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Abstract. In this paper we analyze the errors
introduced by the use of transformation grids. A
transformation grid is an intermediate step during
the transformation of coordinates of points attached
to distinct geodetic reference frames. The use of
transformation grids simplifies the transformation
when compared to the reference transformation that
the grid represents.

Transformation grids have become a standard way
of making transformation distortion models available
for end-users. They are widely accepted by the GIS
industry, being already supported by a host of
commercial and free programs. They are adopted in
countries like Canada and Australia, and are
currently being considered for adoption in Brazil.

The work described in this paper was conducted
by addressing a number of questions in the
following sequence: (i) “Is there an upper bound in
the error introduced by a transformation grid?”; (ii)
“What is the coarsest spacing between nodes for a
transformation grid to introduce only negligible
errors?”’; and, (iii) “How does the error introduced
by a transformation grid vary spatially?”’

To answer these questions we transformed a set
of random test points twice, once using a
transformation grid and once using the reference
transformation that the grid represents. Then, we
analyzed the difference between the two results. We
show that: (i) yes, there is an upper bound in the
error introduced by the grid; (ii) the coarsest
spacing can be found by plotting error versus
distance to nearest grid node; and, (iii) the error
varies spatially partially in proportion to the norm
of the second derivative of the reference
transformation.

Keywords. Geodetic reference systems and frames,
distortion modeling, transformation grids.

1 Introduction
Geodetic reference frames have intrinsic distortions

due to the positioning techniques used for their
materialization. The ones materialized by classical

terrestrial techniques have their distortions due to
the surveying techniques employed in the past.
Modern, satellite-based ones have considerably less
distortions. When one establishes relationships
between reference frames, distortions should be
taken into account. The modelling of distortions
becomes even more important when relating
coordinates of points between an “old” reference
frame (materialized by classical techniques) and a
“modern” reference frame. The distortions in the
former should be modelled and taken into account.

The modelling of the distortions in the
materialization of a reference frame provides better
transformation results, but it makes it harder for
non-expert users to apply them, especially if those
users are using third-party software tools over which
they have little control. That is because, as there is
no commonly used form for transformations
involving distortion modelling, popular software
tools usually do not support them.

Transformation grids, sometimes also called “grid-
shift” files, represent the field of shifts (the total shift,
not the distortion only) in coordinates between two
reference frames. It plays the role of a facilitating step
in the transformation involving distortion modelling.
The surface representing the shift field does not need
to be generated many times, but only once. The grid
will correspond to this surface.

Usually the procedure to use the grid is simpler
than the reference transformation that was used to
generate it. That is the reason why the grid makes it
easier for users to apply the transformation. Also the
procedure to use the grid is standardized, which
makes it easier for software developers to support it
in their programs.

The aim of this work is to analyze the errors
introduced by the use of grids in the transformation
between geodetic reference frames. The work has
been conducted by addressing a number of
questions, in the following sequence: (i) “Is there an
upper bound in the error introduced by a
transformation grid?”; (ii)) “What is the coarsest
spacing between nodes for a transformation grid to
introduce only negligible errors?”; and, (iii) “How
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does the error introduced by a transformation grid
vary spatially?”

This work was developed to support the
transition from a classic non-geocentric reference
frame to a modern geocentric reference frame in
Brazil. We hope that by sharing our experience
interested people or agencies facing a similar
transition can benefit, in the same way we have
benefited from work conducted to support similar
transitions elsewhere in the world.

In Section 2 we present a background discussion
about transformation of coordinates between
geodetic reference frames in general, with a specific
focus on transformation grids. In Section 3 we
describe the data and techniques used in our
analysis. Section 4 contains a discussion on the
results obtained. In the final section we summarize
the findings of this work.

2 Background

2.1 Transformation between geodetic
reference frames

A similarity transformation is sufficient to
transform points between defined reference systems
(not frames'). A  tri-dimensional  similarity
transformation is fully described by seven
parameters, as follows: one translation in each of
the three Cartesian directions, one rotation around
each one these directions, and a uniform scale
factor. Although the scale factor is not necessary to
transform one reference system onto another
(Vani ek and Steeves, 1996), it is needed to
transform points between reference systems.

As reference systems are idealized abstractions,
we have access to them only through their
materialization, called reference frames. Geodetic
reference frames have intrinsic distortions due to
the surveying techniques employed in their
materialization. Distortions may, for instance,
increase the farther away the point is from the
origin, in the case of classical reference frames
(IBGE, 1996). As we transform coordinates of
points between two reference frames the distortions
in one of them can be taken into account (assuming
that the distortions in the newer, e.g., satellite-based
one, are negligible compared to the distortions in

"' We are following the IERS usage of the terms reference
systems and reference frames (see, e.g., McCarthy and Petit,
chapter 4).

the older, classical one). The modelling of
distortions is important so that they do not propagate
through the transformation from the old to the new
reference frame, and are added back when
transforming from the new to the old one, in order to
guarantee a one-to-one correspondence between
points in them.

Underlying the use of the similarity
transformation there is the assumption that the
distortions are non-existent or negligible (Collier,
2002). With the greater accuracy achieved by the
use of geodetic space techniques (e.g., GPS), that
assumption is no longer valid, particularly when the
frames are of different nature, e.g., a classical and a
space-based one. In this case, the similarity
transformation alone is not enough. We have to
either augment it by introducing a component to
model the distortions, or choose a different
transformation model.

There are many models of transformation between
geodetic  reference frames with  distortions
modelling. Collier et al. (1998) provides an
overview on the problem. Junkins and Erickson
(1996), Oliveira et al. (1998), and Costa et al. (1999)
report additional investigations. In the general case,
the transformation between coordinates can be
treated as an interpolation problem (Wolberg, 1999),
and then the various general spatial interpolation
models (e.g., inverse distance weighting, splines,
Kriging, etc.) can be applied. We have not found in
the literature a commonly used model for distortion
modelling.

2.1 Transformation grids

As mentioned in the previous section, there is no
one common model for the transformation between
reference frames with distortion modelling. That
represents a challenge for non-expert users who use
a variety of CAD, GIS, and Image Processing
software tools provided by third parties. These tools
usually offer a limited set of predefined
transformation models. The inclusion of a different
model is beyond the regular use of the tools, usually
requiring modifications at the source code level.
One way to overcome this challenge is to
introduce an intermediate form in the transfor-
mation, whose format and usage are standardized.
That intermediate form is the so-called trans-
formation grid. No matter what transformation was
employed to generate it, the transformation grid can
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be used always in the same way. By “standardized”
we mean that there is a specification describing it.
Therefore, if we generate a grid complying with the
specification, automatically our grid will be
supported by the tools developed earlier that
already comply with it.

The transformation grid is an array of shifts. At
each node of a two-dimensional regular array the
shifts in the two horizontal coordinates are given.
These shifts should be added to the “old”
coordinates in order to get the “new” ones. The
positions of the nodes are described in the old
reference frame.

The procedure to transform coordinates using a
transformation grid is as follows: (1) find in the
grid the four nodes nearest to the point to
transform; (2) apply a bi-linear interpolation to the
shifts at those four nodes; (3) sum the interpolated
shifts to the old coordinates of the point to
transform. The result is coordinates of the same
point in the new reference frame. By an iterative
procedure the same grid can be used to do the
inverse transformation, i.e., from new to old
coordinates.

The grid is generated by evaluating the reference
transformation procedure at each of its nodes, and
then computing the difference between the
transformed (i.e., new) and the old coordinates.
Once generated, the grid needs to be formatted in a
standard way (see, e.g., Mitchell & Collier, 2000).
It can be coded first in free text and later converted
to a binary format.

Transformation grids were adopted in Canada,
the USA, and Australia. This approach is
independent of a specific software tool. Therefore,
the tools developed to support the use of
transformation grids in one country could be used
in a different country. Nowadays there is a host of
commercial and free programs for both the end-user
and the programmer that support transformation
grids’.

3 Data and methods
3.1 Control points
In our investigation a set of 200 control points from

the State of Parana, in Brazil, was used. The
geographic location of these points can be seen in

? For a list of free programs, please contact the first author;
for commercial ones see ICSM (2005) and GSD (2005).

Figure 1. Each control point has coordinates in two
different Brazilian realizations of the South
American Datum of 1969 (SADG69): the original
one, and its 1996 realization (SAD69/96). We will
be considering these two realizations as two
different reference frames.

For each control point the shift in coordinates
between the two reference frames was computed by
simply taking the difference between them. The
shifts in latitude are almost 10 times larger than the
shifts in longitude, making the shifts in longitude
hardly noticeable when plotted together. For a better
visualization, we show in Figure 2 the normalized
shifts’.

Figure 1 Position of the control points.
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Figure 2 Normalized shifts at control points.

° From now on, whenever we show the shifts in latitude and
in longitude together, we will be showing normalized shifts.
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3.2 Reference transformation

To analyze the errors introduced by the grid we need
a reference transformation to be used as a benchmark
for the comparisons to follow. After obtaining that
reference transformation we assume it as “true” or,
conversely, that it does a “perfect” job modelling the
observed shifts, which are then abandoned. This is
valid because we are not interested in the errors
introduced by the reference transformation itself,
only in the errors introduced by the grid alone.

To allow us to answer the third question posed in
this paper (section 4.3), we needed a transformation
that would yield results with high spatial variability.
Therefore we discarded simple well-behaved models
such as global polynomial surfaces of low degree.
Other than that, the choice was arbitrary.

The chosen reference transformation is as follows.
We interpreted the shifts in latitude and longitude as
two separate two-dimensional scalar fields, varying
over the horizontal space. Then, we used the triangle-
based bi-cubic interpolation (Fortune, 1997) to
interpolate the shifts at the desired points. A sample
of the reference transformation’s result is shown in
Figure 3. Figure 4 shows the so-called Delaunay
triangulation of the control points, an intermediate
result required by the chosen transformation.

Figure 3 Sample result of the reference transformation (thin,
regularly spaced arrows) against observed shifts (thick arrows).
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Figure 4 Delaunay triangulation of the control points.

3.3 Generation of the transformation grid

We generated an array of regularly spaced nodes
(spaced 13° 30" in latitude and longitude) enclosed
by the convex hull of the control points, as shown in
Figure 5. Then, we evaluated the reference
transformation at each grid node. The results of this
evaluation are shown in Figure 6.

Figure 5 Control points (crosses), convex hull of control
points (outer line), and grid limits (rectangular area).
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Figure 6 Modeled shifts at grid nodes.

3.4 Test points

To evaluate the performance of the grid we overlaid
on it 10,000 points at random positions, as shown in
Figure 7. The number of random points was chosen
arbitrarily. We transformed the coordinates of each
random point using (i) the reference transformation,
and (ii) the grid. The difference between (i) and (ii)
represents the error introduced by the grid.
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Figure 7 Random test points (thin dots) and grid nodes
(thick dots).

3.5 Use of the transformation grid

We have used a program conforming to the
transformation grids specification (the Canadian
NTv2) to verify that the grids we were generating
followed the specified text format.

The grid is to be used for interpolating bi-linearly
(Press et al, 1992) the shifts given at the grid nodes.
We did so with a Matlab implementation (function
interp2) of that interpolator.

4 Results and discussion*

4.1 Is there an upper bound in the error
introduced by the transformation grid?

Obviously the grid may introduce an error with
respect to the reference transformation. That is so
because the grid transformation model (which is
made of the grid itself and the bi-linear interpolator
to be applied on it) may not be able to capture all
the variability described by the reference
transformation. We would like to assess how bad
this error can get.

To answer this question we analyzed the
cumulative mean and maximum errors of the
random test points as we increased the number of
points (see Figure 8). In that figure, each dot
represents an individual test point; the thin, stepped
curve is the maximum error; the thick continuous
line is the mean error. These error curves are
cumulative, meaning that each value along them is
calculated from the test points to the left of it.

* Due to lack of space, in the following we have figures only
for longitude. The corresponding figures for latitude show
curves with similar behaviour and values 10 times larger.

As we sample the grid error with more and more
test points, we find that there is an upper bound in
the error curves. In our case, we noticed that after
5,000 test points the error stops increasing, meaning
that (i) that sample is representative of the grid
error, and (ii) the error is no greater than 3.5 x 10°
degrees or 0.0126".

The upper bound on the error curves depends on a
balance between grid spacing and spatial variability
of the reference transformation results. The next two
questions below address the problem of “tuning” a
grid so that it introduces only negligible errors, in an
efficient manner.

«10 Error in longitude for each random point

 Absolute error
Cumulative maximum error

Cumulative mean error
4r . . . = = = Cumulative standard deviation

1000 2000 300 0 5000 9000 10000

Figure 8 Absolute error at each point (thin dots), maximum

cumulative error (thin, stepped curve), and mean cumulative
error (thick, continuous line) versus number of test points.

4.2 What is the coarsest spacing between
nodes for a transformation grid to introduce
only negligible errors?

First of all it is required that the ones generating the
grid define what error would be negligible in their
application. This value might be based, e.g., on the
error already introduced by the reference
transformation itself. We will describe an example
later in this section.

The question will help us to tune the grid so that
the inevitable errors introduced by it do not affect
the application we have in mind. Here we will
assume that there is only one uniformly spaced grid
covering the area of interest. In the next question we
will be interested in the case of reducing the grid
spacing locally (instead of globally, as we do here).

To answer the question we have obtained, for
each test point, the “distance™ to its nearest grid

* The “distance” is actually the Euclidean norm of the
difference in geodetic coordinates between a given point and
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node. We sorted the points based on that distance.
Then we analyzed how the error increases as that
distance increases (see Figure 9). Intuitively, the
closer a point is to a grid node (i.e., the smaller that
distance), the better the grid model represents the
actual shift at that point or, conversely, the smaller
the error is at that point.

wiot Error in longitude versus distance to nearest grid node

- Absolute error
Cumulative maximum error
e Cumulative mean error

6 - = == Cumulative standard deviation

0.16

Figure 9 Error in longitude at each point (thin dots),
maximum cumulative error (thin, stepped curve), and mean
cumulative error (thick, continuous line) versus distance to

nearest grid node.

Figure 9 can be used to find the coarsest spacing
between nodes for a transformation grid to
introduce only negligible errors. To do so, first, we
specify the maximum acceptable error; second, we
find the corresponding maximum distance to a grid
node, using the error curve in Figure 9; third, we re-
generate the grid using that distance times 2 (see
Figure 10) as the spacing between its nodes.

Maximum Nodes
distance spacing

Figure 10 Relationship between maximum distance and
nodes spacing (equal spacing in both directions).

As an example, the maximum acceptable error
was chosen arbitrarily as 2 x 10” degrees, which
equals 0.072". The corresponding maximum
distance found in the maximum latitude and
longitude error curves is 0.04° (Figure 9) and 0.025°
(figure not shown), respectively. As there is only

its nearest node. It is not, e.g., the ellipsoidal distance
between the two.

one grid, it should satisfy both latitude and longitude
maximum errors. Therefore we wuse the most
stringent maximum distance, which is 0.025° in
this case. 0.035° is the spacing between grid nodes
that yields 0.025° as maximum distance (i.e., 0.035°
=2 x 0.025°).

Figures 11 show the nodes of this new, denser,
grid, and Figure 12 shows its corresponding error
curve. Now the maximum distance is 0.025° (see
horizontal axis), and the maximum error is close to
2x107° degrees (see vertical axis), as specified.

Figure 11 Nodes of the denser grid.

10 Enor in longitude varsus distanca to nearest grid nods

Figure 12 Error at each point (thin dots), maximum
cumulative error (thin, stepped curve), and mean cumulative
error (thick, continuous line) versus distance to nearest grid

node — denser grid.

4.3 How does the error introduced by a
transformation grid vary spatially?

In the previous question we assumed that we would
be using only one, uniformly spaced grid. But
transformation grids allow the use of sub-grids, i.e.,
denser grids covering a subset of the main grid. This
property is important when a national grid is
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densified by a state or provincial grid. It is useful to
be able to predict the maximum error spatially
because the areas with high maximum errors would
be strong candidates for sub-gridding.

To help us tackle the posed question we have
used a denser’ set of regularly spaced test data. We
did so to improve visualization. The denser point
set depicts the patterns in more detail, and the fact
that it is regularly spaced allows us to plot the set as
an image, which is a lot faster than to plot each
individual point.

We expected to find a spatial portrayal of the
behaviour shown in Figure 9, i.e., error increasing
as a function of distance to nearest node. But what
we found was the intriguing pattern shown in
Figure 13. Maxima seem to concentrate near edges
and vertices of the Delaunay triangulation.

a ."1-_ i '?A“‘/
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Figure 13 Error (red — large values, blue — small values) in
longitude versus latitude and longitude, with edges of
triangulation overlaid.

In the search for an explanation for that behavior,
it was brought to our attention the existence of the
following formal error bound for the 1-dimensional
linear interpolation (Wikipedia, 2005):

"

|e‘s( %)’

max (D

Xo=¥<X)

where e is the error, fis the reference function being
approximated by the interpolation procedure, and x,
and x, define the limits of a piece of the domain on
which the interpolation is taking place. The
expression above shows that, in the 1-dimensional

% The test points were 10 times denser than the
transformation grid nodes.

case, the piece-wise maximum error depends
strongly on the absolute value of the second
derivative of the reference function.

We could not find or develop an expression
describing a similar dependence in the 2-
dimensional case. Then we went to investigate
empirically whether a similar behaviour is observed.

To do so, we calculated numerically the second
gradient of shift in each coordinate, by means of the
central difference numerical derivative (Press et al.,
1992) in each direction. The norm of that gradient is
shown in Figure 14.

dense gid nom deriv2 shiftlon

S AU

Figure 14 Norm of the second gradient of shift in longitude
(red — large values, blue — small values), versus latitude and
longitude, with edges of triangulation overlaid.

We see roughly the main peaks at the same
positions (see, e.g., SE-, NE-, and NW-corners).
Despite that, the overall matching is weak, as
attested by the correlation coefficients: 0.4 and 0.3
for shifts in latitude and in longitude, respectively.

The main difference between the error field and
the second gradient norm field is that the latter is
better defined, with sharper variations, while the
former seems like a locally-averaged version of the
latter.

To verify the interpretation above, we defined
grid cells, which are rectangular areas delimited by
four nodes of the original grid (the grid on which the
errors are based — see Figures 5 and 10). Then, we
computed the maximum values of error and norm of
second gradient per grid cell. At this time the
correlation is stronger: 0.76 and 0.75 for shifts in
latitude and longitude, respectively (see scatter plot
in Figure 15). Therefore, in this case, the norm of
the second gradient of shifts predicts partially the
error per grid cell.
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Figure 15 Scatter plot of error in longitude versus norm of
second gradient of shift in longitude.

As stated at the beginning of this section, in the
process of developing and tuning transformation
grids, the areas with high errors would be strong
candidates for sub-gridding. We should recognize
that for this purpose it might be more practical to
simply obtain and analyze the error field directly
(Figure 13) instead of predicting it only partially.

5 Conclusions

In this paper we analyzed the error introduced by
the use of transformation grids. We have shown
that: (i) there is an upper bound in the error
introduced by the grid; (ii) the coarsest spacing can
be found by plotting the error versus distance to
nearest grid node; and, (iii) the maximum error vary
spatially partially in proportion to the norm of the
second gradient of the shifts. We believe these
conclusions and, more importantly, the analyses
presented in this paper, might be useful to
individuals and agencies considering, developing,
or tuning transformation grids to support the
transition from a classic to a modern reference
frame.
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