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PREFACE

In order to make our extensive series of lecture notes more readily available, we have
scanned the old master copies and produced electronic versions in Portable Document
Format. The quality of the images varies depending on the quality of the originals. The
images have not been converted to searchable text.
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1. INTRODUCTION

. These notes discuss the precise definitions of, and transformations
between, the coordinate systems to which coordinates of stations on or
above the surface of the earth are referred. To define a coordinate
system we must specify:

a) the location of the origin,

. b) the orientation of the three axes,

c) the paramefers (Cartesian, curvilinear) which define the

position of a point réferred to the coordinate system.
The earth has two different periodic motions in space. It rotates
about its axis, and it revolves about. the sun (seé Figure 1-1). There

is also one natural satellite (the moon) and many artificial satellites

which have a third periodic motion in space: orbital motion aboﬁt £he
earth. These periodic motions are fundamental to ghé definition of
systems Qf coordinates and systems of time.

Terrestrial coordinate systems are earth fixed and rotate with the
earth. They are used to define the coordinates of points on the surface
df the earth. There are two kinds of terrestrial systems called
geocentric systems and topbcentric systems‘(see Figure 1-2).

Celestial coordinate systems do not revolve but may rotate with the
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earth. They are used to define the coordinates of celestial bodies
such as stars. There are four different celestial systems, called the

ecliptic, right ascension, hour angle, and horizon systems.

The orbital system does not rotate with the earth, but revolves
with it. It is used to define the coordinates of satellites orbiting

around the earth.

1.1 POLES, PLANES AND AXES

The orientation of axes of coordinate systems can be described in
terms of primary and secondary poles, primary and secondary planes, and
primary, secondary and tertiary axes.

The primary pole is the axis of symmetry of the coordinate system,

for example the rotation axis of the earth. The primary plane is the

plane perpendicular to the primary pole, for example the earth's

equatorial plane. The secondary plane is perpendicular to the

primary plane and contains the primary pole. It sometimes must be
chosen arbitrarily, for example the Greenwich meridian plane, and
sometimes arises naturally, for example the equinoctial plane. The

secondary pole is the intersection of the primary and secondary planes.

The primary axis is the secondary pole. The tertiary axis is the primary

pole. The secondary axis is perpendicular to the other two axes,

chosen in the direction which makes the coordinate system either fight—
handed or_left~handed as specified.

We will use either the primary plane or the primary pole, and the
primary axis to specify the orientation of each of the coordinate

systems named above.



For terrestrial geocentric systems:

a) the origin is near the centre of the earth,
b) the primary pole is aligned to the earth's axis of
rotation, and the primary plane perpendicular to this pole is called

the equatorial plane,

c) the primary axis is the intersection between the
equatorial plane and the plane containing the Greenwich meridian,
d) the systems are right-handed.

For terrestrial topocentric systems:

a) the origin is at a point near the surface of the earth,
b) the primary plane is the plane tangential to the surface
of the earth at that point,
| c) the primary axis is the north point (the intersection
between the tangential plane and the plane containing the earth's north
rotational pole),
d) the systems are left-handed.

For the celestial ecliptic system:

a) the origin is near the centre of the sun,
b) the primary plane is the plane of the earth's orbit,

called the ecliptic plane,

c) the primary axis is the intersection between the ecliptic

plane and the equatorial plane, and is called the vernal equinox,

d) the system is right-handed.

For the celestial right ascension system:

a) the origin is near the centre of the sun,
b) the primary plane is the equatorial plane,

c) the primary axis is the vernal equinox,



d) the system is right-handed.

For the celestial hour angle system:

a) the origin is near the centre of the sun,
b) the primary plane is the equatorial plane,

c) the secondary plane is the celestial meridian (the plane

containing the observer and the earth's rotation axis),
d) the system is left..-handed.

For the celestial horizon system:

a) the origin is near the centre of the sun,

b) the primary plane is parallel to the tangential plane at
the observer (the horizon plane),

c) the primary axis is parallel to the observer's north point,

d) the system is left-handed.

For the orbital system:

a) the origin is the centre of gravity of the earth,

b) the primary plane is the plane of the satellite orbit
around the earth,

c) the primary axis is in the orbital plane and is oriented

towards the pbint of perigee (the point at which the satellite most

closely approaches the earth) and is called the line of apsides,

d) the system is right-handed.

1.2 UNIVERSAL AND SIDEREAL TIME

Also intimately involved with the earth's periodic rotation and

revolution are two systems of time called universal (solar) time (UT)

and sidereal time (ST). A time system is defined by specifying an




interval and an epoch. The solar day is the interval between successive

passages of the sun over the same terrestrial meridian. The sidereal
day is the interval betﬁeen two successive passages of the vernal
equinox over the same térrestrial meridian. The sidereal epoch is the
angle between the vernal equinox and some terrestrial meridian: if

this is the Greenwich meridian then the epoch is Greenwich Sidereal

Time (GST). The solar epoch is rigorously related to the sidereal
epoch by a mathematical formula. Sidereal time is the parameter

relating terrestrial and celestial systems.

1.3 COORDINATE SYSTEMS IN GEODESY

Geodesy is the study of the size and shape of the earth and the
determination of coordinates of points on or above the earth's surface.

Coordinates of one station are determined with respect to
coordinates of other stations by making one or more of the following
four categories of measurements: directions, distances, distance
differences, and heights. Horizontal and vertical angular measurements
between two stations on the earth (as are measured by theodolite for

example) are terrestrial directions. Angular measurements between a

station on the earth and a satellite position (as are measured by
photographing the satellite in the star background for example) are

satellite directions. Angular measurements between a station on the

earth and a star (as are measured by direct theodolite pointings on the

star for example) are astronomic directions. Distances between two

stations on the earth (as are measured by electromagnetic distance



measuring instruments for example) are terrestrial distances. Distances

between a station on the earth and a satellite position (as are measured

by laser ranging for example) are satellite distances, Measurements

of the difference in distance between one station on the earth and two
other stations (as are measured by hyperbolic positioning systems for

example) are terrestrial distance differences. Measurements of the

difference in distance between one station on the earth and two satellite
positions (as are measured by integrated Doppler shift systems for

example) are satellite distance differences. All these measurements

determine the geometrical relationship between stations, and are the

subject of geometric geodesy [e.g. Bomford 1962].

Spirit level height differences and enroute gravity values are
measurements related to potential differences in the earth's grayity

field, and are the subject of physical geodesy [e.g. Heiskanen and

Moritz 1967].
The functional relationship between these measurements and the
coordinates of the stations to and from which they are made is

incorporated into a mathematical model. A unique solution for the

unknown coordinates can be obtained by applying the least squares

estimation process [Wells and Krakiwsky 1971] to the measurements

and mathematical model.
Details on coordinate systems as employed for terrestrial and
satellite geodesy can be found in Veis [1960] and Ksula {1966], and

for geodetic astronomy in Mueller [1969].



2. TERRESTRIAL.COORDINATE SYSTEMS

In this chapter we will discuss terrestrial geocentric and
terrestrial topocentric coordinate systems.

We first discuss terrestrial geocentric systems using only
Cartesian coordinates, and considering in detail what is meant by "the
earth's axis of rotation" and "the Greenwich meridian". Then the
relationship between Cartesian and curvilinear coordinates is described.
Geodetic datums are discussed. Finally terrestrial topocentric systems
are considered, with attention paid to what is meant by "the surface

of the earth".

2.1 TERRESTRIAL GEOCENTRIC SYSTEMS

In the introduction it was stated that for terrestrial geocentric
systems:
a) the origin is near the centre of the earth,
b) the primary pole is aligned to the earth's axis of
rotation,
c) the primary axis is the intersection between the primary
plane and the plane containing the Greenwich ﬁeridian,

d) +the systems are right-handed.
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The last specification is unambiguous. As we shall see the other
three are not. We will first discuss problems in defining the earth's
axis of rotation and the Greenwich meridian. Then we will discuss

translations of the origin from the centre of the earth.

2.1.1 Polar Motion and Irregular Rotation of the Earth

We think of the earth as rotating about a fixed axis at a uniform
rate. In fact, the axis is not fixed and the rate is not uniforn.

Over 70 years ago, it was discovered that the direction of the
earth's rotation axis moves with respect to the earth's surface. This
polar motion is principally due to the fact that the earth's axes of
rotation and maximum inertia do not coincide. The resultant motion is
irregular but more or less circular and counterclockwise (when viewed
from North), with an amplitude of about 5 meters and a main period of
430 days (called the Chandler period).

Two international organizations, the International Polar Motion
Service (IPMS) and the Bureau International de 1'Heure (BIH) routinely
measure this motion through astronoﬁic observations; the IPMS from five
stations at the same latitude,vand the BIH from about 4O stations
scattered worldwide. The results are published as the coordinates of
the true rotation axis with respect to a reference point called the
Conventional International Origin (CIO) which is the average position
of the rotation axis during the years 1900-1905( IUGG (1967) Bwll Geod
86, 379 (1967) Resolution,lg). Figure 2-1 shows the polar motion during 1969
as determined by IPMS and BIH.

Ovef 30 years ago irregularities in the rotation of the earth were
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discovered (other than polar motion). There are three types of
irregularities: seasonal variations probably due to meteorological
changes or earth tides; secular decrease due to tidal friction; and
irregular fluctuations [Mueller 1969]. The seasonal variation is the
only one of these presently being taken into account, and it is more or
less reproducible from year to year, and produces a displacement along
the equator of up to 15 metefs with respect to a point rotating uniformly
throughout the year (see Figure 2-2).

Because of this seasonal variation, the Greenwich meridian (the
plane containing the earth's rotation axis and the center of the transit
instrument at Greenwich Observatory) does not rotate uniformly.. A
ficticious zero meridian which does rotate uniformly (so far as the

effects of polar motion and seasonal variations are concerned) is

called the Mean Observatory or Greenwich mean astronomic meridian.

Its location is defined by the BIH.

2.1.2 Average and Instantaneous Terrestrial Systems

The average terrestrial(A.Tszsteﬁ is the ideal world geodetic
coordinate system (see Figure 2-3):
a) Its origin is at the centre of gravity of the earth.
b) Its primary pole is directed towards the CIO (the
verage north pole of 1900-1905), a;d its primary plane is the plane
perpendicular to the primary éole and containing the earth's center of
gravity (the average equatorial plane).

c¢) Its secondary plane is the plane containing the primary
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pole and the Mean Observatory. The intersection of these two planes is
£he secondary pole, or primary axis.
d) It is a right-handed system.
We can then define the position vector ﬁi of a terrain point i in

terms of its Cartesian coordinates x, y, z as

=1
1]
[

2-1

A.T.
The instantaneous terrestrial (I.T.) system is gpecified as follows:

a) Its origin is at the centre of gravity of the eartﬁ.

>b) Its primary pole is directed towards the true (instan-
taneous) rotation axis of the earth.

c) Its primary axis is the intersection of the primary plane
and the plane containing the true rotation axis and the Mean Observatory.

d) It is a right-handed system.

The main characteristic of these two systems is that they are
geocentric systems having their origins at the centre of gravity of the
earth and the rotation axis of the earth as the primary pole.

By means of rotation matrices [Thompson 1969; Goldstein 1950;

Wells 1971] the coordinates of a point referred to the instantaneous

terrestrial system are transformed into the average system by the

following equation (see Figure 2-L4):

X X
y = Re(—xp):Rl(-yp) Y ’ - 2=2

LZ A.T. 1.t




y ——— a -¢ CIO ¥ 9 Gi0
[
|
]
Xp : xg
|
l
b ———— e e
/ Yp
INSTANTANEOUS
TERRESTRIAL

POLE ' ‘ '

AFTER R(-yp)

Figure 2-k4

TRANSFORMATION FROM INSTANTANEOUS TO AVERAGE
TERRESTRIAL SYSTEM.
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where (xp, yp) are expressed in arcseconds, and the rotation matrices

are
1 ) "] o
R, (-y ) = 0 cos{- sin{(- 5
1 Yy ( yp) ( yp)
0 -sin(-y,) cos({-
( ¥y ( yp)

a clockwise (negative) rotation about the x axis, and

| cos(-xp) 0 -sin(-xp)
R, (—xp) = 0 1 0 s
sin(—xp) 0 cos(—xp)

a clockwise (negative) rotation about the y-axis. The inverse is

X X
y = [R(-x) R (-y )1 |y

2" 7p 1" ’p >
Zi1.T. : Z 1 a.T.

and because of the orthogonal characteristic of rotation matrices, that is

Rt (8) = R (8) =R (-8) R
X X
|y = Ry (v )Ry (x)) y . 2-3
Zl1.T. Z] A.T.

2.1.3 Geodetic Systems

In terms of Cartesian coordinates, the geodetic (G) coordinate
system is that system which is introduced into the earth such that its

three axes are coincident with or parallel to the corresponding three
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axes of the average terrestrial system (see Figure 2-3). The first

situation defines a geocentric geodetic system while the latter non-

geocentric system is commonly referred to as a relative geodetic system,

whose relationship to the average terrestrial system is given by the

three datum translation components

=1
]
e

and in vector equation form, the relationship is

R.=r+;. s
1 o 1

where the position vector ;i is referred to the geodetic system, that is

X .
r; = | v ,
e
and
X xo X
y = v, | +|v| - 2-)
z A.T, Zs z G

A more detailed aécount of how a relative geodetic system is
established within the earth is in order (Section 2.3),but before this
can be done, it would be useful to review the relationship between

Cartesian and curvilinear coordinates.
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2.2 RELATIONSHIP BETWEEN CARTESIAN AND CURVILINEAR COORDINATES

In this section we first describe the Cartesian (x, y, z) and
curvilinear (latitude, longitude, height) coordinates for a point on the
reference el;iﬁscid. We then develop expressions for its poéition
vector in terms of various latitudes. Finally the transfbrmation from
geodetic coordinates (¢, X, h) to (x, y, z) and its inverse are

discussed.

2.2.1 Cartesian and Curvilinear Coordinates of a Point

on the Reference Ellipsoid

~ The specific ellipsoid used in geodesy as a reference surface is

a rotational ellipsoid formed from the rotation of an ellipse about its

semi-minor axis b (Figure 2-5). The semi-major axis a and-the

flattening

are the defining parameters of the_reference ellipsoid.
Other useful parameters associated with this particular ellipsoid

are the first eccentricity

e” = —F— 2-6

(en)2= 2 =2 | ‘ 2-7

A Cartesian coordinate system is superimposed on the reference

ellipsoid (see Figure 2-5) so that:
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a) The origin of the Cartesian system is the centre of the
ellipsoid. |

b) The primary pole (z-axis) of the Cartesian system is the
semi-minor axis of the ellipsoid. The primary pléne is perpendicular
to tﬁe primary axis and is called the equatorial plane.

‘e) Any plane céntaining the semi-minor axis and cutting
the surface of the ellipsoid.is called a meridian plane. The particular
meridian plane chosen as the secondary plane is called the Greenwich
meridian plane. The secondary pole (x-axis) is the intersection of
the equatorial plane and the Greenwich meridian plane.

d) The y-axis is chosen to form a right-handed system, and
lies in the equatorial plane, 90° counterclockwise from the x-axis.

The equation of this ellipsoid, in terms of Cartesian coordinates

is
xr sEi'c=1 s 2-8
-where
T=(xyal,
l/ag 0 0
- 2 5
0 0 1/1°
or
W24 2 42
2V s 2 o=, 210
32 b2

The latitude of a point is the acute anghlar distance between the
equatorial plane and the ellipsoid normal through the point measured in
the meridian plane of the point. The line perpendicular to the ellipsoid

at a point is called
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the ellipsoid normal at the point. Ellipsoid normals only pass through

the geometric center of the ellipsoid in the equatorial plane or along
the semi-minor axis. Therefore there are two different kinds of
latitude. The angle between the ellipsoid normal at the point and the

equatorial plane is called the geodetic latitude ¢. The angle between

the line joining the point to the centre of the ellipse, and the

equatorial plane is called the geocentric latitude ¢y. There is alsoc a

third latitude, used mostly as a mathematical convenience, called the

reduced latitude B (see Figure 2-6).

The longitude A of a meridian plane is the qounterclockwise angular
distance between the Greenwich meridian plane and the meridian plane of
the poiht, measured in the equatorial plane (see Figure 2-5).

The ellipsoid hei#ght h of a point is its linear distance above the

ellipsoid, measured along the ellipsoidal normal at the point (see Figure 2-8).

2.2.2 The Position Vector in Terms of the Geodetic Latitude

Consider a point P on the surface of the ellipsoid. The coordinates
of P referred to a system with the primary axis (denoted'x*) in the meridian
plane of P are
‘X*]

0 2-11

2]
1]

z
4

The plane perpendicular to the ellipsoid normal at P, and passing

through P is called the tangent plane at P. From‘Figure 2-T the slope

of the tangent plane is

dz ° - _ cos
ax* tan (90°+¢) sind | . 2-12
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Figure 2-6. VARIOUS LATITUDES
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The slope can also be computed from the equation of the meridian ellipse

as follows:

2 2
*
€50 M 2-13
2 2
a b
or
b2 (x*)2 + a2 22 = a2 b2 2-1k
2b2x* dx*® +'2&2 zdz = 0 2-15
dz o b2 X* Y
dx# 2 :
a z
It follows from Bhe above two equations for the slope, that
5 )
b~ x¥* _ cosp - 2-17
2 .
a z sing
or
b (x*) sin ¢ = &8z cos ¢ 2-18
and after squaring the above
bh (x*)2 sin2¢ = ah z2 cos2¢ . 2-19
Expressing equations 2-14 and 2-19 in matrix form
bh sin2¢ -ah cos2¢ (x*)2 0 0-20
b2 a2 Vz2 v a2b2
The inverse of the coefficient matrix is
-2 L 2
a a cos ¢
1 ?
a2b2(a2 c052¢>f+ b2 sin2q>) b2 bh sin2¢
therefore
(x*)2 - 1 ah cosg¢
2 2 2 . 2
.2 a” cos ¢ + bv sin"¢ bh sin2¢
and finding the square root
x¥ 1 a2 cos ¢

z (32 c052¢ PRENE sin2¢) b° sin¢



From Figure 2-6
x*
cos ¢ = ﬁ_ s

but from equation 2-21

a2 cosd

X*‘_' R
(a2 cosz¢ + b2 sin2¢)l/2

therefore
N = a”
(a2cos2¢ + bgsin2¢)l/2 2-22
x* N cos¢
r=1]0 = 0 . . 2-23
z N b2/a2 sing

N is the radius of curvature of the ellipsoid surface in the plane

perpendicular to the meridian plane (called the prime vertical plane).

" We now refer the position vector P to a system with the primary axis
in the Greenwich meridian plane, that is we rotate the coordinate system

about the z-axis clockwise (negative rotation) through the longitude A.

X x*
r=|y| = R,(-A) |0
Z Z

cos(-2) sin(-1) 0 N c§s¢
= |-sin(-X) cos(=}) 0 0

0 0 1| | v v%/a® sin¢
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or
X cos$d cosi

r=1y]| = N|lcos¢ sinif. o_2}
VZ b2/a2 sin¢

2.2.3 The Position Vector in Terms of the Geocentric and Reduced Latitudes

From Figure 2-6 the position vector of the point P in terms of the

geocentric latitude ¥ is

x¥* “cosy
T = 0 = l?' 0
z siny

where |F| is the magnitude of r.

Rotating the coordinate system to introduce longitude as before,

b'4 x* cosy cosA
r=|v| =R(=2) o} = |7 cosy sini| . 2-25
z | Z siny

From Figure 2-6 the reduced latitude B of the point P is the
geocentric latitude of both the points Q and R, where Q is the
projection of P paraliel‘to the semi-minor axis to intersect a circle
with radius equal to the semi-major axis, and R is the projection of the
point P parallel to the semi-major axis to intersect a circle with
radius equal to the semi-minor axis.

The position vector of P in terms of the reduced latitude B is

x* a cosB

0 = 0 .

RN
"
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Rotating the coordinate system to introduce longitude,

X x¥ a cosB cosA
r=1|v =R3(-A) 0| = |acosB sini|. 2-26
z Z b sinB

2.2.4 Relationships between Geodetic, Geocentric znd Reduced Latitudes

From equations 2-24, 2-25, and 2-26

z b2 ' b
;-= ;5- tan¢ cosA = tany cosi = g-tane cosA .
Cancelling the cos A term,
b
tanB = T tan¢ 2=27
a
tang = ~ tany 2-28
b2
tany = —§-tan¢ . 2-29
a

2.2.5 The Position Vector of a Point Above the Reference Ellipsoid

Let us consider a terrain point i, as depicted in Figure 2-8,
whose coordinates are the geodetic latitude ¢ and longitude A, and
the ellipsoid height h. The projection of i onto the surface of the
ellipsoid is along the ellipsoidal normal defined by‘the unit vector ﬁz.
The posifion vector of i is then the sum of two vector;, namely

ri = rp + h uz s 2-30

where ;p is defined by equation 2-24 and ﬁz is the unit vector defined

by equation 2-68c, that is
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i TERRAIN POINT

Figure 2-8. POINT ABOVE REFERENCE ELLIPSOiD
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cosé c0321
‘z = cos¢ sini .
sin¢
Thus
b'd cos$¢ cosA cos$¢ cosi
r; = | ¥| =N [cos¢ sim | +h |cosp simk
z b2/a2 sing sin¢
or
X (N+h) cos¢ cosi
= |v| = | (n) cose sim | . 2-31
z (¥b2/6%+h) sin¢

Now thé position vector ;i in equation 2-31 refers to a coordinateA
system whose origin is at the geometrical centre of the ellipscid. If
this ellipsoid defines a relative geodetic system, then its centre will
not in general coincide with the centfe of éravity of the earth. The
expression for the position vector in the average terrestrial system is,

from equation 2-L4

o
T =
(5 0y 1, Yol + (T)
G
z
o
or
x X (N+h) cos¢ cosA
(;;) = |y =1y, | (N+h) cos¢ sinA| ° e-32
A.T. : 5 2
z z (Nb“/a“+h)  sin¢
A.T.

This expression gives the general transformation from relative

geodetic coordinates (¢, A, h) to average terrestrial coordinates
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(x, ¥, z), given the size of the ellipsoid (a, b) and the translation

components (x Z e
p ( o0 Voo o)

2.2.6 Transformation from Average Terrestrial Cartesian to

Geodetic Coordinates

A very useful transformation is the inverse of equation 2-32.
Given the average terrestrial coordinates (x, y, z), the translation
components (xo, &O, zo), and the size of the ellipsoid (a, b), compute
the relative geodetic coordinates (¢, A, h).

First we translate the origin from the centré of gravity to the

centre of the ellipsoid. From equation 2-32

X X X
O
= - ) 2~
y y Y, 33
“le 2] a.T. %

The longitude A is computed directly from

A= tan (D). 2-3h

The latitude ¢ and ellipsoid Theight h are more difficult to compute

since N is a function of ¢, from equation 2-22

a

N-—

= - , 2-35
(cosg¢ + bz/az sin2¢)l/2 .

and h is not known. We begin by computing
221 - b2/a2 2-36
2,1/2 2-37

€

(x2+y

b
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From equation 2-31

p2 = (N+h)2 cosz¢ coszl + (N+h)2 cos2¢ sinzk
p = (N+h) cos¢
or D
' h=——-N . 2-38
. cos¢

Also from 2-31

]
I

(N b2/a2 + h) sin¢
’ 2.2
a ~b

2

a

(N+n - e2 N) siné .

(N - N + h) sino

Therefore

L47+ h - e2N) sing _ = tang (1 - EEK -39

p (N + n) cos¢ N+h

This equation can be developed in two ways, to produce either a direct

solution for ¢ which is quite involved, or an iterative solution which is

simpler. We consider the iterative solution first. We have

-1
¢=m{1@§<1-§% ].

The iterative procedure is initiated by setting

No = a
ho - (x2 2 2)1/2 ( b)20./2
-l e2N -1
4, = (@ -y 1 -

Each iteration then consists of evaluating in order

a

N. =

i )1/2

2 2,2 .2
cos ¢i-l + b /a  sin ¢i-l

h, = —_ . N,
i cosd t
i-1

e2N -1

-©
|
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The iterations are repeated until
- <
(hy - by ) <ee

and

(¢i -4y q) <e |
for some appropriately chosen value of ¢ (for example e= 10_10 for double
precision Fortran on the IBM 360 computer).

Returning to equation 2-39, we eliminate h using equation 2-38

to obtain

= tan ¢(l - eaNpCOSé )

LR I3]

or 5
ptan¢ - z = e N sing .

In this equation the only unknown is ¢. We will now modify this
equation to obtain an equation which can be solved for tan ¢. Substituting
the expression for N from equation 2-35 we have

a e2 sing

p tan¢ - z = .
(c032¢ + b2/&2 Sin2¢')l/2

Dividing the numerator and denominator of the right hand side by cos

2
a e tam ¢
ptan ¢ - 2z =
(1 + b2/a.2 tan2¢ )l/2

or

1/2 = an?

(p tan¢g - z) (1 + O.—e?)tm3¢) ae” tan ¢

Squaring this equation to eliminate the square root
(p2 tan2¢ - 2 p 2z tang + z2) (L + (1 - e2) tan® ¢)

= a2 eh tan2 ¢

or
2
p2 tanh¢ -2pz tan3¢ + (3 +22) tan2¢ _2pz ;an ¢ z 5 = 0
(1 - €%) (1 -¢€%)
where . o o)
3 =R -—ae )
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This is & quartic (biquadratic) equation in ten¢ , in which the
values of all coefficients are knowh, Standard procedures for solving
quartic equations exist (see for example Korn and Korn, 1968), and have
seen applied to this eéuation.by Paul (1973), to prodace a computer
pfogram which is about 25% faster than iterati?e progfams. Once a solution
for tan¢ is cobtained, N and h are computed from equations 2-35 and 2-38

respectively.

2.3 GEODETIC DATUMS

There are two natural figures of the earth (see Figure 2-9);
the topographic or physical surface of the earth including the surface of
the oceans (the terrain), and the equipotential surface of the earth's
gravity field which coincides with an idealized surface of the oceans (the
geoid). |

Control measurements (e.g. distances, angless, spirit leveliing)

are made between points on the terrain which we call control points. These

measurements are used to determine the geometrical relationship between

the control points in a computation called network adjustment. Other points

are then related to the network of control points through further measurements

and computations called densification. The classical approach is to treat

the vertical measurements, networks and computations separately from the
horizontal measurements, networks and computations. However thé unified
three dimensional approach is currently gaining favour. [Hotine, 1969].

In the classical approach vertical measurements and networks are
referred to a coordinate surface or (vertical) datum which is the geoid.
Rather than using the geoid as the coordinate surface or datum for the

horizontal measurements and networks as well, & third, unnatural figure of
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the earth is introduced - the ellipsoid of rotation discussed earlier.

The reason a mathematical figure like the ellipsoid is used as the horizontai
datum is to simplify the computations required both for network adjustment
and densification.

Correction terms are necessary in these computation to account
for the fact that the datum is not the geoid. An ellipsoid can be chosen
to approximate the éeoid closely enough that these correcfion terms can .
be assumed linear and for some applications even ignored. For a well-chosen
ellipsoid (see Figure 2-9), the geoid-ellipsoid separation (geoid height)
is always less than 100 metres, and the difference between thé geoid and
eliipsoid normals at any point (deflection of the vertical) is usually less
than 5 arcseconds, very rarely exceeding 1 arcminute.

Even simpler surfaces than the ellipgoid (such as the sphere
or the plane) can be sufficient approximations:to the.geoid'if the area
under consideration is sufficiently small, and/or the control application
permits lower orders of accuracy.

The introduction of a new sérface (theiellipscid) has a price.
The horizontal control network (that is;the coordinates of the points of the
network) is to be referred to the eilipsoid. Therefore before network
computations can begin, the control measurements must first be reduced so
that they too "refer" to the ellipsoid.

It is imﬁortant to distinguish between the datum (the coordinate

surface or ellipsoid sufface) and the coordinates of the points of the net-
work referred to the datum. It is a common but confusing practice (part~

icularly in North America) to use the term "datum" for the set of coordinates.
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2.3.1 Datum Position Parameters

In order to establish an ellipsocid as the reference surface for
a system of ponﬁrol we must specify its size and shape (usually by assigning
values to the semi-major axis and flattening) and we must specify its pos-
ition with respect to the earth. A well-positioned ellipsoid will closely
approximate the geoid over the area covered by the network for which it is
in datum. The parameters to which we assign values in order to specify the »

ellipsoid position we call the datum position paramecers.

In three-dimensional space, any figure (and particularly our
ellipsoid) has six degrees of freedom, tﬁat is six ways in which its posi-
tion with respect to a fixed figure (in our case the earth) can be changed.
Thus there areAsii datum position parameters.

Another way of looking at this is to consider two three-dimensional
Cartesian céorainate systems, one fixed to the ellipsoid and one fixed to
the earth. In general the origins of the two systems will not coincide,
and the axés will not be parallel. Therefore, to define the transformation
from one system to the other we must specify the location of one origin
with respect to the other system, and the orientation of one set of axes
with respect to the other system, that is three coordinates, aﬁd three
rotation angles. These six parameters provide a description of the six
degrees of freedom and .assigning values to them positions the ellipsoid
with respect to the earth. They are our six datum position parameters. A
datum then is completely specified by assigning values to eight parameters -

the ellipsoid size and shape, and the six datum position parameters.
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There are in fact two kinds of datum position parameters in
use. One kind is obtained by considering the ellipsoid—fixéd 329 earth-
fixed coordinate systems to have their origins in the neighbourhood of the
geocentre. The other kind is obtained by considering the ellipsoid-fixed
and earth-fixed coordinate systems to have their origins near the surface

of the earth at a point we call the initial point of the datum.

In the first (geocentric) case the earth-fixed system is the
Average Terrestrial system of section 2.1.2, and the ellipsoid-fixed system
is the geodetic system of Equation 2-31 (except that here we assume the
geodetic and average terrestrial axes are not in general parallel). 1In
this case the datum position parameters are the Average Terrestrial coor-
dinates ‘of the ellipsoid origin (xo, Y, 2, of Equation 2-32) and three

) required to define the misalignment bet-

rotation angles (say w., w., W

Y22 V3
ween the axes. I§ is of course highly desirable that the ellipsoid be
positioned so that these angles are as small as possible, particularly

that the two axes of symmetry (the ellipsoid minor axis and earth's average
rotation axis or Average Terrestrial z-axis) be parallel.

In the second (topocentric) case the earth-fixed system is a
local astronomic system at the initial point, and thé ellipsoid-fixed
system is a local geodetic system at the same point (local astronomic and
geodetic systems are discussed in section 2.L4).

Before proceeding further let us consider the geometry in the
neighbourhood of a point on the earth's surface. Figure 2-10 is an exag-
gerated view of the geodetic meridian plane at such a point, showing the

sectioned ellipsoid, geoid, several equipotential surfaces related to the

geoid, and the terrain. A pértiéular ellipsoid normal intersects the
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ellipsoid, geoid, and terrain at Q,P and T respectively. There are three
"natural" normals corresponding to this ellipsoid normal; the surface

gravity vertical (perpendicﬁlar to the equipotential surface at T, passing

_through T), the geoid gravity vertical (perpendicular to the geoid passing
through P), and the plumbline (perpendicular to all equipo#ential surfaces
between terrain and geoid, passing through T). In general, the plumbline
is curved while the others are straight lines, and none of these three
actually lie in the geodetic meridién plane - they are shown here as pro-
Jections onto this plane. If the curvature 6f the plumbline is ignored
the two gravity verticals are parallel.

The astronomic meridian plane is the plane containing one of

the gravity verticals and a parallel to the Average Terrestrial z-axis.

The angle between the gravity vertical and the parallel to the A.T. z-axis

is the astronomic co-latitude (g-- $). The angle between the astronomic
meridian plane and a reference meridian plane (Greenwich) is the astronomic
longitude A. The angle between the ellipsoid normal and the éravity

vertical is the deflection of the vertical, which can be resolved into a

component £ in the geodetic meridian plane and a component n in the
geodetic prime vertical plane (the plane perpendicular to the geodetic mer-
idian plane which contains the ellipsoid normal). Thus corresponding to
the two gravity verticals, there are two sets of values for the astrqnomic
latitude and longitude and deflection components, and if the curvature of
the plumbline is ignored, these two sets are equal.

If the ellipsoid is positioned so that its geocentric axes are
paralled to the Average Terrestrial axes (that is LT = w3 = 0) then

E=0¢-¢ : 2- Lo

(A =1) cos ¢ 2- k1

n
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where (¢, A) are the common geodetic coordinates of Q, P and T.

The distance between the ellipsoid and geoid, measured along
the ellipsoid normal (QP) is the geoid height N?', The distance between the
ellipsoid and terrain, measured along the ellipsoid normal (QT) is the

ellipsoid height h. The distance between the geoid and terrain, measured

along the plumbline (P'T) is the orthometric height H. If the curvature

of the plumbline is ignored
h = N* + H. 2.k2
Given a point soﬁe distance from T, the éngle between the geodetic
meridian plane and the plane containing this point and the ellipsoid ndrmal

QPT is the geodetic azimuth a of that point with respect to Q, P or T.

(Actually this is the azimuth of the normal section, and is related to the

geodetic azimuth by small corrections { Bomford, 1971)), The angle betweenthe

astronomic meridian plane and the plane containing’this point and the cor-
responding grévity vertical is the astronomic azimuth A of that point with
respect to either P or T depending on which gravity vertical is used.
Because the deflection of the vertical is small, then fop all such points
the differegce

¢ = A -a v 2-43
is nearly constant, and is the angle between the geodetic and astronomic
meridian planes.

Returning to the topocentric datum position parameters, it is
natural to specify that our local geodetic system atvthe initial point have
its origin on the datum surface; that is on the ellipsoid. In the classical
(non-three—dimensional) approach the orthometric height H enters into hori-

zontal networks only in the reduction of surface quantities to the geoid,



therefore it is natural to take our local astronomic system at the initial
point to have its origin on the géoid. Denoting quantities at the initial
point'by a zero subscript, we then see that the six datum position para-
meters are in this case the geodetic coordinates of the local astronomic
origin (¢O, Aog‘Ng) and the rotation angles required to define the trans-

formation between the local geodetic and local astronomic systems (50, n_»

o

5&0).
2.3.2 Establishment of a Datum

We have seen that a datum is defined by assigning values either

to the eight parameters (a, b, x_, Yo zo, W, o, wz; w3) or to the eight

o
parameters (a, b, ¢0, Ao, N*o, go, Ny édb). However, an arbitréry set
of values will not in general result in.g satisfactory datum, We recall
that it is important that a datum closely approximate the geoid over the
area of the network for which it is a datum, and that the geocentric axes
of thebgeodetic coordinate system be closely parallel

to tﬁe Average Terrestrial axes, particularly that the axes of symmetry be

parallel. The process of assigning values to the eight datum parameters in

such a way that these characteristics are obtained is'called establishment
of a datum.

To begin with, in establishing a datum values are always assigned
to the topocentric set (a, b, PP N*o, Egs Nys Gao) rather than the geo-=
centric set (a, b, Xo» Yoo Zgys Wis Yo w3) because it is the set which is
related to the geodetic and astronomic measurements which we must use in
establishing the datum. We-see that we must somehow choose values for

(a, b, dgs Ay N*o’ £5> Ngo 5ao) so that the values of (N¥,£,n) elsewhere
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in the network are not excessive (the datum approximates the geoid), and
SO that w, = w,= = 0 (the axes are parallel). Additionally for networks
of global eitent we require that X =¥, = zo = 0, in which case the datum

is termed a geocentric datum. Otherwise the datum is a local datum.

The problem of approximating the geoid can be ignored, in which

case the values

are assigned, which forces the ellipsoid to intersect and be tangent to the
geoid at thé initial point.

The geoid can be approximated in two ways, by choosing values
of (a, b, N*o, go, no) such that either valueé of (£, n) or values of N¥
throughoﬁt the network are minimized (Vanicek, 1972). Note that values
of (N*, £, n) are available throughout the network only if some adjusted
network already exists, which points up the iterative nature of datum
establishment - a "bestvfitting" datum can be established only as an improve
ment on an already existing datum.

The classical method of "ensuring” that the axes of symmetry

are parallel is to enforce the Laplace azimuth condition at the initial

point, that is to assign a value to ao according to

6a0v= Ao - o =g tan ¢o 2-4h
where Ab is an observed astronomic azimuth. This condition forces the
geodetic and astronomic meridians to be parallel’at the initial point, and
thus forces both axes of symmetry toglie in this common plane. However,
the axes of symmetry can still be mf;aligned within the meridian plane.

The solution to this dilemma has been to apply the Laplace condition at

several geodetic. meridians parallel to their corresponding astrondmic
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meridians. In essence this constrains the adjusted network to compensate

for misalignment of the datum, rather than ensuring that the datum minor
axis is parallel to the earth's rotation axis. Note that enforcing the
Laplace condition throughout the network presumes the existance of an
adjusted network, which again points up the iterative nature of datum

establishment.

2.3.3 The North American Datum

The iterative nature of datum estabiishment is illustrated by
the history of the North American Datum. —

Towards the close of the last century geodetic networks existed
in several parts of North America, each defined on its cwn datum. The
largest of these was the New England Datum established in 1879 with an
initial point at Principio, Maryland. The New England Datum used the Clarke
1866 ellipsoid, still uéed by the North American Datum téday.

By 1899 the U.S. Transcontinental Network linking the Atlantic
and Pacific coasts was complete. When an attem@t was made to join the newer
networks to those of the New England Datum large discrepancies occurred.
Therefore in 1901 the United States Standard Datum was established. The
Clarke 1866 ellipsoid was retained from the New England Datum, but the
initial point was moved from Principio to the approximate geographical centre
of the U.S. at Meades Ranch, Kansas. The coordinates and azimuth at Meadés
Ranch were selected so as to cause minimum change in existing coordinates
and publications (mainly in New England) while pfoviding a better fit to

the geoid for the rest of the continent.
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Meanwhile additignal networks were being estsblished in the
United States, Canada and Mexico. In 1913 Canada and Mexico agreed to
accept Meades Ranch as the initial point for all North American networks,
and the datum was renamed the North American Datum.

This eéventually led to the readjustment, between 1927 and 1932,
of all the North American networks then in existance. The 1901 coordinates
of Meades Ranch and the Clarke 1866 ellipsoid remained unchanged, however
the value of the geodetic azimuth was changed by about 5 arcseconds (Mitchell,
1948). Thus the new datum was called the 1927 North American Datum.

The definition of the North American Datum was not yet complete. It
was only in 1948 that astronomic coordinates were observed at Meades Ranéh,
allowing specification of values for Eo’ n, - The final datum parameter
was defined in 1967 when the U.S. Army Map Service chose a value of N; =0
at Meades Ranch for their astrogeodetic geoid [Fischer, et al 1967]. Table
2-1 lists the values assigned to the datum parameters for the North American
Datum, and the date at ﬁhich they were determined. |

Since the 1927 readjustment many new networks have been added
to what was then available. However, these new networks have been adjusted
by "tacking them on" to previously adjusted networks,.the latter being held
fixed in the process. Until the recent advent of large fast digital computers
it was impractiéal to consider readjusting all the networks on the continent
again, consequently distortions have crept in to the networks, a notorious
case being the 10 metres discrepancy which has been "drowned" in Lake Superior
by international agreement. The day is fast approaching when a massive new
readjustment and perhaps redefinition of the North American Datum will occur
[Smith, 1971]. One landmark on this path is the International Symposium on

Problems Related to the Redefinition of North American Geodetic Networks,



Clarke 1866 Ellipsoid semi-major axis
Clarke 1866 Ellipsoid semi-minor axis
Initial Point Latitude of Meade's Ranch ¢o

Initial Point Longitude of Meade's Ranch Xo

Table 2-1

PARAMETERS DEFINING THE

1927 NORTH AMERICAN DATUM

a8 =

D =

6378206.4 metres
6356583.8 metres
39° 13' 26".686 N
98° 32' 30".506 W

j

|

Date Adopted

1879

1901

Initial Point Azimuth (to Waldo) a .= T15° 28" 9".6k
(clocky}se from south) 1927
Initial Point Meridian Deflection
Component £, = -1.02"
1948
Initial Point Prime Vertical 2
Deflection Component Ny = -1.79"
Initial Point.Geoid Height Ng =0 1967
Table 2-2

Merry & Vanicek

Krakiwsky et al.

TRANSLATION COMPONENTS

Y

Z

g
X0

[ o ] yo - zo.
-28.7 150.5 179.9 1.7 1.0 1.2
-35 16L 186 2 3 3




L5

May 1974 at the University of New Brunswick.

The North American Datum is a local datum, that is its geo- .
metrical centre does not coincide with the origin of the Average Terres-
trial system. Because of the distortions in the networks just mentioned,
determinations of Xo» Yoo 2, vary depending on the locations at ﬁhich
they are measured. Two recenf sets of values obtained by different methods
are listed in Table 2-2. Merry and Vanicek [1973] used data within 1000
km of Meades Ranch. Krakiwsky et al [1973] used data from New Brunswick
‘and Nova Scotia. The discrepancies of order 10 metres likely reflect the

distortions which exist in the present North American networks.

2.3.4 Datum Transformations

If the curvilinear coordinates of an observing station referring
to one particular datum are given, then a problem which often occurs is to
obtain the curvilinear coordinates for the station referred to another datum.

In transforming coordinates from one datum to another it is
necessary to account for two items:

a) the location of the geome£ric centres of each reference
ellipsoid with respect to the centre of gravity of the éérth, or with
respect ﬁo each other,

b) the difference in size and shape between the ellipsoids.

It is usually assumed that the axes of both datums are parallel to the axes
of the average terrestrial system.

Consider the ellipséids with sizes and shapes defined by (al,bl)
fl),and (al’f2)’ where f=(a—b)/a:)and with

and (ag,b ) (or élternatively (a

2 1’

locations of the geometric centres with respect to the centre of gravity

defined by
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),

and

(7.,

2

Let us define the coordinates of a point referred to the first

ellipsoid as (¢i, Al, hl)' We want to find the coordinates of the

same point, referred to the second ellipsoid (¢2, AZ’ h2).

The average terrestrial coordinates of the point

equation 2-32?

are given by

X X (Nl + hl) coscbl cosAl

g = Yo + (Nl + hl) cos¢, sinky fe|2-k5
2,2 .

z A.T. ZO (Nl bl/al + hl) 81n¢l

But the average terrestrial coordinates are not affected by a

datum transformation, therefore

X X (N2 + h2) cosd)2 cosA2
y =19, + (N2 + h2) cosé,, slnxe . 2-L6
2,2 .
Z]a.T. %o . (W, bo/ay + he) sing,
{
There are two methods for obtaining (¢2, Ays hg). The first

method, called the iterative method is to find the average terrestrial

coordinates directly from equation 2-45, and then to invert equation

2-L46 to find (¢2, Az, h2), using the iterative method described in

section 2.2.6.



The second method, called the differential method can be applied

when the parameter differences (8a, &f, 8x s 8y » Gzo) between the two datums
is small enough that we can use the Taylor's series linear approximation.
Taking the total differential of equation 2032, keeping the average terres-
trial coordinates invariant, and setting the differential quantities equal

to differences between the datums we have

éxo 8¢ Sa
8y, +J 8\ | +B §f| = 0O 2-47
§x Sh
)
whefe
- (M+h) sin¢ cosd , - (N+h) cos¢ sink , cos$ cos)
J = - (M+h) sin¢ sink; (N+h) cos¢ cosk , cos¢ sin) 2-48
(M+h) cosé , o, sin ¢
H cos$¢ cosi/a M sin2¢ cos¢ cosr/(1-f)
B = N cos¢ sinr/a , M sin2¢ cos$¢ sinr/(1-f) 2-Lg

N (1-£)2 sing/a s (M sin2¢ - 2N) sing¢ (1-f)

M

1}

a(l—f)g/(cosz¢ + (l-—f)2 sin2¢)3/2 2-50

Solving for the coordinate differences

8¢ éxo Sa
sal =371 o7, +B |6f 2-51
¢h Sz

o]

where
- siné cosr/ (M+h) y, - sin¢ sinA/(M+h)s cos¢/(M+h;

gL = - sinA/ (N+h) cos¢ 4 cosr/ (N+h) cos¢ s 0 2-52

cos$ cosir cos$¢ sind sin ¢
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Note that the matrices can be evaluated in either of the two coordinate
systems, since the differences in quantities has been assumed small. Further
it is reasonable to simplify the evaluation of the matrices by using the
spherical approximation (f = 0, § = M = N+h = M+h = a) in which case ve
obtain the transformation equations of Heiskanen and Moritz (1967, equation
5-55). |

Table 2-3 shows an example of datum transformation computations.
This particular example transforms the coordinates of a station in Dartmouth,
Nova Scotia from the 1927 North American Datum ("01d"Datum) to the 1950
European Datum ("New" Datum). The datum translation components used are
those given by Lambeck [1971]. Both the iterative method of equations‘
2-45 and 2-46, and the differential method of equation 2-51 were used. The
discrepancies between the two results are about 0.4 meters in latitude,

0.3 meters in longitude, and 0.2 meters in height.

2.4 TERRESTRIAL TOPOCENTRIC SYSTEMS

In the introduction it was stated that terrestrial topocentric
systems are defined as follows:
a) the origin is at a point near the surface of the earth,
b) the primary plane is the plane tangential to the earth's
surface at the point,
¢) the primary axis is the north point,
d) the systems are left-handed.
The last two specifications present no problems. However, "the
surface of the earth" can be interpreted in three ways to mean the

earth's physical surface, the earth's equipotential surface, or the
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Table 2-3.

EXAMPLE OF DATUM TRANSFORMATIONS

Parameter "01d" Datum "New'"Datum "New"-"014d"
Given:
semi-major axis a | 6378206.L4 meters| 6376388.0 181.6
flattening 1/294.98 1/297.0 -2.3057x10
xo —25.8 "6)4.5 "‘3807
offset from geocentre o 168.1 -15L4.8 -322.9
(from Lambeck [1971]) 2, 167.3 _4g.o _213.5
¢, L4, 683°N ?
observer's coordinates Al 63.612°W ?
h, 37.46 meters ?
Solution by Iterative Method:
X 2018917.91 2018917.91
observer's coordinates y | -4069107.35 ~4069107.35
in average Terrestrial
System (Equation2-L5) z | b462360.64 L462360.64
¢2 Lk, 684TTO°N
observer's coordinates Ay 63.609752°W
(Equation 2-46) n, ~259.73 meters
Solution by differential Method:
change in semi-major axis sa 181.6
change in flattening 33 ~2.3057x10"°
change in offsets from Gxo -38.7
geocenter Gyd -302.9
520 -213.5
? o]
observer's coordinates ¢2 hh'68h7§§ N
°
(Equation 2-50). Ao 63.6097h9°W
,hg -259.92 meters
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surface of a reference ellipsoid. It is not practical to define a
coordinate system in terms of a plane tangentja] to the earth's physical
surface. Two kinds of terrestrial topocentric coordinate systems can
be defined, however¢ The system in which the primery pole is the
normal to the equipotential surface at the observation station is

called a local astronomic systemj The system in which the primary

pole is the ellipsoid normal passing through the observation station

is called a local geodetic system [Krakiwsky 1968].

2.4.1 Local Astronomic System

A local astronomic (L.A.) system is specified:

a) The origin is at the observation station.

b) The primary pole (z-axis) is the normal to the equipo-
tential surface (the gravity vertical) at the observation station. The
primary plane is the plane containing the origin and perpendicular to
the gravity vertical.

c) The primary axis (x-axis) is the intersection of the
primary plane and the plane containing the average terrestrial pole and

the observation station, and is called the astronomic north.

d) The y-axis is directed east to form a left-handed system.
~ The position vector of an observed station 1, expressed in the

local astronomic system of the observation station k, is given by

A
x cos v, cos A
(rkl)L.A. =1y = Ty, |cos v, sin Akl . 2-54L
- v N
Zlv.a. S0 T
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where r is the terrestrial spatial distance, the vertical angle,

K1 Vi1

and Akl the astronomic azimuth.
Note that the relationship of the local astronomic system to the

average terrestrial system is given by the astronomic latitude ¢k and

longitude Ak only after the observed quantities ¢ Ak’ Akl have been

k!
corrected for polar motion. Thus the position vector Fkl of 2-5L
expressed in the average terrestrial system is: '
X X
o = = O_ O_ -
(rk y R3(l80 A) Ry(90°-¢ )P, |y 2-55
AT,
Zla.r. Z2]L.A.
where the reflection matrix
1 0 0
P, = o -1 0 2-56
2
0 0 1

accomplishes the transformation from a left-handed system into a right-
handed system, while the rotation matrices

cos (9di¢k) 0 -sin (9dl¢k)

2]
]

0 1 6] 2-57
sin (9dlqg 0 cos (QGLQk)
and
cos(lSOiAk) sin(leiAk) 0
. < )
R3 = —51n(180—Ak) cos(180-Ak) 0 2-58
0 0 1

- bring the three axes of the local astronomic system parallel to the
corresponding axes in the average terrestrial system.

The inverse transformation is

- _ . ' -1 -
(ryqdpn, = [R3 (180°-A, ) Ry(90°-9) P,T ° (r) ), o =59



) . 2-60

= P_R, (¢ -90°) R_(A, -180°) (r,
k 3k A.T.

22 kl
Note that so far no translations have taken place. We have merely

rotated the position vector (;k ) of station 1 with respect to station

1
k into the average terrestrial system. If the position vector of
station k with respect to the centre of gravity in the average
terrestrial system is(ﬁk)A.T;’ then the total positioh vector ﬁl of
the observed station 1 with respect to the centre of gravity in the
average terrestrial system is given by

(R,) =(R) + (r ) . 2-61
Lae, Xaq, Klpq,

The unit vectors ﬁx, ﬁy’ ﬁz directed along the axes of the local

astronomic system have the following components in the average

terrestrial system:

1

~ o_ o_

a, = Ry (180°-A) R, (90°-¢) P, 0
0

sin® cosA
ﬁx = t-sind sinA| , 2-62
cos¢
0

T = o o_
u, = R3 (180°-1) R, (90°-%) P2 1

0

r




sk

.A - (e]
u,= Ry (180°-4) R, (90°-8) P, 0

cosd cosh

cos¢ sinA s . 2-6L

[olin
"

sind

The local astronomic coordinate system is unique for every obser-
vation point. Because of this fact, this system is tiae basis for
treating terrestrial three-dimensional measurements at several sta-

tions together in one solution.

2.4.2. Local Geodetic System

A local geodetic (L.G.) system is specified (see Figure 2-12):

a) The origin lies along the ellipsoidal normal passing
through the observation station. Note that in principle the origin may
lie anywhere along the ellipsoidal normal. In practice it is chosen to
be at the observation station, at the ellipsoid, or at the intersection
of the ellipsoidal normal with the geoid.

b) The primary pole (z-axis) is the ellipsoidal normal. The
primary plane is the plane containing the origin and perpendicular to
the primary pole.

c) The primary axis (x-axis) is the intersection of the

primary plane and the plane containing the semi-minor axis of the

ellipsoid and the origin, and is called tae. geodetic north.

d) The y-axis is directed east to form a left-handed system.
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Transformations between local geodetic and local gétronémic
systems sharing a common origin can be expressed in terms of the angle
between the ellipsoid normal and gravity vertical (the deflection of the
vertical) and the angle between the geodetic north and astronomic north.
Given the meridian and prime vertical deflection components £, n respectively,
and the geodetic and astronomic azimuths ¢ A to a particular point, then
a vector in the local astronomic system is transformed into a vector in the

local geodetic system by

) = Ry (A=) RZ(—E) Rl(n) (r..) 2.65

(;kl L.G. k1°L.A.

Note that the order in which the rotations are performed in this case is
not important, since the angles £, n (A - a) are smail enough that their
rotation matrices can be assumed to commute. Note also that if the Laplace
condition is enforced at the origin of these local systems, we have

A-a=(A-2x)sin¢ =n tan ¢

If the origin is not at the observation station, the position vector
ﬁk in 2-61 would refer to the origin, not the observation station. That

is, for a point on the geoid, the computation of (xk, yk, zk) is made

from (¢k, Ao Nk) (geoid undulation), while on the ellipsoid (¢k, Ay 0)
are used. Note that when a small region of the earth is taken as a
plane it is a local geodetic system that is implied.
Similar to equations 2-54 and 2-55 the position vector from
observing statioﬁ k to observed station 1 is given by
X cos &, cosa
(;kl')L-.G.z Y TTgy | €08 B simeyy 2-66
z .
L.G. SN 8
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X X
(rkl)G = |y = R3(180°-Ak) R2(90°—¢k) P, |¥ 2-67
L ! “J.c.

where (a, a, r) are the geodetic altitude, azimuth and range, and
(¢, A) are the geodetic latitude and longitude. Note that the geodetic
system (G) and the average terrestrial system (A.T.) are related by

equation 2-4

X X X

(o]
y = yO + VA s
Z1a.T. Zs o el

where (xo, yo, zo) are the translation components of the origin of
the geodetic system in the average terrestrial system.
The unit vectors corresponding to the three Cartesian axes in the

local geodetic system are

-sin¢ cosA
4 = | -sin$ simr | , 2-68a
cos¢
-SinA
ﬁy = cosi , 2-68b
0
cos¢ cosA‘
ﬁ2= cos¢ sini| . 2-68¢
sin¢
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2.5 SUMMARY OF TERRESTRIAL SYSTEMS

In this chapter we have precisely defined five specific terrestrial

coordinate systems:

a) Average Terrestrial (A.T.),

b) Instantaneous Terrestrial (I.T.),

c) Geodetic (G),

d) Local Astronomic (L.A.),

e) Local Geodetic (L.G.),
of which the first three are geocentric and the last two topocentric.
Table 2-4 summarizes the planes, poles and axes defining these systems.
We have also precisely defined four kinds of coordirates:

a) Cartesian (x, y, z) - used by all systems,

b) Curvilinear (¢, A, h) - used by Geodetic system,
¢) Curvilinear (v, A, r) - used by Local Astronomic system,

d) Curvilinear (a, a, r)

used by Local Geodetic systemn.
Finally we have defined the principal transformations'betweeﬁ these
coordinates and coordinate systems. Figure 2-13 lists the equation
numbers which define these transformations, which are tabulated in

Table 2-5.



Table 2-U4,

REFERENCE POLES, PLANES AND AXES DEFINING TERRESTRIAL COORDINATE SYSTEMS

Reference Poles E Reference Planes
System Primary- . Secondary f Primary Secondary Handedness
(z-axis) I (x-axis) !(l.to Primary Pole)
!
!
Average Average Terrestrial Q ‘Average Terrestrial | Greenwich mean right
Terrestrial Pole (CIO) Py equator containing meridian ‘
a centre of gravity.
3
[
S
Instantaneous Instantaneous o) Instantaneous Greenwich mean right
Terrestrial Terrestrial o Terrestrial meridian
Pole o equator.
E-
5 Parallel To
Geodetic Semi-minor axis g Average Terrestrial | Parallel to right
(parallel to R equator Greenwich mean
terrestrial pole) & meridian
3
A
Local Gravity Vertical %% Local Horizon Astronomic left
Astronomic at Station ; Meridian
2 of station.
/2]
Local Ellipsoidal Normal Tangent Plane Coincident with left
Geodetic at Station. Geodetic Meridian

of station.

8s



TERRESTRIAL

Geocentric

|

'{Topocentric ;
Geodetic Average Instantaneous Local Astronomic| |[Local Geodetic
(a) Terrestrial Terrestrial (L.A.) - (L.G.)
(A.T.) (r.T.)
Curvilinear Cartesian Cartesian ~ Cartesian Cartesian]| [Curvilinear| |Cartesian Curvilinear
(¢,2,h) (v,A,r) (a,0,r)

NSZ

¥,/

Figure 2-13.

EQUATIONS RELATING TERRESTRIAL SYSTEMS

-

65



Tatle 2-5.

TRANSFORMATIONS AMONG TERRESTRIAL COORDINATE SYSTEMS.

Original System

09

S

~

~v

Average Instantaneous| Geodetic Local Local
Terrestrial Terrestrial Astronomic Geodetic
Average X X .
T errestrial ( ol 80° < via .
y R, —xp)Rl(-yp) +1y, R3(l o---/\)R2(90~<:>)P2 Geodetic
. 2 A.T. %
X . .
Instantaneous ; via via
Terrestrial Rl(y )R2(x ) y Average Average via
P P Terrestrial Terrestrial Geodetic
I.T.
= x . x .
5 o via via
|  Geodetic -y Average Ng Local R, (180°-A)R,.(90°~¢)P
’ "o L . 3 2 2
- 2, Terrestrial Geodetic ‘
5 o ¢
o+
g
- Local via via )
Astronomic P.R.(9-90°)R.(A-180°) Average Local ¥ R,.(+£) R, (+n)
22 3 . . 2 1
Terrestrial Geodetic
Z
L.A.
. . X
Local via via R .
Geodetic Geodetic Average PR, ($~90°)R.{A-180)| R, tn)R, CE) y
. 22 3 1 2
Terrestrial
L.G.
Note: ¢, A have been corrected frr polar motion. y
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3. CELESTIAL COORDINATE SYSTEMS

Celestial coordinate systems are used to define the coordinates
of celestial bodies such as stars. The distance from the earth to
the nearest star is more than 109 earth radii, therefore, the
dimensioﬁs of the earth (indeed of the solar system) are almost
negligible compared to the distances to the stars. A second
consequence of these great distances is that, although the stars
themselves are believed to be moving at velocities near the velocity
of light, to an observer on the earth this motion is perceiv=d to be
very small, very’rarely exceeding one arcsecond per year. Therefore,
the relationship between the earth and stars can be closely sapprox-
imated by considering the stars all to be equidistant from the earth,

on the surface of the celestial sphere, the dimension of which is so

large that the earth (and indeed the solar system) can be considered
as a dimensionless pdint at the centre. Although this point may be
dimensiohless, relationships between directions on the earth and in
the solar system can be extended to the celestial sphere.

The earth's rotation axis is extended outward to intersect the

celestial sphere at the north celestial pole (NCP) and south celestial

pole (SCP). The earth's equatorial plane extended outward intersects
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the celestial sphere at the celestial equator. The gravity vertical

at a station on the earth is extended upwards to intersect the celestial
sphere at the zenith (2), and downwards to intersect at the nadir (N).
The plane of the earth's orbit around the sun (the ecliptic plane) is
extended outward to intersect the celestial sphere at the ecliptic.

The line of intersection bétween the earth's equatorial plane and the
ecliptic plane is extended outwards to intersect the celestial sphere

at the vernal eguinox or first point of Aries, and the autumnal

equinox. The vernal equinox is denoted by the symbol.qp, and is the
point at which the sun crosses the celestial equator from south to
north.

There are two fundamental differences between celestial systems
and terrestrial or orbital systems. First, only directions and not
distances are considered in celestial coordinate systems. In effect
this means that the celestial sphere éan be considered the unit
sphere, and all vectors dealt with are unit vectors. The second
difference is re;ated to the first, in that the celestial geometry is
spherical rather than ellipsoidal as in terrestrial and orbital
systems, which simplifies the mathematical relationships involved.

As discussed in the introduction, there are four main celestial

coordinate systems, called the ecliptic, right ascension, hour angle,

and horizon. Sometimes the right ascension and hour angle systems are
referred to collectively as equatorial systems. We will begin this
chapter by discussing each of these systems in turn.

We noted above that the celestial sphere is only an approximatiép

of the true relationship between the stars and an observer on the earth.
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Therefore, like all gpproximations, there are a number of corrections
which must be made to precisely represent the true relationship. These
corrections represent the facts that the stars are_not stationary

§oints on the celestial sphere but are really moving (proper motion);

the earth's rotation axis is not stationary with respect to the stars

(precession and nutation); the earth is displaced “rom the centre of

the celestial sphere, which is at the sun (parallax); the earth is in
motion around the centre of the celestial sphere (aberration); and
directions measured through the earth's atmosphere are bent by refraction.
All these effects will be discussed in section 3.5 in terms of variations

in the right ascension system.

3.1 THE ECLIPTIC SYSTEM

The ecliptic (E) system is specified as follows (see Figure 3-1)%
a) The origin is heliocentric (at the centre of the sun).
b) The primary plane is the ecliptic plane (the plane of
the earth's orbit) and the primary pole (z-axis) is the north ecliptic
pole (NEP).
¢) The primary axis (x-axis) is the vernal equinox.
d) The y-axis is chosen to ﬁake the system right-handed.
The ecliptic system is the celestial system which is closest to
being inertial, that is motionless with respect to the stars. However,
due to the effect of the planets on the sun-earth system, the ecliptic
plane is slowly rotating (at OVS per year) about a slowly moving axis

of rotation.
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The ecliptic meridian is the great circle which contains the

ecliptic poles and the celestial body in question while the ecliptic

meridian of 'f‘contains the vernal equinox. Ecliptic latitude 8 is

the angle from the ecliptic and in the ecliptic meridian to the line

connecting the origin to the body. Ecliptic longitude A is the angle

of the ecliptic meridian of.the body measured eastwards in the ecliptic
plane from the vernal equinox. The unit vector to a celestial body in

the celestial system is

X cosB cosA
Yy = cosB sinx s 3-1
z g sinB

and the angles are related to the Cartesian components by

sin "z, 3-2

™
1

- -1y -
A= tag < ‘ 3-3

3.2 THE RIGHT ASCENSION SYSTEM

The riéht ascension (RA) system is specified as follows (see
Figure 3-2).
a) The origin is heliocentric.
b) The primary plane is the equatorial plane, and the
primary pole (z-axis) the north celestial pole (NCF).
¢) The primary axis (x-axis) is the vernal equinox.
d) The y-axis is chosen to make the system right—handed.

The right ascension system is the most important celestial system. It
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is in this system that star and satellite coordinstes are published,
and it serves as the connection between terrestrial,celestial and
orbital systems.

Tﬁé secondary plane contains the north celestial pole and the

vernal equinox and is called the equinoctisgl colure plane. The hour

circle is the great circle containing the celestial poles and the
body in question. The declination § of a body is then the angle
between the celestial equator and a line joining the origin to the

body. The right ascension a is the angle measured in the equatorial

plane eastwards from the vernal equinox to the hour circle passing
through the body in question. The unit vector describing the direction

of a body in the right-ascension system is

X cosd cosa
Y = | cosd sina|. 3-4
z R.A. siné

The right ascension system is related to the ecliptic system
by the acute angle between the ecliptic and celestial equator,

called the obliquity of the ecliptic, and denoted e. Therefore

X . X
y = Rl(—s) ¥ o 3-5
Z IRr.A. Z]l g

3.3 THE HOUR ANGLE SYSTEM

The hour angle (HA) system is specified as follows (see Figure 3-3)!
a) The origin is heliocentric.

b) The primary plane is the equatorial plane.
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c¢) The secondary plane is the celestial meridian plane of
the observer. The primary axis (x-axis) is the intersection between
the equatorial and observer's celestial meridian planes.
d) The y-axis is chosen so that the system is left-handed.
The hour angle system rotates with the observer.
‘The hour angle h is the angle measured westward in the equatorial
plane from the observer's celestial meridian to th2 hour circle of
the body in question. The angle measured up from the equatorial plane
to the line directed from the origin towards the body is the declin-
ation 6.
The unit vector describing the direction of a celestial body in

the hour angle system is

X cos § cos h
¥ = cos 8§ sin h | » 3-6
Z H.A. sin §

We have so far defined four meridians on the celestial sphere:
that containing the vernal equinox (the equinoctial colure); the
Greenwich meridian; that containing the observer (the celestial
meridian); and that containing the stark(the hour circle). Figure 3-4
shows the relationships between these meridians.

From the vernal equinox counterclockwise to

a) the Greenwich meridian is called Greenwich Sidereal
Time (GST),

b) the celestial meridian is called Local Sidereal Time
(LsT),

c) the hour circle is called the right ascension (a).
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From the Greenwich meridian countercloekwise to the ceiestial meridian
is called the astronomic longitude (A). From the celestial meridian

clockwise to the hour circle is called the hour angle (h). Therefore,

LST = GST + A 3-7
LST = h + a ‘ 3-8

and
h=0GST+ A -0a . 3-9

The hour angle system is related to the right ascension system

by the local sidereal time (LST). That is

X X

y =P, Ry (LsT) 1¥ . 3-10

wra

Z zZ

HA RA

3.4 THE HORIZON SYSTEM

The horizon (H) system is specified as follows (see Figure 3-5).
a) The origin is heliocentric. |
b) The primary pole (z-axis) is the observer's zenith
(gravity vertical). The primary plane is the observer's horizon.
c) The primary axis (x-axis) is the north point.
d) The y-axis is chosen so that the system is left-handed.

The horizon system is used to describe the position of a

celestial body in a system peculiar to a topocentrically located
observer, similar to the local astronomic system described in the
chapter on terrestrial systems. The main difference is that the

origin of the horizon system is heliocentric instead of topocentric.
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The great circle containing the primary pole and the celestial

body being observed is called the vertical circle. The location of

this great circle is given bysthe astronomic azimuth A, the angle

measured clockwise in the horizon plane from north to the vertical
circle. The altitude a of the body is the angle between the horizon
plane and the line directed from the origin of the system toward the

body. The unit vector to a celestial body in the horizon system is

b'd CcOos a cos A
¥y = cos a sin A . 3-11
A sin a

H

The horizon system is related to the hour angle system by the

astronomic latitude ¢. That is

X X
vyl = R3 (180°) R, (90°-¢) v . 3-12
Zlu 2] Ha

3.5 VARIATIONS OF THE RIGHT ASCENSION SYSTEM

As mentioned at the beginning of this chapter, the celestial
sphere approximation requires corrections for precise work. These
corrections are for proper mo£ion; precession, nutation, aberration,
parallax and refraction, and are applied in four stages between the
system in which obéervations are actually made (which we will call
the "observed piace system at epoch T") and the most absolute right
ascension system (which we will call the "mean celestial system at
standard epoch To"); We will consider these systems in the reverse

order, that is:
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a) mean celestial system at standard epoch T,

b) mean celestial system at epoch T,

c) true celestial system at epoch T,

d) apparent place system at epoch T,

e) observed place system at epoch T.
The connections between these five systems are shown in Figure 3-6.
The first three systems are related by motions of the coordinate
system, while the last two are related by physical effects which

cause the position of the celestial body to vary.

3.5.1 Precession and Nutation

The earth is not perfectly spherical, but has an equatorial bulge
which is attracted by the sun, moon, and planets in a non-symmetrical
way. This causes the earth's axis of rotation (th: north celestial
pole) to move around the north ecliptic pole with a period of about
25,800 years and an amplitude equal to the obliquity of the ecliptic
(23%5). This motion is called precession and is similar to the
precession of an ordinary gyréscopic top about the gravity wvector
[Mueller 1969, pages 59-62]. |

Precession is itself not a regular motion since the earth's
orbit is not circular and the moon's orbit does not lie in the ecliptic
plane, and is not circular. Therefore, the added effects of the sun
and moon are constantly changing as their configuration changes.
Irregularities in precession are called nutation, and for the celestial
pole have a period of.about 18.6 years and a maximum amplitude of

about 9". The added irregularity due to the changing configuration of
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the planets is called planetary precession, and causes the very slow

motion of the ecliptic plane mentioned in section 3.1. In principle,
precession exists only because the earth has an equatorial bulge, and
nutation and planetary precession exist only becavse precession
exists.

Precession and nutation are shown schematically in Figure 3-T.

The celestial equator is defined as being perpendicular to the
celestial pole, so that it too follows the precession and nutation of
the pole; The vernal equinox is defined as being at the intersection
of the celestial equator and ecliptic, so that it will follow both
the precession and nutation of the celestial equator, and the motion
of the ecliptic due to planetary>precession. The effects are shown

in Figure 3-8.

3.5.2 Mean Celestial Systems

A mean celestial (M.C.) system is specified as follows.
a) The origin is at the centre of the sun.
b) The primary pole (z-axis) is a precessing (but not
nutating) pole which follows the precession of fhe north celestial

pole, and is called the mean celestial pole.

c¢) The primary axis (x-axis) is a prececsing (but not
nutating) axis which follows the motion of the vernal equinox due both
to precession of the celestial equator and rotation of the ecliptic,

and is called the mean vernal eguinox.

d) The y-axis is chosen so the system is right-handed.
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Because the mean celestial system is moving, the coordinates
(right ascensiop o, and declination §) of celestial bodies vary with
time. Therefore, for each epoch of time T, a different mean celestial
system is defined. Certain epochs T, have been chosen as standard
epochs, to which tabulated mean celestial coordinates of celestial

bodies refer. The relatiOnship betweern mean celestial systems of times’

To and T is usually defined in terms of the precessional elements
(Co’ 8, z) as shown in Figure 3-9. Expressions for these elements as
a function of time were derived over TO years ago by Simon Newcomb
[Mueller 1969, p. 63]. The angles (90°-C0) and (90°+z) are the right
ascensions of the ascending node of the equator at T measured
respectively in the systems at To and at T. The angle 8 is the
inclination of the equator at T with respect to the equator at TO.

The transformation from a mean celestial system at To to one-at T is

given.by
X X
y = R3(—z) R,(8) R3(-c6;) ¥ . 3-13
Zlm.c.m. 2 tu.c.m,

Independent of the motion of the mean celestial coordinate
system due to precession, each star is changing in position due
to proper motion. Because this proper motion is uniform; it is
most appropriate to account for it in the most uniform right
ascension system, that is the mean celestial system. The proper

motion components for each star of interest (usually tabulated



NCP(T)

NCP(T,)

¢

80

PRECESSION

MEAN EQUATOR
ATAT)

b

y
4

MC.

Ry 2) Ry (8) Ry(-L )

T

Figure 3-9.MEAN CELESTIAL COORDINATE SYSTEMS

 WEAN EQUATOR

ey




81

as rates of changes in right ascension and declination) must therefore

be included in the conversion of mean place at To'to mean place at T.

3.5.3 The True Celestial System

A true celestial system (T.C.) is specified as follows.
a) The origin is at the centre of the sun.
b) The primary pole (z-axis) is a precessing and nutating
pole which follows the precession and nutation of the north celestial

pole, and is called the true celestial pole.

c¢) The primary axis (x-axis) is a precessing and nutating
axis which follows the motion of the vernal equinox due to precession

and nutation of the celestial equator, and to rotation of the ecliptic,

and is called the true vernal equinox.
d) The y-axis is chosen so the system is right-handed.
As in the case of megn celestial systems, a‘different true
celestial system is defined for each epoch of time T. The true
celestial system at epoch T differs from the mean celestial system
at epoch T only by the effect of nutation, aﬁd the reiationship is

usually defined in terms of the nutation in longitude Ay and

nutation in obliquity Ae shown in Figure 3-10. Expressions for these

two elements as a function of time, and other parameters were derived
by Woolard [Mueller 1969, p. 69]. The transformation from a mean

celestial system at T to a true celestial system at T is given by

X X
y = Rl(-e-Ae) R3(—Aw) Rl(s)_ y . 3-1L
Zd7.c.m. 2 IM.c.T.
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3.5.4 The Apparent Place System

An apparent place (A.P.) system is specified as follows.

a) The origin is at the centre of the earth.

b) The primary pole is parallel to the true celestial pole.

c) The primary.axis is parallel to the true vernal equinox.

d) The system is right-handed.
Therefore, an apparent place system is a true celestial system with
the origin shifted from the centre of the sun to the centre of the
earth. This means the origin is no longer at the centre of the true

celestial sphere which causes annual parallax, and the origin is

revolving around the centre of the true celestial sphere which causes

annual aberration.

If the earth's orbit is regarded as circular, the earth has a

constant of aberration.

) v " "
kK = - cosec 1" = 20.4958 , 3-15

where v is the earth's velocity and c the velocity of light$ and the
radius of the earth's orbit will subtend a different angle R at each

star, called the stellar parallax for that star. The nearest star

has a stellar parallax of 0V76.
The right ascension o and declination § of a star expressed in

the apparent place system is then [Mueller 1969, pages 93 and 61].

[ajl i {a} . [Aap] [AaA‘} 3.16
o), o Lol L26p ASy

where



8k

Aap cosa cos€ sec§ - sina cosig secé
=1
AS
D

]3—17
cosé sine sindg - cosa sind cosig - sina siné cose sinig

and

{AGA1
AGA

and As is the longitude of the sun, € the obliquity of the ecliptic,

coso cos)\S cos€ secS + sina sindg secd
-« 3-18
s

coshg cose(tane cosé - sina siné) + ccsa siné sin)

and (a, §) in 3-17 and 3-18 expressed in the true celestial system.
The fact that the earth's orbit is not circular introduces

errors of about 1% in equation 3-17 and up to 0Y343 in equation 3-18.

3.5.5 The Observed Place System

An observed place (0.P.) system is specified as follows.
a) The origin is at the observing station.
b)’ The primary pole is parallel to the true celestial pole.
c¢) The primary axis is parallel to the true vernal equinox.
d) The system is right-handed.
Therefore, an observed place system is an apparent place system
with the origin shifted from the centre of the earth to the observing

station. This means the origin is no longer at the centre of the

earth, which causes geocentric parallax, and the-origin is rotating

around the centre of the earth, which causes diurnal aberration. In

fact, the effect of geocentric parallax is always negligible when

observing stars. The diurnal constant of aberration is

cosec 1" = 0Y320 p cosé 3—19

>
"
0|«
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where v is the earth's surface rotational velocity, ¢ is the velocity

of light, p is the radial distance from geocenter to observer in units

of earth radius, and ¢ is the geodetic latitude of the observer.
There is a third effect due to the fact that the earth is

blanketed with an atmosphere of varying optical density. This

causes a complex change in the direction of the light ray from a star

which depends on the incident angle. Mueller [1969, pages-103—lo9]

discusses this atmospheric refraction in detail.

The right ascension and declination of a star in the observed

place system is then

a a Ao Ao
8 0.P. 8 A.P. ACSD A(SR

AaD cos h sec$
= k 3-21
AS sin h siné

s AaR) are the

where

where h is the hour angle of the star, and (AaR

corrections due to refraction.

3.6 TRANSFORMATION BETWEEN APPARENT CELESTIAL AND AVERAGE

TERRESTRIAL COORDINATE SYSTEMS

The apparent celestial and average terrestrial coordinate systems
both have
a) their origins at the centre of gravity of the earth,
b) their primary pcles as the CIO pole, that is the

average terrestrial pole is parallel to the true celestial pole,
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c) both are right-handed.

The only difference between the two systems is that the primary
axis of the apparent celestial system is parallel to the true vernal
equinox, and the primary axis of the average terrestrial system lies
in the Greenwich mean astronomic meridian. The‘angle between these
two axes varies with the rotation of the earth, and is called the
Greenwich Apparent Sidereal Time (GAST). Therefore, the transformation

from apparent celestial to average terrestrial is (see Figure 3-4).

X X
v = Ry (GAST) y . 3-22
Z_JA.T. ZJ a.p.

To use this equation, we require some means of computing GAST
from the Universal (8olar) Time used for broadcasts of standard time.
We will describe two methods.

First, if GAST is known for some epoch TO of Universal Time,

then it may be computed for some other epoch T from the relation

GAST (T) = GAST (TO) + we(T—TO), 3-23

where it 1s assumed that sidereal and universal time are related by a

uniform rotation rate of the earth

1}

w 360.98565 degrees/UT day

e

L.3752695 x 1073 radians/minute. 3-2L
This is not precisely true, but a difference with respect to

T

tiile more accurate method presented below of less than 10 ' radians
(equivalent to about 0.02 arcseconds, 1 millisecond, or 1/2 meter

along the earth's equator) is introduced if (T—TO) is less than a day.



A4 more accurate relation is given by Veis [1966, p. 19]:

SAST = 10090755L2 12 42

360°9856473L8 T + 092900 x 10 - T

+

- 12392 x 10 sin (1291128 - 0205295L T)

2053 x 10 ~ sin 2{12°1128 - 0°05295k T) 3-25

+
@)

- 09325 x 107 ° sin 2(28090812 + 099256473 T)

sin 2.649382L + 13°176398 T)

vhere T is the number of Julian Days since the epoch 0.5 January 1950

{that is midnight of December 31, 1949). For 1971

-26

W

T = 7669 + D + (¥ + S/60)/1kk0
where @ = the day number during 1971,
't = the minute of UT time,
5 = the second of UT time,
and 7669 is the number of days between January 1, 1950 and December 31,
1970. This expression is accurate to 0.2 arcseconds, 10 milliseconds,
or 5 meters along the equator for any value (T - T,). More accuracy‘

can be obtained by adding more terms [¥autical Almanac Office 1961].

3.7 SUMMARY o CZLESTIAL SYSTENMS
Ir this éhapter we have defined four celestial ccordinate systems:
a) Ecliptic (E),
b) Right Ascension {(%.2.},

c) Hour Angle (H.£.)

-

d) Horizon (H.).
Table 3-1 summarizes the reference poles, planes and axes defining

the systems. Table 3-2 summarizes the transformations between these
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systems.
We have also precisely detined four variations to the right

ascension system !

a) Mean Celestial (¥.C.),

b) ‘True Celestial (7.C.),

c) Apparent Place (A.P.),

d) Observed Place (0.P.),
all of which vary with time, so that the epoch T to which they refer
must be specified. Figure 3-11 shows the parameters which connect all

of these celestial coordinate systems.



Table 3-1

REFERENCE POLES, PLANES AND AXES DEFINING CELESTIAL COORDINATE SYSTEMS

Reference Poles

Reference Planes

System Primary pole Secondary Pole Primary Secondary Handedness
(z-axis) (x-axis) (y-axis)
" Ecliptic North Vernal equinox Ecliptic Ecliptic meridian of right
ecliptic. of the equinox (half
pole containing vernal
equinox)
Right ascension North Vernal equinox Celestial Equinoctial colure right
celestial equator (half containing
pole vernal equinox)
Hour angle North Celestial Hour circle of left
celestial equator observer's zenith
pole (nalf containing
zenith)
Horizon Zenith North point Celestial Celestial meridian left
horizon (half containing
north pole)

68



Table 3-2

TRANSFORMATIONS AMONG CELESTIAL COORDINATE SYSTEMS.

Original System

Ecliptic Right Ascension Hour Angle Horizon
X
Ecliptic y R, (e)
2 E )
: X

o
) " Right R, (=€) y R, ELST) P
o ) 1 3 2
= Ascension 2
0 R.A.
e
2]
ct
8 x

Hour P, R,(4LST) N R, (4-90°) R,(180°)

23 2 3
Angle
H.A.
X
Horizon R3(180°) R2(9o°-<p) y
2l y,




Figure 3-11. Celestial Coordinate Systems.
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L. THE ORBITAL COORDINATE SYSTEM

In this chapter we discuss the orbital system, which is used to
define the coordinates of a satellite orbiting around the earth. We
first discuss the orbital ellipse, and the coordinate system in the
orbit plane. Then we transform this system into the apparent celestial
and average terrestrial systems, and discuss variations in the orbital
elements. Finally expressions for the coordinates of the satellite

subpointyand the topocentric coordinates of the satellite are derived.

4.1 THE ORBITAL ELLIPSE AND ORBITAL ANOMALIES

The trajectory of a body moving in a central force field describes
an ellipse, with the attracting force centred at one of the foci of the
ellipse.

In the case of a satellite orbiting around the earth, this is

called the orbital ellipse, and the centre of gravity of the earth is

at one of the foci (see Figure L-1). The point of closest approach of
the satellite to the earth is called the perigee, and the farthest

point is called the apogee. Both perigee and apogee lie on the semi-

major axis of the ellipse, called the line of apsides. The size and
shape of the orbital ellipse are usually defined using the semi-major

axis, a and the eccentricity e, where

and b is the semi-minor axis of the ellipse.




. 93

SATELLITE POSITION

f - TRUE ANOMALY
E- ECCENTMIC ANOMALY

APOGEE

EARTH (focus)
GEOMETRIC : j

CENTRE <

FIGURE L-1 ORBIT ELLIPSE



ok

Consider the satellite to be at a point m on the orbital ellipse.
The angular distance between perigee and m is called the satellite

anomaly. There are three anomalies. The true anomaly f is the angle

between the line of apsides and the line joining the focus to the
satellite.

Consider the projection of the satellite position m glong a line
parallel to the semi-minor axis to intersect a circle with radius

equal to the semi-major axis at a point m'. The eccentric anomaly E

is the angle between the line of apsides and the line joining the
geometric centre of the ellipse to m'.

The mean anomaly M is the true anomaly corresponding to the motion

of an imaginary satellite of uniform angular velocity, that is M=o0

at the perigee and then increases uniformly at a rate of 360° per

revolution. When this is expressed as a rate per unit time, then it is called
the mean anomalistic motion n.

The relationship between the true anomaly f and the eccentric

anomaly E is from Figure k-1

p'e cos T a cos E - ae a(cos E - e)
= 7r = = : N u_g
y sin f b sin E a(l - e2)l/2 sin E
or
2,1/2
_ (1 -e7) sin E-
tan f = cos E - e b3
The relationship between the eccentric anomaly E and the mean
anomaly M is Kepler's equation [Kaula 1966, p. 23]
M =E- e sin E. Lk

where M and E are in radians.
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We are usually given the mean anomaly ﬁ, and want to find the
cccentric anomaly E from equation L-b. We will present three ways.
If the eccentricity is very small (say e = 0.002), then the e sin E

term will be small, and M = E. Therefore we can write

E=M+esinE=M+esinM . L-5

For an eccentricity of e = 0.002 this approximation introduces an error
of about 10-6 radians.

If greater precision is required or the eccentricity is not so
small, we can solve U-L iteratively. Taking the total differential of
Lk

8 = (1 - e cos E) S8E

or

_ Y i
SE = 1 - e cos E L-6

Given M, the iterative solution of k-kL begins by making an initial

approximation from L-5 as

E, = M+ e sinM .

The following equations are then iteratively evaluated in order

M, = E,- e sin E;
i i i
AM =M, -H
i
7
AE = A

1 - e cos E,
i

Eiqp 7By ¥ OF

until the difference AM is less than some chosen ¢.
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A third method of eveluating E is to use a power series in e, for

example [Brouwer and Clemence 1961, p. 76]:

E=ﬁ+(e—%e3+zé—2e5—92i6e7) sin M +
+ (%-e2 - %-eh + %@ e6) sin 2M +
+ (%e3 - ISI e’ Sigg T) sin 3M + L-7
+ (%-eh - i% e6) sin LI + (%%% e’ - g%%% eT) sin SM +
+ %%-e6 sin 6M + %gg%%-eT sin ™ .

L.2 THE ORBITAL COORDINATE SYSTEM

The orbital (ORB) coordinate system is specified as follows (see
Figure L-2):

a) The origin is at the centre of gravity of the earth.

b) The primary plane is the plané of the orfital ellipse,
and the primary pole (z - axis) is perpendicular to this
plane (see Figure L-1).

c) The primary axis (x - axis) is the line of apsides.

d) The y-axis is chosen so that the system is right-handed.

The position vector of the satellite in its orbit is given by

X cos f a (cos E - e)
r=]|y =7r |sin £} = |a(1l - eg)l/2 sin E . L-8
z | ORB 0 0

Note z = O because the satellite is assumed not to be out of the orbit

plane.
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.3 TRANSFORMATION FROM ORBITAL TO AVERAGE TERRESTRIAL SYSTEM

The orbital plane does not rotate with the earth, but remains fixed
in the celestial system. The orbital system and the apparent celestial
both have their origins at the centre of gravity of the earth.

From Figure L-2 we see that when the orbital plane is extended to
meet the celestial sphere, it intersects the celestial equator at the

ascending node (where the satellite croses the equator from south to

north), and the descending node. The angle between the celestial

equator and the orbital plane is the inclination i. The angle between
the ascending node and the line of apsides, measured in the orbital

plane is the argument of pergiee w. The angle between the vernal

equinox and the ascending node, measured in the celestial equatorial

plane is the right ascension of the ascending node Q.

The transformation from the orbital system to the apparent

celestial system is

X X
v = R3(—Q) Rl(—i) R3(-w) y . k-9
Z_Ja.P. Z | ORB

The transformation from apparent celestial to average terrestrial

is given by equation 3-22, so that

X X
y = RS(GAST) 33(-9) Rl(—i) R3(-m) y . L4-10
Zla.T. Z_|ORB
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L.k VARIATIONS IN THE ORBITAL ELEMENTS

So far we have assumed that the satellite orbit does not vary with

time, and is completely specified by the six Keplerian orbital elements

a, e, f, w, i, @. The earth's gravitational force field is not
spherically symmetric, as evidenced by geoid undulations and the
equatorial bulge. Also the atmosphere exerts a fluctuating drag force
on the satellite. Because of these and other smaller effects, the
satellite trajectory cannot be assumed to be a fixed ellipse. However,
for each epoch of time T there will be a different orbital ellipse
tangent to the satellite trajectory at that epoch. Each of these
different ellipses will have a set of Keplerian orbital elements, and
if the variation in these orbital elements with time is known, they

are said to describe an osculating orbital ellipse which describes the

satellite trajectory accurately.

The variation with time of the inclination angle is equivalent to
introducing a time-varying out-of-plane component, and this is often
done. For nearly circular orbits, the eccentricity is small to start

with, so variations are usually neglected.

4.5 THE SATELLITE SUBPOINT

‘The subpoint of a satellite is simply the trace of the path of
the satellite on the ellipsoid (see Figure 4-3). The coordinates of
the subpoint are given by the geodetic latitude ¢ and longitude A of
the ellipsoidal normal passing through the satellite.

The average terrestrial Cartesian coordinates of the satellite

are known from equation L4-10. From equation 2-32
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X Xo (N + h) cosd cosx

y =|yol *+ [(N + h) cos¢ sinx s
2 .

z |, T Zo b2/a° + h) sing

and if the reference ellipsoid parameters (&, b, X5, Yo, Zo) are known
this equation can be iteratively inverted to solve for (4, A, h) using

the method of section 2.2.6.

L.6 TOPOCENTRIC COORDINATES OF SATELLITE

If we are observing a satellite at position j from a station i
on the earth (see Figure 4-k4), then we will require an expression for
the coordinates of the satellite in the local geodetic system of station
. .

If the coordinates (¢i,ki,k&)of station i are known with respect
to a reference ellipsoid (a, b, Xo, Yo» Zo) then the geodetic Cartesian

coordinates of i

r. = |vy. Lh-11

can be computed from equation 2-31.
If the average terrestrial Cartesian coordinates of j have been
computed by the methods outlined in this chapter, then the geodetic

coordinates of j are

xj Xo
r, = - . h-12
J yJ yO
VA Zo
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The range vector from i to j is

XJ - xi Ax
+ =-—_= - = @ h—
rlj rj r, yj Y5 Ay 13
zj -z G. Az G

The coordinates of the range vector can be expressed in the local

geodetic system by using equation 2-67

Ax Ax

= o _ ) _
Ay = P, Ry(¢ - 90°) Ry(x - 180°) |4y ) b-1l
8z |1 6. 8z | &,

But from equation 2-66

Ax COs a cos a
Ay = Ar | cos a sin a| : k-15
Az L.G. sin a

where the range

Ar = (Ax2 + Ay2 + Az2)1/2 416

and the altitude a and azimuth o are given by

= sl Az _
a = sin (Ar) h-17

- -1 Ay -
a = tan (Ax) . 4-18
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5. SUMMARY OF COORDINATE SYSTEMS

In this chapter we will summarize the relationships between the
coordinate systems dealt with in these notes. We will also explain a
duality paradox vwhich has arisen earlier in the notes. This chapter
is, in effect, an explanation of the symbols and abbreviations used in

Figure 5-1.

5.1 TERRESTRIAL SYSTEMS

We discussed five terrestrial systems:

a) I.T. = Instantaneous Terrestrial Coordinate System,
b) A.T. = Average Terrestrial Coordinate System,

c} G. = Geodetic Coordinate System,

d) L.G. = Local Geodetic Coordinate System,

e) L.A. = Local Astronomic Coordinate System,

which are related to each other by the four sets of parameters
a) Polar Motion (xp, yp) - relates I.T. and A.T.,
b) Translation of the origin (xo, Yo, Zo) - relates A.T. and G.,
c) Geodetic Latitude and Longitude (¢, A) - relates G. and L.G.,
d) Astronomic Latitude and Longitude (¢, A) - relates A.T.

and L.A.
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5.2 CELESTIAL SYSTEMS

We discussed four main celestial systems

a) E. = Celestial Ecliptic Coordinate System,

b) R.A. = Celestial Right Ascension Coordinate System,
c) H.A. = Celestial Hour Angle Coordinate System,

d) H. = Celestial Horizon Coordinate System,

which are related to each other by the three parameters
a) Obliquity of the ecliptic (e) - relates E. and R.A.,,
b) Local Sidereal Time (LST) - relates R.A. and H.A.,
c) Astronomic Latitude (&) - relates H.A. and H.

The R.A. system has four variations

a) M.C. = Mean Celestial Coordinate System,
b) T.C. = True Celestial Coordinate System,
c) A.P. = Apparent Place Coordinate System,
d) 0.P. = Observed Place Coordinate System.

which all vary with time and thus are defined only when the epoch T
to which they refer is specified.
The parameters relating the;e systems are
a) Precession and Proper Motion - relates M.C. at standard
epoch TO and M.C. at epoch T,
b) Nutation - relates M.C. and T.C., both at epoch T,
c) Annual Aberration and Parallax - relates T.C. and A.P.
both at epoch T,
d) Diurnal Aberration, Geocentric Parallax and Refraction -

relates A.P. and 0.P. at epoch T.
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5.3 DUALITY PARADOX IN THE APPARENT AND

OBSERVED CELESTIAL SYSTEMS

The reason there are apparent and observed systems is because
the observer is not at the centre of the celestial sphere (the centre
of the sun) and this must somehow be accounted for. There are two
ways of making this correction, and this difference has not been made
explicit earlier in these notes.

First we can retain the true celestial system (with heliocentric
origin) as our coordinate system, and apply corrections to the positions
of the stars. This is the approach described in sections 3.5.4 and
3.5.5 where the aberration and parallasx corrections are applied to the
right ascension and declination, and do not change the coordinate system.
Therefore, we then say that the stars have "apparent places"” or
"observed places" in the true celestial system.

The second approach is to actually move the origin of the true
celestial system from the centre of the sun to the centre of the earth
(for the apparent system) and to the observer's position (for the
observed system). This is what we have done when we related the average
terrestrial to the celestial system in section 3.6 and the orbital
system to the celestial system in section 4.3. In this case we called

the shifted true celestial system the "apparent celestial system". In

other words we have adopted the convention that
a) "trué" means heliocentric,
b) ‘"apparent" means either geocentric or corrected for the
heliocentric—geocentric shift,
c) '"observed" means either topocentric or corrected for the

heliocentric-topocentric shift.
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Two connecting parameters, Proper Motion.and Refraction, do not
fit in to this second scheme. Proper Motion is the changes in the
positions of stars, and is different for each star. Therefore a
different.coordinate system would have to be defined for each star,
which is nonsense. The magnitude of the refraction correction
depends on the incident angle and the ambient conditions. Therefore
specifying that the coordinate system follow refraction would mean a
different coordinate system for each incident angle, all of which would

be jumping around with the temperature and wind.

5.4 THE CONNECTIONS BETWEEN TERRESTRIAL,

CELESTIAL AND ORBITAL SYSTEMS

The average terrestrial and apparent celestial systems are connected
by GAST (Greenwich Apparent Sidereal Time). Note that the use of
"apparent" in GAST is consistent with the convention we adopted in the
previous section. That is, “apparent" means '"geocentric™.

The orbital and apparent celestial systems are connected by the

Euler angles

a) w = argument of perigee,
b) i = orbital inclination,
c) @ = right ascension of the ascending node.

To summarize the differences between terrestrial, celestial and
orbital systems:
a) terrestrial systems rotate and revolve with the earth,
B) celestial systems do not revolve with the earth,

c) orbital systems do not rotate with the earth.
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APPENDIX A

SUMMARY OF REFLECTION AND ROTATION MATRICES

A.1 Orthogonal Transformations

The matrix egquation
Y=AX
where A is a matrix and X and Y are column vectors, can be regarded as a

linear transformation, in which case the matrix A is called the

transformation matrix. If the two vectors X and Y have the same length,

then both the transformation and the matrix are said to be orthogonsal.
Orthogonal matrices have the property that the product of the matrix and
its transpose (or vice versa) is the identity matrix, that is

AT A =aaT =1,

From this property it follows that the determinant of an orthogonal matrix
is either +1 or -1. There are two kinds of orthogonal transformations
called reflections and rotations. The determinant of reflection matrices
is -1, and the determinant of rotation matrices is +1.

There are two interpretations of the linear transformation above. The
first is that the transformation describes the relationship between two
coordinate systems, in which case X and Y are the same vector, but their
elements refer to the two different systems. The second is that the
transformation describes the relationship between different vectors X and Y
in the same coordinate system. 1In these notes, we are interested only in

the first interpretation.
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A.2 Right and Left Handed Cartesian Coordinate Systems

A three dimensional Cartesian coordinate system can be orthogonally
transformed in only six different ways. It can be rotated about each of
its axes. Each of its axes can be reflected. In such a coordinate system,
the vectors X and Y will have only three elements. Let us define the axis
to which the first, second, and third elements of X and Y are referred as

the l-axis, 2-axis, and 3-axis respectively (we could equally well label

them the X)s Xy X, 8XES OT X, ¥, Z axes).

2> 73

These three axes may define either a right-handed or a left-handed

coordinate system. Right handed systems follow the right hand rule:

if the fingers of the right hand are curled around any axis so that the
thumb points in the positive direction, then the fingers will point from a
second axis to the third axis, numbered in cyclic fashion. Grasping the
l-axis, the fingers point from the 2-axis to the 3-axis. Grasping the
2-axis, the fingers point from the 3-axis to the l-axis. Grasping the
3-axis, the fingers point from the l-axis to the 2-axis. Left-handed

coordinate systems follow the left hand rule, which differs from the above

only in that the left hand is used.

A.3 Reflections

If we denote a reflection of the kth axis by P then the following

k’

expressions define the three reflection matrices:

1 0 0]
S
"1 0 0]
SR
% o o
3o ol
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Note that reflection matrices commute (e.g. P = P3P2), so that it

o3
makes no difference in what order a sequence of reflections are performed.

Note also that an odd number of reflections changes the handedness of the

coordinate system.

A.L Rotations
If we denote a rotation of angle 6 about the kth axis by Rk(e),

then the following expressions define the three rotation matrices:

1 0 o ]
R.(8) =| © cos 8 sin 8
1 :

| 0 -sin 6  cos §

(cos 8 0 -sin 6
RQ(G) =1 0 1 0

sin 6 0 cos §

4 cos &8 sin 8 0
R3(6) -sin 8 cos 8 O
0 0

Note that rotation matrices do not commute. The product of several

rotations is performed from right to left, for examrle in

R (o) Ry(8) R(y)

the rotations are performed about the 3—axi§ of the original system, the
2-axis of the transformed system, and the l-axis of the doubly transformed
system, to yield the final triply transformed system.

If the rotation angles are all so small that their cosines can be
assumed to be unity, then the rotation matrices become commutative. This

is the case for differential rotations, for example.

The above expressions define positive rotations, which are right-

hand rotations for right-handed coordinate systems and left-hand rotations
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for left-handed coordinate systems. A right-hand rotation is related to
the right hand rule given above: if the fingers of the right hand are
curled around the rotation axis so that the thumb points in the positive
direction, then the fingers curl in the direction of & right hand rotation.

A similar statement for left hand rotations is obvious.

A.5 Inverse Transformations

The inverse of a transformation A (denoted A ") is the transformation

which returns conditions to their original state, that'is

Pk Pk =1
Common sense tells us that the inverse of a positive rotation is a

negative rotation, that is

R;l(e) = R, (-6)

and this conclusion is verified by taking the orthogonal property

and for each of the above expressions for rotation matrices it can be shown that

T
Ry (8) = Rk(—e).

Applying the rule for the inverse of products

A B]™F =1 At

we have

-1 T T
[R,(a) B(8)]7 = B (8) Ri(a) = R (~8) R,(=0) :



115

A product transformation consisting of one rotation and one
reflection commutes only if the rotation and reflection refer to the same

axis, that is

o)
0
1]

R, P if J =k
otherwise

P, R, =R~ P, if j # k.





