EFFECT OF MATHEMATICAL CORRELATION ON
GPS NETWORK COMPUTATION

By Marcelo C. Santos,' Petr Vanitek,” and Richard B. Langley®

ABsTRACT: The precision and accuracy of positions obtained from the least-squares
adjustment of Global Positioning System (GPS) data are dependent on the fidelity of
the algorithms used to model the data. They are also dependent on the a priori
covariance matrix of the data that is used in the adjustment. This matrix describes
not only the uncertainty of the data but also the correlation among them— both
mathematical and physical. In this paper we present a summary of a study of the
effect of mathematical correlations on GPS position determination in network mode
using carrier-phase double-difference observations. For our analysis, a network with
baselines of hundreds to thousands of kilometers in length was processed, applying
three distinct cases of observation correlations: case a— the correlations were ignored;
case b—only the comrelations within baselines were taken into account; and case
c—all correlations, including those between baselines, were considered. This analysis
used both broadcast and postfitted orbits. It is shown in this study that the proper
modeling of mathematical correlations typically yields better reliability of baseline
component estimates and more realistic formal error estimates.

INTRODUCTION

Two types of correlations affect the Global Positioning System (GPS) dou-
ble-difference carrier-phase observations: the mathematical correlations and
the physical correlations. The mathematical correlation is created when, for
the sake of removing common errors and reducing partially physically cor-
related errors, the double-difference observation is formed. The physical cor-
relation is a consequence of the environmental effects common to separate
observations, making them spatially and/or temporally correlated. The phys-
ical correlations are usually not taken into account when processing GPS
observations because they are not easily quantifiable.

The correlations affecting the double-difference observations are accounted
for via the covariance matrix of the observations. For a baseline, the math-
ematical correlation yields a block diagonal structure for the observation’s
covariance matrix. It, including the physical correlations, would result in a
fully populated covariance matrix. Taking into account the correlations yields
better position-difference estimates and more realistic formal estimates of
errors. It also allows easier resolution of carrier-phase ambiguities. Realistic
formal errors are important for the tasks of GPS network densification and
merging of GPS and terrestrial networks, as well as for the three-dimensional
(3D) processing of GPS networks.

Earlier evaluations of the effect caused by the mathematical correlations
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in GPS network processing have been reported in the literature. Vanicek et
al. (1985) investigated the impact of mathematical correlations within single
baselines with lengths varying between 13 and 60 km. They concluded that
the effect of introducing the mathematical correlations has a statistically in-
significant impact on the final results. This study disregarded the mathemat-
ical correlations between baselines. Beutler et al. (1987) carried out a similar
investigation, using a smaller network, including the mathematical correlation
between baselines. They found little difference in the coordinate values when
correlations were either ignored or not ignored. Hackman et al. (1989) and
Hollmann et al. (1990) reported solutions obtained using different analysis
programs that handled the correlations differently. The solutions reflect the
differences between the programs and not solely the effect of mathematical
correlation. Craymer and Beck (1992) compared two GPS network processing
strategies—one including the mathematical correlations between baselines,
and another in which the baselines are processed independently and then
combined in a 3D adjustment. They concluded that these strategies are equiv-
alent if the covariance matrix used for the second mode is properly scaled,
a condition difficult to achieve in practice.

El-Rabbany (1994) investigated the effect of physical correlation on a
baseline and its accuracy estimation in GPS differential positioning. His ap-
proach can be summarized as follows. First, the least-squares adjustment of
a sample of baselines of different lengths, of up to 100 km, was carried out,
with only the mathematical correlation included. The resulting adjustment
residuals reflect the presence of the unmodeled measurement errors. Then, a
general empirical covariance function, representing the physical correlation,
is obtained from the residuals. This empirical covariance function is then
used to modify the covariance matrix of the double-difference observations,
leading to a more realistic, fully populated covariance matrix. The following
are among the several important conclusions drawn from his study: *“The use
of an artificial scale factor to scale the overly optimistic covariance matrix is
inappropriate”” and ““The physical correlation is typically inversely propor-
tional to both observation sampling rate and baseline length.””

In the present study, we revisit the problem of mathematical correlations
to carefully elucidate the formulation of the covariance matrix and its imple-
mentation in analysis software and demonstrate the effect that proper mod-
eling of the mathematical correlations has on GPS network solutions. For
testing, we use baselines of hundreds of kilometers in length and an obser-
vation sampling interval of 120 s, and hence assume that the effect of the
physical correlation is negligible.

There are three basic ways of dealing with mathematical correlations: (1)
to use the undifferenced carrier phases, which are mathematically uncorre-
lated, resulting in the introduction of satellite and receiver clock parameters
that need to be estimated; (2) to decorrelate the double-difference measure-
ments of one epoch by means of Cholesky decomposition (Goad and Miiller
1988); or (3) to keep the double difference untouched and compute the cor-
responding covariance matrix pertaining to each epoch directly from the *“dif-
ferencing operator matrix’” used to form the double differences from the
undifferenced observations (Beutler et al. 1987). From the mathematical point
of view, these approaches are similar. For the analysis reported in the present
paper, we use the third approach.

MATHEMATICAL CORRELATION

The double-difference carrier-phase observations have found great use in
GPS computations due to the fact that it is capable of greatly reducing or
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eliminating errors and biases affecting the original (undifferenced) carrier
phase observations, such as satellite and receiver clock errors, atmospheric
effects, and orbital biases (Langley 1993). A consequence of doubly differ-
encing the carrier phases is that the observations (really pseudoobservations)
become mathematically correlated.

When processing data from a network occupied by GPS receivers, three
approaches can be applied for handling the mathematical correlations: ap-
proach a—ignore them; approach b—consider their effect within each in-
dividual baseline (the between-satellite correlation); or approach c—consider
their effect both within and between the baselines. Approach ¢ is the most
rigorous one, but applies only to simultaneously observed baselines. Ap-
proaches a and b do not have such a requirement and can be applied in the
processing of single baselines or networks.

Let the double-difference observations for one epoch be represented as

VA® = RP (1)

where R = differencing operator matrix (with entries of Os, + 1s, and —1s);
@ = vector of undifferenced carrier-phase observations; and VA = double-
difference operator. Applying the law of propagation of variances (VaniZek
and Krakiwski 1986), we arrive at the covariance matrix of the double-dif-
ference observations

Cyao = RCoR 2

where C, = covariance matrix of vector ®. We make the assumption that
the undifferenced carrier phases @ have errors that behave randomly, result-
ing in a homogeneous normal distribution with the expected value equal to
zero and variance 05 equal to one. The undifferenced phases are assumed to
be uncorrelated. Thus C, is equal to the identity matrix. This results in

Coao = RR’" (3)

If the mathematical correlation is totally disregarded, Cy,4 is equal to the
identity matrix. If, in a network mode, only the mathematical correlations of
the double-difference observations within individual baselines are considered,
the diagonal submatrices, one for each baseline, will have a block diagonal
structure in Cyag, and all off-diagonal submatrices will be equal to zero. If
all mathematical correlations are taken into account, there will be some non-
zero elements in the off-diagonal submatrices, each representing correlations
between baseline receivers observing the same satellite at the same time. It
goes without saying that matrix Cy,, is scaled by the a priori variance factor
of the double-difference observations.

Let us think of one baseline, linking receivers A and B. At a particular
epoch, the same five satellites are observed by both receivers. The vector of
undifferenced carrier phases ® is

@ =[]}, D}, D, D}, D], D}, D}, D;, D}, D})” @

The double-difference observations are formed by first differencing between
receivers and then differencing these differences between consecutively num-
bered satellites, i.e., (1-2), (2-3), (3-4), and (4-5). We shall follow this ap-
proach throughout the present paper. Therefore, the vector of double-differ-
ence observations is
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VADL (@4 — Dp) — (@F — D))

| vaeL | _ | @ - @) — @ - @)
VAR = | gagl | = | @ - @) — @ - @) ©)

VA®DL, (P3 — ®p) — (@1 — Pp)

The differencing operator matrix R, according to (1) and consistent with (4)
and (5), i1s

1 =1 0 0 0: s=k- 1 0 0O 0
L (TR {71 0 0 Bl e R LR | 0O 0

R= 0o 0 Sy TR 0 L) Ces i T e (1) ©
0 0 0 Tragrs] | j) 0 . =i

where each row corresponds to a double-difference combination, and each
column corresponds to a particular satellite. The first five columns are related
to receiver A, whereas the last five columns relate to receiver B. Finally, (3)
gives the covariance matrix of the double-difference observations

4= =2" .0 0
-2 4 -2 0

CVAQI - 0 -2 4 ey (7)
Q 0o -2 4

The differencing operator matrix R depends on the way the double differ-
ences are formed. For example, if they had been formed as (1-2), (1-3), (1-
4), and (1-5), matrix R would read

1 -1 0 [4] 0o -1 1 0 0 O
1 0 =17 {0 0O -1 01 0 O
- 1 0 0o -1 o -1 0 0 1 0 ()
1 0 Q 0o -1 =1 0 0 0 1
and, consequently, the covariance matrix would be
iy 2 12 a2
2 4. 2 .2
Coao=13 2 4 2 ®
A5 e B

In the least-squares adjustment of a single baseline, the weight matrix P
is equal to the inverse of the covariance matrix Cypge. If 2 network of 1 + 1
receivers is used, the weight matrix P is composed of P, where i = 1, with
n submatrices occupying the diagonal; the off-diagonal submatrices are zero,
denoting that no mathematical correlation between baselines has been taken
into account. Matrix P, then, is

P, 0 - 0
=1 o)
0o 0 - P

Eq. (10) is not correct, from the theoretical point of view, if any of the
baselines have been observed simultaneously.

To take the mathematical correlation between simultaneous double-differ-
ence observations, collected from a network of receivers, into account, let us
consider the simple case of three stations, occupied simultaneously by re-
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ceivers A, B, and C, forming two independent baselines, A-B and A-C.
Again, assume that the same five satellites have been observed at a particular
epoch. The vector of undifferenced carrier phases @ is

D = [}, D}, D;, DL, D, D}, D, D}, ;, D}, DL, B, DY, bY, DI (11)
The vector of double-difference observations is
[VA®T] [(®) — D)) — (@) — DY)
VAD; (@) — @) — (P — D)
VAD, (@, — D)) — (@) — D))
_| VARG | _ | (@1 — P — (@ — D)
VAP =1 vaez [ = | @) - @b - @} - @) )
VA®L: (@; — DY) — (@) — DD
VA®;: (@) — ) — (@5 — DY
Lva®i. 1 L@l — o) — (@) — o).
The differencing operator matrix R is
1 -1 0 0 0 -1 1 0 0 0 0 0 0 0 0
0 1 -1 0 0 0o -1 1 g 0 0 0 0 [{ 1]
0 0 11 =21 @ 0 0 -1 1 0 0 0 0 0 0
R = 0 0 0 1. —=I. O 0 0 -1 1 0 0 0 0 0
11 -1 0 0 0 0 0 0 0 0 -1 1 0 0 0
0 1 -1 0 0 0 0 0 0O 0o 0 -1 1 0 0
o o ¢ -1.0 ¢ o0 o 0 0 OC O -1 1 0
_0 0 1] 1 -1 0 0 0 0 0 0 0 0 -1 1_
(13)

where the first four rows correspond to baseline A-B and the last four rows
correspond to baseline A-C. Every consecutive five columns correspond to
one station. Of course, this matrix would look different if the independent
baselines were chosen differently, such as A-B and B-C. The covariance
matrix for our selected baselines is

F4. —2 0 0o =31 @& D9
=3 Thea=3 D 1 =2 1 B
0. =3 4 =2 0 1 =2 1
0 0 -2 4 0 0 1 -2

Ce=| 5 1 0 0 4 —2 0 o0 o)

1 =3 1. B =364 =3 0
0 1 =2 T 0. =3 4 -3

| 0 1 =2 0 0 -2 4|

where the diagonal (4 X 4) submatrices correspond to baselines A-B and A-
C, respectively, and the (4 X 4) off-diagonal matrices correspond to the
correlations between them.

Let us alter the previous example to reflect a real-case scenario, when not
all satellites observed are common to all three receivers. For example, con-
sider a case when the double-difference vector is '
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VAL
VADZ,
VADY,
VADLL
VADE.
VAD:S

VAD = (15)

i.e., only satellites one and six are observed by all three receivers. Matrix R
is then given by

1 -1 0 0 0 0 -1 1 0 0 0O O O O O O O
0 1 0o -1 0 0 0o =10 100 0 0.0 0 0 O
R= 0 0 0 1 0= 00 -1 0 1-¢ 0 0 0 0 0O
1 0 -1 0 0 0 0 ¢ 0 0 00 -1 0 1 0 0 0
0 0 1 6o -1 ¢ 0 0O 0 0 0O O O-10 1 0
0o 0 0 0 1 -1 ¢ 0 0 0 00 O 0O O O -1 1
(16)

and the covariance matrix of the double-difference observations is given by

4 =2 0. =1 0 0

a7

with the dimension equal to the total number of double-difference observa-
tions. This real-case simulation shows that the differencing operator matrix
R, and, as a consequence, the covariance matrix Craq and the weight matrix
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FIG. 1. Geographical Distribution of Network of Stations Used to Assess Ef-
fect of Mathematical Correlation
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P, depend on the baseline definition as well as on the number and identity
of satellites observed simultaneously.

The rigorous implementation of the covariance matrix, including the cor-
relations between baselines, adds a great deal of computation to the process-
ing of GPS observations. Efficient methods are needed, such as the one de-
scribed by Beutler et al. (1987).

EFFECT OF MATHEMATICAL CORRELATION ON NETWORK

The effect of mathematical correlations, in practice, was assessed using a
network composed of four stations of the International GPS Service for Geo-
dynamics network: Goldstone (GOLD), Algonquin (ALGQO), Penticton
(DRAO), and Pie Town (PIE1). The geographical distribution of this network
is shown in Fig. 1. Three independent baselines were formed, with station
GOLD being common to all of them. The baselines, and their respective
lengths, are as follows: Goldstone-Algonquin (3,402 km), Goldstone-Pie
Town (810 km), and Goldstone-Penticton (1,556 km). The observational data
set used for the processing shown in the present paper covers a period of
three days (days 003, 004, and 005 of GPS week 730). The data from each
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FIG. 2. Relative Error in Baseline Length (Using Broadcast Ephemerides)
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FIG. 3. Relative Error in Baseline Length (Using Postfitted Orbits)
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TABLE 1. Formal Errors (in mm) Using Broadcast Ephemerides

L661 LSNDNY / DNIYIINIDONT DONIAIAHNS 4O TVYNHNOr / 801

Correlation Day 003 Day 004 Day 005
mode o, o, Tp oy o, a, o o o, o, o, o
(1) () (3) 4 (5) (6) ) (8) () (10) (11) (12) (13)
(a) Algonguin station
a 22 55 111 44 21 52 108 41 25 62 127 49
22 61 123 49 22 61 122 48 26 69 140 55
c 27 85 150 64 27 84 150 62 29 90 163 67
(b) Penticton station
a 27 37 87 24 24 35 77 22 30 45 102 28
28 41 94 26 28 41 91 25 33 53 118 31
c 41 49 128 34 39 49 123 33 43 60 147 37
(c¢) Pie town station
a 14 38 93 40 13 as 86 35 17 40 99 39
b 14 42 99 44 13 41 99 41 16 46 112 46
c 16 49 121 50 15 46 115 45 18 52 133 51




601 /.66} LSNDNY / ONIHIINIDNT DNIAIAHNS 40 T¥YNHNOr

TABLE 2. Formal Errors (in mm) Using Postfitted Ephemerides
Correlation Day 003 Day 004 Day 005

mode a, T, aoh oy o, a@, o oy o, o, o a;

(1) (2) (3) (4) (6) (8) (7) (8) (9) (10) (11) (12) (13)
(a) Algonguin station

a 1.9 4.9 9.7 4.0 1.8 44 8.9 37 21 3.3 10.1 4.3

b 1.8 5.0 10.0 4.2 1.7 4.6 9.0 3.9 1.9 53 10.2 4.5

c 2:2 6.9 12.0 53 20 6.3 10.7 4.9 22 7.3 12.4 5.6
(b) Penticton station

a 2.2 2.8 | 2.1 2.0 2.6 6.5 1.9 2.4 3.1 79 2:3

b 22 2.8 7.0 2.0 2.0 2.6 6.5 1.8 24 3.1 7.7 23

c 32 i3 9.6 2.6 2.9 3.1 8.8 2.4 34 3.6 10.5 29
(c) Pie town station

a 1.0 2.8 7.9 29 0.9 2.5 6.7 25 i1 2.8 7.6 28

b 1.1 3.0 8.0 il 1.1 2.4 6.6 2.5 1.1 29 7.8 29

c 13 35 9.9 35 1.0 2.7 7.6 26 1.1 2.8 7.9 2.7




day were processed independently. We used the software DIPOP (Santos
1995) to process the data.

As far as the mathematical correlations were concerned, the network was
processed in three different modes: mode a—totally disregarding the math-
ematical correlation, i.e., assuming Crap to be equal to a uniformly scaled
identity matrix; mode b—modeling the mathematical correlation within each
baseline, according to (10); and mode c—modeling the mathematical cor-
relations between baselines as well as within baselines. The adjusted baselines
were compared to their published International Earth Rotation Service Ter-
restrial Reference Frame 1992 (ITRF92) values, in an attempt to gauge the
accuracy of the three modes. Also, the results were compared in order to
assess how the formal errors (precision) of the different solutions behaved.

The effect of mathematical correlations on estimated baseline lengths is
seen in Fig. 2 for the solution using the broadcast ephemerides, and in Fig.
3 for the solution using the postfitted ephemerides. These figures show the
average relative error in baseline length, for the three days involved in the
processing, by comparing the baselines resulting from the adjustment with
the published ITRF92 values (Altamini and Boucher 1993). Again, the three
correlation modes, a, b, and ¢, were tested. It can be clearly seen that the
results improve with the proper modeling of the mathematical correlation by
as much as 50%.

The effect of mathematical correlations on the precision estimation of the
network solution, for the three correlation modes, for all three days, for all
three baselines, is summarized in Table 1, for a solution using the broadcast
satellite ephemerides, and in Table 2, for a solution using postfitted ephe-
merides. In these tables, o, represents the formal error in latitude, o, repre-
sents the formal error in longitude, o, represents the formal error in height,
and o, represents the formal error in baseline length. The postfitted ephe-
merides were produced as a batch orbital solution for the three days used
(Santos 1995). It can be seen that the formal errors without the mathematical
correlation (compare in mode a) are generally the smallest among the three
correlation modes. The formal errors of the results when the mathematical
correlations between baselines are fully taken into account are the largest
ones. The formal errors using mathematical correlations within baselines are,
most of the time, in between. This indicates that by taking the mathematical
correlations into account, more realistic formal errors of the estimated posi-
tion differences are obtained. The two tables also show that the formal errors
using the broadcast ephemerides are larger than those using postfitted ephe-
merides.

Another interesting feature to be noticed is the difference in the quality of
the solution obtained using the broadcast and the postfitted orbits. According
to the rule of thumb (Vaniéck et al. 1985), the broadcast orbits used seem to
have an orbital bias in the 3 to 4 m range, whereas the postfitted orbit used
is certainly below the 1 m level. The use of postfitted orbits results in a final
solution that is one order of magnitude more accurate than the solution ob-
tained from the use of broadcast orbits.

CONCLUSIONS

The present paper describes an investigation into the effect of mathematical
correlations in the processing of observational data from a GPS network. The
modes of mathematical correlation considered were: mode a—-correlations
were ignored; made b—correlations only within baselines were taken into
account; and mode c—correlations between baselines were also accounted
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for. The conclusions are as follows: (1) better (more accurate) results are
obtained using modes ¢, b, and a, in that order; (2) the proper modeling of
mathematical correlations vyields a more realistic precision estimation typi-
cally, o, > 0@ > T; and (3) the effect of orbit quality seems to be greater
than the proper modeling of the mathematical correlation itself. The writers
intend to follow up this study with further testing of the effect of mathe-
matical correlation on networks with a mixture of baseline lengths.
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APPENDIX 1. NOTATION
The following symbols are used in this paper:

Cyio = covariance matrix of double difference observations;
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covariance matrix of undifferenced observations;
weight matrix;

differencing operator matrix;

double difference operator;

a priori variance; and

= vector of undifferenced carrier phase observations.

-]
Ba.5 x vl
1
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