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Abstract: In geoid computation, effects of real three-dimensional topographic masses on the Earth’s gravity field must be
accurately quantified and, in the Stokes–Helmert scheme, replaced with effects of those masses condensed on the geoid.
The most comprehensive modern schemes for evaluation of topographical effects account for terrain effects, use a spheri-
cal model of topography, and incorporate two-dimensionally varying models of topographical mass density. In this contri-
bution, we employ a three-dimensionally varying model of topographical density. We use Newton’s integration to
determine the direct topographical effect (DTE) on gravity and primary indirect topographical effect (PITE) on gravity po-
tential. Lastly, we apply Stokes’ integration to calculate the DTE, PITE, and secondary indirect topographical effect
(SITE) on geoidal height. We focus here on validation of our results and demonstration of our software’s capabilities. We
present results for the simple geometrical shape of a disc under various rotations and for the anomalous density of lake
waters. Effects on geoidal height for these simulations reach centimetre level, up to 2.2 cm in magnitude. For a simulation
of the effects of neglected mass anomalies of the lakes, we find results reaching 0.8 cm in magnitude. We examine the be-
havior of our results as calculated using various step sizes for numerical integration and by comparing numerical results
with analytical results for the specific case of a disc. These results suggest that the maximum percent error of our results
is about 23.5% for the DTE on gravity and 7.6% for the PITE on gravity potential.

Résumé : Dans le calcul d’un géoı̈de, les effets de masses topographiques réelles tri-dimensionnelles sur le champ de
gravité terrestre doivent être quantifiés adéquatement et, selon la méthode de Stokes–Helmert, ces effets doivent être re-
mplacés par les effets de ces masses condensées sur le géoı̈de. Les méthodes modernes les plus complètes pour l’évalu-
ation des effets topographiques tiennent compte des effets du terrain, utilisent un modèle sphérique de topographie et
incorporent des modèles de topographie masse-densité variant dans deux dimensions. Dans cet article, nous utilisons un
modèle de densité topographique variant dans trois dimensions. Nous utilisons l’intégration de Newton pour déterminer
l’effet topographique direct « DTE » sur la gravité et l’effet topographique primaire indirect « PITE » sur le potentiel
gravimétrique. Finalement, nous appliquons l’intégration de Stokes pour calculer le DTE, le PITE et l’effet topographique
indirect secondaire « SITE » sur l’ondulation du géoı̈de. Nous mettons l’accent ici sur la validation de nos résultats et sur
la démonstration des capacités de notre logiciel. Nous présentons les résultats pour la simple forme géométrique d’un dis-
que sous diverses rotations et pour la densité anormale des eaux de lacs. Les effets sur l’ondulation du géoı̈de de ces simu-
lations atteignent le niveau du centimètre, jusqu’à une amplitude de 2,2 cm. Pour une simulation des effets des anomalies
de masse négligées des lacs, nous obtenons des résultats qui atteignent une amplitude de 0,8 cm. Nous examinons le com-
portement de nos résultats tels que calculés en utilisant divers incréments pour l’intégration numérique et en comparant les
résultats numériques aux résultats analytiques pour le cas spécifique d’un disque. Le pourcentage maximum d’erreur de
nos résultats serait d’environ 23,5 % pour le DTE sur la gravité et de 7,6 % pour le PITE sur le potentiel gravimétrique.

[Traduit par la Rédaction]

Introduction
The geoid, an equipotential surface approximating mean

sea level, is a common reference surface for height systems.
It is given by its vertical separation from a reference geocen-
tric biaxial ellipsoid that best fits to the figure of the Earth,
such as the GRS-80 ellipsoid (Moritz 1984). This separation

can be determined by gravimetric, geometric, or other
means; here, we discuss one specific gravimetric approach:
the Stokes–Helmert technique (e.g., Vanı́ček and Martinec
1994). This method applies the theorem of Stokes (1849) for
estimation of the geoid based on gravity observations at the
geoid level but assumes no masses are present above the ge-
oid, where gravity observations are made. To achieve this
condition, the Stokes technique is applied after replacing the
topographical masses (between the geoid and the Earth’s sur-
face) by an infinitesimally thin layer of horizontally varying
density at or below the geoid surface. This method was orig-
inally proposed by Helmert (1884). In the Stokes–Helmert
technique, this condensation layer is located at the geoid sur-
face, which is known as Helmert’s second condensation
method. The effect of this change in mass distribution on
gravity is called a direct topographical effect (DTE). Note
that there is also a corresponding direct atmospheric effect
(DAE), which we do not deal with here. Application of the
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Stokes technique to gravity anomalies that reflect this new
mass distribution produces a surface that is very close to the
geoid and is called co-geoid. A corrective term, which is
called the primary indirect topographical effect (PITE), must
be applied to the co-geoid to get the final geoid.

Any topographical effect can be calculated by finding the
difference between the effect of condensed masses and the ef-
fect of real masses. Determination of the topographical ef-
fects thus requires an accurate knowledge of the mass–
density distribution within topography. The most comprehen-
sive current evaluations of topographical effects on the ge-
oidal height account for terrain effects, use a spherical (rather
than planar) approximation of topography to determine dis-
tances, and incorporate two-dimensionally (2-D; laterally)
varying models of topographical mass–density (e.g., Vanı́ček
et al. 1999). A laterally varying mass–density model is often
used to approximate the Earth’s real three-dimensional (3-D)
density anomalies because it is difficult and expensive to de-
termine the distribution of density within topography in a
given area; and even where information about the distribution
is known, it is not precise (Martinec 1993; Kuhn 2003).

For this investigation, we are interested only in the den-
sity structure of topographical masses, since effects of any
masses deeper than the geoid are already accounted for in
the Stokes–Helmert geoid solution. We are thus interested
in knowledge of the density distribution in at most the upper
10 km of the Earth’s crust and normally <1 km. Investiga-
tions into the structure of the Earth’s crust have been on-
going over the past century using various methods (Mooney
2007). Seismic reflection among these methods is the most
relevant active seismic method of locating density interfaces
in the upper crust, including the topography. Currently, seis-
mic reflection provides horizontal and vertical accuracies as
good as 50 m, though interfaces determined to this precision
are not available globally (Mooney 2007). Seismic wide-
angle reflection and refraction are less precise, usually ap-
plying forward modeling (e.g., Zelt 1999) and occasionally
inverse methods (e.g., Zelt and Smith 1992) to determine
crustal structures. Among the passive seismic methods, local
seismic tomography allows construction of a 3-D image of
the upper crust (e.g., Salah and Zhao 2003), with horizontal
resolutions of up to 25 km and vertical resolutions of several
kilometres. Seismic methods are especially valuable in con-
junction with deep (3–12 km) borehole sampling, which pro-
vides in situ measurements of seismic velocity and density
and can act as a control for density or seismic modeling
(e.g., Smithson et al. 2000). Gravity studies (e.g., Tiberi et
al. 2003) complement seismic investigations for determina-
tion of crustal density structures, although they do not pro-
vide sufficient accuracy for our methods. Geological
mapping is a further useful source of information on the
near-surface crustal density structure (Mooney 2007).

There have been some applications of these techniques to
constructing regional and global crustal geology models,
usually with a focus on the whole crust and even the upper
mantle (e.g., Mooney et al. 1998; Bassin et al. 2000; Pasya-
nos et al. 2004). These models consist of a series of geolog-
ical boundaries between layers having different geological
characteristics but are usually directed at an understanding
of the whole crust and below. The earliest global model was
the 3SMAC model compiled by Soller et al. (1982) that pro-

vided 28 � 28 cells, giving density and seismic information.
More recently, the CRUST 2.0 global model has been pro-
duced (Bassin et al. 2000), which represents crustal structure
according to a series of seven layers with thicknesses given
in a 28 � 28 grid. Although this model is not specifically a
model of topographical density, it may be useful for calcula-
tion of topographical density effects, since it includes layers
describing sediment thickness, and sediment represents one
of the key density anomalies within topography. Kuhn
(2003) has outlined a method for determining a 3-D density
model specifically for geodetic purposes by interpretation of
results of seismic surveys, borehole data, and geological
maps, but such a model has not yet been implemented. In-
stead, for geodetic calculations, a laterally varying model
based on surface topographical densities derived from geol-
ogy maps is normally used (e.g., Huang et al. 2001).

We set aside for the time being the problem of determin-
ing exactly the real topographical mass–density distribution
and, instead, try to estimate the potential loss in accuracy of
geoidal heights by using a 2-dimensionally varying, rather
than 3-dimensionally varying model of topographical density
(hereafter called a 2-D model and a 3-D model). Through
this investigation, we hope to determine whether evaluation
effects of 3-D density models is worthwhile. We did this by
creating hypothetical but realistic density distributions and
calculating their effects on geoidal height. In these calcula-
tions, we followed roughly the approach of Martinec
(1998), with some generalization, where necessary, to deter-
mine effects of the topographical density accounted for in a
3-D model but unaccounted for in a 2-D model. In terms of
the Stokes–Helmert scheme, we evaluated the contribution
of anomalous density unaccounted for in 2-D models on the
DTE on gravity and the PITE on gravity potential. From
these, the corresponding DTE, PITE, and secondary indirect
topographical effect (SITE) on geoidal height can be deter-
mined by applying Stokes’ integration to the individual ef-
fects (e.g., Heiskanen and Moritz 1967; Vanı́ček and
Kleusberg 1987).

In this contribution, we focus on mainly validating our
application of the Newton integral for calculating effects of
3-D anomalous density on gravity and gravity potential. We
limit ourselves to two families of simulations: density distri-
butions defined by simple geometrical figures and those de-
fined by a single density contrast. We primarily discuss
results for the former application, only demonstrating our
capacity to generate results with the latter, as we are at-
tempting as a first step to understand the behaviour and po-
tential order of magnitude of neglected 3-D density effects
on a simple level before turning to more complex distribu-
tions. Also, applying distributions based on simple shapes
allows us to easily compare some results with an analytical
determination in spherical coordinates. Once our software
has effectively met this first benchmark, we can rely more
heavily on its results for more complex distributions.

This paper first describes the key points of our methodol-
ogy. We begin by describing the key mathematical aspects
of our approach to indicate its relation to and distinction
from other density effect calculations. We conclude our dis-
cussion of methodology by describing how the technique
has been implemented in our numerical calculation software,
Rad_Eff_Geoid.c. Thereafter, we present some preliminary
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results to demonstrate the capability of the software, fol-
lowed by results of our validation attempts.

Methodology

Modeling of topographical density
Our 3-D model of topographical density represents den-

sity variation within topography by a series of surfaces,
each representing a particular density contrast. For example,
if we wish to model the topographical density of a region
including a lake, our model consists of a horizontal surface
at a height of zero (corresponding to the geoid), a surface
given by the height of the lakebed, and a surface given by
the height of the topography (or the lake surface, over the
lake). The densities of the volumes between the layers are
then specified. In the case of a lake, the density in the re-
gion above the geoid surface but below the topographical
and lakebed surfaces might be assigned the commonly as-
sumed average crustal density (r) of 2670 kg/m3. The den-
sity in the region above the lakebed and geoid surfaces but
below the topographical surface, i.e., the lake waters, would
have a density of about 1000 kg/m3. Thus, the anomalous
density in the latter region would be –1670 kg/m3.

More intricate arrangements of surfaces are also possible,
though distributions based on multiple input surfaces have
not been implemented in the current version of our software.
We have implemented density distributions defined by sim-
ple geometrical figures. For example, we may define a disc
as a body of anomalous density bounded by a cylinder and
two planes. We assign the disc a large anomalous density,
e.g., 660 kg/m3, typical of a density contrast between basalt
and sandstone (Parasnis 1997). Density distributions thus de-
fined provide the region over which our Newton integration
is carried out.

The Newton kernel and its radial derivative for
calculation of effects on gravity and gravity potential

The following derivations are performed in a spherical co-
ordinate system, considered to have its origin at the geocentre,
and illustrated in Fig. 1 with C indicating the coordinate
system origin. We use the coordinates (r,U = (4,l)) to repre-
sent the geocentric radius, latitude, and longitude of a point

of interest P, also called the computation point. The
coordinates (r’,U’ = (4’,l’)) represent the coordinates of the
running point in integration, P’. The term j(U,U’) represents
the spherical solid angle between these two points given by

½1� cos jðU;U0Þ ¼ cos 4 cos 40 þ sin 4 sin 40 cos ðl� l0Þ

We normally refer to it simply asj for the sake of conciseness.
We also introduce L(r’,r,j), the straight line (Euclidian) dis-

tance between the point of interest and the integration point:

½2� Lðr0; r;jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ r2 � 2r0r cos j

p
The gravitational potential V(r,U) resulting from a density
distribution r(r’,U’) over a region (r’ [ [rg(U’),rt(U’)] \ U’ [
U0) is given by integration of the Newton kernel, L–1(r’,r,j),
over that region (e.g., eq. 1.5, Martinec 1998):

½3� Vðr;UÞ ¼ G

ZZ
U02U0

ZrtðU0Þ

r0¼rgðU0Þ

L�1ðr0; r;jÞrðr0;U0Þr02 dr0 dU0

where G is the Newton’s gravitational constant; rg(U’) and rt(U’) represent the geocentric radii of the geoid and topographical
surfaces at the integration point, respectively; and rt(U’) = rg(U’) + Ht(U’), where rg(U’) may be given by a geoid model and
Ht(U’) from a terrain model. For all applications described here, U0 is defined by a spherical cap of constant radius centered
on the point of interest.

The gravity, A(r,U), resulting from a mass distribution is then given by the integral over the radial derivative of the inverse
of eq. [2] multiplied by the density, which follows Martinec (eq. 3.6, 1998):

½4� Aðr;UÞ ¼ G

ZZ
U02U0

ZrtðU0Þ

r0¼rgðU0Þ

@L�1ðr; r0;jÞ
@r

rðr0;U0Þr02 dr0 dU0

Fig. 1. Spherical coordinate system for evaluation of Newton inte-
grals. See text for definition of parameters.
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Equations [1]–[4] are applied for a density distribution
representing anomalous density as well. In that case, we re-
place r(r’,U’) with

½5� drðr0;U0Þ ¼ rðr0;U0Þ � r

where we deal with anomalies relative to some prescribed
constant density r or

½6� drðr0;U0Þ ¼ rðr0;U0Þ � rðU0Þ

where we deal with anomalies relative to a laterally varying
density distribution rðU0Þ.

In the case of eq. [5], the reference density value r is de-
fined such that the sum of anomalous densities (usually
globally) is expected to be zero. In the case of eq. [6],
although ideally the sum of anomalous density values along
any topographical column should equal to zero, e.g., by as-
signing to rðU0Þ, the mean density value along the column,

there is usually not sufficient information to meet this condi-
tion. Instead, the density value of rock at the topographical
surface is often assigned to the whole column. We consider
anomalies defined according to eq. [6] here.

Mathematical representation of 3-D density and
condensed density models

For any integration point U’, we can represent the radial
distribution of density as a piecewise function. Let us take
the simple example of a lake, as in section ‘‘Modeling of
topographical density’’. Let the density of topography out-
side the lake be r0 and the density of the lake water be r1.
We deal with three surfaces here: the geoid surface; the
lower bound of the region we are concerned with, defined
by rg(U’); the surface of the topography and the surface of
the lake, defined by rt(U’), and the lake bed with geocentric
radius rb(U’). In this case, for any point U’, we write

½7� rðr0;U0Þ ¼

r0; r0 2 ½rgðU0Þ; rtðU0Þ� \U0=2Ub

r0; r0 2 ½rgðU0Þ; rtðU0Þ� \ r0 � rbðU0Þ \U0 2 Ub

rl; r0 2 ½rgðU0Þ; rtðU0Þ� \ r0 > rbðU0Þ \U0 2 Ub

0; elsewhere

8>><
>>:

where Ub represents the region covered by the lake, over which rb(U’) is defined. In some cases, we may have more compli-
cated parameters. For example, if we deal with a model defined by a rectangular prism under some rotations, we have six
planes to deal with in addition to rg(U’) and rt(U’).

When we are dealing with anomalous densities, we must change somewhat the formulation of eq. [7]. If the prescription in
eq. [5] is used, then instead of eq. [7], we represent the anomalous density distribution by

½8� drðr0;U0Þ ¼

r0 � r; r0 2 ½rgðU0Þ; rtðU0Þ� \U0=2Ub

r0 � r; r0 2 ½rgðU0Þ; rtðU0Þ� \ r0 � rbðU0Þ \U0 2 Ub

r1 � r; r0 2 ½rgðU0Þ; rtðU0Þ� \ r0 > rbðU0Þ \U0 2 Ub

0; elsewhere

8>><
>>:

If density differences are used and r(U’) is the laterally varying density (as is often the practice, e.g., Tziavos and Feather-
stone 2000; Huang et al. 2001), then it reads

½9� drðr0;U0Þ ¼ r0 � r1;
0;

r0 2 ½rgðU0Þ; rtðU0Þ� \ r0 � rbðU0Þ � rtðU0Þ \U0 2 Ub

elsewhere

�

Since we can determine the radial distribution of anomalous density at any integration point, we can also determine the
resulting anomalous condensation density at any integration point. We do this by applying the general formula (e.g., eq. 2.3,
Martinec 1998):

½10� dsðU0Þ ¼ 1

r2
gðU0Þ

ZrtðU0Þ

r 0¼rgðU0Þ

d rðr0;U0Þr02dr0

where ds(U’) is the condensation density at point U’. Since for any U’ the density can be written as a piecewise constant
function, the integral in eq. [10] can be written in a more general form for any series of surfaces:

½11� dsðU0Þ ¼ 1

r2
gðU0Þ

Xn�1

i¼0

Zriþ1ðU0Þ

r0¼riðU0Þ

dri;iþ1r02dr0¼ 1

r2
gðU0Þ

Xn�1

i¼0

dri;iþ1

½r3
iþ1ðU0Þ � r3

i ðU0Þ�
3
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where ri(U’) is a radius vector of any surface contained within the topography at U’, dri,j is the anomalous density between
surfaces i and j, n is the number of surfaces present in the topography including the geoid and topographical surface, r0(U’) =
rg(U’), and rn(U’) = rt(U’). In our situation, where at most four surfaces are concerned, evaluating ds(U’) using eq. [11] is
trivial.

Calculations of 3-D anomalous density effects on geoid and gravity
Prescriptions for the evaluation of the DTE, PITE, and SITE are given in a variety of sources (e.g., Martinec and Vanı́ček

1994a, 1994b; Sjöberg and Nahavandchi 1999); most notably in Martinec (1998) whom we follow closely here.
The DTE is simply the difference between the effect of the anomalous density of real topography and that of the condensed

topography.

½12� dAdrðUÞ ¼ At
drðUÞ � Ac

drðUÞ

on surface gravity, where dr indicates that we are dealing with 3-D anomalous density effects (distinct from the dr subscript
conventionally used to denote effects of laterally varying anomalous density). At

drðUÞ is the effect of real topography on
gravity and can be found using eq. [4]:

½13� At
drðUÞ ¼ AdrðrtðUÞ;UÞ ¼ G

ZZ
U02U0

ZrtðU0Þ

r0¼rgðU0Þ

@L�1ðr; r0;jÞ
@r

�����
r¼rtðUÞ

d rðr0;U0Þr02 dr0 dU0

while the effect of the condensed layer, Ac
drðUÞ, is found by taking the limit of eq. [4] as rt(U)?rg(U), which yields

½14� Ac
drðUÞ ¼ lim

rtðU0Þ!rgðU0Þ
AdrðrtðUÞ;UÞ ¼ G

ZZ
U02U0

@L�1ðr; rgðU0Þ;jÞ
@r

�����
r¼rtðUÞ

sðU0Þr2
gðU0Þ dU0

The values of dAdr(U) can be determined, depending on the information available about anomalous density structures,
by numerical integration, analytical integration, or some combination of both. In the context of this study, we have per-
formed all integration numerically in the horizontal direction but analytically in the vertical direction along a given col-
umn of topography. Having calculated dAdr(U), we may determine the corresponding DTE on geoidal height through the
Stokes’ integration. The Stokes’ integration, in conjunction with Bruns’s formula, may be used to convert a field of ef-
fects on gravity into their effect on geoidal height. The formulation for Stokes’ integration to determine the DTE on
geoidal height as a result of a topographical effect is given by (eq. 4.5, Martinec 1993)

½15� dNDTE;drðUÞ �
R

4pg

ZZ
U02U0

SðjÞdAdrðU0Þ dU0

where R is the mean radius of the Earth, g is the normal gravity at the point U, and S(j) is the Stokes kernel given by (e.g.,
Vanı́ček and Krakiwsky 1982)

½16� SðjÞ ¼ 1þ 1

sin1
2
j
� 6sin

1

2
j� 5cosj� 3cosj lnðsin1

2
jþ sin 21

2
jÞ

The PITE is the difference between the effects of mass anomalies of real and condensed topography on gravity potential at
the geoid:

½17� dVdrðUÞ ¼ V t
drðUÞ � Vc

drðUÞ

Here, we use eq. [3] to evaluate the term V t
drðUÞ

½18� V t
drðUÞ ¼ VdrðrgðUÞ;UÞ ¼ G

ZZ
U02U0

ZrtðU0Þ

r 0¼rgðU0Þ

L�1ðrgðUÞ; r0;jÞ drðr0;U0Þr02 dr0 dU0

and the limit of eq. [17] as rt(U)?rg(U) to find Vc
drðUÞ

½19� Vc
drðUÞ ¼ lim

rtðU0Þ!rgðU0Þ
VdrðrtðUÞ;UÞ ¼ G

ZZ
U02U0

L�1ðrgðUÞ; rgðU0Þ;jÞsðU0Þr2
gðU0Þ dU0
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For each point where the PITE on gravity potential is
evaluated, the PITE on geoidal height may also be evaluated
according to Bruns’s formula (eq. 4.6, Martinec 1993):

½20� dNPITE;drðUÞ ¼
dVdrðUÞ

g

The PITE on gravity is further given by

½21� dAPITE;drðUÞ ¼
2

R
dVdrðUÞ

By Stokes’ integration of the PITE on gravity over a large
area, we may determine the SITE on geoidal height
(eq. 4.7, Martinec 1993):

½22� dNSITE;drðUÞ ¼
1

2pg

ZZ
U02U0

SðjÞ dVdrðU0Þ dU0

Numerical evaluation of the DTE, PITE, and SITE
Throughout our numerical evaluations, we consider that

rg(U’) = rg(U) = R, i.e., we employ a spherical approxima-
tion. This is common in similar calculations, e.g., of later-
ally varying anomalous density effects on geoidal height
(e.g., Martinec 1993; Huang et al. 2001). Although we have
not rigorously tested its validity, here we consider the ap-
proximation still appropriate as we only perform a first esti-
mation of 3-D anomalous density effects.

Horizontal numerical integration is required for eqs. [13],
[14], [18], and [20]. All numerical integration is performed
using spherical coordinates 4’ and l’, with the areal element
dU’ = sin 4’ d 4’ d l. Testing has shown that the local density
bodies we are modeling (most <100 km wide and <1 km
thick) do not have a significant effect beyond 38 from the
computation point, so integration is limited to a 38 cap. The
cap is divided into four circular zones centered on the com-
putation point: the middle zone, inner zone, innermost zone,
and a zone comprising only the near vicinity of the computa-
tion point. The sizes and resolutions of these zones may be
modified in the option file of our software. Through testing,
we have determined suitable resolutions and sizes for each of
these zones, as indicated in Table 1. These radii were deter-
mined by increasing each until the change in the results was
negligible. So, for example, starting with a middle zone ra-
dius of 3600 arcseconds (3600 arcseconds = 1 degree), we
then increased it by intervals of 1800 arcseconds until the
difference in results after a particular increase was negligible.
We determined that the difference in results was negligible
when increasing the radius from 5400 to 7200 arcseconds, so
we considered 7200 arcseconds a sufficient radius.

Equations [13] and [18], which appear to require a 3-D
numerical integration, can be reduced to only 2-D integra-
tions by taking advantage of the aforementioned behavior of
dr(r’,U’) as a piecewise constant function of argument U’.
Analogous to the development of eq. [11], we can write,
e.g., eq. [13] as

½23�
ZrtðU0Þ

r0¼R

@L�1ðr; r0;jÞ
@r

����
r¼rtðUÞ

d rðr0;U0Þr02 d r0 ¼
Xn�1

i¼0

dri;iþ1

@ ~L
�1ðr; r0;jÞ
@r

����
riþ1

r 0¼ri

����
r¼rtðUÞ

where, as provided by Martinec (eq. 2.22, 1993)

½24�
@ ~L
�1ðr; r0;jÞ
@r

¼ ðr
02 þ 3r2Þ cos jþ ð1� 6 cos 2jÞrr0

Lðr; r0;jÞ þ rð3 cos 2j� 1Þln r0 � r cos jþ Lðr; r0;jÞ
�� ��

Similarly, for eq. [17] we can write

½25�
ZrtðU0Þ

r0¼R

L�1ðR; r0;jÞ d rðr0;U0Þr02 dr0 ¼
Xn�1

i¼0

d ri;iþ1
~L
�1ðR; r0;jÞ @

~L
�1ðr; r0;jÞ
@r

����
riþ1

r 0¼ri

and according to Martinec (eq. 2.20, 1993)

½26� ~L
�1ðr; r0;jÞ ¼ ðr

0 þ 3r cos jÞ
2

Lðr; r0;jÞ þ r2ð3 cos 2jþ 1Þ
2

ln r0 � r cos jþ Lðr; r0;jÞ
�� ��

Thus, numerical integration is only necessary to carry out horizontally.
In cases where the topographical density distribution is given by a surface or series of surfaces, the accuracy of determi-

nation of eqs. [13] and [18] could theoretically be further improved by representing the surface as a polyhedral body. The
integration over a polyhedral body of constant density can be carried out analytically in all three dimensions in a Cartesian
coordinate system (e.g., Paul 1974) and even over a polyhedral body of linearly varying density (Pohanka 1998). Previous
studies have shown that the polyhedral representation provides an improvement in the case of terrain effect calculations
(e.g., Tsoulis 2001) when applied in a local planar coordinate system. Unfortunately, this analytical integration over
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polyhedrons has not yet been developed in spherical coordi-
nates; and, since the development cannot be done over rela-
tively simple prismoidal bodies (Heck and Seitz 2007), it
may be impossible. We have not investigated the possibility
of using the analytical integration in, e.g., a global Cartesian
coordinate system. While the existing developments could be
applied for calculating effects of real topography using poly-
hedral models and may be useful for validation in the future,
we are aware of no formulation for corresponding effects of
condensed topography. Since this is only our first attempt at
modeling 3-D density effects, we have not attempted these
developments. We also were unable to apply an analytical
integration over each (prismoidal) cell in the 3-D integration
of eqs. [13] and [18]. While Nagy et al. (2000) provided for-
mulas for this approach in a rectangular coordinate system,
the horizontal integration over a cell cannot be carried out
analytically in a spherical coordinate system, so numerical
integration is necessary (Heck and Seitz 2007).

Determination of the geocentric radii of density interfaces
for each cell was done differently for both types of simula-
tions our software is capable of. Where a single density in-
terface is used, depths to the interface are read from an input
file, e.g., a bathymetric model. The geocentric radius of the
interface at any integration point is determined by rb(U’) =
rt(U’) – Db(U’), where Db(U’) is the lake depth at the inte-
gration point, derived by bilinear interpolation of depths
from the input file. The values of the densities above and
below the interface are given in an option file, and these
values are assigned to different segments according to the
conditions from eqs. [8] or [9]. Where a geometrical figure
is used to delineate a region of anomalous density, the deter-
mination of densities and density interfaces is more compli-
cated.

The last but not least problem with numerical implementa-
tion is the behavior of the Newton kernel and its integrals
and derivatives when the integration point is near to the
computation point. We deal here with four different kernels:
(i) the Newton kernel used in eq. [19], (ii) its radial deriva-
tive used in eq. [14], (iii) the integral of the Newton kernel
with respect to the radius of the integration point used in
eq. [26], and (iv) the integral of the radial derivative of the
Newton kernel with respect to the radius of the integration
point used in eq. [24]. All these kernels have a point of sin-
gularity where j = 0 and r = r’. For our application, this
condition is easily resolved for the kernel in (ii), since the
computation point and integration point are always on the
topographical surface and geoid, respectively, so that this
condition is only met when the height of the computation
point is zero. In such situations, there can be no anomalous
density at that point anyway (there is no topography), so the
value of the kernel at the point of singularity is exactly zero.
For kernel (i), the singularity always occurs. Since r is al-
ways equal to r’ over the region of integration, the singular-
ity occurs where j = 0, a point that must be included in any
integration, since it represents the value at the center of the

spherical integration cap. For (iii), the singularity only oc-
curs when j = 0 and the top of the anomalous density body
coincides with the topographical surface, since this is the
only situation where r may equal r’. This singularity is easily
removed in the case where anomalous density is considered
relative to laterally varying surface density, since in the case
of the density anomaly, whenever the body representing the
density structure intersects the topographical surface its den-
sity is the surface density, and the anomalous density of the
body itself is zero. Likewise, (d) can only be singular where
j = 0 and the density body intersects the geoid.

These singularities are easily removed in terrain and 2-D
anomalous density effect calculations. When used to calcu-
late terrain effects, for example, it is clear that the terrain
has the same height as the Bouguer shell does at the compu-
tation point (i.e., the central cell has zero contribution to the
terrain effect). Therefore, regardless of the singularity of the
Newton kernel, the central cell contains no terrain, so the
contribution of the central cell to the integration is zero
(Martinec 1998). When dealing with laterally varying anom-
alous density, the contribution of a Bouguer shell of density
equal to the anomalous density in the central cell can be
added to the Newton integral to account for the contribution
of the singularity point and take the integral without that dif-
ferential neighbourhood of that point. Thus, at the central
point, the anomalous density relative to this shell is zero
and, again, the singularity is removed (Martinec 1998).

Although a similar approach could be applied for 3-D
density effects, we have simply arranged our integration
points for this work so that they do not correspond exactly
with the computation point and the singularity does not oc-
cur. We recognize that this is not a rigorous way of dealing
with the immediate neighbourhood of the singularity, but we
consider our approach sufficient for a first effort.

Numerical Stokes’ integration is required to evaluate
eqs. [15] and [22]. The integration is performed over a
spherical cap of 48 radius with cell size of 3 arcseconds
(3600 arcseconds = 18) , following the general procedure
given in Heiskanen and Moritz (1967). The singularity of
the Stokes kernel in the central cell is removed, as suggested
by Vanı́ček and Krakiwsky (1982).

Criteria for verification of results
For the purposes of this investigation, we tested our results

for effects on gravity and gravity potential only. Our Stokes’
integration contains no novel adaptations whereas our New-
ton integration does and is thus the focus of verifications.

We propose three methods to validate the results of our
computations: (i) examine the sequence of our results while
the cell size used in numerical integration decreases,
(ii) compare with entirely analytical results for specific cases
where such results can be found, and (iii) compare with other
similar efforts. Here, we apply only (i) and (ii), since we
know no other efforts which use directly a 3-D model of
topographical density, while previous efforts similar to some
of our simulations exist. The work of Martinec et al. (1995)
on lake water effects, for example, does not use a 3-D model
directly but, instead, uses a 3-D model based on bathymetry
to create a 2-D laterally varying density model by averaging
densities along the plumbline in each topographical column.
The resulting 2-D model is then used in later calculations.

Table 1. Integration zone sizes and resolutions.

Zone Radius (arcseconds) Resolution (arcseconds)
Middle 7200 300
Inner 3600 30
Innermost 1080 3
Central 1.5 1
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The testing in method (i) is done by first increasing the
size of the innermost integration zone to approximately 38
in radius, normally the size of the middle zone. This is
much larger than it really needs to be. Then, the radii of
other integration zones are also made equal to 38 so that
they are skipped in the numerical evaluation. Thus, all cells
used in integration have the same size, and the whole 38
spherical cap is covered. Next, the resolution of the inner-
most zone is varied from coarse to fine. As the resolution
increases, we expect to see the results converge toward
some particular value. If they do, then the results are at least
consistent with each other.

Testing by method (ii) provides a comparison with exact
results in specific cases. The test we apply here is a compar-
ison with an exact result for the DTE on gravity and PITE

on gravity potential at a computation point on the axis of a
spherical disc. The spherical disc is defined by the intersec-
tion of a cone and a spherical shell with its center at the
apex of the cone. We examined the effect of a disc of a
given size, oriented with its axis vertical but with its mass
center at various heights above the geoid.

To calculate exactly the PITE of the disc, we integrated
eqs. [18] and [19] setting r = R over the region of a disc
with a given density. We integrated in a geocentric spherical
coordinate system to simplify the integration — the primary
axis is made coincident with the axis of the disc — so that
when the dummy point of integration is at the computation
point, j = 0. This provides the effect of real topography on
gravity potential at the geoid:

½27� V t
drðU ¼ UcÞ ¼ pG d rD

2

3

L3
g;u � L3

g;l � r3
u þ r3

l

R
þ r2

u � r2
l þ cosðjDÞLg;u½ru � R cos ðjDÞ�

� Lg;l½rl � R cos ðjDÞ� þ R2 sin 2ðjDÞln
ru � R cos ðjDÞ þ Lg;u

rl � R cos ðjDÞ þ Lg;l

������
������

where rl is the geocentric radius of the lower boundary of the disc, ru is the geocentric radius of the upper boundary, jD is
the solid angle from the center of the disc to the edge, drD is the anomalous density of the disc, and Uc is the spherical
coordinates of the center of the disc. For conciseness, we have written straight-line distances using the convention Lp,q =
L(rp,rq,jD). Where the term rg is required to evaluate a distance, it is set to rg = R.

For the effect of condensed topography on gravity potential at the geoid

½28� Vc
drðU ¼ UcÞ ¼ 2pG d sDR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cosjDÞ

p
where dsD is the condensation density resulting from the anomalous density of the disc. By taking the derivatives of eq. [27],
we can also find the effect of real topography on gravity at the topographical surface:

½29� At
drðU ¼ UcÞ ¼ 2pG drDLt;usin 2ðjDÞ �

ru

rt

cosðjDÞ � Lt;lsin
2ðjDÞ �

rl

rt

cosðjDÞ �
L3

t;u � L3
t;l þ r3

u � r3
l

3r2
t

þ rt cosðjDÞsin 2ðjDÞln
Lt;u þ ru � rt cos ðjDÞ
Lt;l þ rl � rt cos ðjDÞ

����
����

where rt = rt(Uc). By taking the derivative of eq. [26], we
find the effect of condensed topography on gravity at the to-
pographical surface:

½30� Ac
drðU ¼ UcÞ ¼ 2pG d sD

r2
g

r2
t

rt cos jD � rg

Lg;t

� 1

� �

From these results, we find the DTE and PITE for Uc using
eqs. [12] and [17], respectively.

We evaluate the differences between the results from
these analytical formulas and numerical determinations for
the particular case of Uc to find an absolute determination
of the error of our numerical approach in these particular
cases, which we take as an indicator of how well our ap-

proach might behave in other situations. Since this only pro-
vides absolute errors for one set of situations, the resulting
error estimates are not applicable for other simulations as
anything more than an indicator of what we might expect
the errors in those cases to be.

Results and discussion

Results demonstrating the capability of simulation
software

We present here two sets of results. First, as an example
of a simulation of the effect of a simple density distribution,
we present the effect on geoidal height of a disc, represent-
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ing a realistic density contrast, in topography of uniform
height. From these results, we are able to observe some
characteristics of the behavior of anomalous density effects.
We finally provide an example of the 3-D anomalous den-
sity effect of a lake, again in smooth topography, as an ex-
ample the effect of a density distribution given by a single
density interface.

For the first simulation, we consider a density distribution
given by a disc embedded in topography uniformly 2000 m
thick. The disc itself is 40 km in diameter and 500 m thick.
We have assigned it a density of 660 kg/m3, a typical anom-
alous density for, e.g., a disc of basalt embedded in sand-
stone (e.g., Parasnis 1997). If the center of the disc is
500 m deep, it produces the DTE and PITE shown in
Fig. 2, both of which show results over a 18 by 18 area.

Notice that, with the DTE, the minimum of *–4 mGal
(1 Gal = 1 cm�s–2) is not at the center of the disc but in a
ring around the center. This is because the DTE is the dif-
ference between a contribution of real topography to surface
gravity and a slightly smoother contribution of condensed
topography to surface gravity. The difference is constant
near the projected center of the disc; but within the disc,
moving away from its center, the contribution of real topog-
raphy decreases more slowly than that of condensed topog-
raphy so that the difference between the two grows.
However, around the edge of the disc the contribution of
real topography diminishes rapidly, whereas the contribution
of condensed topography diminishes more slowly. Thus, the
difference between the two grows smaller and eventually
changes sign, resulting in the ring of positive values sur-
rounding the disc. The maximum result of 1.8 mGal occurs
in this ring.

The same trend is not visible for the PITE, which has a
minimum of *–19000 m�mGal at the disc center. Unlike
the DTE, the PITE always decreases with distance from the
disc center, since in the contribution of real topography de-
creases more rapidly than the contribution of condensed top-
ography but is never less in magnitude than the contribution
of condensed topography. For the same reason, the differ-
ence between the two contributions converges to zero, which
is then the maximum value of the PITE.

Next, we examine the effects resulting from this disc if it
is rotated by certain angles around its west–east axis. In this
case, we present results from discs rotated by 0.58, 18, and
58. Here, we give the DTE and PITE on geoidal height.
Also, the center of the disc is now situated at a depth of
1000 m. The SITE in these and all of our simulations so far
is negligible. We further show the net effect on geoidal
height resulting from both DTE and PITE. Results for the
DTE, PITE, and total effect are given in Fig. 3, all of which
show results over a 18 by 18 area.

First, notice that, when the disc is nearly horizontal, the
maximum value of the DTE on height is over the center of
the disc. This is in contrast to the case with the DTE on
gravity and is a result of the smoothing effect of Stokes’ in-
tegration used to determine the DTE on height. Also, the
DTE and PITE tend to be larger where mass anomalies are
distributed closer to the topographical surface. This is be-
cause both the DTE and PITE represent a difference be-
tween contributions of mass on the geoid and at the
topographical surface, and these contributions are most dif-

ferent when the mass in real topography is distributed far-
ther from the geoid. For this reason, the maximum values
correspond to the part of the disc tilted toward the surface
and the minimum to the part tilted toward the geoid. In
terms of magnitude, in the case where magnitudes are larg-
est — where the disc is rotated to 58 from the horizontal —
the DTE ranges from –0.2 to 1.0 cm whereas the PITE
ranges from 0 to 1.2 cm. However, due to the rotation of
the discs, the DTE and PIPE do not cancel each other where
the positive effects are greatest. Thus, the total effect ranges
from –0.2 to 2.2 cm, which indicates that such a density
body would have a significant effect on precise geoid deter-
minations. These values are smaller in magnitude for other
simulations. For comparison, Huang et al. (2001), using a
2-D density model in the Canadian Rocky Mountains, cal-
culated anomalous density effects on the DTE ranging from
–5.1 to 2.6 cm, the PITE ranging from –2.5 to 1.7 cm, and
a total effect ranging from –7.0 to 2.8 cm. Huang et al.
find that these effects are <10% of the effects calculated
using a heterogeneous model of topographical density.

For our second simulation, we examine the 3-D anoma-
lous density effects generated by Lake Superior. We make
some simple assumptions in this simulation. First, we con-
sider all topography to have a thickness (height) of 183 m,
about the average height of the surface of Lake Superior.
We also assume that the density of all topography in the
area is 2670 kg/m3, a common value for the average crustal
density. The depths of the lake bed are given by a bathymet-
ric dataset prepared by Schwab and Sellers (1996).

We consider here the anomalous density relative to a lat-
erally varying distribution, with densities equal to the den-
sity at the topographical surface. This is coherent with
laterally varying density distributions based on densities
from geology maps. Thus, the laterally varying anomalous
density is situated between the bed of the lake and the geoid
(where the lake bed is above the geoid). The results of the
simulation are given in Fig. 4. We present results for the
DTE and PITE on geoidal height. The SITE proved negli-
gible. We also present the total effect of the DTE and the
PITE. The results are distributed from latitudes of 468N to
508N and from longitudes of 2648E to 2748E.

We notice especially here that the DTE on height is
smoother than the PITE on height owing to smoothing of
the DTE in Stokes’ integration. We also notice that, though
there are some peaks in the PITE, the PITE is generally
about an order of magnitude smaller than the DTE, so the
effects of the DTE are still dominant in the total effect. The
DTE ranges from –8 to 9 mm whereas the PITE is always
positive and has a maximum magnitude of only 0.9 mm.
Due to the small size of the PITE, the net effect is almost
identical to the DTE.

Verification of results
Here, we apply the first of our suggested tests of our re-

sults. Since all vertical integration is analytical, only the
horizontal integration in eqs. [13], [14], [18], and [19] is
performed numerically. Thus, as the horizontal integration
step is decreased, the results should approach an exact re-
sult. If the results do not converge, there is some problem
with our approach. Note that the analytical results provide a
more accurate estimation in this particular case, the analyti-
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cal result cannot yet be extended to any figure in spherical
coordinates.

To visualize this test, we calculate the DTE on gravity
and PITE on gravity potential for the projection of the cen-
ter of a disc on the topographical surface and geoid, respec-
tively, as the depth of the disc is varied. We model a disc
similar to the one used previously in the text but only
200 m thick. The height of the center of the disc is varied
from a height of 100 to 1900 m. Note that, at 1900 m, the
top of the disc would actually be coincident with the surface
of topography, a situation that cannot possibly occur when
considering anomalous density relative to a laterally varying
distributions based on surface geology. Here, we allow this
situation to occur, so we can more fully examine the behav-
ior of our results. Plots of the DTE and PITE against the
height of the disc center for various horizontal integration
step sizes are given in Fig. 5.

We see that the results in both cases do converge as the
integration step is decreased. In the case of the DTE, the 3
and 1 arcsecond lines are almost coincident except for a disc
lying just under the surface. At that point, the DTE shows a
slight increase for both. The same increase is much more
noticeable for larger integration steps, and so is also appa-
rently an artifact of the numerical integration. In the case of
the PITE, the results converge very nicely to almost coinci-
dent lines. This indicates that our results are at least consis-
tent with each other — at a given height, they converge to a
single value. However, we must verify that they are ap-
proaching the correct result.

As an exact standard by which we may test our results,
we apply eqs. [27]–[30] to determine exactly the DTE on

gravity and the PITE on gravity potential generated by the
disc discussed in this section. A comparison of the best
1 arcsecond numerical integration results with the fully ana-
lytical result available for the particular case of a disc is
shown in Fig. 6.

We see that the DTE from both results are nearly linear,
but the numerical result decreases more quickly than the an-
alytical result. Thus, the errors in the DTE grow as the depth
to the density anomaly decreases. Although the sharp in-
crease in the numerical result here makes it nearly coinci-
dent with the analytical result for a disc just below the
topographical surface, we know from our previous compari-
son that this increase is an artifact of the numerical integra-
tion, so the coincidence of the two results at that point is
only a fortunate canceling of errors, which does not usually
occur.

For analysis of these results, we mainly discuss the per-
cent differences between analytical and numerical results.
This is expedient because it represents differences between
the results in a way easily extrapolated to a crude estimate
of errors for results in general or of errors in effects on ge-
oidal height. For example, if we know the difference be-
tween the numerical and analytical results in this particular
case, where an analytical result is available for comparison
and reaches a maximum of 20%, we might guess that, e.g.,
our aforementioned lake simulation result has an error of
20% of the maximum effect of 9 mm, or about 2 mm. Of
course, this is a crude way of estimating errors, since results
of other simulations may behave very differently from those
for a disc. However, it is currently our only indication of ab-
solute error in the results.

Fig. 2. DTE on gravity and PITE on gravity potential, resulting from a disc 500 m thick, 40 km in diameter, with anomalous density of
660 kg/m3, with center 500 m deep, and embedded in 2000 m thick topography.
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Fig. 3. DTE, PITE, and the total effect of anomalous density on geoidal height for discs 500 m thick, 40 km in diameter, with anomalous
density of 660 kg/m3, with centers 1000 m deep, embedded in 2000 m thick topography, and rotated to 0.58, 18, and 58 from horizontal.
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Considering only the situations where the disc does not
touch the topographical surface, the maximum percentage
error in the DTE is 19% for a 1 arcsecond integration step.
In other simulations, we have been able to achieve errors as
large as 24%; but we are not especially concerned about
these, since the error is proportionally larger for thinner
discs. For example, if we perform a simulation as shown in
Fig. 6a, but with a 400 m thick disc, we find the maximum
percent error in the simulation is only 16%, whereas the
maximum magnitude of results is 0.9 mGal. We find the
greatest percent error (23.5%) for a disc 200 m thick and
30 km wide, and also in 2000 m thick topography. Thus,
the formations with greatest influence on the DTE are also
those whose effects, determined numerically, have the
smallest relative error. This is also the width of disc that re-
sults in the smallest magnitude of DTE.

In the case of the PITE, both results are again nearly lin-
ear, but the numerical result here decreases more slowly
than the analytical result with height of the disc center.
Thus, again, the error in the PITE grows as depth to the
disc decreases.

The percent error in the PITE is consistently much
smaller than that in the DTE, reaching a maximum in this
simulation of 4% for a disc near to the geoid. Note that the
percent error in the PITE is smallest for narrower discs and
when the bottom of the disc is near to the geoid. Unlike the
DTE, the PITE is greatest for thicker discs. The largest per-
cent error we have found for the PITE is for a disc 5 km
wide and 1900 m thick, with its bottom at the geoid, and in
2000 m thick topography, which yields an error of 7.6%.

We summarize in Table 2 the worst errors we have been
able to find in our results by comparison with an analytical
result for a disc. For all of these situations, the simulations
take place in 2000 m thick topography.

These results suggest maxima for our DTE and PITE re-
sults for the disc simulation and also some general principles
for the sort of distributions where our numerical results
might have lower accuracy. Considering that the maximum
error for the DTE is just over 20%, which decreases with
an increase in DTE, we consider this sufficient validation of

our approach for initial estimates of the order of magnitude
of 3-D anomalous density effects.

Conclusions

Previous attempts to account for topographical density ef-
fects on geoidal height have modeled topographical density
using a 2-D laterally varying model. Since in reality topo-
graphical density also varies vertically, the 2-D model can-
not account for all topographical density effects on geoidal
height. We attempt to remedy this problem by modeling
topographical density instead using surfaces representing
topographical density interfaces. We calculate the DTE on
gravity and PITE on gravity potential for any distribution
by using Newton integration over a topographical density
distribution defined by one or more interfaces within a
spherical cap. In the Newton integration, we use the analyti-
cal radially integrated Newton kernel and its radial deriva-
tive to determine effects of density between interfaces,
where it is piecewise constant. We then apply Stokes’ inte-
gration to determine the DTE, PITE, and SITE on geoidal
height.

In this paper, we present results for the effects of a hori-
zontal disc, for a disc rotated by various degrees along its
longitudinal axis, and for the vertical density anomalies of
Lake Superior. In all cases, we assume smooth topography
and reasonable density contrasts and consider anomalous
density relative to a laterally varying density distribution.
Total density effects of the disc on geoidal height reach
2.2 cm in magnitude when it is rotated by 58 while those
for the lake reach 0.9 cm in magnitude. We observe that the
DTE and PITE both have their greatest magnitude for
masses near to the topographical surface and add rather
than cancel each other for any of our disc simulations. In
the case of the lake, the effects are generally opposite but
do not significantly cancel each other out, since the PITE is
considerably smaller than the DTE.

We also attempt to validate our results by examining the
behavior of the DTE on gravity and PITE on gravity poten-
tial for the point at the center of a disc at various depths in

Fig. 4. Effects of 3-D anomalous density of Lake Superior on geoidal height.

582 Can. J. Earth Sci. Vol. 46, 2009

Published by NRC Research Press



topography. We found that as we decrease the horizontal in-
tegration step, the results in both cases converge but do not
converge exactly to a purely analytical result for the effect
of the disc at these points. In our simulations, we found that
the numerical DTE result is greater in magnitude than the
analytical result, with a maximum error of 23.5%. However,
the greatest percent errors for this effect occur where the
magnitudes of the effect are smallest; and, in the worst
case, we have found the error is only 0.16 mGal in magni-
tude. Greater DTE errors occur where the mass is concen-
trated near the topographical surface but small. The
numerical PITE result is consistently of lower magnitude
than the analytical result, with maximum percent error of

7.6%. In the case of the PITE, the greatest errors occur for
discs near the geoid when mass is great and the discs are
small. Thus, for distributions having large effects, we expect
the error in our calculation of those effects is considerably
smaller than the magnitudes suggested here.

Future efforts will include more thorough treatment of the
singularity of the Newton kernel as applied in a 3-D density
modeling context and investigation and mitigation of the er-
rors we have detected in our numerical results. However,
with our efforts so far, we can suggest that 3-D anomalous
topographical density may have centimetre-level contribu-
tions to the geoidal height in some situations. Whether those
situations are common is yet to be seen.

Fig. 5. DTE and PITE against height to disc center for discs 200 m thick, 40 km in diameter, with anomalous density of 660 kg/m3, em-
bedded in 2000 m thick topography, with varying heights to disc center, and with varying horizontal integration intervals.
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Fig. 6. DTE and PITE against height to disc center for discs 200 m thick, 40 km in diameter, with anomalous density of 660 kg/m3, embedded
in 2000 m thick topography, and with varying heights to disc center, from both analytical and numerical integration with 1 arcsecond step.

Table 2. Worst case errors to date for DTE and PITE, determined by
comparison with an analytical result for a disc having density contrast of
660 kg/m3 in 2000 m thick topography.

DTE PITE
Analytical result –0.67 mGal –38239 m�mGal
Numerical result –0.82 mGal –35317 m�mGal
Difference –0.16 mGal 2922 m�mGal
% error 23.5 7.6
Disc width (km) 30 5
Disc thickness (m) 200 1900
Depth to disc center (m) 200 1050
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