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PREFACE 
 

In order to make our extensive series of lecture notes more readily available, we have 
scanned the old master copies and produced electronic versions in Portable Document 
Format. The quality of the images varies depending on the quality of the originals. The 
images have not been converted to searchable text. 
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l. INTRODUCTION 

These notes discuss the precise definitions of, and transformations 

between, the coordinate systems to which coordinates of stations on or 

above the surface of the earth are referred. To define a coordinate 

system we must specify: 

a) the location of the origin, 

b) the orientation of the three axes, 

c) the parameters {Cartesian, curvilinear) which define the 

position of a point referred to the coordinate system. 

The earth has two different periodic motions .in space. It rotates 

about its axis, and it revolves about. the sun (see Figure 1-1). There 

is also one natural satellite (the moon) and many artificial satellites 

which have a third periodic motion in space: orbital motion about the 

earth. These periodic motions are fundamental to the definition of 

systems of coordinates and systems of time. 

Terrestrial coordinate systems are earth fixed and rotate with the 

earth. They are used to define the coordinates of points on the surface 

of the earth. There are two kinds of terrestrial systems called 

geocentric systems and topocentric systems (see Figure 1-2). 

Celestial coordinate systems do not revolve but ~ rotate with the 



SUN 

*STAR 

""'· 

-- --------

EARTH'S OAIIT 

EARTH•s 
ROTATtON 

OBSERVER ON EARTH 

ORBIT 

/ 

TIER RESTRtAb , CELI!STt'Al Att:n ""'1JTAL COOROIN·ATE SYSTEMS. 
•. Fi.gur7 1-l~~t 

1\) 



3 

Figure l-2. Types of Coordinate Systems. 
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earth. They are used to define the coordinates of celestial bodies 

such as stars~ There are four different celestial systems~ called the 

ecliptic, right ascension~ hour angle~ and horizon systems. 

The orbital system does not rotate with the earth~ but revolves 

with it. It is used to define the coordinates of satellites orbiting 

around the earth. 

l.l POLES , PLANES AND AXES . 

The orientation of axes of coordinate systems can be described in 

terms of primary and secondary poles~ primary and secondary planes, and 

primary~ secondary and tertiary axes. 

The primary pole is the axis of symmetry of the coordinate system, 

for example the rotation axis of the earth. The primary plane is the 

plane perpendicular to the primary pole, for example the earth's 

equatorial plane. The secondary plane is perpendicular to the 

primary plane and contains the primary pole. It sometimes must be 

chosen arbitrarily,.for example the Greenwich meridian plane, and 

sometimes arises naturally, for example the equinoctial plane. The 

secondary pole is the intersection of the primary and secondary planes. 

The primary axis is the secondary pole. The tertiary axis is the primary 

pole. The secondary axis is perpendicular to the other two axes, 

chosen in the direction which makes the coordinate system either right­

handed or left-handed as specified. 

We will use either the primary plane or the primary pole, and the 

primary axis to'specify the orientation of each of the coordinate 

systems named above. 
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For terrestrial geocentric systems: 

a) the origin is near the centre of the earth, 

b) the primary pole is aligned to the earth's axis of 

rotation, and the primary plane perpendicular to this pole is called 

the equatorial plane, 

c) the primary axis is the intersection between the 

equatorial plane and the plane containing the Greenwich meridian, 

d) the systems are right-handed. 

For terrestrial topocentric systems: 

a) the origin is at a point near the surface of the earth, 

b) the primary plane is the plane tangential to the surface 

of the earth at that point, 

c) the primary axis is the north point (the intersection 

between the tangential plane and the plane containing the earth's north 

rotational pole), 

d) the systems are left-handed. 

For the celestial ecliptic system: 

a) the origin is near the centre of the sun, 

b) the primary plane is the plane of the earth's orbit, 

called the ecliptic plane, 

c) the primary axis is the intersection between the ecliptic 

plane and the equatorial plane, and is called the vernal equinox, 

d) the system is right-handed. 

For the celestial right ascension system: 

a) the origin is near the centre of the sun, 

b) the primary plane is the equatorial plane, 

c) the primary axis is the vernal equinox, 
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d) the system is right-handed. 

For the celestial hour angle system: 

a) the origin is near the centre of the sun, 

b) the primary plane is the equatorial plane, 

c) the secondary plane is the celestial meridian 

containing the observer and the earth's rotation axis), 

d) the system is left .. -handed. 

For the celestial horizon system: 

a) the origin is near the centre of the sun, 

(the plane 

b) the primary plane is paralle1 to the tangential plane at 

the observer (the horizon plane), 

c) the primary axis is parallel to the observer's north point, 

d) the system is left-handed. 

For the orbital system: 

a) the origin is the centre of gravity of the earth, 

b) the primary plane is the plane of the satellite orbit 

around the earth, 

c) the primary axis is in the orbital plane and is oriented 

towards the point of perigee (the point at which the satellite most 

closely approaches the earth) and is called the line of apsides, 

d) the system is right-handed. 

1.2 UNIVERSAL AND SIDEREAL TIME 

Also intimately involved with the earth's periodic rotation and 

revolution are two systems of time called universal (solar)· time (UT) 

and sidereal time (ST). A time system is defined by specifying an 
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interval ~,d an ~= The solar day is the interval between successive 

passages of the sU."l over the sa-ne terrestrial meridia."l. The sidereal 

day is the interval between two successive passages of the vernal 

equinox over the same terrestrial meridian. The sidereal epoch is the 

angle between the vernal equinox and some terrestrial meridian: if 

this is the Greenwich meridian then the epoch is Greenwich Sidereal 

Time (GST). The solar epoch is rigorously related to the sidereal 

epoch by a mathematical formula. Sidereal time is the parameter 

relating terrestrial and celestial systems. 

1.3 COORDINATE SYST&~S IN GEODESY 

Geodesy is the study of the size and shape of the earth and the 

determination of coordinates of points on or above the earth's surface. 

Coordinates of one station are determined with respect to 

coordinates of other stations by making one or more of the following 

four categories of measurements: directions, distances, distance 

differences, and heights. Horizontal and vertical angular measurements 

between two stations on the earth (as are measured by theodolite for 

example) are terrestrial directions. Angular measurements between a 

station on the earth and a satellite position (as are measured by 

photographing the satellite in the star background for example) are 

satellite directions. Angular measurements between a station on the 

earth and a star (as are measured by direct theodolite paintings on the 

star for example) are astronomic directions. Distances between two 

stations on the earth (as are measured by electromagnetic distance 



8 

measuring instruments for example) are terrestrial distances. Distances 

between a station on the earth and a satellite position (as are measured 

by laser ranging for example) are satellite distances~ Measurements 

of the difference in distance between one station on the earth and two 

other stations (as are measured by hyperbolic positioning systems for 

example) are terrestrial distance differences. Measurements of the 

difference in distance between one station on the earth and two satellite 

positions (as are measured by integrated Doppler shift systems for 

example) are satellite distance differences. All these measurements 

determine the geometrical relationship between stations, and are the 

subject of geometric geodesy [e.g. Bamford 1962]. 

Spirit level height differences and enroute gravity values are 

measurements related to potential differences in the earth's gravity 

field, and are the subject of physical geodesy [e.g. Heiskanen and 

Moritz 1967]. 

The functional relationship between these measurements and the 

coordinates of the stations to and from which they are made is 

incorporated into a mathematical model. A unique solution for the 

unknown coordinates can be obtained by applying the least squares 

estimation process [Wells and Krakiwsky 1971) to the measurements 

and mathematical model. 

Details on coordinate systems as employed for terrestrial and 

satellite geodesy can be found in Veis [1960] and Kaula [1966], and 

for geodetic astronomy in Mueller [1969]. 
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2. TERRESTRIAL COORDINATE SYSTEMS 

In this chapter we will discuss terrestrial geocentric and 

terrestrial topocentric coordinate systems. 

We first discuss terrestrial geocentric systems using only 

Cartesian coordinates, and considering in detail what is meant by "the 

earth's axis of rotation" and "the Greenwich meridian". Then the 

relationship between Cartesian and curvilinear coordinates is described. 

Geodetic datums are discussed. Finally terrestrial topocentric systems 

are considered, with .attention paid to what is meant by "the surface 

of the earth". 

2.1 TERRESTRIAL GEOCENTRIC SYSTEMS 

In the introduction it was stated that for terrestrial geocentric 

systems: 

a) the origin is near the centre of the earth, 

b) the primary pole is aligned to the earth's axis of 

rotation, 

c) the primary axis is the intersection between the primary 

plane and the plane containing the Greenwich meridian, 

d) the systems are right-handed. 
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The last specification is unambiguous. As we shall see the other 

three are not. We will first discuss problems in defining the earth's 

axis of rotation and the Greenwich meridian. The~ we will discuss 

translations of the origin from the centre of the earth. 

2.1.1 Polar Motion and Irreg~lar Rotation of the Earth 

We think of the earth as rotating about a fixed axis at a uniform 

rate. In fact, the axis is not fixed and the rate is not uniform. 

Over 70 years ago, it was discovered that the direction of the 

earth's rotation axis moves with respect to the earth's surface. This 

polar motion is principally due to the fact that the earth's axes of 

rotation and maximum inertia do not coincide. The resultant motion is 

irregular but more or less circular and counterclockwise (when viewed 

from North), with an amplitude of about 5 meters and a main period of 

430 days (called the Chandler period}. 

Two international organizations, the International Polar Motion 

Service (IPMS) and the Bureau International de l'Heure (BIH) routinely 

measure this motion through astronomic observations; the IPMS from five 

stations at the same latitude, and the BIH from about ~0 stations 

scattered worldwide. The results are published as the coordinates of 

the true rotation axis with respect to a reference point called the 

Conventional International Origin (CIO) which is the average position 

of the rotation axis during the years 1900-1905( IUGG (1967) Bull Geed 

86, 379 (1967) Resolution 19). Figure 2-1 shows the polar motion during 1969 

as determined by IPMS and BIH. 

Over 30 years ago irregularities in the rotation of the earth were 
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discovered (other than polar motion). There are three types of 

i~regularities: seasonal variations probably due to meteorological 

changes or earth tides; secular decrease due to tidal friction; and 

irregular fluctuations [Mueller 1969]. The seasonal variation is the 

only one of these presently being taken into account, and it is more or 

less reproducible from year to year, and produces a displacement along 

the equator of up to 15 meters with respect to a point rotating uniformly 

throughout the year (see Figure 2-2). 

Because of this seasonal variation, the Greenwich m"eridian (the 

plane containing the earth's rotation axis and the center of the transit 

instrument at Greenwich Observatory) does not rotate uniformly.. A 

ficticious zero meridian which does rotate uniformly (so far as the 

effects of polar motion and seasonal variations are concerned) is 

called the Mean Observatory o~ Greenwich mean astronomic meridian. 

Its location is defined by the BIH. 

2.1.2 Average and Instantaneous Terrestrial Systems 

The average terrestrial (A. 'I'.) system is the ideal world geodetic 

coordinate system (see Figure 2-3): 

a) Its origin is at the centre of gravity of the earth. 

b) Its primary pole is directed towards the CIO (the 

average north pole of 1900-1905), and its primary plane is the plane 

perpendicular to the primary pole and containing the earth's center of 

gravity (the average equatorial plane). 

c) Its secondary plane is the plane containing the primary 
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pole and the Mean Observatory. The intersection of these two planes is 

the secondary pole, or primary axis. 

d) It is a right-handed system. 

We can then define the position vector Ri of a terrain point i in 

terms of its Cartesian coordinates x, y, z as 

X 

y 2-1 

z A.T. 

The instantaneous terrestrial {I.T.) system is specified as follows: 

a) Its origin is at the centre of gravity of the earth. 

b) Its primary pole is directed towards the true (instan-

taneous)rotation axis of the earth. 

c) Its primary axis is the intersection of the primary plane 

and the plane containing the true rotation axis and the Mean Observatory. 

d) It is a right-handed system. 

The main characteristic of these two systems is that they are 

geocentric systems having their origins at the centre of gravity of the 

earth and the rotation axis of the earth as the primary pole. 

By means of rotation matrices [Thompson 1969; Goldstein 1950; 

Wells 1971] the coordinates of a point referred to the instantaneous 

terrestrial system are transformed into the average system by the 

following equation (see Figure 2-4): 

r: X 

= R ( -x )' R ( -y ) y ' 2-2 

lz 
2 p 1 p 

A.T. z I.T. 
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where (x , y } are expressed in arcseconds, and the rotation matrices p p 

are 

1 0 0 

Rl (-yp) = 0 cos{-y ) sin(-y ) 
p p 

0 -sin(-y ) cos(-y ) p p 

a clockwise (negative) rotation about the x axis, and 

cos(-x ) 0 -sin(-x } p p 

R2 (-xp) = 0 1 0 

sin(-x } 0 cos(-x } p p 

a clockwise (negative) rotation about they-axis. The inverse is 

X X 

y 

z I.T. z 
A.T. 

and because of the orthogonal characteristic of rotation matrices, that is 

-1 T R (a) = R (a) = R (-e) 

X X 

y y • 2-3 

z I.T. z A.T. 

2.1.3 Geodetic Systems 

In terms of Cartesian coordinates, the geodetic (G) coordinate 

system is that system which is introduced into the earth such that its 

three axes are coincident with or parallel to the corresponding three 



18 

axes of the average terrestrial system (see Figure 2-3). The first 

situation defines a geocentric geodetic system while the latter non-

geocentric system is commonly referred to as a relative geodetic s~stem, 

whose relationship to the average terrestrial systeo is given by the 

three datum translation components 

r = 
0 

X 
0 

z 
0 

and in vector equation form, the relationship is 

Ri = ro + ri 

where the position vector ri is referred to the geodetic system, that is 

and· 

X 

y = 
z A.T. 

X 

y 

z 

X 
0 

z 
0 

G 

X 

2-4 

z 
G 

A more detailed account of how a relative geodetic system is 

established within the earth is in order {Section 2.3),but before this 

can be done, it would be useful to review the relationship between 

Cartesian and curvilinear coordinates. 
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2. 2 RELATIONSHIP BETWEEN CARTESIAN AliD CURVILINEAR COORDIIIATES 

In this section we first describe the Cartesian (x, y, z) and 

curvilinear (latitude, longitude, height) coordinates for a point ·on the 

reference ellipsoid. We then develop expressions for its position 

vector in terms of various latitudes. Finally the transfOrmation tram 

geodetic coordinates (41, A:, h) to (x, y, .z) and its inverse are 

discussed. 

2.2.1 Cartesian and Curvilinear Coordinates of a Point 

on the Reference Ellipsoid 

. The specific ellipsoid used in geodesy as a reference surface is 

a rotational ellipsoid formed from the rotation of an ·e~ipse about its 

semi-minor axis b (Figure 2-5). The semi-ma.lor axis a and -the 

flattening 

f = .;;;;a~-_b;;. 
a 

are the defining parameters of the reference ellipsoid. 

2-5 

Other useful parameters associated with this particular ellipsoid 

are the first eccentricity 

2 
e = 

' 

and the second eccentricity 

2-7 

A Cartesian coordinate system is superimposed on the reference 

ellipsoid (see Figure 2-5) so that: 
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i! 

Figure 2-5. REFERENCE ELLIPSOID 
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a) The origin of the Cartesian system is the centre of the 

ellipsoid. 

b) The primary pole (z-axis) of the Cartesian system is the 

semi-minor axis of the ellipsoid. The primary plane is perpendicular 

to the primary axis and is called the equatorial plane. 

· c) Any plane containing the semi-minor axis and cutting 

the surface of the ellipsoid is called a meridian plane. The particular 

meridian plane chosen as the secondary plane is called the Greenwich 

meridian plane. The secondary pole (x-axis) is the intersection of 

the equatorial plane and the Greenwich meridian plane. 

d) The y-axis is chosen to form a right-handed system, and 

lies in the equatorial plane, 90° counterclockwise from the x-axis. 

The equation of this ellipsoid, in terms of Cartesian coordinates 

is 

1? s 
E x = 1 ' 2-8 

where 

-T (x y z] X = ' 

l/a2 0 0 

SE = 0 l/a2 0 
' 

2-9 

0 0 l/b2 

or 

x2 + Y2 2 
+ z 

1 = • 2 b2 a 
2-10 

The latitude of a point is the acute angular distance between the 

equatorial plane and the ellipsoid normal through the point measured in 

the meridian plane of the point. The line perpendicular to the ellipsoid 

at a point is called 
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the ellipsoid normal at the point. Ellipsoid normals only pass through 

the geometric center of the ellipsoid in the equatorial plane or along 

the semi-minor axis. Therefore there are two different kinds of 

latitude. The angle between the ellipsoid normal at the point and the 

equatorial plane is called the geodetic latitude ~. The angle between 

the line joining the point to the centre of the ellipse, and the 

equatorial plane is called the geocentric latitude ~- There is also a 

third latitude, used mostly as a mathematical convenience, called the 

reduced latitude 6 (see Figure 2-6). 

The longitude A of a meridian plane is the counterclockwise angular 

distance between the Greenwich meridian plane and the meridian plane of 

the point, measured in the equatorial plane (see Figure 2-5). 

The ellipsoid height h of a point is its linear distance above the 

ellipsoid, measured along the ellipsoidal normal at the point (see Figure 2-8}. 

2.2.2 The Position Vector in Terms of the Geodetic Latitude 

Consider a point P on the surface of the ellipsoid. The coordinates 

of P referred to a system with the primary axis (denoted x*) in the meridian 

plane of P are 

r = 0 
2-11 

Zj 

The plane perpendicular to the ellipsoid normal at P, and passing 

through P is called the tangent plane at P. From Figure 2-7 the slope 

of the t.angent plane is 

dz 
dx* 

cosp 
sinljl 2-12 
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The slope can also be computed from the equation of the meridian ellipse 

as follows: 

or 

b2 ( *)2 2 2 2 b2 x +a z =a 

dz 2 b x* 
dx* = - 2 

a z 

It follows from·~he above two equations for the slope, that 
2 . 

b x* _ cos; 
2 -

a z sin~ 
or 

b1 (x*) sin ~ = a1 z cos ~ 

and after squaring the above 

4 2 . 2 4 2 2 
b (x*) s~n ~ = a z cos ~ 

Expressing equations 2-14 and 2-19 in matrix form 

The inverse of the coefficient matrix is 

1 

a 2 2(a2 2 2 2 ) o cos 4>·+ b sin ~ 

[ 
a2 

-b2 

1 [a
4 cos2~] 

2 2~ b2 . 2~ 4 2 a cos ~ + s~n ~ b sin $ 

and finding the square root 

[x*J 1 
z = (a2 cos2~ + b2 . 2~)1/2 

s~n "'. 

2-13 

2-14 

2-15 

2-16 

2-17 

2-18 

2-19 

. 2-20 

2-21 



~·rom Figure 2-6 

but from equation 2-21 

therefore 

r = 

cos x* 
¢." = 

N 

2 
a cos$ x* = --~~~~~----------~-2 2 2 n , jn 

( • • .::; ) .i.{ t::. a cos ~ + o sin ~ 

2 
N = ------~a~-------------

x* 

0 

z 

( 2 2~ b2 . 2~)1/2 a cos i' + s1.n 'I' 

= r N :os$ 
L N b2 /a2 sin$ 

2-22 

2-23 

N is the radius of curvature of the ellipsoid surface in the plane 

perpendicular to the meridian plane (called the Prime vertical plane). 

We now refer the position vector P to a system with the primary axis 

in the Greenwich meridian plane, that is we rotate the coordinate system 

about the z-axis clockwise (negative rotation) through the longitude A. 

X x* 

r = y = R3(->.) 0 

z z 

cos(->.) sin(->..) 0 N cos4> 

= -sin(->.) cos(-/c) 0 0 

0 0 1 N b2/a 
2 

sin4> 
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or 

X cos' COSA 

r = y = N cos' sinA 2-24 

z b2/a2 sin' 

2.2.3 The Position'Vector in Terms of the Geocentric and Reduced Latitudes 

From Figure 2-6 the position vector of the point P in terms of the 

geocentric latitude ~ is 

x* ·cos~ 

r = 0 = lrl 0 

z sin~ 

where lrl is the magnitude of r. 

Rotating the coordinate system to introduce longitude as before, 

X 

r= y 

z 

x* 

0 

z 

= lrl 

cos~ cosA 

cos~ sinA 

sin~ 

2-25 

From Figure 2-6 the reduced latitude 8 of the point P is the 

geocentric latitude of both the points Q and R, where Q is the 

projection of P parallel to the semi-minor axis to intersect a circle 

with radius equal to the semi-major axis, and R is the projection of the 

point P parallel to the semi-major axis to intersect a circle with 

radius equal to the semi-minor axis. 

The position vector of P in terms of the reduced latitude 8 is 

x* a cos8 

r= 0 = 0 

z b sinS· 
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Rotating the coordinate system to introduce longitunes 

X x* a case COSA 

r = y = R3(-A.) 0 = a case sin>.. 2-26 

z z b sine 

2.2.4 Relationships between Geodetic, Geocentric and Reduced Latitudes 

From equations 2-24, 2-25, and 2-26 

z - = 
X 

b tan$ cosA. =tan~ cosA. =-tanS cosA.. 
a 

Cancelling the cos A. term, 

tanS 
b 

tan$ =-r ' a 

tanS 
a tamjl = ' b 

tantjl 
b2 

=- tancjl . 2 a 

2-27 

2-28 

2.2.5 The_Position Vector of a Point Above the Reference Ellipsoid 

Let us consider a terrain point i, as depicted in Figure 2-8, 

whose coordinates are the geodetic latitude $ and longitude >.., and 

the ellipsoid height h. The projection of i onto the surface of the 

ellipsoid is along the ellipsoidal normal defined by the unit vector 

The position vector of i is then the sum of two vectors, namely 

r. = r + h u 
1. p z s 2-30 

u • 
z 

where r is defined by equation 2-24 and u is the unit vector defined 
p z 

by equation 2-68c, that is 
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TERRAIN POINT 

Figure 2-8. POINT ABOVE REFERENCE ELLIPSOtO 
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COS$ COSA 

U = COS$ SinA z 

sin$ 

Thus 

X cos$ COSA cos$ COSA 

ri = y = N cos$ sinA. + h cos$ sinA. 

z b2/a2 sin$ sin$ 

or 

~ 

(N+h) cos$ -COSA 

= (N+h) cos$ sinA. 2-31 

z sin$ 
I. - --Now the position vector r. in equation 2-31 refers to a coordinate 

1 

system whose origin is at the geometrical centre of the ellipsoid. If 

this ellipsoid defines a·relative geodetic system, then its centre will 

not in general coincide with the centre of gravity of. the earth. The 

expression for the position vector in the average terrestrial system is, 

from equation 2-4 

(ri)A.T. = 

or 

X 

cr.> = 
1 A.T. 

y 

z 

X 
0 

z 
0 

= 

+ ("I\) 
'l. G 

X 
0 

z 
0 

(N+h) cos$ COSA 

+ (N+h) cos$ sinA. 

(Nb2/a2+h) sin$ 

• 2-32 

This expression gives the general transformation from relative 

geodetic coordinates ($, A., h) to average terrestrial coordinates 
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(x, y, z), given the size of the ellipsoid (a, b) and the translation 

components (x y z ) o' o' o • 

2.2.6 Transformation from Average Terrestrial Cartesian to 

Geodetic Coordinates 

A very useful transformation is the inverse of equation 2-32. 

Given the average terrestrial coordinates (x, y, z), the translation 

components (x , y , z ), and the size of the ellipsoid (a, b), compute 
0 0 0 

the relative geodetic coordinates (,, A, h). 

First we translate the origin from the centre of gravity to the 

centre of the ellipsoid. From equation 2-32 

X X 

y = y 

z 
G 

z A.T. 

The longitude A is computed directly from 

X 
0 

z 
0 

X = tan-l (~) ·I 

2-33 

2-34 

The latitude ' and ellipsoid height h are more difficult to compute 

sine~ N is a function of~. from equation 2-22 

and h is not known. We begin by computing 

e 2 = 1 - b2/a2 

( 2 2)1/2 
p = X + y 

2-35 

2-36 

2-37 



From equation 2-31 

2 
p = 

p = 
or 

Also from 2-31 

Therefore 
z - = p 

(N+h) 

I 

32 

cos<P 

p J h = coscj> - N 

z = (N b2/a2 + h) 

a2-b2 = (N - 2 N 
a 

= (N + h - e 2 N) 

+ h) sin$ 

sincfl . 

(N·+ h-e~) sinp _ t (l e~) - ancf! --
(N + h) coslj> N+h 

2-38 

2-39 

This equation can be developed in two wayss to produce either a direct 

solution for 4> which is quite involved, or an iterative solution which is 

simpler. We consider the iterative solution first. We have 

Each 

0 = tan-1 [<~) (1 - ;~) - 1] • 

The iterative procedure is initiated by setting 

iteration then 

N. = 
J. 

hi = 

N = a 
0 

consists 

2 
cos <fl. 1 

J.-

E 

cosq,i-l 

of evaluating in order 

a 

+ b2/a2 . 2q, )1/2 s1.n . 1 1.-

~ N. 
1. 

2 eN. )-1] 
-1 [t· cj>i = tan p) (1- 1. . N.+h. 

J. J. 
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The iterations are repeated until 

(h. - h. 1) < 8£ 
l. l.-

..:.10 
for some appropriately chosen value of E (for example E= 10 for double 

precision Fortran on the IBM 360 computer). 

Returning to equation 2-39, we eliminate h using equation 2-38 

to obtain 

.!. = tan ~(l _ e~ cosp ) 
p p 

or 
p tan~ - z = e~ sin~ • 

In this equation the only unknown is $. We will now modify this 

equation to obtain an equation which can be solved for tan $. Substituting 

the expression for·N from equation 2-35 we have 

a e2 sinp 

Dividing the numerator and denominator of the right hand side by cos 
2 

p tan ~ - z = .;;;a.....;..e_t.-a.n~-4>~-~~~~-­
(1 + b2/a2 tan2~ )l/2 

or 

2 ae tan ~ 

Squaring this equation to eliminate the square root 

(p2 tan2~ - ~ p z tan~ + z2 ) (1 + (l - e2 ) tan2 ~) 
2 4 2 = a e tan <f; 

or 

2 4 3 2 2 
p tan ~ -2 p z tan ~ + (3 +z ) tan ~ 

2 
+ ---'-z __ = 0 

(l - e 2 ) 
where 

3 -
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This is a quartic (biquadratic) equation in tan' , in which the 

values of all coefficients are knowh. Standard procedures for solving 

quartic equations exist (see for example Kern and Kern, 1968), and have 

been applied to this equation by Paul (1973), to prod~ce a computer 

program which is about 25% faster than iterative programs. Once a solution 

for tan~ is obtained, N and h are computed from equations 2-35 and 2-38 

respectively. 

2.3 GEODETIC DATUMS 

There are two natural figures of the earth (see Figure 2-9); 

the topographic or physical surface of the earth including the surface of 

the oceans (the terrain), and the equipotential surface of the earth's 

gravity field which coincides with an idealized surface of the oceans (the 

geoid}. 

Control measurements (e.g. distances, angles, spirit levelling) 

are made between points on the terrain which we call control points. These 

measurements are used to determine the geometrical relationship between 

the control points in a computation called network adjustment. Other points 

are then related to the network of control points through further measurements 

and computations called densification. The classical approach is to treat 

the vertical measurements, networks and computations aeparately from the 

horizontal measurements, networks and computations. However the unified 

three dimensional approach is currently gaining favour. {Hotine, 1969]. 

In the classical approach vertical measurements·and networks are 

referred to a coordinate surface or (vertical) datum which is th~ geoid. 

Rather than using the geoid as the coqrdinate surface or datum for the 

horizontal measurements and networks as well, a third, unnatural figure of 



AXIS 
OF EARTH 

CENTRE OF 

AXIS OF 
ELLIPSOID 

34A 

--~= -~ DEFL~CTI~N OF 
J ~ THE VERT-ICAL 

ELUPSOID.,_-~.._-¥-______ .__.......;. __ ....,._ 

CENTRE OF 
GRAVITY 

LATITUDE~ 

Figure 2-9. _ MERIOlAN SECTION -OF TH£ E·ARTH 



35 

the earth is introduced - the ellipsoid of rotation discussed earlier. 

The reason a mathematical figure like the ellipsoid is used as the horizontal 

~ is to simplify the computations required both for network adjustment 

and densification. 

Correction terms are necessary in these computation to account 

for the fact that the datum is not the geoid. An ellipsoid can be chosen 

to approximate the geoid closely enough that.these correction terms can 

be assumed linear and for some applications even ignored. For a well-chosen 

ellipsoid (see Figure 2-9), the geoid-ellipsoid.separation (geoid height) 

is always less than 100 metres, and the difference between the geoid and 

ellipsoid normals at any point (deflection of the vertical) is usually le~s 

than 5 arc seconds, very rarely exceeding 1 arcminute. 

Even simpler surfaces than the ellipsoid (such· as the sphere 

or the plane} can be sufficient approximationsoto the.geoid if the area 

under consideration is sufficiently small, and/or the control application 

permits lower orders of accuracy. 

s 
The introduction of a new surface (the ellipsoid) has a price. 

The horizontal control network (that is .. the coordinates of the points of the 

network) is to be referred t? the eilipsoid. Therefore before network 

computations can begin, the control measurements must first be reduced so 

that they too "refer" to the ellipsoid. 

It is important to distinguish between the datum (the coordinate 

surface or ellipsoid surface) and the coordinates of the points of the net-

work referred to the datum. It is a common but confusi_ng practice (part­

icularly in North.America) to use the term "datum" for the set of coordinates. 
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2.3.1 Datum Position Parameters 

In order to establish an· ellipsoid as the reference surface for 

a system of control we must specify its size and shape (usually by assigning 

values to the semi-major axis and flattening) and we must specify its pos­

ition with respect to the ea1;th. A well~positioned ellipsoid will closely 

approximate the geoid over the area covered by the network for which it is 

in datum. The parameters to vhich we assign values in order to specify the 

ellipsoid position we call the datum position parame;;ers.;· 

In three-dimensional space~ any figure {and particularly our 

ellipsoid) has six degrees of freedom~ that is six ways in vhich its posi­

tion with respect to a fixed figure (in our case the earth) can be changed. 

Thus there are -six datum position parameters. 

Another vay of looking at this is to consider tvo three-dimensional 

Cartesian coordinate systems, one fixed to the ellipsoid and one fixed to 

the earth. In general the origins of the two systems will not coincide, 

and the axes vill not be parallel. Therefore, to define the transformation 

from one system to the other we must specify the location of one origin 

with respect to the other system, and the orientation of one set of axes 

with respect to the other system, that is three coordinates, and three 

rotation angles. These six parameters provide a description of the six 

degrees of freedom and _assigning values to them positions the ellipsoid 

with respect to the earth. They are our six datum position parameters. A 

datum then is completely specified by assigning values to eight parameters 

the ellipsoid size and shape, and the six datum position parameters. 
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There are in fact two kinds of datum position parameters in 

use. One kind is obtained by considering the ellipsoid-fixed and earth-
. >v.· 

fixed coordinate systems to have their origins in the neighbourhood of the 

geocentre. The other kind is obtained by considering the ellipsoid-fixed 

and earth-fixed coordinate systems to have their origins near the surface 

of the earth at a point we call the initial point of the datum. 

In the first (geocentric) case the earth-fixed system is the 

Average Terrestrial system of section 2.1.2, and the ellipsoid-fixed system 

is the geodetic system of Equation 2-31 (except that here we assume the 

geodetic and average terrestrial axes are not in general parallel). In 

this case the datum position parameters are tne Average Terrestrial coor-

dinat.es ·of the ellipsoid origin (x , y , z of Equation 2-32} and three 
0 0 0 

rotation angles (say w1 , w2 , w3 ) required to define the misalignment bet-

ween the axes. It is of course highly desirable that the ellipsoid be 

positioned so that these angles are as small as possible, particularly 

that the two axes of symmetry (the ellipsoid minor axis and earth's average 

rotation axis or Average Terrestrial z-.axis) be parallel. 

In the second (topocentric) case the earth-fixed system is a 

local astronomic system at the initial point, and the ellipsoid-fixed 

system is a local geodetic system at the same point (local astronomic and 

geodetic systems are discussed in section 2.4). 

Before proceeding further let us consider the geometry in the 

neighbourhood of a point on the earth's surface. Figure 2-10 is an exag-

gerated view of the geodetic meridian plane at such a point, showing the 

sectioned ellipsoid, geoid, several equipotential surfaces related to the 

geoid, and the terrain. A particular ellipsoid normal intersects the 
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ellipsoid, geoid, and terrain at Q,P and T respectb·ely. There are three 

"natural" normals corresponding to this ellipsoid normal; the surface 

gravity vertical (perpendicular to the equipotential surface at T, passing 

through T) , the geoid gravity vertical (perpendicular to the geoid pass_ing 

through P), and the plumbline (perpendicular to all equipotential surfaces 

between terrain and· geoid, passing through T}. In general, the plumbline 

is curved while the others are straight lines, and none of these three 

actually lie in the geodetic meridian plane - they are shown here as pro-

jections onto this plane. If the curvature of the plumbline is ignored 

the two gravity verticals are parallel. 

The astronomic meridian plane is the plane containing one of 

the gravity verticals and a parallel to the Average Terrestrial z-axis. 

The angle between the gravity vertical and the parallel to the A.T •. z-axis 

i.s the astronomic co-latitude <; - t). The angle between the astronomic 

meridian plane and a reference meridian plane (Greenwich) is the astronomic 

longitude A. The angle between the ellipsoid normal and the gravity 

vertical is the deflection of the vertical, which can be resolved into a 

component ~ in the geodetic meridian plane and a component n in the 

geodetic prime vertical plane (the plane perpendicular to the geodetic mer-

idian plane which contains the ellipsoid normal). Thus corresponding to 

the two gravity verticals, there are two sets of values for the astrqnomic 

latitude and longitude and deflection components, and if the curvature of 

the plumbline is ignored, these two sets are equal. 

If the ellipsoid is positioned so that itE geocentric axes are 

paralled to the Average Terrestrial axes (that is w1 

n = (A -A) cos ~ 

= w = w = 0) then 
2 3 

2-40 

2-41 
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where ($, A) are the common geodetic coordinates of Q~ P. and T. 

The distance between the ellipsoid and geoid, measured along 

the ellipsoid normal (QP) is the geoid height N*. The distance between the 

ellipsoid and terrain, measured along the ellipsoid normal (QT.} is the 

ellipsoid height h. The distance between the geoid and terrain, measured 

along the plumbline (P'T) is the orthometric height H. If the curvature 

of the plumbline is ignored 

h = N* + H. 

Given a point some distance from T, the angle between the geodetic 

meridian plane and the plane containing this point and the ellipsoid ndriaa.J. 

QPT is the geodetic azimuth a ·of that point with respect to Q, P or T. 

(Actually this is the azimuth of the normal section, and is related to the 

geodetic azimuth by small corrections ( Bamford, 1971)}. The angle betweenthe 

astronomic meridian plane and the plane containing this point and the cor­

responding gravity vertical is the astronomic azimuth A of that point with 

respect to either P or T depending on which gravity vertical is used. 

Because the deflection of the vertical is small, then for all such points 

the difference 

oa = A -a 2-43 

is nearly constant, and is the angle between the geodetic and astronomic 

meridian planes. 

Returning to the topocentric datum position parameters, it is 

natural to specify that our local geodetic system at the initial point have 

its origin on the datum surface, that is on the ellipsoid. In the classical 

(non-three-dimensional) approach the orthometric height H enters into hori­

zontal networks only in the reduction of surface quantities to the geoid, 
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therefore it is natural to take our local astronomic system at the initial 

point to have its origin on the g~oid. Denoting quantities at the initial 

point by a zero subscript, we. then see that the six datum position para­

meters are in this case the geodetic coordinates of the local astronomic 

origin (q, , :A ·, N*) and the rotation angles required to define the trans-
0. 0 0 

formation between the local geodetic and local astronomic systems (~ , n , 
. 0 0 

oa ) . 
0 

2.3.2 Establishment of a Datum 

We have seen that a datum is defined by assigning values either 

to the eight parameters (a, b, x0 , y0 , z0 , w1 , w2 , w3 ) or to the eight 

parameters (a, b, q,0 , A0 , N*0 , ~0 , n0 , oa0 ). However, an arbitrary set 

of values will not in general result in a satisfactory datum~ We recall 

that it is important that a datum closely approximate the geoid over the 

area of the network for which it is a datum, and that the geocentric axes 

of the geodetic .coordinate system be closely parallel 

to the Average Terrestrial axes, particularly that the axes of symmetry be 

parallel. The process of assigning values to the eight datum parameters in 

such a way that these characteristics are obtained is called establishment 

of a datum. 

To begin with, in establishing a datum values are always assigned 

to the topocentric set (a, b, 4> ,A , N* , ~ , n , oa ) rather than the geo~ 
0 0 0 0 0 0 

centric set (a, b, x 0 , y0 , z0 , w1 , w2 , w3 ) because it is the set which is 

related to the geodetic and astronomic measurements which we must use in 

establishing the datum. We see that we must somehow choose values for 

(a, b, q,, A, N*, ~, n0 , oa0 ) so that the values of (N*,~,n) elsewhere 
0 0 0 0 



in the network are not excessive (the datum approximates the geoid), and 

so that w1 = w2= w3= 0 (the axes are parallel). Additionally ror networks 

of global extent we require that x = y = z = 0, in which case the datum 
0 0 0 . 

is termed a geocentric datum. Otherwise the datum is a local datum. 

The problem of approximating the geoid can be ignored, in which 

case the values 

N* = ~ = n = o 
0 0 0 

are assigned, which rorces the ellipsoid to intersect and be tangent to the 

geoid at the initial point. 

The geoid can be approximated in two ways, by choosing values 

of (a, b, N*0 , ~0 , n0 } such that either values of (~, n) or values or N* 

throughout the network are minimized (Vanicek, 1972). Note that values 

of (N*, ~. n) are available throughout the network only ir some adjusted 

network already exists, which points up the iterative nature or datum 

establishment - a "best ritting" datum can be established only as an improve 

ment on an already existing datum. 

The classical method of' "ensuring" that the axes of' symmetry 

are parallel is to enforce the Laplace azimuth condition at the initial 

point, that is to assign a value to a according to 
0 

oa = A - a = n tan ~ 
0 0 0 0 0 

2-44 

where A is an observed astronomic azimuth. This condition forces the 
0 

geodetic and astronomic meridians to be parallel at the initial point, and 

thus forces both axes of' symmetry to ·,lie in this corJmon plane. However, 

the axes of' symmetry can still be misaligned within the meridian plane. 

The solution to this dilemma has been to apply the Laplace condition at 

several geodetic. meridians parallel to their corresponding astron6mic 
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meridians. In essence this constrains the adjusted network to compensate 

for misalignment of the datum, rather than ensuring that the datum minor 

axis is parallel to the earth's rotation axis. Note that enforcing the 

Laplace condition throughout the network presumes th~ existance of an 

adjusted network, which again _points up the iterative nature of datum 

establishment. 

2.3.3 The North American Datum 

The iterative nature of datum establishreent is illustrated by 

the history of the North American Datum. 

Towards the close of the last century geodetic networks existed 

in several parts of North America, each defined on its c~ datum. The 

largest of these was the New England Datum established in 1879 with an 

initial point at Principia, Maryland. The New England Datum used the Clarke 

1866 ellipsoid, still used by the North American Datum today. 

By 1899 the U.S. Transcontinental Network linking the Atlantic 

and Pacific coasts was complete. When an attempt was made to join the neWer 

networks to those of the New England Datum large discrepancies occurred. 

Therefore in 1901 the United States Standard Datum was established. The 

Clarke 1866 ellipsoid was retained from the New England Datum, but the 

initial point was moved from Principio to the approximate geographical centre 

of the U.S. at Meades Ranch, Kansas. The coordinates ruid azimuth at Meades 

Ranch were selected so as to cause minimum change in existing coordinates 

and publications (mainly in New England) while providiP.g a better fit to 

the geoid for the rest of the continent. 
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Meanwhile additional networks were being established in the 

United States, Canada and Mexico. In 1913 Canada an~. Mexico agreed to 

accept Meades Ranch as the initial point tor all North American networks, 

and the datum was renamed the North American Datum. 

This eventually led to the readjustment, between 1927 and 1932, 

of all the North American networks then in existance. The 1901 coordinates 

of Meades Ranch and the Clarke 1866 ellipsoid remained unchanged, however 

the value of the geodetic azimuth was changed by abo~t 5 arcseconds {Mitchell, 

1948). Thus the new datum was called the 1927 North American Datum. 

~ definition of the North American Datum was not yet complete. It 

was only in 1948 that astronomic coordinates were observed at Meades Ranch, 

allowing specification of values tor ~ , 11 • The final datum parameter 
0 0 

was defined in 1967 when the U.S. Army Map Service chose a value of N' = 0 
0 

at Meades Ranch tor their astrogeodetic geoid [Fischer, et al 1967]. Table 

2-1 lists the values assigned to the datum parameters for the North American 

Datum, and the date at which they were determined. 

Since the 1927 readjustment many new networks have been added 

to what was then available. However, these new networks have been adjusted 

by "tacking them on~' to· previously adjusted networks, ,.the latter being held 

fixed in the process. Until the recent advent of large fast digital computers 

it was impractical to consider readjusting all the networks on the continent 

again, consequently distortions have crept in to the networks, a notorious 

case being the 10 metres discrepancy which has been "drowned" in Lake Superior 

by international agreement. The day is fast approaching when a massive new 

readjustment and perhaps redefinition of the North American Da.tum ·will occur 

[Smith, 1971]. One landmark on this path is the International Symposium on 

Problems Related to the Redefinition of North American Geodetic Networks, 
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Table 2-1 

PARAMETERS DEFINING THE 

1927 NORTH AMERICAN DATUM 

Clarke 1866 Ellipsoid semi-major axis a = 6378206.4 metr.es. 

Clarke 1866 Ellipsoid semi-minor axis b = 6356583.8 metr~s 

Initial Point Latitude of Meade's Ranch 41 = 39° 13' 26".686 N 
0 

Initial Point Longitude of Meade's Ranch A = 98° 32' 30".506 W 
0 

Initial Point Azimuth (to Waldo) 75° 28' 9".64 

Date Ado;eted 

} 1879 

1 -+< 

1901 

a .= 
0~ {clockwlse from south} 1927 

Initial Point Meridian Deflection 
Component ~ = -1.02" } 0 

Initial Point Prime Vertical 1948 

Deflection Component n = -1. 79" 
0 

Initial Point.Geoid Height N.~t = 0 1967 
0 

Table 2-2 

TRANSLATION COMPONENTS 

X yo z a a a 
0 :0 xo· yo . zo 

Merry & Vanicek -28.7 150.5 179-9 1.7 1.0 1.2 

Krakiwsky et al. -35 164 186 2 3 3 



May 1974 at the University or New Brunswick. 

The North American Datum is a local datums that is its geo-

metrical centre does not coincide with the origin of the Average Terres-

trial system. Because of the distortions in the networks just mentioneds 

determinations of x , y , z vary depending on the locations at which 
0 0 0 

they are measured. Two recent sets of values obtained by different methods 

are listed in Table 2-2. Merry and Vanicek [1973] used data within 1000 

km of Heades Ranch. Krakiwsky et al [1973] used data from New Brunswick 

and Nova Scotia. The discrepancies of order 10 metres likely reflect the 

distortions which exist in the present North American networks. 

2.3.4 Datum Transformations 

If the curvilinear coordinates of an observing station referring 

to one particular datum are given, then a problem which often occurs is to 

obtain the curvilinear coordinates for the station referred to another datum. 

In transforming coordinates from one datum to another it is 

necessary to account for two items: 

a) the location of the geometric centres of each reference 

ellipsoid with respect to the centre of gravity of the earths or with 

respect to each other, 

b) the difference in size and shape between the ellipsoids. 

It is usually assumed that the axes of both datums are parallel to the axes 

of the average terrestrial system. 

Consider the ellipsoids with sizes and shapes defined by (a1 ,b1 ) 

and (a2 ,b2 ) (or alternatively (a1 , f 1 ) .and (a1 ,f2 ), where f=(a-b)/a)and with 

locations of the geometric centres with respect to the centre of gravity 

defined by 
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( - ' r i~ 
0 j_ 

cr: ) 
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= r~:J, 
L z -

0 .J. 

X 
0 

= Yo 

z 
0 r. c. 

Let us define the coordinates of a point referred to the first 

ellipsoid as ( ~l, >.. 1 , h1 ). We want to find the coordinates of the 

same point, referred to the second ellipsoid {~ 2 , >.. 2 , h2 ). 

The average terrestrial coordLnates of the point are given by 

equation 2-32: 

X X (Nl + hl) cos..P1 CO SAl 
0 

y = Yo + (N + h1 ) cos$1 sinA.1 • 2-45 
l 2 2 

hl) z (N1 b/a1 + sin..p1 l 

But the average terrestrial coordinates are not affected by a 

X X (N2 + h2) cos$2 COSA2 0 

y = yo + (N2 + h2) cos..p2 sinA.2 2-46 

(N2 
2, 2 

h ) sin$2 z A.T. z b2;a2 + 0 z 2 

There are two methods for obtainiP~ (..p 2 , >.. 2 , h2 ). The first 

method, called the iterative method is to find the average terrestrial 

coordinates directly from equation 2-45, and then to invert equation 

2-46 to find (..p 2 , >.. 2 , h2 ), using the iterative method described in 

section 2.2.6. 
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The second method, called the differential method can be applied 

when the parameter differences (oa, of, ox ' oy ' oz ) between the two datums 
0 0 0 

is small enough that we can use the Taylor's series linear approximation. 

Taking the total differential of equation 2032, keeping the average terres-

trial coordinates invariant, and setting the differential quantities equal 

to differences between the datums we have 

where 

Solving 

where 

J = 

B = 

ox 
0 

oy 
0 

ox 
0 

- (M+h) 

(M+h) 

(M+h) 

li coscp 

N cos' 

+ J 

oh 

sin' COSA , -

sin~ sinA., 

cos~ , 

cos>./a ' 
sin>./a 

' 
N (l-f) 2 sincp/a > 

f4 = 2 2 2 a(l-f) /(cos <P + (1-f) 

for the coordinate differences 

o<J> 

I a>. -1 = -J 

oh 

+ B [::] = 0 

(N+h) cos~ sinA. 
' 

cos~ COSA 

(N+h) cos~ cos>. cos~ sin>. 

0 ) sin ~ 

M . 2~ s~n cos~ cosA./(1-f) 

M . 2~ 
s~n cos~ sinA/(1-f) 

(M sin2<J> - 2N) sincp (1-f) 

. 2<jl)3/2 
s~n 

o.x [::] 0 

oy + B 
0 

oz 
0 

[- sinf 
cos>../ (M+h) , - sin~ sinA./(M+h) ·~ cos,/(M+h) 

-1 - sin>./ (N+h) cos<jl ' cos>./ (N+h) cos~ ~ 0 J = 
cos~ COSA ' coscp sin). , sin <I> 

2-47 

2-48 

2-49 

2-50 

2-51 

2-52 
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Note that the matrices can be evaluated in either of the two coordinate 

systems, since the differences in quantities has been assumed small. Further 

it is reasonable to simplify the evaluation of the matrices by using the 

spherical approximation (f = 0, H = M = N+h = M+h = a) in which case ve 

obtain the transformation equations of Heiskanen and Moritz (1967, equation 

5-55). 

Table 2-3 shows an example of datum transformation computations. 

This particular example transforms the coordinates of a station in Dartmouth, 

Nova Scotia froi!l the 1927 North American Datum ("Old"Datum) to the 1950 

European Datum ("New" Datum). The datum translation components used are 

those given by Lambeck [1971). Both the iterative method of equations 

2-45 and 2-46, and the differential method of equation 2-51 were used. The 

discrepancies between the two results are about 0.4 meters in latitude, 

0.3 meters in longitude, and 0.2 meters in height. 

2.4 TERRESTRIAL TOPOCENTRIC SYSTEMS 

In the introduction it was stated that terrestrial topocentric 

systems are defined as follows: 

a) the origin is at a point near the surface of the earth, 

b) the primary plane is the plane tangential to the earth's 

surface at the point, 

c) the primary axis is the north point, 

d) the systems are left-handed. 

The last two specifications present no problem!:. However, "the 

surface of the earth" can be interpreted in three ways to mean the 

earth's physical surface, the earth's equipotential surface, or the 



Table 2-3. 

EXAMPLE OF DATUM TRANSFORMATIONS 

Parameter "Old" Datum "New" Datum "New'~-"Old" 

r 

Given: 

semi-major axis a 6378206.4 meters 6378388.0 181.6 

flattening f 1/294-98 1/297-0 -5 -2-30,Tno 

{:: -25.8 -64.5 -38.7 

o ffset from geocentre 168.1 -154.8 -322.9 
(from Lambeck [1971]) 

167.3 -46.2 -213.5 

cl 44.683°N ? 

observer's coordinates Al 63.612°W ? 

hl 37.46 meters ? . 

Solution b:t: Iterative Method: 

{: 
2018917.91 2018917.91 

observer's coordinates -4069107.35 -40691·07. 35 
in average Terrestrial 4462360.64 4462360.64 System (Equation2-45) 

{ lj>l 44.6847lQ0 N 

observer's coordinates A_t 63.609752°W 
(Equation 2-46) 

h2. -259-U meters 

Solution b:t: differential Method: 

change in semi-major axis cSa 181.6 

change in flattening of -2.3057xlo-5 

change in offsets from r· -38.7 
geocenter cSy: -322.9 

oz -213.5 
. 0 

observer's coordinates 

{ 
q,2 44.6841Q.6°N 

(Equation 2-50). ).2 63.6097~0W 

h2 -259. ,2g, meters 
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surface of a reference ellipsoid. It is not practical to define a 

coordinate system in terms of a planetangential to the earth's physical 

surface. Two kinds of terrestrial topocentric coordinate systems can 

be defined, however~ The system in which the primery pole is the 

normal to the equipotential surface at the observation station is 

called a local astronomic system; The system in which the primary 

pole is the ellipsoid normal passing through the observation station 

is called a locai geodetic system [Krakiwsky 1968]. 

2.4.1 Local Astronomic System 

A local astronomic (L.A.) system is speciried: 

a} The origin is at the observation station. 

b) The primary pole (z-axis) is the normal to the equipo-

tential surface (the gravity vertical) at the observation station. The 

primary plane is the plane containing the origin and perpendicular to 

the gravity vertical. 

c) The primary axis (x-axis) is the intersection of the 

primary plane and the plane containing the average terrestrial pole and 

the observation station, and is called the astronomic north. 

d) The y-axis is directed east to form a left-handed system. 

The position vector of an observed station 1, expressed in the 

local astronomic system of the observation station k, is given by 

X cos vtl cos ~1 
(rkl)L.A. = y = rkl cos vtl sin ~ 2-54 

z . v 
L.A. s~n kl 
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where rkl is the terrestrial spatial distance, vkl the vertical angle, 

and ~1 the astronomic azimuth. 

Note that the relationship of the local astronomic system to the 

average terrestrial system is given by the astronomic latitude ~k and 

longitude Ak only after the observed quantities ~k' Ak, ~l have been 

corrected for polar motion •. Thus the position vector rkl of 2-54 

expressed in the average terrestrial system is: 

X X 

y = y 2-55 

z A.T. z L.A. 

vhere the reflection matrix 

1 0 0 

0 -1 0 2-56 

0 0 1 

accomplishes the transformation from a left-handed system into a right-

handed system, while the rotation matrices 

cos (90':.~k) 0 -sin (90-~k) 

R2 = 0 1 0 2-57 

sin ( 90.._\) 0 cos (9rf-~k) 

and 

cos(l~O:_Ak) sin(l8o:.Ak) 0 

R3 = -sin(lBo-Ak) cos ( 18o'1-Ak) 0 2-58 

0 0 1 

. bring the three axes of the local astronomic systeiD parallel to the 

corresponding axes in the average terrestrial system. 

The inverse transformation is 
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" 2-60 

Note that so far no translation!; have taken place. We have merely 

rotated the position vector (rk1 ) of station 1 with respect to station 

k into the average terrestrial system. If the position vector of 

station k with respect to the centre of gravity in the average 

terrestrial system is{Rk)A.T~, then the total position vector R1 of 

the observed station 1 with respect to the centre of gravity in the 

average terrestrial system is given by 

The unit vectors u , u , u directed along the axes of the local 
X y Z 

astronomic system have the following components in the average 

terrestrial system: 

1 

A 

ux = R3 (180°-A) R2 (90°-~) P2 0 

0 

s:Ln9 cosA 

cos<P 

0 

uy = R3 (180°-A) R2 (90°-~) P2 1 

0 

-sin A 

A 

u = cos A 
y 

0 

2-62 

2-63 



u = z 

54 

[:::: :::] . 
sin~ 

2-64 

The local astronomic coordinate system is unique for every obser-

vat ion point. Because of this fact~ this system is tile basis for 

treating terrestrial three-dimensional measurements at several sta-

tions together in one solution. 

2.4.2. Local Geodetic System 

A local geodetic (L.G.) system is specified (see Figure 2-12): 

a) The origin lies along the ellipsoidal normal passing 

through the observation station. Note that in principle the origin may 

lie anywhere along the ellipsoidal normal. In practice it is chosen to 

be at the observation station~ at the ellipsoid, or at the intersection 

of the ellipsoidal normal with the geoid. 

b) The primary pole (z-axis) is the elli-psoidal normal. The 

primar:; plane is the plane containing the origin and perpendicular to 

the primary pole. 

c) The primary axis (x-axis) is the intersection of the 

primary plane and the plane containing the semi-minor axis of the 

ellipsoid and the origin, and is called t~e.geodetic north. 

d) The y-axis is directed east to form a left-handed system. 
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Trar1sformations between local geodetic and local astronomic 

systems sharing a common origin can be expressed in terms of the angle 

between the ellipsoid normal and gravity vertical (the deflection of the 

vertical) and the angle between the geodetic north and astronomic north. 

Given the meridian and prime vertical deflection components ~. n respectively, 

and the geodetic and astronomic azimuths a, A to a particular point, then 

a vector in the local astronomic system is transformed into a vector in the 

local geodetic system by 

2.65 

Note that the order in which the rotations are performed in this case is 

not important, since the ~ngles r,, n (A- a) are sma~l enough that their 

rotation matrices can be assumed to commute. Note also that if the Laplace 

condition is enforced at the origin of these local systems, we have 

A- a= (A- A) sin$ = n tan$ 

If the origin is not at the observation station, the position vector 

Rk in 2-61 would refer to the origin, not the observation station. That 

is, for a point on the geoid, the computation of (~, yk, zk) is made 

from (¢k' Ak' Nk) (geoid undulation), while on the ellipsoid ($k' \k, 0) 

are used. Note that when a small region of the earth is taken as a 

plane it is a local geodetic system that is implied. 

Similar to equations 2-54 and 2-55 the position vector from 

observing station k to observed station 1 is given by 

X cos ~1 cosakl 

<r: k1) T ,., = y = rkl 
L.u. 

cos ~1 sinakl 2-66 
z 

sin L.G. ~1 

and 
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X 

z 
G 

X 

y 

z L.G. 

2-67 

where (a~ a~ r) are the geodetic altitude, azimuth and range, and 

(~, A.} are the geodetic latitude and longitude. Note that the geodetic 

system (G) and the average terrestrial system (A.T.) are related by 

equation 2-4 

X 

y = 
z A.T. 

X 
0 

z 
0 

+ 

X 

y 

z 
G 

where (x , y , z ) are the translation 
0 0 0 

components of the origin of 

the geodetic system in the average terrestrial system. 

The unit vectors corresponding to the three Cartesian axes in the 

local geodetic system are 

,_ 
-sin4l -COSA 

" u. = -sin4l sinA , 
X --

2-68a 

cos4l 
I. -

-
-sinA. 

" u = COSA ~ y 2-68b 

0 
I. 

,.. -cos4l COSA 

A. 

cos4l sinA. u = • z 
2-68c 

sin4> -
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2. 5 SUMMARY OF TERRESTRIAL SYSTEMS 

In this chapter we have precisely defined five specific terrestrial 

coordinate systems: 

a) Average Terrestrial .(A.T.), 

b) Instantaneous Terrestrial (I.T.), 

c) Geodetic (G), 

d) Local Astronomic (L.A.), 

e) Local Geodetic (L.G.), 

of which the first three are geocentric and the last two topocentric. 

Table 2-4 summarizes the planes, poles and axes defining these systems. 

We have also precisely defined four kinds of coordir .. ates: 

a) Cartesian (x, y, z) - used by all systems, 

b) Curvilinear (', !., h) - used by Geodetic system, 

c) Curvilinear (v, A, r) - used by Local Astronomic system, 

d) Curvilinear (a, a, r) - used by Local Geodetic system. 

Finally we have defined the principal transformations between these 

coordinates and coordinate systems. Figure 2-13 lists the equation 

numbers which define these transformations, which are tabulated in 

Table 2-5. 



System 

Average 
Terrestrial 

Instantaneous 
Terrestrial 

Geodetic 

Local 
Astronomic 

Local 
Geodetic 

Table 2-4. 

REFERENCE POLES, PLANES AND AXES DEFINING TERRESTRIAL COORDINATE SYSTE~lli 

Reference Poles i Reference Planes 
Primary· 
( z-axis) 

: Secondary Primary I Secondary 
i (x-axis) (1 to Primary Pole) 

Handedness 

I 
Average Terrestriali 

Pole (CIO) 

Instantaneous 
Terrestrial 

Pole 

Semi-minor axis 
(parallel to 
terrestrial pole) 

Gravity Vertical 
at Station 

Ellipsoidal Normal 
at Station. 

H 

~ 
Cb 
11 
Cll 
Cb 
n 
C1 
1-'• 
0 
::I 
0 
111 

1-0 
11 

~ 
-~ 

[ 

I 
I 
i 

ltAverage Terrestrial 
equator containing 

1 centre of gravity. 

Instantaneous 
Terrestrial 

equator. 

, Parallel To 
! Average Terrestrial 
i equator 

Greenwich mean 
meridian 

Greenwich mean 
meridian 

right 

right 

right 

Cll 
(I) 
n 
0 

g -~--r--==+--
Parallel to 
Greenwich mean 

meridian 

Astronomic 
Meridian 

of station. 

left 

I 
I 

Local Horizon ;:g 
§ 
Cll 

Tangent Plane Coincident with I left 
Geodetic Meridian 

of station. 

V1 
co 



Geodetic 
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Curvilinear 
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Figure 2-13. 
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':'a'cle 2-5. 

TRANSFORMATIONS AMONG TERRESTRIAL COORDINATE SYSTEMS. 

Original System 

Average Instantaneous Geodetic Local 
Terrestrial Terrestrial Astronomic 

··• ... 

' 
Average 

[:JAS. + [::] 

T errestrial 
R2(-xp)R1(-yp) 

! 
R (1809.-A)R (90~~)P i 

3 2 2 

.. 

Instantaneoun 

r:L.T. 
via I via 

Terrestrial R1 (yp R2(xp) Average Average 
Terrestrial Terrestrial 

"'.l 

-[~:] r:L I f-'• via via :::1 
il' Geodetic Average Local !-' 

r:n Terrestrial Geodetic 
~ 
(/1 

-+ 
~ 

Local .via via 

r:L.A. 
Astronomic P2R2 (~-90°)R3 (A-180°) Average Local 

Terrestrial Geodetic 

Local via via 
Geodetic Geodetic Average P2R2~~-90°)R3(~-180) Ri (-n )R2 t~) 

Terrestrial 
·-· 

Note: ~, A have been corrected fnr polar motion. 
.:,;.. ...., .... . ..,., v ..... ,.,., '-... 

Local 
Geodetic 

via 
Geodetic 

. 

via 
Geodetic 

R3 (~80°-A)R2 (90°-~)P2 

R2 (+~) R1 (+n) 

r:L.G. 
.. 

../ 

' 

' 

0'\ 
0 

...,. 
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3. CELESTIAL COOP~INATE SYSTEMS 

Celestial coordinate systems are used to define the coordinates 

of celestial bodies such as stars. The distance from the earth to 
~ 

the nearest star is more than 10~ earth radii, therefore, the 

~imensions of the earth (indeed of the solar syste12) are almost 

negligible compared to the distances to the stars. A second 

consequence of these great distances is that, although the stars 

themselves are believed to be moving at velocities near the velocity 

of light, to an observer on the earth this motion is perceiv~d to be 

very small, very rarely exceeding one arcsecond per year. Therefore~ 

the relationship between the earth and stars can be closely approx-

imated by considering the stars all to be equidistant from the earth, 

on the surface of the celestial sphere, the dimension of which is so 

large that the earth (and indeed the solar system) can be considered 

as a dimensionless point at the centre. Although this point may be 

dimensionless, relationships between directions on the earth and in 

the solar system can be extended to the celestial aphere. 

The earth's rotation axis is extended outward to intersect the 

celestial sphere at the north celestial pole (NCP) and south celestial 

pole (SCP). The earth's equatorial plane extended outward intersects 
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the celestial sphere at the celestial eguator. The gravity vertical 

at a station on the earth is extended upwards to intersect the celestial 

sphere at the zenith (Z), and downwards to intersect at the nadir (N). 

The plane of the earth's orbit around the sun {the ecliptic plane) is 

extended outward to intersect the celestial sphere at the ecliptic. 

The line of intersection between the earth's equatorial plane and the 

ecliptic plane is extended outwards to intersect the celestial sphere 

at the vernal equinox or first point of Aries, and the autumnal 

equinox. The vernal equinox is denoted by the symbol ~, and is the 

point at which the sun crosses the celestial equator from south to 

north. 

There are two fundamental differences between celestial systems 

and terrestrial or orbital systems. First, only directions and not 

distances are considered in celestial coordinate systems. In effect 

this means that the celestial sphere can be considered the unit 

sphere, and all vectors dealt with are unit vectors. The second 

difference is related to the first, in that the celestial geometry is 

spherical rather than ellipsoidal as in terrestrial and orbital 

systems, which simplifies the mathematical relationships involved. 

As discussed in the introduction, there are four main celestial 

coordinate systems, called the ecliptic, right ascension, hour angle, 

and horizon. Sometimes the right ascension and hour angle systems are 

referred to collectively as equatorial systems. We will begin this 

chapter by discussing each of these systems in turn. 

We noted above that the celestial sphere is only an approximation 

of the true relationship between the stars and an observer on the earth. 
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Therefore, like all approximations, there are a number of corrections 

which must be made to precisely represent the true relationship. These 

corrections represent the facts that the stars are not stationary 

points on the celestial sphere but are really moving (proper motion); 

the earth's rotation axis is not stationary with·respect to the stars 

(precession and nutation); the earth is displaced ~rom the centre of 

the celestial sphere, which is at the sun (parallax); the earth is in 

motion around the centre of the celestial sphere (aberration); and 

directions measured through the earth's atmosphere are bent by refraction. 

All these effects will be discussed in section 3.5 in terms of variations 

in the right ascension system. 

3.1 THE ECLIPTIC SYSTEM 

The ecliptic (E) system is specified as follows (see Figure 3-1}! 

a) The origin is heliocentric (at the centre of the sun). 

b) The primary plane is the ecliptic plane (the plane of 

the earth's orbit) and the primary pole (z-axis) is the north ecliptic 

pole (NEP). 

c) The primary axis (x-axis) is the vernal equinox. 

d) The y-axis is chosen to make the system right-handed. 

The ecliptic system is the celestial system which is closest to 

being inertial, that is motionless with respect to the stars. However, 

due to the effect of the planets on the sun-earth~ystem, the ecliptic 

plane is slowly rotating (at 0~5 per year) about a slowly moving axis 

of rotation. 
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The ecliptic meridian is the great circle which contains the 

ecliptic poles and the celestial body in question while the ecliptic 

meridian of 1r contains the vernal equinox. Ecliptic latitude B is 

the angle from the ecliptic and in the ecliptic meridian to the line 

connecting the origin to the body. Ecliptic longitude A is the angle 

of the ecliptic meridian of the body measured eastwards in the ecliptic 

plane from the vernal equinox. The unit vector to a celestial Qody in 

the celestial system is 

X cosB cosA 

y = cosB sin>.. 

sinS 

and the angles are related to the Cartesian components by 

. -1 
B = Sl.n z ' 

3.2 THE RIGHT ASCENSION SYSTEM 

3-1 

3-2 

3-3 

The right ascension (RA) system is specified as follows (see 

Figure 3-2). 

a) The origin is heliocentric~ 

b) The primary plane is the equatorial plane, and the 

primary pole (z-axis) the north celestial pole (NCP). 

c) The primary axis (x-axis) is the vernal equinox. 

d) The y-axis is chosen to make the system right-handed. 

The right ascension system is the most important celestial system. It 
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is in this system that star and satellite coordinates are published, 

and-it serves as the connection between terrestrial,celestial and 

orbital systems. 

The secondary plane contains the north celestial pole and the 

vernal equinox and is called the eguinoctialcolure plane. The hour 

circle is the great circle_containing the celestial poles and the 

body in question. The declination o of a body is then the angle 

between the celestial equator and a line joining the origin to the 

body. The right ascension a is the angle measured in the equatorial 

plane eastwards from the vernal equinox to the hour circle passing 

through the body in question. The unit vector describing the direction 

of a body in the right-ascension system is 

X coso cosa 

y = coso sina • 3-4 

z R.A. sino 

The right ascension system is related to the ecliptic system 

by the acute angle between the ecliptic and celestial equator, 

called the obliquity of the ecliptic, and denoted~. Therefore 

X X 

y = y 3-5 

z R.A. z E 

3.3 THE HOUR ANGLE SYSTEM 

The hour angle (HA) system is specified as follows (see Figure 3-3): 

a) The origin is heliocentric. 

b) The primary plane is the equatorial plane. 
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c) The secondary plane is the celestial meridian plane of 

the observer. The primary axis (x-axis) is the intersection between 

the equatorial and observer's celestial meridian planes. 

d) The y-axis is chosen so that the system is left-handed. 

The hour angle system rotates with the observer. 

·T~e hour angle h is the angle measured westward in the equatorial 

plane from the observer's celestial meridian to th~ hour circle of 

the body in question. The angle measured up from the equatorial plane 

to the line directed from the origin towards the body is the declin­

ation o. 

The unit vector describing the direction of a celestial body in 

the hour angle system is 

X 

·y 

z H.A. 

= 

cos 0 cos h 

cos o sin h • 

sin o 

3-6 

We have so far defined four meridians on the celestial sphere: 

that containing the vernal equinox (the equinoctial colure); the 

Greenwich meridian; that containing the observer (the celestial 

meridian); and that containing the star (the hour circle). Figure 3-4 

shows the relationships between these meridians. 

From the vernal equinox counterclockwise to 

a) the Greenwich meridian is called Greenwich Sidereal 

Time (GST), 

b) the celestial meridian is called l-ocal Sidereal Time 

(LST), 

c) the hour circle is called the right ascension (a). 
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From the Greenwich meridian counterclockwise to the celestial meridian 

is called the astronomic longitude {A). From the celestial meridian 

clockwise to the hour circle is called the hour angle (h). Therefore, 

and 

LST = GST + A 

LST = h + a 

h = GST + A - a 

3-7 

3-8 

3-9 

The hour angle system is related to the right ascension system 

by the local sidereal time (LST). That is 

X X 

y y 3-10 

z HA 

3.4 THE HORIZON SYSTEM 

The horizon (H) system is specified as follows {see Figure 3-5). 

a) The origin is heliocentric. 

b) The primary pole (z-axis) is the observer's zenith 

(gravity vertical}. The primary plane is the observer's horizon. 

c) The primary axis (x-axis) is the north point. 

d) The y-axis is chosen so that the system is left-handed. 

The horizon system is used to describe the position of a 

celestial body in a system peculiar to a topocentrically located 

observer, similar to the local astronomic system described in the 

chapter on terres~rial systems. The main difference is that the 

origin of the horizon system is heliocentric instead of topocentric. 



ZENITH 

\ 
' 

SOUTH 

CELESTIAL 
HORIZON 

Pl.ANE 

Figure 3-5. 

HORIZON SYSTEM 

NORTH 

y 



73 

The great circle containing the primary pole and the celestial 

body being observed is called the vertical circle. The location of 

this great circle is given by the astronomic azimuth A, the angle 

measured clockwise in the horizon plane from north to the vertical 

circle. The altitude a of the body is the angle between the horizon 

plane and the line directed .from the origin of the system toward the 

body. The unit vector to a celestial body in the horizon system is 

X cos a cos A 

y = cos a sin A 3-11 

z sin a 

The horizon system is related to the hour angle system by the 

astronomic latitude ~. That is 

X X 

y y 3-12 

z 
H z HA 

3.5 VARIATIONS OF THE RIGHT ASCENSION SYSTEM 

As mentioned at the beginning of this chapter, the celestial 

sphere approximation requires corrections for precise work. These 

corrections are for proper motion, precession, nutation, aberration, 

parallax and refraction, and are applied in four stages between the 

system in which observations are actually made (which we will call 

the "observed place system at epoch T") and the most absolute right 

ascension system (which we will call the "mean celestial system at 

standard epoch T "). We will consider these systems in the reverse 
0 

order, that is: 
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a) mean celestial system at standard epoch T0 , 

b) mean celestial system at epoch T, 

c) true celestial system at epoch T, 

d) apparent place system at eppch.T, 

e) observed place system at epoch T. 

The connections between these five systems are shown in Figure 3-6. 

The first three systems are related by motions of the coordinate 

system, while the last two are related by physical effects which 

cause the position of the celestial body to vary. 

3.5.1 Precession and Nutation 

The earth is not perfectly spherical, but has an equatorial bulge 

which is attracted by the sun, moon, and planets in a non-~etrical 

way. This causes the earth's axis of rotation (th~ north celestial 

pole) to move around the north ecliptic pole with a period of about 

25,800 years and an amplitude equal to the obliquity of the ecliptic 

(23~5). This motion is called precession and is similar to the 

precession of an ordinary gyroscopic top about the gravity vector 

[Mueller 1969, pages 59-62]. 

Precession is itself not a regular motion sin~e the earth's 

orbit is not circular and the moon's orbit does not lie in the ecliptic 

plane, and is not circular. Therefore, the added effects of the sun 

and moon are constantly changing as their configuration changes. 

Irregularities in precession are called nutation, and for the celestial 

pole have a period of about 18.6 years and a maximum amplitude of 

about 9". The added irregularity due to the chang) ng configuration of 
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the planets is called planetary precession, and causes the very slow 

motion of the ecliptic plane mentioned in section 3.1. In principle, 

precession exists only because the earth has an equatorial bulge, and 

nutation and planetary precession exist only because precession 

exists. 

Precession and nutation are shown schematically in Figure 3-7. 

The celestial equator is defined as being perpendicular to the 

celestial pole, so that it too follows the precession and nutation of 

the pole. The vernal equinox is defined as being at the intersection 

of the celestial equator and ecliptic, so that it ~ill follow both 

the precession and nutation of the celestial equator, and the motion 

of the ecliptic due to planetary precession. The effects are shown 

in Figure 3-8. 

3.5.2 Mean Celestial Systems 

A mean celestial (M.C.) system is specified as follows. 

a) The origin is at the centre of the sun. 

b) The primary pole (z-axis) is a precessing (but not 

nutating) pole which follows the precession of the north celestial 

pole, and is called the mean celestial pole. 

c) The primary axis (x-axis) is a prece!:sing (but not 

nutating) axis which follows the motion of the vernal equinox due both 

to precession of the celestial equator and rotation of the ecliptic, 

and is called the mean vernal eguinox. 

d) The y-axis is chosen so the system is right-handed. 
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Because the mean celestial system is moving, the coordinates 

(right ascension a, and declination 6) of celestial bodies vary with 

time. Therefore, for each epoch of time~' a different mean celestial 

system is defined. Certain epochs T0 have been chosen as standard 

epochs, to which tabulated mean celestial coordinates of celestial 

bodies refer. The relationship between mean celestial systems of times· 

T0 and T is usually defined in terms of the precessional elements 

(' , e, z) as shown in Figure 3-9. Expressions for these elements as 
0 

a function of time were derived over 70 years ago by Simon Newcomb 

[Mueller 1969, p. 63]. The angles (90°-t ) and (90°+z) are the right 
0 

ascensions of the ascending node of the equator at T measured 

respectively in the systems at T and at T. The angle e is the 
0 

inclination of the equator at T with respect to the equator at T • 
0 

The transformation from a mean celestial system at T to one·at Tis 
0 

given by 

X X 

y y 3-13 

z M.C.T. z _ M.C.T0 

Independent of the motion of the mean celestial coordinate 

system due to precession, each star is changing in position due 

to proper motion. Because this proper motion is uniform, it is 

most appropriate to account for it in the most uniform right 

ascension system, that is the mean celestial system. The proper 

motion components for each star of interest (usuall~· tabulated 
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as rates of changes in right ascension and declination) must therefore 

be included in the conversion of mean place at T to mean place at T. 
o· 

3.5.3 The True Celestial System 

A true celestial system (T.C.) is specified as follows. 

a) The origin is at the centre of the sun. 

b) The primary pole (z-axis) is a precessing and nutating 

pole which follows the precession and nutation of the north celestial 

pole, and is called the true celestial pole. 

c) The primary axis (x-axis) is a precessing and nutating 

axis which follows the motion of the vernal equinox due to precession 

and nutation of the celestial equator, arid to rotation of the ecliptic, 

and is called the true vernal eguinox. 

d) The y-axis is chosen so the system is right-handed. 

As in the case of mean celestial systems, a different true 

celestial system is defined for each epoch of time T. The true 

celestial sy"stem at epoch T differs from the mean celestial system 

at epoch T only by the effect of nutation, and the relationship is 

usually defined in terms of the nutation in longitude 8~ and 

nutation in obliquity f:l.e. shown in Figure 3-10. Expressions for these 

two elements as a function of time, and other parameters were derived 

by Woolard [~~eller 1969, p. 69]. The transformation from a mean 

celestial system at T to a true celestial system at T is given by 

r- -
X 

y 

z 
._ - T.C.T. 

:- -
X 

·z __ M.C.T • 

3-14 
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3.5.4 The Apparent Place System 

An apparent place (A.P.) system is specified as follows. 

a) The origin is at the centre of the earth. 

b) The primary pole is parallel to the true celestial pole. 

c) The primary axis is parallel to the true vernal equinox. 

d) The system is right-handed. 

Therefore, an apparent place system is a true celestial system with 

the origin shifted from the centre of the sun to the centre of the 

earth. This means the origin is no longer at the centre of the true 

celestial sphere which causes annual parallax, and the origin is 

revolving around the centre of the true celestial sphere which causes 

annual aberration. 

If the. earth's orbit is regarded as circular, the earth has a 

constant of aberration. 

v 
K = c 

n 
cosec 1" = 20.4958 3-15 

where v is the earth's velocity and c the velocity of light; and the 

radius of the earth's orbit will subtend a different angle H at each 

star, called the stellar parallax for that star. The nearest star 

has a stellar parallax of 0':16. 

The right ascension a and declination o of a star expressed in 

the apparent place system is then [Mueller 1969, pages 93 and 61]. 

+ 3-16 

where 



Ah 

cos£ seco - sina cosA 5 seco 
= n [ ::p] [coso }-17 

coso sin£ sinA 5 - cosa sino cos).. 5 - sina sino COSE sinAS p 

and 

[AoA1 [coso casAs cos£ seco + sina sinAs secO J 
= -K 3-18 

MA COS As cos£(tanc coso - sina sino) + ccsa sino sinAs 

and As is the longitude of the sun, £ the obliquity of the ecliptic, 

and (a, o) in 3-17 and 3-18 expressed in the true celestial system. 

The fact that the earth's orbit is not circular introduces 

errors of about 1% in equation 3-17 and up to 0'!343 in equation 3-18. 

3.5.5 The Observed Place System 

An observed place (O.P.) system is specified as follows. 

a) The origin is at the observing station. 

b) The primary pole is parallel to the true celestial pole. 

c) The primary axis is parallel to the true vernal equinox. 

d) The system is right-handed. 

Therefore, an observed place system is an apparent place system 

with the origin shifted from the centre of the earth to the observing 

station. This means the origin is no longer at the centre of the 

earth, which causes geocentric parallax, and the·origin is rotating 

around the centre of the earth, which causes diurnal aberration. In 

fact, the effect of geocentric parallax is always negligible when 

observing stars. The diurnal constant of aberration is 

v 
k = c 

cosec 1" = O'! 320 p coscp 3-19 



~here v is the earth's surface rotational velocity, c is the velocity 

of light, p is the radial distance from geocenter to observer in units 

.. 
of earth radius, and~ is the geodetic latitude of the observer. 

There is a third effect due to the fact that the earth is 

blanketed with an atmosphere of varyi,ng optical density. This 

·~auses a complex change in the direction of the light ray from a star 

which depends on the incident angle. Mueller [1969, pages 103-109] 

discusses this atmospheric refraction in detail. 

The right ascension and declination of a star in the observed 

place system is then 

3-20 

where 

k [cos h 

sinh 

seco J 
sino 

3-21 

where h is the hour angle of the star, and (6aR, 6oR} are the 

corrections due to refraction. 

3.6 TRANSFORHATION BETWEEN APPARENT CELESTIAL AND AVERAGE 

TERRESTRIAL COORDINATE SYSTEHS 

The apparent celestial and average terrestrial coordinate systems 

both have 

a) their origins at the centre of gravity of the earth, 

b) their primary poles as the era pole, that is the 

average terrestrial pole is parallel to the true celestial pole, 
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c) both are right-handed. 

'l'he only difference between the two systems is that the primary 

axis of the apparent celestial system is parallel to the true vernal 

equinox, ami the primary axis of the average terrestrial system lies 

in the Greenwich mean astronomic meridian. The angle between these 

two axes varies with the rotation of the earth, and is called the 

Greenwich Apparent Sidereal Time (GAST). Therefore, the transformation 

from apparent celestial to average terrestrial is (see Figure 3-4). 

X X 

y = R3 (GAST) y 3-22 

z A.T. z A.P. 

'l'o use this equation, we require some means of computing GAST 

from the Universal (Solar) Time used for broadcasts of standard time. 

'.-le will describe two methods. 

First, if GAST is known for some epoch T of Universal Time, 
0 

then it may be computed for some other epoch T from the relation 

GAST (T) = GAST (T ) + w (T-T )~ 
o e o 3-23 

where it is assumed that sidereal and universal time are related by a 

uniform rotation rate of the earth 

we = 360.98565 degrees/UT day 

= 4.3752695 x 10-3 radians/minute. 3-24 

This is not precisely true, but a difference with respect to 

ti1e more accurate method presented below of less than 10-7 radians 

(equivalent to about 0.02 arcseconds, 1 millisecond, or 1/2 meter 

along the earth's equator) is introduced if (T-T ) is less than a day. 
0 



1-\ more a<:curate :relation is given by Veis [1966, p. 19}: 

r--· 
I JAS1' = 

I 
1!~392 X 10-3 sin (12'?1128 - 0'?052954 T) 

+ 0'?053 X 10-3 sin 2 ( 12'?1128 - 0'?052954 T) 3-25 

0'?325 X l0-3 sin 2(280~0812 + 0'?9256473 T) 

:.'~1ere T is the number of Julian Days since the epoc~ CL 5 January 1950 

(that 1s midnight of December ~1, 1949). For 1971 

T = 7669 + D + (~ + S/60)/1440 3-26 

the Ja:v number during 1971, 

= the minute of UT time, 

S = the second of UT time, 

·md 7669 is the nu1nber of days beb,-een January 1, 1950 and December 31, 

'970. This expression is accurate to 0.2 arcseconds, 10 milliseconds, 

•Jr 5 !rleters along the equator for any value (T - T0 ). r·1ore accuracy 

c:an be obtained by adding more terms (:-Jautical Almanac Office 1961]. 

3. '( SUN!·JI..F:Y C.F C:::LESTIAL SYST2·~S 

r~ this chapter we have d~fi~ed four celestial coordinate systems: 

a) Ecliptic (E), 

b) Rig~t Ascension (5.A. ), 

c) Hour Angle (H.A.), 

d) Horizon (H.). 

~able 3-l SlW~arizes the reference poles, planes and axes defining 

the s:.rstems. 'l'ab2_e 3-2 SUElffiari=es ·~he transformations between these 
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systems. 

\~P hav.:• a1~~n precisely d0t'i.ned four variations to the right 

a:.~c!c:'Tl!~ iun Bystem; 

a) ~lean Celestial (i.L C. ) , 

b) 'i'ruc~ t~elesti aJ ('J' .C.), 

c) Apparent Place (A.P.), 

d) Observed Place (O.P.), 

all of which vary with time, so that the epoch T to which they refer 

must be specified. Figure 3-ll shows the parameters which connect all 

of these celestial coordinate systems. 



'l'able 3-1 

REFERENCE POLES, PLANES AND AXES DEFINING CELESTIAL COORDINATE SYSTEMS 

-
Reference Poles Reference Planes 

System Primary pole Secondary Pole Primary Secondary 
(z-axis) (x-axis) 

Ecliptic North Vernal eq_uinox Ecliptic Ecliptic meridian of 
ecliptic. of the eq_uinox (half 
pole containing vernal 

eq_uinox) 

Right ascensio North Vernal eq_uinox Celestial Eq_uinoctial colure 
celestial eq_uator (half containing 

pole vernal equinox) 

Hour angle North Celestial Hour Circle of 
celestial eq_uator observer's zenith 

pole (half conta:ining 
zenith) 

Horizon Zenith North point Celestial Celestial meridian 
horizon (half containing 

north pole) 

r--------1 
-j 

Handedness ! 

(y-axis) 

right 

I 

right 

left 

left 

co 
\0 
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Table 3-2 

TRANSFORMATIONS ANONG CELESTIAL COORDINATE SYSTEMS. 

Original System 

Ecliptic Right Ascension Hour Angle 

r:t Rl (£) 

' 

Rl (-£) 

[:] R.A. 

R3 (-LST) P 2 

P 2 R3(tLST) [:L.A. 
R3(180°) R2 (90°-~) 

Horizon 

R2 (~-90°) R3(180°) 

r:L. 

' 

\D 
0 
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4. THE ORBITAL COORDINATE SYSTn4 

In this chapter we discuss the orbital system, which is used to 

define the coordinates of a satellite orbiting around the earth. We 

first discuss the orbital ellipse, and the coordinate system in the 

orbit plane. Then we transform this system into the apparent celestial 

and average terrestrial systems, and discuss variations in the orbital 

elements. Finally expressions for the coordinates of the satellite 

subpoint,and the topocentric coordinates of the satellite are derived. 

4.1 THE ORBITAL ELLIPSE AJID ORBITAL ANOMALIES 

The trajectory of a body moving in a central force field describes 

an ellipse, with the attracting force centred at one of the foci of the 

ellipse. 

In the case of a satellite orbiting around the earth, this is 

called the orbital ellipse, and the centre of gravity of the earth is 

at one of the foci (see Figure 4-1). The point of closest approach of 

the satellite to the earth is called the perigee, and the farthest 

point is called the apogee. Both perigee and apogee lie on the semi-

major axis of the ellipse, called the line of apsides. The size and 

shape of the orbital ellipse are usually defined using the semi-major 

axis, a and the eccentricity e, where 

2 
e = 3-1 

and b is the semi-minor axis of the ellipse. 
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Consider the satellite to be at a point m on the orbital ellipse. 

The angular distance between perigee and m is called the satellite 

anomaly. There are three anomalies. The true anomaly f is the angle 

between the line of apsides and the line joining the focus to the 

satellite. 

Consider the projection of the satellite position m along a line 

parallel to the semi-minor axis to intersect a circle with radius 

equal to the semi-major axis at a point m'. The eccentrLc anomaly E 

is the angle between the line of apsides and the line joining the 

geometric centre of the ellipse tom'. 

The mean anomaly M is the true anomaly corresponding to the motion 

of an imaginary satellite of uniform angular velocity, that is M = 0 

at the perigee and then increases uniformly at a rate of 360° per 

revolution. When this is expressed as a rate per unit time, then it is called 
the mean anomalistic motion n. 

The relationship between the true anomaly f and the eccentric 

anomaly E is from Figure 4-1 

[J = 
cos E - ae] = [a(cos 

a(l -
4-2 

sin E sin 

or 

tan f cos E - e 4-3 

The relationship between the eccentric anomaly E and the mean 

anomaly M is Kepler's e~uation [Kaula 1966, p. 23] 

M = E - e sin E. 4-4 

where M and E are in radians. 
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We are usually given the mean anomaly M, and want to find the 

eceentrlc anomaly E from equation 4-4. We will present three ways. 

If the eccentricity is very small (say e ~ 0.002), then thee sinE 

term will be small, and M ~ E. Therefore we can write 

I E = M + e sin E = M + e sin M ·I 4-5 

For an eccentricity of e = 0.002 this approximation introduces an error 

-6 
of about 10 radians. 

If greater precision is required or the eccentricity is not so 

small, we can solve 4-4 iteratively. Taking the total differential of 

4-4 

or 

6!-1 = ( l - e cos E) 6E 

oM 6E = --'-----1 - e cos E 4-6 

Given M, the iterative solution of 4-4 begins by making an initial 

approximation from 4-5 as 

E0 = r.1 + e sin M 

The following equations are then iteratively evaluated in order 

M. = E.- e sin E. 
1 1 1 

t1M = M. H 

tlE = 

1 

l - e cos E. 
1 

until the difference frM is less than some chosen £. 
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A third method of evaluating E is to use a power series in e, for 

example [Brouwer and Clemence 1961, p. 76]: 

1 3 1 5 1 7 
E = l'-1 + (e - 8 e + 192 e - 9216 e ) sin M + 

1 2 1 4 1 6 
+ <2 e - 6 e + 98 e ) sin 2M + 

27 5 243 7 
128 e + 5120 e ) sin 3M + 

1 4 4 6 (125 5 + (3 e - 15 e ) sin 4M + 384 e 

+ 27 6 sin ~~ + 16807 e7 
Bo e ... Ol'l 46o8o sin 7M 

4.2 THE ORBITAL COORDINATE SYSTEM 

4-7 

The orbital (ORB) coordinate system is specified as follows (see 

Figure 4-2) : 

a) The origin is at the centre of gravity of the earth. 

b) The primary plane is the plane of the orbital ellipse, 

and the primary pole (z - axis) is perpendicular to this 

plane (see Figure 4-1) . 

c) The primary axis (x- axis) is the line of apsides. 

d) The y-axis is chosen so that the system is right-handed. 

The position vector of the satellite in its orbit is given by 

X cos f a (cos E - e) 

r = y = r 4-8 

z ORB 0 0 

Note z = 0 because the satellite is assumed not to be out of the orbit 

plane. 
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4.3 TRANSFORMATION FROM ORBITAL TO AVERAGE TERRESTRIAL SYSTEM 

The orbital plane does not rotate with the earth, but· remains fixed 

in the celestial system. The orbital system and the apparent celestial 

both have their origins at the centre of gravity of the earth. 

From Figure 4-2 we see that when the orbital plane is extended to 

meet the celestial sphere, it intersects the celestial equator at the 

ascending node (where the satellite croses the equator from south to 

north), and the descending node. The angle between the celestial 

equator and the orbital plane is the inclination i. The angle between 

the ascending node and the line of apsides, measured in the orbital 

plane is the argument of pergiee w. The angle between the vernal 

equinox and the ascending node, measured in the celestial equatorial 

plane is the right ascension of the ascending node n. 

The transformation from the orbital system to the apparent 

celestial system is 

X X 

y y 

z z ORB 

4-9 

The transformation from apparent celestial to average terrestrial 

is given by equation 3-22, so that 

X X 

y y 4-10 

z A.T. z ORB 
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4. 4 VARIATIONS IN THE ORBITAL ELEMENTS 

So far we have assumed that the satellite orbit does not vary with 

time, and is completely specified by the six Keplerian orbital elements 

a, e, f, w, i, n. The earth 1 s gravitational force field is not 

spherically symmetric, as evidenced by geoid undulations and the 

equatorial bulge. Also the atmosphere exerts a fluctuating drag force 

on the satellite. Because of these and other smaller effects, the 

satellite trajectory cannot be assumed to be a fixed ellipse. However, 

for each epoch of time T there will be a different orbital ellipse 

tangent to the satellite trajectory at that epoch. Each of these 

different ellipses will have a set of Keplerian orbital elements, and 

if the variation in these orbital elements with time is known, they 

are said to describe an osculating orbital ellipse which describes the 

satellite trajectory accurately. 

The variation with time of the inclination angle is equivalent to 

introducing a time-varying out-of-plane component, and this is often 

done. For nearly circular orbits, the eccentricity is small to start 

with, so variations are usually neglected. 

4.5 THE SATELLITE SUBPOINT 

The subpoint of a satellite is simply the trace of the path of 

the satellite on the ellipsoid (see Figure 4-3}. The coordinates of 

the subpoint are given by the geodetic latitude ~ and longitude A of 

the ellipsoi.dal normal passing through the satellite. 

The average terrestrial Cartesian coordinates of the satellite 

are Roown from equation 4-10. From equation 2-32 
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(N + h} cos' COSA 

(N + h) cos~ sinA 

rnb2 /a2 +h) sin' 

and if the reference ellipsoid parameters (a, b, x0 , y 0 , z0 ) are known 

this equation can be iteratively inverted to solve for (,, A, h) using 

the method of section 2.2.6. 

4.6 TOPOCENTRIC COORDINATES OF SATELLITE 

If we are observing a satellite at position j from a station i 

on the earth (see Figure 4-4), then we will require an expression for 

the coordinates of the satellite in the local geodetic system of station 

i. 

If the coordinates (<Pi, A.i_, IJ_) of station i are known with respect 

to a reference ellipsoid (a, b, x 0 , y 0 , ~0 ) then the geodetic Cartesian 

coordinates of i 

x. 
~ 

r. = yi 4-11 
~ 

z. 
G ~ 

can be computed from equation 2-31. 

If the average terrestrial Cartesian coordinates of j have been 

computed by the methods outlined in this chapter, then the geodetic 

coordinates of j are 

xj Xo 

rj = yj Yo 4-12 

z. A.T. Zo 
J 
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The range vector from l to j is 

lv - xil 
.... ..., 

I ~. I:: I I J 
~ = r. r. =iv yi = • ..... 

lJ J l. v j 

L zj - z. l ~zJ " l.J G. \.1 

The coordinates of the range vector can be expressed in the local 

geodetic system by using equation 2-67 

r~x 

l~y 
~z L.G. 

But from equation 2-66 

t:,.y 
r

cos 

= 6r cos a sin a 

a cos a 

fJ.zJ ~ G 
L. • 

lsin a 

where the range 

and the altitude a and azimuth a are given by 

-1 
a = sin 

a = -<-an - 1 (!&._) 
" t-,x 

4-13 

4-14 

4-15 

4-16 

4-17 

4-18 



104 

5 . SUMMARY OF COORDINATE SYSTEMS 

In this chapter we will summarize the relationships between the 

coordinate systems dealt with in these notes. We will also explain a 

duality paradox which has arisen earlier in the notes. This chapter 

is, in effect, an explanation of the symbols and abbreviations used in 

Figure 5-l. 

5.1 TERRESTRIAL SYSTEMS 

We discussed five terrestrial systems: 

a) I.T. = Instantaneous Terrestrial Coordinate System, 

b) A.T. = Average Terrestrial Coordinate System, 

c) G. = Geodetic Coordinate System, 

d) L.G. = Local Geodetic Coordinate System, 

e) L.A. = Local Astronomic Coordinate System, 

which are related to each other by the four sets of parameters 

a) Polar Motion (xp, yp) -relates I.T. and A.T .. , 

b) Translation of the origin (x0 , y 0 , z 0 ) -relates A,T, and G., 

c) Geodetic Latitude and Longitude(~, X}- relates G. and L.G., 

d) Astronomic Latitude and Longitude (~, A} - relates A.T •. 

and L.A. 
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5. 2 CELESTIAL SYSTEMS 

We discussed four main celestial systems 

a) E. = Celestial Ecliptic Coordinate System, 

b) R.A. = Celestial Right Ascension Coordinate System, 

' 
c) H.A. = Celestial Hour Angle Coordinate System, 

d) H. = Celestial Horizon Coordinate System, 

which are related to each other by the three parameters 

a) Obliquity of the ecliptic (e:) - relates E. and R.A.,, 

b) Local Sidereal Time (LST)- relates R.A. and H.A., 

c) Astronomic Latitude (~} - relates H.A. and H. 

The R.A. system has four variations 

a} M.C. =Mean Celestial Coordinate System, 

b) T.C. = True Celestial Coordinate System, 

c) A.P. = Apparent Place Coordinate System, 

d) O.P. = Observed Place Coordinate System. 

which all vary with time and thus are defined only when the epoch T 

to which they refer is specified. 

The parameters relating these systems are 

a) Precession and Proper Motion - relates M.C. at standard 

epoch T and M.C. at epoch T, 
0 

b) Nutation - relates M.C. and T.C., both at epoch T, 

c) Annual Aberration and Parallax - relates T.C. ru1d A.P. 

both at epoch T, 

d) Diurnal Aberration, Geocentric Parallax and Refraction -

relates A.P. and O.P. at epoch T. 
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5.3 DUALITY PARADOX IN THE APPARENT AND 

OBSERVED CELESTIAL SYST~fS 

The reason there are apparent and observed systems is because 

the observer is not at the centre of the celestial sphere (the centre 

of the sun) and this must so~ehow be accounted for. There are two 

ways of making this correction, and this difference has not been made 

explicit earlier in these notes. 

First we can retain the true celestial system (with heliocentric 

origin) as our coordinate system, and apply corrections to the positions 

of the stars. This is the approach described in sections 3.5.4 and 

3.5.5 where the aberration and parallax corrections are applied to the 

right ascension and declination, and do not change the coordinate system. 

Therefore, we then say that the stars have "apparent places" or 

"observed places" in the true celestial system. 

The second approach is to actually move the origin of the true 

celestial system from the centre of, the sun to the centre of the earth 

(for the apparent system) and to the observer's position (for the 

observed system}. This is what we have done when we related the average 

terrestrial to the celestial system in section 3.6 and the orbital 

system to the celestial system in section 4.3. In ~his case we called 

the shifted true celestial system the "apparent celestial system". In 

other words we have adopted the convention that 

a) "true" means heliocentric, 

b) "apparent" means either geocentric or corrected :for the 

heliocentric-geocentric shift, 

c} "observed" means either topocentric or corrected for the 

heliocentric-topocentric shift. 
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Two connecting parameters, Proper Motion .. and Refraction, do not 

fit in to this second scheme. Proper Motion is the changes in the 

positions of stars, and is different for each star. Therefore a 

different coordinate system would have to be defined for each star, 

which is nonsense. The magnitude of the refraction correction 

depends on the incident angle and the ambient conditions. Therefore 

specifying that the coordinate system follow refraction would mean a 

different coordinate system for each incident angle, all of which would 

be jumping around with the temperature and wind. 

5 • 4 THE CONNECTIONS BETWEEN TERRESTRIAL, 

CELESTIAL AND ORBITAL SYSTEMS 

The average terrestrial and apparent celestial systems are connected 

by GAST (Greenwich Apparent Sidereal Time). Note that the use of 

"apparent" in GAST is consistent with the convention we adopted in the 

previous section. That is, "apparent" means "geocentricR. 

The orbital and apparent celestial systems are connected by the 

Euler angles 

a} w = argument of perigee, 

b) i = orbital inclination, 

c) Q =right ascension of the ascending node, 

To summarize the differences between terrestrial, celestial and 

orbital systems: 

a) terrestrial systems rotate and revolve with the earth, 

b) celestial systems do not revolve with the earth, 

c) orbital systems do not rotate with the earth. 
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APPENDIX A 

SUMMARY OF REFLECTION AND ROTATION MATRICES 

A.l Orthogonal Transformations 

The matrix equation 

Y =A X 

where A is a matrix and X andY are column vectors, can be regarded as a 

linear transformation, in which case the matrix A is called the 

transformation matrix. If the two vectors X and Y have the same length, 

then both the transformation and the matrix are said to be orthogonal. 

Orthogonal matrices have the property that the product of the matrix and 

its transpose (or vice versa) is the identity matrix, that is 

AT A = A AT = I. 

From this property it follows that the determinant of an orthogonal matrix 

is either +1 or -1. There are two kinds of orthogonal transformations 

called reflections and rotations. The determinant of reflection matrices 

is -1, and the determinant of rotation matrices is +1. 

There are two interpretations of the linear transformation above. The 

first is that the transformation describes the relationship between two 

coordinate systems, in which case X and Y are the same vector, but their 

elements refer to the two different systems. The second is that the 

transformation describes the relationship between different vectors X and Y 

in the same coordinate system. In these notes, we are interested only in 

the first interpretation. 
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A.2 Right and Left Handed Cartesian Coordinate Systems 

A three dimensional Cartesian coordinate system can be orthogonally 

transformed in only six different ways. It can be rotated about each of 

its axes. Each of its axes can be reflected. In such a coordinate system, 

the vectors X and Y will have only three elements. Let us define the axis 

to which the first, second, and third elements of X and Y are referred as 

the 1-axis, 2-axis, and 3-axis respectively (we could equally well label 

them the x1 , x2 , x3 axes or x, y, z axes). 

These three axes may define either a right-handed or a left-handed 

coordinate system. Right handed systems follow the right hand rule: 

if the fingers of the right hand are curled around any axis so that the 

thumb points in the positive direction, then the fingers will point from a 

second axis to the third axis, numbered in cyclic fashion. Grasping the 

1-axis, the fingers point from the 2-axis to the 3-axis. Grasping the 

2-axis, the fingers point from the 3-axis to the 1-axis. Grasping the 

3-axis, the fingers point from the 1-axis to the 2-axis. Left-handed 

coordinate systems follow the left hand rule, which differs from the above 

only in that the left hand is used. 

A.3 Reflections 

If we denote a reflection of the kth axis by Pk, then the following 

expressions define the three reflection matrices: 

l~ 
0 

~] pl = 1 
0 

= [ 
1 0 

~] p2 0 -1 
0 0 

=[ 
1 0 

-~J p3 0 1 
0 0 
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Note that reflection_matrices commute (e.g. P2P3 = P3P2 ), so that it 

makes no difference in what order a sequence of reflections are performed. 

Note also that an odd number of reflections changes the handedness of the 

coordinate system. 

A.4 Rotations 

th 
If we denote a rotation of angle e about the k axis by Rk(e), 

then the following expressions define the three rotation matrices: 

R1 (e) ·U 
e [cos 

R2(e) = ~ 
e s1.n 

{ 
cos e 

-sin e 
0 

0 
cos e 

-sin e 

0 
1 
0 

sin e 
cos e 

0 

0 

~ sin 
cos 

-sin 

J 0 
cos 

Note that rotation matrices do not commute. The product of several 

rotations is performed from right to left, for examrle in 

the rotations are performed about the 3-axis of the original system, the 

2-axis of the transformed system, and the 1-axis of the doubly transformed 

system, to yield the final triply transformed system. 

If the rotation angles are all so small that their cosines can be 

assumed to be unity, then the rotation matrices become commutative. This 

is the case for differential rotations, for example. 

The above expressions define positive rotations, which are right-

hand rotations for right-handed coordinate systems and left-hand rotations 
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for left-handed coordinate systems. A right-hand rotation is related to 

the right hand rule given above: if the fingers of the right hand are 

curled around the rotation axis so that the thumb points in the positive 

direction» then the fingers curl in the direction of a right hand rotation. 

A similar statement for left hand rotations is obvious. 

A.5 Inverse Transformations 
~ 

The inverse of a transformation A (denoted A-~) is the transformation 

which returns conditions to their original state, that is 

Re£1ections are self-inverse, that is 

Common sense tells us that the inverse of a positive rotation is a 

negative rotation, that is 

R~1 (e) = Rk(-e) 

and this conclusion is verified by taking the orthogonal property 

AT A = I 

from which it is evident that for orthogonal matrices 

and for each of the above expressions for rotation matrices it can be shown that 

we have 

Applying the rule for the inverse of products 

[A B)-l = B-l A-l 
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A product transformation consisting of one rotation and one 

reflection commutes only if the rotation and reflection refer to the same 

axis, that is 

if j = k 

otherwise 

if j 1 k. 




