Chapter 29

Feeding Neural

Network Models with GPS

Observations: A Challenging Task

R.F. Leandro
Department of Geodesy and Geomatics Engineering,

University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick, Canada, E3B 5A3

C.A.U. Silva

Department of Civil construction, Federal Technologic Learning Centre, Belém, Para, Brazil

M.C. Santos
Department of Geodesy and Geomatics Engineering,

University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick, Canada, E3B 5A3

Abstract. Much has been done in terms of
functional and stochastic modelling of observations
in space geodesy, aiming at the development of
adequate adjustment models. One of the techniques,
which has been the focus of more attention in the
last years, is the Neural Network model. Although
not trivial to be used, this kind of model provides an
extreme adaptation capability, which can be an
issue of fundamental importance for certain
applications. In this paper we discuss the use of
GPS observations in Neural Networks models,
providing a brief description how a neural model
works and what are its restrictions, as well as how
to treat the GPS observations in order to satisfy
them.

A Neural Network is an information processing
system formed by a big number of simple
processing elements, called artificial neurons.
Typically the input values must be normalized, with
typical range [0,1], or alternatively [-1,1]. After
processed, the signal can be transformed back to its
original origin and amplitude. When dealing with
GPS observations, namely ranges and range rates,
the absolute numerical values are usually pretty
large (e.g. order of 20 millions of meters for ranges)
coupled with precisions in the order of mm for
carrier-phase and meter for pseudoranges. The
observations need to be modified to avoid
degrading their precision during the normalization,
in order to make the application of neural models
suitable for GPS data.

In this work methods to make the use of GPS data
possible in neural models are discussed and showed
with real examples. The analysis is made for both
pseudoranges and carrier-phases. It is demonstrated
that with the adequate treatment the use of those
observables can be made without degradation of
precision.

Keywords. Neural Networks, GPS.

1 Introduction

Modelling plays a fundamental role in Geodesy.
Signal processing, physical phenomena functional
modelling, interpolation, forecasting, stochastic
modelling are a few examples of the applications
that require modelling in Geodesy. In most cases
adjustments are used, and in this case, the most used
technique is the least squares procedure. Filters are
also widely used, such as Kalman filter, which
involves some of the least squares technique
concepts. In the ninety’s a new technique appeared
to be useful in Geodesy, called Neural Networks.
Primarily developed for computing applications,
such as pattern recognition, neural networks have
been adapted to be used in several fields of science,
including Geodesy. Those adaptations are needed
because usually the situations and problems
encountered in computer science are sometimes
very different than in other fields. Geodesy was not
an exception in this case, and because of that, the
Neural Network analyst for geodesy needs to have a
good knowledge in neural data processing in order
to be able to use this technique successfully.
Adaptation of the geodetic data may be needed in
some cases to make the data useful in a neural
model. This is the case explored in this paper, where
the problem of using GPS data in neural networks is
shown. Compatibility between GPS and the neural
model has to be made possible by means of some
modification in the original GPS data. This
innovating synergy has made necessary the
development of novel techniques in terms of GPS
data handling.

Chapter 29 - Feeding Neural Network Models with GPS Observations: a Challenging Task

187

2 Neural Network Models

A Neural Network is an information processing
system formed by a big number of simple
processing elements, called artificial neurons, or
simply neurons. The first artificial neuron model
was presented by Rosenblatt (1958), who called it
perceptron.

Fig. 1 Nonlinear artificial neuron model (Adapted from
Haykin, 1999).

A perceptron computes its input as a linear
combination of its input signal by using the
synaptic weights. The synaptic weights play the
role of parameters, which are adjusted at the
training process (this procedure will be discussed
later in this section). The synaptic weights hold the
knowledge of the network. After that an activation
function is applied to the neuron input to generate
the neuron output (in the case of a single neuron it
is already the output signal). One neuron can have
one or more outputs, always with the same value. In
the case of a identity activation function, the neuron
plays the role of a linear model. The processing of a
neuron k can be represented by:

Ve =(p[§(xi.wk,-)+bk], (1)

where y, is the neuron output, ¢ is the activation
function, m is the number of input parameters, x; is
the i-th input parameter, wy; is the i-th synaptic
weight and b, is the bias.

Typically the order of normalized amplitude of a
neuron output is in within the range [0,1], or
alternatively [-1,1]. This range depends on the type
of activation function used. The neural model also
includes a term that is applied externally, called
bias and represented in Figure 1 by b; . The bias
has the function of increase or decrease the neuron
input.

It is possible to introduce a functional link into the
network as an additional layer of neurons, called a
hidden layer. This layer can be composed of one or
more neurons. The input signal of the hidden layer
neurons is generated by the output signal of the
input layer. The output signal of the hidden layer is
used to generate the input signal to the output layer.
It is also possible to introduce not just one, but
several hidden layers into the model.

Neural Network Multilayer Perceptron

Hidden Layer
Input Layer

X(1)
—p

Output Layer

C Y(t)

X(2)
—_—

o & @

Heoooo

X(3)
—

[t

Blas

Fig. 2 Neural Network Multilayer Perceptron.

Figure 2 shows a scheme of a neural network with
one hidden layer. In this example, x(1), x(2) and x(3)
are the input parameters and y(t) is the output
parameter. Each element, excepting the biases, is a
neuron. Each of these neurons is a processing
element that works according to equation (1). The
synaptic links (the lines in the draw) connect the
different layers, carrying the output signal of a
previous one to generate the input signal of the next
one. Each synaptic link of the network has a
corresponding synaptic weight that is applied to the
flowing signal that is going through it.

Another issue of a neural network model is the
number of neurons of each layer. This number is
fixed to the input and output layers, in function of
the input and output parameters. For the hidden
layers this number is arbitrary. The model resulting
from adding hidden layers between the input and
output layers is called Multilayer Perceptron (MLP).
The MLP is not the only type of neural network
model, but is one of the most popular ones, due to
its high adaptation capability and its applicability to
a wide group of different applications.

It is necessary not just to know which model will be
used, but also all its characteristics, such as the
number of hidden layers, the number of neurons in
each hidden layer, the activation function of each

188

R.F. Leandro - C. A. U. Silva - M. C. Santos

layer, etc. There are others more specific
characteristics that will not be discussed here.

Once we have a model defined, it is necessary to
train the neural network with real data. Such data is
composed by a set of known input and output
parameters. The training process is not more than
an adjustment of the synaptic weights to the data set.
This adjustment attempts to decrease the residuals
of the output of the network. The residuals are the
difference between the computed output and the
known output. Based on these residuals it is
performed an update of the synaptic weights. Due
to the complexity of neural networks, the
adjustment can not be done with a direct
computation, so the so called training algorithms,
which are a type of iterative adjustment of the
synaptic weights, are used. One of these algorithms
is the backpropagation training algorithm, which is
composed by two steps. The first one is the feed-
forward, when the Network is fed with a set of
inputs that are propagated through the links, from
the input layer to the output layer. After that the
output value is compared with the known output
(from the same set) and the residuals are computed.
The second step is the feed-backward. In this step
the network is fed with the errors of the previous
step, which are propagated through the network
from the output layer to the input layer (backwards).
During the feed-backward step the synaptic weights
are adjusted, using the partial derivatives of each
activation function with respect to each synaptic
weight. In this step, an additional parameter is also
used, which is the learning rate. The learning rate
controls how much the weights are going to be
updated, given the derived correction. These two
steps are carried out several times, for all training
sets (which are also called training patterns), and
for several epochs (one epoch is the cycle where all
patterns are used once in the training process). It is
made several times to each parameter up to the
residuals converge to a desired threshold value.
After the training process we have a Neural
Network Model with adjusted synaptic weights
according to the training parameters. Figure 3
shows a plot of a training process.

In the example above, the goal of the training
process was to achieve a value for the summation of
the squared residuals (or errors) of 0.001 (the
straight line in the plot). This number is
dimensionless because of the normalization process
that all data has to go through before it can be used

Performance ks 0000908428, Goal ks 0.001

Training-Blue Goal-Black

0 50 100 150 200
222 Epochs

Fig. 3 Neural network training process

in the neural model. In the case of this figure, the
goal was achieved in 222 epochs, when the network
got a value less then the imposed goal. Usually the
initial value of the residuals is high, because the
weights of the network have to be initialized with
arbitrary or randomic values.

Neural networks can be used in three distinct ways:
as intelligence simulation systems, as real time
adaptation processors or as data analysis systems.
One of the advantages of neural networks models is
their high flexibility, allowing solving problems for
dynamic and non linear systems. The generalization
capability allows estimations of values not used in
the training process. In this case, neural models can
be successfully used for approximation,
interpolation, extrapolation, time prediction. Their
complex nature allows the use of hyper surfaces to
represent the phenomena modeled, and the training
process makes them self-adaptative. These
characteristics make the neural networks an
attractive solution, since they are theoretically
capable of approximate any surface (and therefore
modeling any phenomena) without a high
knowledge of the phenomena modeled.

In order to successfully conceive a neural network
model, some steps are necessary. One of the steps is
the definition of the optimal architecture of the
network, for the specific application it is going to be
used. The architecture consists of the definition of
the number of layers, and the number of neurons in
each layer. Together with this step, there are also
other parameters to be established, such as the
learning rate, type of activation functions and

Chapter 29 - Feeding Neural Network Models with GPS Observations: a Challenging Task

189

normalization interval. All of them play an
important role in the training process, and an
important role in the generalization capability of the
neural model. Seeking the optimal set of parameters
and architecture for a neural network can be a hard
work. Although some authors define some rules to
setup a model, there is not a defined procedure to
follow in order to build a model.

In the testing procedure (which is performed to test
the efficiency of candidate models for certain
application) depending on the complexity of the
architectures the training procedure can be time
consuming, even for fast computers. The training
time of a neural network can vary from a few
seconds to several days. Even though it is necessary
to spend some time to set an optimal configuration,
the results of the neural network estimations usually
pay off the effort made.

3 Neural Networks for Geodesy

Neural networks showed to be an attractive
alternative in terms of modeling for several areas,
and it was not different for geodesy.

Since early nineties several authors have published
papers reporting the use of neural models in
geodesy, for different applications. These
applications include navigation (e.g. Dumville and
Tsakiri (1994), Chansarkar (1999), Vickery and
King (2002)), geoid approximation (e.g. Kuhar et al
(2001)), weather parameters (atmosphere and space)
interpolation and forecasting (e.g. Xenos and
Stergiou (2002), Leandro (2004), Leandro and
Santos (2004)), prediction of Earth orientation
parameters (e.g. Schuh et. al. (2002)), design of
networks (e.g. Chang et. al. (1996)) and others.
Usually the utilization of neural models is
attempted in order to solve problems where
deterministic and statistic tools still requires
improvements, or where there isn’t a very good
knowledge about the modeled phenomena. A
potential application is also the dynamic filters
where the real time adaptation capability of neural
networks fits pretty well. This is the case for
example of the navigation applications, when the
neural model has to “learn” the pattern of the
movement, playing the role of a predictive filter.
The models designed for approximation and
interpolation usually target phenomena for which
the modeling with linear models is complicated, or
the deterministic functions don’t fit very well on the
approximated surface. As said in the previous

section, a neural network can theoretically
approximate any surface, depending only on
whether an optimal configuration (architecture and
other parameters of the neural model) is found or
not for the specific case. So, in theory, with the
optimal configuration, neural network models are
capable of perfect fitting for these cases. The
difficulties to achieve it are the determination of the
optimal configuration, and the size of the data set
available to train the network.

In terms of forecasting, neural networks have also a
good advantage, given by their adaptation capability.
While when using deterministic models a
beforehand, complete knowledge of the modeled
effect is necessary, in case of neural networks the
model can adapt itself to the behavior of the time
series, in order to be able of forecast future
occurrences. Also, when it’s considered that the
series has a stochastic component, there is need of
using a stochastic model coupled with the
deterministic model. In case of neural networks
there is no such need, because a single neural model
can be used for either or both components. Leandro
and Santos (2004) have showed this kind of
application, using neural networks for space weather
parameters forecasting. Another example that
involves time series is the case of GPS cycle slip
detection and correction, where neural models can
be used to predict values for GPS carrier phase
measurements.

Far from being a concurrent to the actual modeling
techniques, such as least squares, neural networks
can play an important role as an additional key for
complex problems. Neural models differ from least
squares adjustments in several aspects, such as:

v Synaptic weights in neural models play the role
of parameters in least squares;

v The architecture of a neural model plays the
role of the functional model in least squares;

v' Patterns used in the training process can play
the role of observations and/or constraints in a
least squares adjustment, depending on the
training RMS goal;

v' Test patterns play the role of control points;

v Errors as called in neural processing are similar
to observation residuals in adjustments;

v' The training process plays the role of the
parameters adjustment;

v' The learning rate plays the role of an
observation weight (it controls the update of the
parameters/synaptic weights);

190

R.F. Leandro - C. A. U. Silva - M. C. Santos

v" An epoch in neural training process plays the
role of an iteration in an adjustment;

v' In least squares adjustment, the functional
model has to be built to represent the
phenomena. In neural networks, the
architecture is built in order to be able of
adapting itself to the phenomena.

Even thought there are several differences between

them, in some cases neural networks and least

squares can be along side. This is the case of using
neural networks as the transition part of Kalman
filtering. For example one can take advantage of the
well known functional model for positioning to
build the update adjustment of a navigation filter,

together with a neural network playing a role of a

self learning navigation estimator as the transition.

Neural networks, when used properly, are a very

attractive tool that can make a difference enhancing

actual techniques with a high adaptation capability.

Its potential applications are countless, being

restricted only by the geodesist’s imagination to

link a neural model to a geodesy problem. As the
proposed subject of this work, some of those
techniques are discussed in next section.

4 Feeding Neural Networks with GPS
observations

When we talk about using GPS data in neural
networks as a relevant subject, the first question
that arises is why should the data need special
treatment to be useful. Actually, there are some
reasons to that and the first one (maybe the more
important one) is the fact that in neural processing,
all values should be set between 0 and -1, or
between -1 and 1. This implies that values of the
order of tens of thousands of kilometers (in the case
of pseudoranges) or up to hundreds of thousands of
cycles (in the case of carrier phase) must be fit into
small intervals, and the model still needs to be
capable of providing estimations with precision
compatible with the original data. Other aspect to
be considered is the compatibility between training
patterns from different observations and the
compatibility between training and testing patterns.
The generalization capacity of the model depends
on this coherency when transforming the original
data set.

The value which is most used in neural networks
for performance analysis is the MSE (Mean
Squared Error). The MSE can be computed with the
equation:

1%,
MSE =—73%¢", (2)
np j=1

where np represents the number of patterns used in
the training process. It is easy to notice that the MSE
is nothing more than the variance of the neural
network estimations. Therefore, with this value we
can relate the performance of the network with
estimated variances for real data. However, since the
data handled by neural models is normalized, a
transformation is needed, which can be easily
derived from error propagation law:

0% =NF?. MSE , (3)

where o is the estimated variance and NF is the
normalization factor. Given expressions 2 and 3, one
can say that the variance of neural network
estimation is function of the MSE (in this case, the
performance of the network) and the normalization
factor used to fit the data for neural processing
usage. Therefore, the value of the normalization
actor plays a fundamental role in the estimation
variance, when the estimations are transformed back
from the normalized domain to their real values.

In the examples used in this work, the neural
network model was designed to estimate L2
observations (pseudorange and carrier phase), given
the observations at frequency L1. In order to do so,
the training process was performed with data from a
GPS network, and the simulation (with the neural
network already trained to be able of estimate L2
observables) was made for a given receiver. Figure
4 shows the scheme of the data processing.

Training step - Backpropagation algorithm

L1 observations —————— MNeural

Network +———» FEstimated

Model L2 observations
(estimation)

Nearal Esti i Comparison:
letwork Cstimation e AT
Network E Estimated and
Model Lrror original
(weights update) observations
Testing step
MNeural
L1 observathons ——» Network ————» Estimated
Maodel L2
observations

Fig. 4 Data processing scheme.

In this case the first obstacle was to fit carrier phase
measurements into a normalized interval. The first
decision made was setting the normalized interval to
be between -1 and 1, which provides a

Chapter 29 - Feeding Neural Network Models with GPS Observations: a Challenging Task

191

normalization factor two times smaller than the
alternative option (0 and 1). Figure 5 shows an
example of carrier phase measurements for L1 and
L2.

x10°

=8 T al T T T

g Ly I | |

B0 O L2~ T e (i

- T | I |

R e R i Rl = - 1— ==

= 1 | [|

2 2k - — - — G*QQW%%MM@_
T | I I

80 1 1 1 1

0 5 10 15 20 25 30 35 40
Time [epochs (30s data rate)]

Fig. 5 Carrier phase measurements (L1 and L2).

As can be seen in the figure above, there is a
difference of reference between the two frequencies,
given by the different numbers assigned for the
initial cycle ambiguity, and a difference in rate,
given by the different wavelengths. Because of
these differences, it would be hard to relate L1 and
L2, as wanted. This is a typical problem of
coherence between patterns generated from
different observables. Since the initial value of the
phase counter is arbitrary, mistreating this
difference can lead to high normalization factors. A
second implication is that each receiver-satellite
pair would have a different value for this difference.
To solve this problem the meter was used as
common unit for both frequencies. Also the
counters were synchronized, assigning the same
initial phase count for both (in this case zero) as
shown in Figure 6.

Carrier phase [cycles]

0 5 10 15 20 25 30 35 40

Carrir phase [m]

Time [epochs (30s data rate)]
Fig. 6 Carrier phase measurements (L1 and L2) after
synchronization (a) and transformed to meters unit (b).

After the above modifications, the problem to relate
the two frequencies is solved. However the values
for normalization factors would be still high,
because of the wide range of carrier phase values,
and there are a few techniques that can be used.

The first one to be mentioned is to add pseudo slips
in the phase counting. This technique consists of
adding false cycle slips in the observations, what
allow setting the maximum value of the counter, in
order to maintain the normalization factor under a
certain value. The result of applying pseudo slips in
the carrier phase measurements is shown in Figure 7.

-

o
o

Carrier phase [normalized]
S
o o

N

5

o

=)

&

Difference (L1-L2) [normalized]

;o ,

1 1 T

4 6 8 10 12 14 16 18 20
Ti

o

Fig. 7 Carrier phase measurements (L1 and L2) with pseudo
slips (a) and the difference between normalized L1 and L2 (b).

The disadvantage of using this technique comes
from the added slips themselves. For long time
series, several slips have to be used, and for each
subsequent series between slips, the errors of the
estimations get accumulated when building a slip
free estimated series. Figure 7b shows how small the
differences between L1 and L2 are when the data is
normalized. The neural model should be sensible to
these wvariations. Implicitly, by minimizing the
normalization factor these small differences are
more easily detected when processed in a neural
network.

Another technique that can be used is the time
differencing of the observations. This approach
reduces the range in which the phase counters vary.
However, similarly to the previous case, the errors
in the prediction get accumulated through time when
rebuilding a slip free time series. This effect should
be compensated by the much smaller value of the
normalization factor. Depending on the type of
series and generalization capability of the network it
can be a good option. However, usually it does not
perform very well for long time series. Figure 8
shows an example of the application of this
technique.

192

R.F. Leandro - C. A. U. Silva - M. C. Santos

8

g

g

Differenced carrier phase [m]

8

Time [epochs (30s data rate)]
Fig. 8 Time differenced carrier phase.

It can be noticed that the range of the vales is much
smaller than the one shown in Figure 6b, for
example. Comparing the two cases, the
normalization factor would be approximately 500
times smaller for this case. For instance, assuming
the same MSE, the variance of the estimations
would be much smaller in this last situation. This
technique was used for the analysis mentioned at
the beginning of this section. It demonstrated the
best results in terms of carrier phase estimations.
Another technique that can be used is the inverse
truncation procedure. It consists of truncating the
number at a maximum size of significant numbers.
It is called inverse, because in this technique instead
of holding the left hand side of the number, it is
held the right hand side. It is a very useful
technique when one wants to relate two very similar
quantities, not depending on their absolute values,
but only up to a certain level. For instance, we
wanted to relate C1 and P2 pseudoranges. Since we
know that the difference between the two is below a
hundred meters, we could hold the numbers just up
to hundreds and assume that the rest of the values
(the left hand side) should be always the same. Of
course this procedure also causes a big decreasing
in normalization factors. Figure 9 shows the results
of this technique, applied to pseudoranges. Figure
9a shows the pseudoranges (C1 and P2) with their
original values. Figure 9b shows the values after the
application of the inverse truncation. The range of
the values drop from the order of 10 to the order of
10°. Figure 9¢ shows the difference of C1 and P2
values (after modified). In Figure 9d the left hand
part of the pseudoranges (eliminated in the
modification) is shown and Figure 9e¢ shows the
difference between these values (C1 — P2). It can be
noticed from Figure 9e that the eliminated part of
the numbers are always exactly the same for both
observables, What maintains the assumption of
coherence between patterns generated from
different observables.

5—c1P2)| | | | | |
E A - -k - ek ool — — b — — - — —{ (g)
“Wﬂmﬁﬁﬂfwﬂfaeﬁ
12 | 1 | 1 1 1
;5 10 15 20 25 30 35 40
x 10
2.25 . : ‘ .
| | | | | I |
T 22— —-J L LI _ L &
‘E' | | ps A T | (d)
215 hd 1 1 I 1 I
o 5 10 15 20 25 30 35 40
0.1 X : ‘ : : ' :
| | | | | I |
E o|cocosssseses HEE (e)
| | | | | I |
0.1 ! 1 1 Il 1 1 Il
5 10 15 20 25 30 35 40

Time [epochs (30s data rate)]

Fig. 9 Inverse truncation technique.

Other techniques than the ones shown in this work
can also be used. One example of this is the
functional reduction used by Leandro et. al. (2005)
to modify pseudorange time series in order to feed
stochastic models. This reduction consists of
removing the mathematical distance and other
systematic effects from the observations. In terms of
neural processing this approach can be useful,
however when in some cases it can bring some
difficulties. For example for the sake of the
coherence between patterns, coordinates of different
receivers should be well known. In case one or more
receivers have unknown position the technique
could introduce biases in the reduced series, what
can complicate the training process. This is a reason
why this technique was not used in this specific case.
However it can be useful in other situations (e.g. in
applications dealing with only one receiver).

In terms of the data processing where all those
techniques were applied, the best results were found
when the time differencing technique was used for
carrier phases and the inverse truncation was used
for pseudoranges. Although these techniques
performed better in this case, doesn’t mean they are
better than the other ones, but that they were more
appropriate for the situation explored. In other cases,
the other shown techniques might be more adequate.

5 Conclusions

Neural network models require data fitted into
normalized intervals, what require modification in
the original data set. In the process of modifying the
data several techniques can be used. Some of the

Chapter 29 -

Feeding Neural Network Models with GPS Observations: a Challenging Task

193

techniques that can be useful for using neural
models in geodesy, as well as their advantages and
disadvantages, were show in this paper.

Definitively the choice of the adequate procedure
when preparing the data to be used by neural
models can produce large variations in quality of
the estimations when brought back to their original
range.

The techniques shown in this work are not all
existent alternatives and other ones maybe even
better than those might exist. The variety of
solutions for this kind of problem can be as large as
the possibilities when using neural model. However,
an important contribution of this work is showing
the importance of certain problems when dealing
with data from geodetic measurements (such as
GPS), as well as some useful solutions. If they are
not applicable for a specific case, alternatives can
arise from the concepts explored in them.

It is impossible to point which one of the shown
techniques is the best one, because in each case a
different solution can be the optimal. It was the case
shown in this work, where the technique used for
pseudoranges was different from the one used for
carrier phase.

Although the data used in this work were GPS
measurements, the procedures can be potentially
applied to any type of measurement with same
characteristics.

6 Acknowledgements
This search was partially funded by NSERC.
7 References

Chang, Y. M.; Chen, C. H.; Chen, C. S. (1996). Optimal
Observation Design of Surveying Network using Artificial
Neural Network. Geomatics Research Australasia, No.64,
June, 1996, pp. 1-16.

Chansarkar, M. (1999). GPS Navigation using Neural
Networks. 12th International Technical Meeting of the

Satellite Division of the Institute of Navigation,
September 14-17, 1999, Nashville Convention Center,
Nashville, Tennessee.

Dumville, M. and Tsakiri, M. (1994). An Adaptive Filter for
Land Navigation Using Neural Computing. 7th
International Technical Meeting of The Satellite Division
of The Institute of Navigation, September 20-23, 1994,
Salt Palace Convention Center - Salt Lake City, UT.

Haykin, S. (1999). Neural Networks — A Comprehensive
Foundation. Prentice Hall — Upper Saddle River, New
Jersey.

Kuhar, M.; Stopar, B.; Turk, G.; Ambrozic, T. (2001). The
use of artificial neural network in geoid surface
approximation. Allgemeine Vermessungs-Nachrichten,
Vol.108, No.1, 2001, pp. 22-27.

Leandro, R. F. (2004). A New Technique to TEC Regional
Modeling using a Neural Network. ION GNSS 2004,
September, 2004, Long Beach, California.

Leandro, R. F. and Santos, M. C. (2004). Comparison
between autoregressive model and neural network for
forecasting space environment parameters. Bollettino di
Geodesia e Scienze Affini, Vol.63, No.3, 2004, pp. 197-
212.

Maia, T.C.B., Silva C.A.U., Leandro R.F., Segantine P.C.L.,
Romero R.A.F. (2002). Predicao da Contagem de Ciclos
da Portadora GPS Utilizando uma Modelagem
Conexionista Temporal — FIR MLP. XVI Brazilian
Symposium on Neural Networks. Porto de Galinhas,
Recife, Brazil.

Schuh, H.; Ulrich, M.; Egger, D.; Mueller, J.; Schwegmann,
W. (2002). Prediction of Earth orientation parameters by
artificial neural networks. Journal of Geodesy, Vol.76,
No.5, 2002, pp. 247-258.

Vickery, J. L. and King, L. R. (2002). Use of Neural
Networks and Expert Systems for Rapid Differential GPS
Navigation. ION GPS 2002, September 24-27, 2002,
Oregon Convention Center, Portland, Oregon.

Xenos, T. D. and Stergiou, D. C. (2002). One day before foF2
neural network based prediction models: A performance
comparison between ordinary, fuzzy and recurrent neural
networks. Acta Geodaetica et Geophysica Hungarica,
Vol.37, No.2-3, 2002, pp. 293-296.

