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Abstract 
 

Complications are known to arise when Kalman filter is used in the design of navigation algorithms. 
Many improvements have been introduced over the past thirty years. Still, problems seem to occur 
when navigation based on a single source data is attempted. Such navigation is then somewhat 
dependable upon the knowledge of the vehicle's dynamics model. This knowledge is almost never 
available at a level to satisfy the basic reliability requirements. 
We seek a solution through an approach different from that of Kalman filtering in so far that no 
physical modelling is called for. We use a purely mathematical approach based on the laws of 
mechanics (e.g., Hamilton's principle), applied in a statistical space. The result is a new navigation 
algorithm (NNA) that relies solely upon the measurements of vehicle's positions (and possibly 
velocities), and their error statistics. The force field in which non-Newtonian forces are at work, is 
induced simply by confidence regions of the position fixes. It is assumed that instantaneous position 
fixes and their corresponding error statistics can be obtained by one or more navigation services, such 
as GPS or Loran C .  One promissing application of the NNA that will be investigated in the near 
future is the tracking of evasive targets based on position and/or velocity measurements.  The results 
of the new algorithm are presented for a couple of real-life trajectories and a comparison with the best 
Kalman filter navigation is shown. 
 
 
 

1 Introduction 
 
Since the early 1960's, modern navigation has been making use of the hybrid (integrated) 
navigation systems, where various electronic sensing devices (sensors) are used side by side, to 
collect the information necessary to find the "continuous" position of the navigated vehicle. 
These systems are installed on-board of vehicles, such as ships, aircraft, or missiles. Sensors that 
are being used in such systems are the Inertial Navigation Systems (INS), radio-navigation aids 
(LORAN, GPS, etc.), Doppler Velocity Sensors (DVS), laser-ranging devices, barometric 
altitude-meters, etc. 
 
The potential benefits from multi-sensor system implementation lead to a development of 
mathematical algorithms for merging the data from various sources (sensors). The automation 
of continuous positioning, and the decrease of direct human involvement in the positioning 
process became important considerations. These developments lead to a new general concept of 
navigation: the computational solutions were sought in algorithms that make use of filtering. At 
the beginning of the sixties, a Hungarian (electrical) engineer Rudolf Kalman introduced a new 
kind of filtering, where the observations relating to the motion of the vehicle, as well as a 
dynamic model derived from some physical laws, were required. Consequently, the success of 
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this filter to predict the correct position depends to a large extent on the validity of both kinds of 
information. 
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Almost forty years after it was first introduced, the most widely applied navigation algorithms 
are still based on Kalman filter. Here, we give several examples that highlight the desirability of 
replacing Kalman filter in the navigation systems used in marine vessels, aircraft and missiles, 
by a more appropriate algorithm. We will discuss these examples as they also serve the purpose 
of putting the new navigation algorithm in the proper context: 
1) As a part of aerodynamics in military applications synthesis, it has been known for some 

time that the development of highly agile aircraft requires an understanding of the unsteady 
flow associated with these aircraft. The a priori aerodynamic force and moment input used 
for the design of these aircraft are studied by dynamic experiments in wind tunnels. Such 
experiments include both oscillatory and rotary techniques capable of testing at extreme 
attitudes and/or high angular rate motions. These motions represent a highly variable and 
unpredictable dynamic environment. 

2) In the context of geodesy and geomatics, a vehicle or missile, equipped with the INS/GPS 
navigation device(s) [Coffee & Maganty, 1996] requires a specific algorithm (filter) to 
perform the integration of an Inertial Navigation System (INS) with the Global Positioning 
System (GPS). A need for such integration is well documented by, e.g., Kleusberg [1988]:  it 
should be performed so as to allow an at-all-times reliable navigation solution. For instance, 
the simple navigation filters built-in the GPS receivers are dependent on the vehicle 
dynamics model when GPS alone is used for navigation purposesthey require model 
set/reset input from the pilot/navigator as soon as a significant state change has occurred.  
Another source of problems lays in the unavoidable loss of the GPS signal, due to 
maneuvering (masking). A model-less algorithm, capable of self-following and guidance of 
the vehicle under all-conditions maneuvering is then preferable. 

3) In marine navigation, the problems appear when trying to model tidal and other ocean 
currents, or the atmospheric variations. Here the difficulty in applying the Kalman filter lays 
in the fact that it requires an a-priori system model to be given; in marine navigation any 
such model can never be realistic. An algorithm that will do the self-following and 
guidance of the vessel under all-conditions maneuvering is thus required. 

4) When employed in a combat situation, a fighter jet's navigation system based on Kalman 
filter does not perform very well if input data are based on position/velocity measurements. 
One of the reasons for this is that at such time the aircraft navigation system suffers the 
"memory loss", i.e., the model dependent filter needs a new model to cope with the fast 
developing situation. Such a model is, of course, not available and this results in a 
navigation failure. A model-less filter, capable of self-following and guidance under all-
conditions maneuvering is needed. 
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5) In (military) industry, the need to re-design algorithms based on the Kalman filter, to run 
efficiently on every new platform (application) can be very costly. An adaptable, platform-
independent algorithm could be highly desirable. 

6) Tracking a target that employs evasive maneuvering could be very unreliable when the 
tracking algorithm is based on a Kalman filter. Particularly so, if the input for the algorithm 
consists only of position and/or velocity measurements. 

 
 
2 Mathematical background of the new navigation algorithm 
 
It is known from dynamics that the motion of a system in which all forces (except those derived 
from constraints) can be derived from a single generalized potential function that depends on 
coordinates, velocities and time. This concept is implied by, e.g., the Hamilton's principle 
[Boccaletti & Pucacco, 1996]. We define the generalized potential function in such a way that it can 
be constructed solely from the position fixes and their confidence regions, and call it the position 
potential. We assume that instantaneous position fixes and the corresponding error statistics for 
the navigated vehicle are obtained by one or more navigation services, such as GPS or Loran C. 
 
Adopting the above concept, in its kinematic form, the acceleration is given by: 
 

where U  is the potential of the force field we want the navigated vehicle to obey. The navigated 
vehicle is then represented simply by a mass particle. The notion of "position potential" enables 
us to define that force field which drives the free particle along its trajectory. 
 
Conceptually, the solution uses the force field in which non-Newtonian forces (i.e., forces that are 
not inversely proportionate to squared distances) are induced by the confidence regions – called 
here also force sources – that pull the (undetermined) trajectory of the particle (Fig.1) to pass 
through them. In fact, the solution is built on a time-varying position potential field U, defined as 
a summation of n  individual position potential fields defined by the quadratic forms of the 
confidence regions. Thus 

with 

 
being the position vectors (here two-dimensional, but can be extended into three dimensions) of 
the particle and of the i-th position fix, respectively, both considered at time ti. Here G is a 
positive scale factor, analogous to the gravitational constant in the Newtonian mechanics, and α 
is the temporal attenuation coefficient. Both numbers, G and α , can be either selected 
beforehand, or evaluated during the navigation process from the fit of the predicted trajectory to 
new position fixes, following one of many possible schemes. Different applications may require 
different approaches to the selection and updating of these two parameters to ensure the optimum 
performance of the algorithm. So far only a few simple approaches have been tried on the 
trajectories we had at our disposal [Xu, 1996]. Further investigation is clearly indicated here. 
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The equation of motion is then obtained from eqn.(2) by differentiation with respect to ri:  

For  t ≥ 0 , this happens to be the second order Bessel differential equation of order 0 [Xu, 1996], 
the solution (ri) of which is given by Bessel functions of first kind. For more information on the 
mathematical background and previous work on the new algorithm, the interested reader is 
referred to Xu (1996). 
 
 
3 Summary of test results 
 
Tests made with the NNA consisted of examining its performance on both synthetic and real two 
dimensional trajectories, while considering various schemes for determining the parameters G  
and α .  The best performing scheme turned out to be a pre-selection of a specific value of α , 
suitable for the kind of tested motion accompanied by continuous updating of the G  value based 
on the "past experience" of the algorithm. The results were then compared with the best Kalman 
filter (KF) navigation.   
 
As shown in Fig.3, the NNA can indeed be regarded as a filtering technique.  Clearly, the most 
accurate results are obtained when the algorithm is used in its "smoothing mode", while the 
"estimation mode" gives worse results, and the "prediction mode" performs the worst.  The NNA 
represents also a capable blunder detector - it picked up two artificially implanted blunders, at the 
0.001 confidence level. 
 
A comparison of the performance of the NNA with that of the KF was done over two real ship 
trajectories.  The NNA performed, on average, three to four times better than the KF, i.e., with an 
improvement of 60 to 80%. The results are shown in Fig.2 and summed up in Table 1.  We note 
that the speed of processing by the NNA is slower than that by the KF, by a factor 5 to 10. This 
drawback of the NNA could be alleviated by using parallel processing or some other advanced 
computing methodology which were not at our disposal during the testing. 
 
 

Table 1: comparative results of KF and NNA tests – speed vs. accuracy 
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To summarize, the NNA has the following advantages.  It does not require any model of vehicle's 
dynamic environment, and, consequently, it does not depend on the platform it is mounted on; it 
suffers from the phenomenon of "overshooting" much less than the KF-based algorithm does; as 
Kalman filter, NNA can also be used for detecting blunders in position fixes; and can be easily 
modified to accept also velocity information.  Its disadvantage is in its slower processing speed. 
 
 
 
 
 
4 Discussion 
�

At its present form, the New Navigation Algorithm (NNA) is a 2-D self-learning algorithm (G, 
and possibly α , are being continuously updated), flexible and responsive to a changing dynamic 
environment, with minimal overshooting (Fig.2). It represents a unique, platform-independent 
navigation tool, capable of multi-sensor information integration. Tested with both simulated and 
real navigation data, it proved to be a valid estimator, predictor, smoother and blunder detector 
(Fig.3). Compared with the Kalman filter, the new algorithm requires the uncertainties of 
observations to be known only relatively, as cofactor matrices.  Further, the NNA allows a direct 
input and real time integration of position and/or velocity measurements (taken at the vehicle, i.e., 
it is independent of the ground control or navigator's input) to speed up the response of the 
algorithm to changing dynamics. 
 
The new filter "learns" (i.e. updates the model parameters regularly) all the time, hence it can 
keep pace with the kinematic change of the vehicle and thus achieve better results. It appears that 
the use of this algorithm would be more appropriate than that of the Kalman filter for navigating 
vehicles that are expected to maneuver under their own power. The inclusion of velocity 
observations in this algorithm results in a more accurate navigation than that using either 
observed positions alone, or velocities alone (dead reckoning). The performance of the new 
algorithm appears to be sturdy enough to detect possible blunders in position fixes. Compared 
with the Kalman filter for the vehicle under maneuvers, the new algorithm achieves better results, 
but its processing speed is slower. 
 
 
 
5 Conclusions 
 
The introduction of the new navigation algorithm would have positive consequences for 
navigation.  These consequences are: 
 
- increased safety, as the new algorithm would result in a navigation that is stable, safe and 

reliable under all conditions, and 
 
- increased economy, as the algorithm is platform independent. 
 
So far, the algorithm is formulated only for two-dimensional navigation, but an expansion into 
three dimensions can be achieved relatively easily so that its application in aviation can be 
realistically contemplated. Further improvement of the new algorithm can be expected from a 
selection of an optimal "position potential function" (to replace the generic "position potential 
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function" used in our investigations so far), which requires more experimental testing. Because 
of algorithm's high flexibility, it is possible to envision an improvement to its self-learning 
capabilities. 
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Figures 
 

Figure 1 -  History of trajectory evolution. 
Figure 2 -  Comparison between the NNA and the KF test results. 
Figure 3 -  Time history of actual position errors for one of the real ship trajectories. 
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Figure 1: History of trajectory evolution: confidence regions (error ellipses) of position fixes tend 
to attract the undetermined trajectory to pass through them. The impact of the force sources 
diminishes with time (as the trajectory evolves). The position fix with smaller confidence region 
(the more accurate fix) attracts more than a fix with larger confidence region. The closer the 
position fix to particle position (at the time of the fix) the weaker the attracting force. 
 
 

Figure 2: Comparison between the new navigation algorithm and the Kalman filter test results  
(approximately scaled) 
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Figure 3: Time history of actual position errors for one of the real ship trajectories 


