

In the case of an implicit linear relationship, F itself will not be 

explicitly related to C, but linear combinations of the elements ofF will 

be. That is,there exists a (design) matrix B such that the misclosure vector 

F~~ = B F 

is explicitly related to C, that is 

F~c = A C + V* • 

Let m be the number of ort:glrial:- observed va 1 ues, n be the number of 

coefficients, and r be the number of linear combinations of the observed 

values which are related explicitly to C (i.e. r is the number of equations). 

Note that there must be at least one observed value for each equation, that 

is 
m > r 

and there must be more equations than unknown coeffieiDts, that is 

r> n • 
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This would be a parametric adjustment problem i fwe wished to minimize 

the length of the residual vector V*, whose elements are the residuals 

corresponding to the elements of the misclosure vector F*. However we wish 

instead to minimize the length of the residual vector V, whose elements are 

the residuals of the original vector of observed values F, that is 

v~·~ = B v. 

Thus we are unable to use the parametric or condition adjustments without 

some modification. 

There are two possibilities. The first possibility is to apply the 

covariance .·law ,to:,Vit.,= B V to.obtttln .. the covariance matrix of V)'- as 

r.V)'- = B r.V BT 

where IV is the covariance matrix of V. Since the weight matrix we have so 

far considered is 

then 

-1 
P = rv 

P* = ~1 = (B p-1 BT)-1 
V)" • and we proceed to apply the parametric adjustment to 

F)'<" = AC + V·l~ 

by choosing that vector C which minimizes the guadratic form 

T V)" P* V)'-

The solution is that vector C which satisfies the normal equations 

T T 
A P* A C = A P* F* 

The second possibility is to use the combined adjustment, for wfuich the 

mathematical model is 

F)" = A C + B V 

where 

F* = B F 

and the known quantities are the two design matrices At and .B and the r n ·r,m 
~isclosure vector rFf, so that the data matrix in this case is 

l I 
{A • B • F)"] 

l I . " 
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The unknown quantities are the vector of coefficients ncl and the residual 

vector mvl. The combined adjustment problem is to find that vector C which 

minimizes the length of the vector V, or equivalently the quadratic form 

VT P V 

where P is the weight matrix of the original vector of observed values F. m m 

The solution is that vector C which satisfies the normal equations 

AT (B P-l BT)-l A C =AT (B P-l BT)-lF* 

(which are the same normal equations as in the first possibility above). 

If the weight matrix P of the observed values F is diagonal, then the 

statistical transformation to 11 tilde-space 11 is accomplished by the matrix 

operations 

Note that 

8 = 8 p-1/2 

v = pl/2 v. 

A = A 

F* = F* 

V* = V* 

and in tilde-space 

P = I. 

4.~·.2 Geometri~al Comearison between Parametric and Combined Adjustments 

The difference between the parametric and combined adjustments ean be 

explained geometrically rather simply. We will use the second geometry 

already described, and we will work in tilde=space. 

In the parametric adjustment we are given the data matrix 
-l-

[A•F] 
I 

and the adjustment problem is to decompose the given vector F into two vectors 

G = A C and V 

F = A C + V 

such that G lies in the given hyperplane (the A hyperplane) and V is orthogonal 

to the A hyperplane. For ~xample 
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I 

"" 

I 
A, 
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In the combined adjustment we are given the data matrix 
,_' 

[AIB'F*] 
I I 

and applying our second geometry, we wish to plot the (n + m + 1) column 

vectors of the data matrix as the position vectors of points in the r-

dimensional space spanned by the row vectors of the data matrix. Again, since 

n < r; the column vectors of rAn define ann-dimensional hyperplane (t~e A 

hyperplane). However there are m ~ r column vectors of ~Bm so that only r 

of them can be linearly independent, and these column vectors will in general 

span all of r-space itself. The combined adjustment problem is to decompose 

the given vector F* into two vectors G =A C and V*, that is 

such that G lies in the given A hyperplane as before, but V* is not orthogonal 

to the A hyperplane. Instead there is a vector of correlates K which is 

orthogonal to the A hyperplane, that is 

AT K = 0 

and the vector V* is a linear combination of the column vectors of B, where 

the coefficients of this linear combination are the elements of a vector V, 

that is 

V* = B V = i: v-. B. 
I I 

and the elements of V are the projections of K onto each of the column vectors 

of B, that is 

v = BT K. 

The normal equations are obtained by premultiplying the first of the 

above equations by AT (B BT)-I ·and substituting from the other three equations 

where V* = 8 v = B BT K 

so that AT(B BT)-l V)'< = AT(B BT)-l 8'~T K :::, ATK = 0. 
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5. CONNECTION BETWEEN THE LEAST _-SQ,l)ARES APPROXIMATION AND INTERPOLATION 

Suppose, in a least-squares approximation problem the number 

of basic functions equal the number of points of the discrete M and 

W(X) ~ 1. Then the best-fitting least-squares polynomial is identical 

with the interpolating polynomial. 

For the interpolating polynomial P • we get the system of n . n 

equations for the coefficients: 

n 
L c, cp. (X,) = F (X.) 

i =1 I I J J 
J=1,2, ... ,n. 

To show that the same coefficients can be obtained from normal equations, 

let us multiply each equation of the above system by $ 1 (Xj), 1 = 1,2, .. ,n. 

We get 

j,1 = 1 ,2, ... ,n. 

When we sum these equations up with respect to j we obtain: 

n n n 
1: r; 

J=l i=l 
c. "' , (X • ) cp n (X • ) -· L: F (X . } cp n (X • ) 
,~, .J. ~ J J ~ J 

j=l 
1 ~ l,2, .. ,n 

which can be rewritten as 

n 
2: E 

XEM i=l 
c.cp. (X)¢" (X) == l: F (X)¢" (X) 

I I ~ XE.M ~ 
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Interchanging the summations in the left hand term, we get 

n 
E c. E <f>. (X)<f>R. (X) = E F{X)<f>.Q. (X) 

i=l 1 XEM 1 XeM 
R. = 1,2, .•. ,n 

·where the summations over X can be interpreted as scalar products for 

W(X) = J. We hence end up with 
n 
E (ct; . , <f> • ) c. = (F, <f>J > 

i= J I J . I 
j = l, 2, ... , n 

which is the system of normal 'equations for the least-squares. best­

fitting P (for W(X) = 1). Hence both polynomials are identical. n 

5.1 Problems 

1. Prove by direct computation (choose your own F) that the interpolating 

algebraic polynomial of second degree {using three interpolation nodes) is 

identical to the best fitting least squares algebraic polynomial of second 

degree for F given on three points (M = { x1, x2 , x3J >: 
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6. APPLICATIONS OF THE LEAST SQUARES APPROXIMATION 

6.~ Fourier Series 

6.1 .1 Generalized Fourier Series 

It is co nee i vab 1 e that when working with compact M we may 

increase the number of functions In the base beyond al·l limits, since 

a compact set contains infinitely many points. Then the best approximating 

polynomial in the least-squares sense becomes an infinite series. If 

the base is, in addition, orthogonal then the series is known as 

~neralised Fourier series. 

It can be shown that if the base is complete, i.e. if 

there exists no other function apart from f(x) = 0 that is ortho-

genal to all of the base functions, than the generalised Fourier 

series equals to the given function F In the "mean sense". This is 

usually written as 

F(x) 1;! lim P (x) 
n n-+oo 

The equality in the "mean sense" becomes the identity when F is 

continuous on M . When F is not continuous but differentable at x it 

is approximated as shown on the diagram: 
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Here, as well as in the least-

squares approximation, the integrability 

of F on M is a prerequisite. Note that 

the best approximating polynomials (in 

the least-squares sense) for an orthogonal basis can be regarded also 

as truncated Fourier series. 
The overall behaviour of the coefficients ci of a generalized 

Fourier series, known as Fourier coefficients c 1 =< F1 ' is 

governed by Bessel's inequality 

E {c. II <P • II ) 2 < <F J F ;>. 
. I I I 
I'* 

The equality is valid for continuous F. This can be shown as follows: 

00 

F=I:c.cj>. 
i=l I I 

oo<F,<!>i> = I: __ _.;.-:---

i=lllc~>.\12 
I 

This equation can be multiplied by W F and integrated with respect 

to X over M . We obtain 

or 
co <F' cp. > 

(F ,F)= z I 2 /M\.J(X) i:::! 1 
114lill co 

= ; E c~ ll<t>.ll 2 • 1=1 I I 

<F ,cl> .> 
I 

F(X) cj>. (X) dX 
I 

cp • (X) dX 
I 

:::; 

The Bessel's inequality ensures that the Fourier series converges • 

.. 
Note that exactly the same treatment can be adopted for two-

dimensional orthogonal systems. The resulting infinite series in two-

dimensions is known as F9url~{~i:!Quble-series·. The infinite series of 
'''·""*'' ·~ 

spherical harmonics is one possible example. 

There is evidently a close relationship between the Fourier 

coefficients and the coefficients a .. used for orthogonal ization (see 
Jl 

3.8). It is left to the reader to interpret the orthogonal ization 

coefficients in terms of Fourier coefficients. 
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6.1.2 Trigonometric Fourier Series 

Perhaps, the most important of all the Fourier series is the 

one based on the trigonometric system of functions. It became sub-

sequently known as trigonometric Fourier series. ·In fact, many authors 

when writing about Fourier series mean really·trigonometric ~94~Jer ser(.es. 

Since it is so important we shall state here the particular form of 

this Trigonometric Fourier series, although it should be evident from our 

earlier explanations. It reads, for an integrable function F defined 

on M - [- i , i] : 

F(X) Jl E (a. cos II iX + b1 sin II iX) 
i=O 1 i i 

where 

a = - 1 ! 1 F(X} dX 
0 2i -i 

1 !:1 F(X) !_ "XdX a. =- cos 
I i i 1. 

= 1, 2, ...... 

b. = !1 F(X) sin II iXdX 
I · 1 ~l 1 

Note that the Trigonometric Fourier series of an odd function F defined on 

[- i, 1] contains only the sine terms and that of an even function only 

the cosine terms. These are usually called sine or cosine· series 

respectively. This is a consequence of a more general feature of all the 

Fourier series based on the commonly used orthogonal systems. We can 

see, that the commonly used systems, defined on symmetrical intervals 
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and for even weights, can all be split into odd and even functions. It 

is known that a product of odd and even functions is an odd function. 

A finite integral over a symmetrical interval of an odd function 

equals zero. Hence the coefficients by the odd functions become zero 

for F even and vice versa. This can be expressed in a form of a 

principle that even (odd) function cannot be very well represented 

by odd (even) functions or their 1 inear combinations on a symmetrical interval. 

In connection with trigonometric Fourier series one should 

quote the Ri:emc:mli!s theorem. It reads: for an absolutely integrable F 

(i.e. J~ IF(x)l dX exists) the following equality holds 

1 im Jb F(X) sin wXdX = 0 
a 

w+oo 

even for a + -oo and/or b + oo It can also be written as 

1 im b. = 0 
i+oo I 

and we can see that the series of b coefficients converges to zero. 

It is not difficult to foresee that similar theorems should 

be valid for the coefficients of other orthogonal systems too, since 

the convergence of the series of the coefficients is ensured. However, 

the proofs of these are somewhat involved and not readily accessible 

in the literature. 

6,1~3,Trigonometric Fourier series in comelex form 

The trigonometric Fourier series ·P~·very often formulated 

using complex numbers. The reason for it is that the complex form is 

much simpler and clearer. 
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To arrive at the complex form let us first express the tri~ 

gonometric functions we shall be dealing with in complex form. Using de 

Moivre•s theorem we can write: 

n -- l (eint + e-int\ cos 7 nx = cos nt , 
2 

n . 1 . int -int 
sin R: nx = s 1 n nt = 2T ( e - e } " 

where we use the index n instead of i in 6.1.2. and i equals now_ ~-1 

Hence one term of the trig. Fourier series, known as a trigonometric 

~' can be written as: 

a cos nt + b sin n n 
nt =an (eint 

2 + 
-int e ) 

b • t -int + ~ ( In 
2" e - e )= 

I 

a . 
= _!!. (e 1 nt 

2 

= 
a n - ibn 

2 

+ 

e 

-int e ) -

int 
+ 

an 

lnt -int = c e + c e n -n 

bn 
(e int e.,. i nt) i 2 -

+ ib -int n e = 2 

Note that the two coefficients c c are complex conjugates. The n' -n 

subscript -n was chosen to allow the following interpretation. 

Substituting the last result back into the original trig. Fourier 

series we obtain 
co • 

f(X) ~ Z (c e•nt + c e-int) = 
n=O n -n 

00 

n=-oo 

For the coefficients c we get: 
n 

= in'!!x c e R-
- n n=-oo 

c = l (a ~lb) = l[l /fl.. f(X) cos~ nXdX-i l /fl.. f(X) sin: nXdX] 
n 2 n n 2 fl.. -fl.. fl.. fl.. -fl.. ~ 

= 21fl.. [f:fl..f(X) (cos~ nX - i sin~ nX) dX] 
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The coefficient c can then be easily obtained from c being its 
-n n 

complex conjugate. 

Note that the complex series is real. It can be shown, 

denoting the n-th term of the complex series by f (x), that f (x1 + f (.x} n n "'n 

is real for every n = 0, 1, -~~ •• ;The proof [s left to the reader. 

6.2 Harmonic Analysis 

One special problem of leCJst-squares approximation, h.ctrmoni_c 

analysis, is worth mentioning here separately. We speak about harmonic 

analysis when the given functl.on F, periodic on M = [a, b] (i.e. F(x) = 

= F(x + b- a)) is known at 2n + 1 points xi= a+ b;~ i (i = 0, 1, 2, ... , 

2n) and we want to approximate it using the best-fitting, in the least-

squares sense,trigonometric polynomial 

1?.~ 
P2k+l(x) = .z· (a. cosH+ b. sin jl;), t,; = t,;(x). 

J=O J J 

The system cil :: {1, cos l;(x), sin l;(x), cos 2l;(x), sin kl;(x)} has to 

be orthogona 1 on M . 

First of all let us realize that because of the periodicity of 

F we have 

F (x ) = F (x2 ) 
o n 

so that we have to use only 2n functional values, say F(x.) i = 1, 2, 
I 

2n. Hence we can accommodate only up to 2n functions in the system cil 

and 2k + 1 < 2n. This condition can be rewritten as 

k < n - 1/2 

The second question is what kind of transformation l; = l;(x) 

.. ' 
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do we have to use to make the system ~ orthogonal on 

We know that the systemtll'(FJ = {1, cos E;, sin t;, .. o, sinkS} is ortho-

gonal for E;. 
I 

1T 
=-1T+-i, 

n =I, 2, ooo 2n (see 3o7:)o Hence the 

transformation 

x - a = s + 1T 

b - a 21T 

ensures that the system ~(~(x)) = wlxl will be ort~ogonal for 

b .... a 
x.=a+ 2 i, 

1 n 
i = 1, 2, 000, 2n. Therefore 

is the transformation we are looking for and the trigonometric system 

(base) to be used in the problem is 

S i nee the base l&,.6rth6gE>naJ5~·~~.<tt , we get a d i agona I matrix 

of normal equations and the coefficients of ~2k+l become: 

. 2 1 'i:h 
ao =<J, I)/ 11 111 = zn .i!lF(xi) 

'(F, cos j (~~~~. 2)) 1 2n 
F ( ) • (K 1( ) a. =II '(I( 11 )jj2 =- E x. cos J 1x.1 + .. 2 J COS J ·~ f X + r) 2 n i = 1 I 

b. 
J 

.(F, sin j(l( 1x+K2)} 1 2n j 

ijsin j(Klx+~Sz) 112 = n i~l F(xi) sin j(K,lxi + Kz}. 
=1,2, .. ,k~ 

When evaluating the scalar products we can exploit the 

property of the trigonometric functions: 

We can write: 

sin jt;. = - sin j~ 2 o 
1 n-, 

cos H· 
I 

cos jt;2 . n-1 

j = 1' 2, 
= 1 ' 2' 

. ~ ' 
0 • ' 

k ) 
2n-l • 

2n 1 n-1 
iE/(t;) cos jt;i = 2 i~l (F(~i) + F(t;2n-i)) cos j~i + F(~n) - F(~2n) 

j = 1 ' 2' 00 0 ' k. 
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The derivation of <ft1h~t·above formula-; is left to the reader. We shall 

just remark thatthts computational trick reduces the computing time 

considerably and is often used whenever we deal with evaluation of 

scalar products involving odd and even functions defined on a symmetrical 

M Note that the problem of harmonic analysis can be also 

regarded as the problem of computing the truncated trig. Fourier 

series with the integrals being numerically evaluated using the 

rectangular formula. The harmonic analysis has a wide field of 

appl !cations whenever the periodic functions are investigated. 

6.3 Fourier Integral 

If a function F, given on M = (-oo, oo) is on M absolutely 

integrable then it can also be represented in terms of the Fourier 

integral· 

where 

F(x) g / 00 (a{w) cosw x + b(w) sinw x) dw 
0 

a(w) = l / 00 F(x) cosw xdx 
7T -oo 

b(w) = l / 00 F(x) sinw xdx. 
11' -oo 

The Fourier integral is obviously a close relative of the Fourier trig. 

series. It can be derived from the trigonometric Fourier series when 

the finite interval [- 51,, 51,], for which the trig. Fourier series is 

defined, is extended beyond all the 1 imits. We can see that for the 

infinite M , the trig. Fourier series ceases to be defined and has to 

be replaced by the Fourier integral. 
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The only two differences between the trigonometric series and 

the integral are: 

1) the coefficients a, b in the Fourier integral are con-

tinuous functions of the frequency w as compared to the coefficients an' 

II bn of the series which are discrete functions of the frequency T n; 

2) the summation over the discrete frequencies~ n in the 

trigonometric series is here replaced by the integration over the 

continuous frequency w. 

Fourier integral represents the given function F in the same 

way, i.e. in the mean sense, as the Fourier series does. The same theorems 

about representation of odd and even functions by cosine and sine 

terms only are validt even for the integral. 

It is left to the reader to show that the Fourier integral 

can be written, using complex numbers, as 

F(x) ~/00 c(w)eiwx dw 
-oo 

where 

c(w) 

6.4 Spectral Analysis 

6.4.1 Problem of spectral analysis 

In dealing with various time series f(t) in practice we are 

very often faced with following problem: 11 given a time series f(t) defined 

on M (discrete) we assume that f can be expressed as 

m 
f ( t) = r (a. cos w.t+b. sin w.t), 

, l I I I I 
1= 
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·where w.1 , a., b. are some real numbers. 
I I 

b., i = 1, 2, ••• , m. 11 
I 

The task is to evaluate w., a. , 
I I 

If we formulate the problem as a problem of the best least-

squares approximation, we would end up with a system of 3m normal 

equations that would not be linear. This is because the generalized 

trigonometric polynomial above contains the frequencies w. as paramaters 
. I 

within the function~. The solution of such non-linear system of equations 

may or may not exist. Even if it did 1 the numerical computation would 

be very awkward and most troublesome. 

On the other hand, if the frequencies w. were known, the 
I 

coefficients a., b. could be determined quite easily using the least-
' I 

squares technique. They would be furnished by a system of 2m linear 

algebraic equations, that usually has a solution. 

The problem of finding the unknown frequencies w. constitutes 

the proper problem of spectral analysis. Hence the spectral analysis 

can be considered as the first step in the complete decomposition of the 

given function f' (Usua 11 y a ·time se·r i ~s, hence the use of. it) into the 

individual trigonometric terms. This type of analysis is of a great. 

importance and finds applications in electrotechnique, oceanography, 

meteorology, geophysics, biology, medicine, statistics and many other 

fields. 

Precise solution of this problem is seldom possible. In the 

next section we shall show one of the most widely used techniques 

of spectral analysis. 



6-~~2 Fourier spectral analysis 

To begin with, let us write the trigonometric Fourier series 

of the time function f(t) defined on a finite compact M [- fl.,' Ji.,] : 

f(t) ·I E (an cos w t+b sin wnt), 
n=O n n 

where the frequency wn is given by~ n (see 6.L2). This can be rewritten 

as 

where 

f(t) ·•~ ERn (cos v cos w t +sin v sin w t) 
~=O n n n n 

00 

= L: R cos ( w t - " ) n=O n n · n 

R sin~. = b and therefore 
n n n 

b 
n 

).1 = arctg 
n a n 

Each amplitude R is obviously a non-negative real number 
n 

that describes the magnitude of the cosinusoidal wave cos (w t-• ). 
ilt't :n. 

These magnitudes can be pl~tted either against the subscript n: 

'12-o 
12., 

I I I 
0 2. n 

or against the frequencies 1T w =- n n fl., 
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This diagram is known as the line spectrum off and represents the 

discrete transformation of f from time space)nto the frequency space 

f(t) + R(w) 

(actually R(w.) in this discrete case). 
I 

Such a diagram is evidently able to provide some information about the 

contribution of the individual integer frequencies. 

The Fourier Integral can be interpreted in the same way, to 

furnish a continuous spectrogramme) i.e. for ·any real value of n in ron-~ n, 

Not just for integ-ral values of n. R('W) given by 

R(w) = l(a2(w) + b2(w)) 

is a continuous function of w known as the Fourier transform of f. Its 

graphical representation is called Fourier periodogramme and used 

extensively in all kinds of experimental sciences. 

Iff is known on a finite M only,and this is usually the 
..... 

case with experimental functions, then we define its extension f 

eJ 

f(t) 
/ f(t) 

= "0 
t e M 

,... 
and regard the periodogramme of f as an approximation of that of f. 

The integrals involved in evaluating a(w), b(w) are generally evaluated 

also only approximately since M is seldom compact. 

R(w) is then analyzed for peaks or "characteristic peaks". The number 

of these peaks decide the number of terms in the expansion for f(t) In 

section 6.4.1. The location of the peaks (~values) become the~~ tn this 

expansion. 
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6.5 Problems 

1. What does the trigonometric Fourier series of the function F(x) =lsin xi 

on xeM = I-n,n] look like? 

2. Express the function 

jxj~l 

lxi:=J 

I~ I). I 
in terms of its Fourier integral. 

3. What is the line spectrum of 

f(t) = S + B cos(3t - 5.8) - 2 sin{St + 3. 1) ? 

4. Write a computer program to compute the values a(w), b(w), ~(w), R 'w) 

for any function given on an equidistant discrete set M. 

5. Using Q>(X) = R(x) R(y)., , where R is the trigonometric system, design 

the algorithm for a computer program that would compute the best fitting 

double trigonometric polynomial to any topographic surface given on a 

rectangular, equidistant grid. Can you use. any other system? What about 

mixed alge~raic polynomials? 

6. Write, debug and document a program that would approximate a function F 

given on a grfd 5! x 5° on the surface of a s~here by a series of spherical 

harmonics. Consider P to be orthogonal on the grl·d and leave the choice nm 

of the highest order of spherical harmonics up to the user. Include a 

check for the proper selection of the highest order. Print out the 

estimates of variances of the individual coefficients. 
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APPENDIX: SOME ORTHOGONAL SYSTEMS OF FUNCT~0NS 

Following are the most widely used systems of functions, 

orthogonal on compact sets: 

i) Tchebyshev's of 1-st kind, which we have met in 2 .··, orthogonal 

on M:: [-1,1] with W(X) = (1- x2)-112 . 

ii) Tchebyshev's of 2-nd kind: 

sin((l+k) arccos X) 
= --~------~----~ 

1(1 - x2 ) 

orthogonal on M:: [-1 ,1] with W(X) = (1 - x2) l/Z · 

i i i) Legendre's 
k 

L (X) = 1, L (X) = _l _d_ (x2 - 1) k , 
o k 2kk! dXk 

orthogonal on M = [-1,1] with W(X) = 1. 

iv) Legendre's associated functions 

m m 
P (X) = ( 1 - X2)2 _d- L (X) 

nm dXm n 

are orthogonal with respect to n (only for the same value of m) 

on M = [-1,1] with W(X) = 1. These are excessively used in geodesy 

within the "spherical harmonics". 

v) Trigonometric system 

{ 1 , cos X, sin X, cos 2X, s in 2X, ... } 

is orthogonal on M- [-TI,TI] with W(X) = 1. It can be shown that this 

system is orthogonal even on discrete equidistant set M = [-TI,TI))or (""TI,TI] 

(note that in this case the interval is open fromone side). 
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Other systems for which we are not going to list the 

formulae are: 

vi) Laguerre's orthogonal on M = [O,oo) with W(X) =e-X 

vii) Generalized Laguer~'s orthogonal on M = [O,oo) with weight 

W (X) -- Xa. e-X, h 1 . f were a >- 1s a parameter o the system. 
-xz 

viii) Hermite's orthogonal on M:: (-oo,oo) with W(X) = e 

ix) Bessel 1 s orthogonal on M :: [O,c] with W(X) =X, where c is a 

parameter of the system. They are of the 1st, 2nd and 3rd kinds. 

x) Jacobi's orthogonal on M = [-1 ,1] with W(X) = (1-X)a (l+X)S 

where a,S>-1 are parameters of the system. 

All these systems can be also regarded as series of 

eigenfunctions of some particular differential equation of 2nd order 

(of the Sturm-Luiville's type). Each of them has got its own 

11generating function 11 , i.e., a function that developed into power 

series has coefficients equal to the individual functions of the 

system. For the individual functions in the different systems of 

algebraic polynomials, there exist recursive formulae, known sometimes 

as Rodriguez's, expressing the n-th element as a linear combination of 

(n-l)st and (n-2)nd elements. 

If a system of functions is orthogonal for XEM _ [a,b], 

then a system of functions of the argument 

I; = a 

is orthogonal on 

s-a +- (X-a) b-a 

M = [a,s]. 

proportionality equation 

X - a 
b - a = 

I; - a 
(3 - a 

This equation follows simply from 
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as the reader can easily prove. Note that if a system is orthogonal 

on an infinite interval (Laguerre's, Hermite's) there does not exist 

any linear transformation for the argument that would make the system 

orthogonal on a finite interval (:.b,..a"+·coand {S-a.)/(b-a)-+ 0). 

We may also note that A-times an orthogonal system is 

again an orthogonal system as long as A is not a function of x. A can 

be even different for different functions of the system. 

Many orthogonal systems of functions can be expressed as special 

cases of a generalized system of functions called the Generalized 

Hypergeometric Series, which is written 

== 

00 

I: 
n=O 

(a2) •.• (a ) 
n p n 

(p2) ... (p ) 
n q n 

xn 

n ! 

·where Pockhammer's Symbo 1 (a) 
r 

is defined in terms of gamma functions 

r (a+ r;) 
== 

r (a) 
(a) 

r 

and a 1,a2 , •.• ap and pl ,p2 , ..• pq are constants. 

For example 

T (x) = 
n 2F1 (-n,n;l/2; 1-x ), 

-2- I 

U (x) 
n 

== (n+l) 2F1 (-n,n+2;3/2; 1-x 
2 

L'n(x) = 2F1 (-n,n+1;1; 1-x) 
2 

) 

TchebyshevJ of lst kind 

Tchebyshev of 2nd kind 

Legendre, 

Following are tables giving the lowe_r degree polynomials in some of 

these systems of orthogonal functions. 
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TCHEBYSHEV 1-ST KIND 

k .. 
T k(x) k T~(x}· 

0 1 5 i6x5 "' 20x3 + 5x 

6 6 4 2 
l l X 32x ~ 48x + 18x -

2 2 2x - 1 7 64x7 ~ 112~2 + 56x3 - 7x 

3 4x3 - 3x 8 8 128x - 6 4 2 256x + 160x - 32x + 1 

4 4 Bx - Bx2 + 1 9 256x9 - 576x7 + 432x5 - 120x3 + 9x 

r•(x) = 2n-JT (x). n . n 
--~-

TCHEBYSHEV 2-ND KIND 

k uk {x) k, Uk{x) 

r.: 
24x3 + 6x 0 1 5 32x' -

1 2x 6 6 64x - 4 80x + 24x - ' 
2 

2 4x - 1 7 128x7 - l92x5 + 8ox3 - Bx 

3 8x3 - 4x 8 8 256x - 6 It 2 448x + 240x - 40x + 1 

4 16x4 - 12x2 + 1 9 512x9 - 1026x7 + 672x5 - 16ox3 + 1 Ox 



k 

0 

1 

2 

3 

4 

k 

() 

1 

2 

3 

4 

5 -x5 

k 

.o 

1 

2 

3 
4 

5 
-

4 
X 
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LAGUERRE 
. 

Q.k(x} 

-
2 

X -

-x3 + 2 9x -

t6xr 2 - + 72x -

X 

4x 

l8x 

96x 

+ 25x4- 200x3 + 6ooi - 6oox 

HERMITE 

Hk(x} 

1 

2x 
4x2 - 2 
8x3 - 12x 

16x4 - 48x2 + 120x 

32x5 - 160x3 + 120x 

LEGENDRE 

+ 1 

+ : '·1 

+ 1 

+ 6 

+ 24 

+ 120 

·- .· . 
lr<(x) k lk (x) 

1 5 (l/8) (63x5 - 70x3 + }Sx) 
X 6 (1/16) (231x5 - 31Sx4 + l05x2 -S) 
(1 /2) 2 (3x - 1) 7 (1/16) {429x7 - 693x5 + 315x3 - 35x) 
( 1 /2) (Sx3 - 3x) 8 . ~ 8 6 4 (l/128) (64 x - 120l2x + 6930x -

- l260x2 + 35) 
(1/8) 4 2 {35x - 30x + 3) 9 (1/128) (12155x9 - 2573rix7 + 18018x5 -

- 4620x3 + 315x) 

-
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