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Abstract

To enable safe and robust Intelligent Transportation Systems (ITS) applications, the integra-
tion of different sensors and techniques will certainly be a common reality. One application
in this context is the lane-keeping techniques for autonomous driving systems. These
systems normally use imagery sensors for lane identification, however imagery systems
always depend on light and well-structured roads. One potential worldwide autonomous
driving technique without any other lane and road detection/identification sensor would be
GNSS positions along with accurate map information. However, this fusion depends on
the accuracy and reliability of both GNSS positions and map information. The positioning
accuracy that Intelligent Transportation Location Based Services (ITLBS) requires for
where-in-lane and active control applications are 0.5 m and 0.1 m, respectively. To evaluate
the potential of fusion, this work proposes an integration of GNSS and map information in
the attempt to address the lane-keeping problem. This integration is performed by merging
a GNSS solutions and lane centerline positions, acquired from aerial orthophotos, into a
Kalman Filter and a simple map matching approach. To measure the positioning error, or
off-track performance, a conversion of positions to the road space is necessary. To evaluate
the results, a positioning accuracy limit, considering the road, vehicle dimensions, and
the requirements for ITLBS is also proposed. The results showed that 95% of the time
the proposed methodology off-track performances were within 1.89 m, in an average of 4
runs. Half of the runs were within 0.75 m, in average, at 95% of the time. Compared to
an accurate GNSS Post Processed Kinematic (PPK) mode, an improvement of 10% was
achieved.
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1 Introduction

Intelligent Transportation Systems (ITS) applications are
rapidly emerging and efforts are being made in order to
set appropriate standards. For example, positional accuracy
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standards for Intelligent Transportation Location Based Ser-
vices (ITLBS) technologies. A complete review on the accu-
racy for ITLBS was carried by Stephenson et al. (2011),
where four main classes of accuracy categories were out-
lined: which road (5.0 m); which lane (1.5 m); where in lane
(0.5 m); and active control (0.1 m).

GNSS has been the main system for providing consistent
global positions in several applications. However, there are
major issues limiting the ITLBS application requirements,
such as availability, continuity, and integrity. It is conceivable
that GNSS positions along with accurate map information
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offers a potential worldwide autonomous driving without any
other lane and road detection/identification sensors (Bishop
2005; Hillel et al. 2014).

When it comes to vehicle autonomous navigation systems
and related applications, GNSS and maps are normally
used separately for distinct purposes. One of the primary
challenge in autonomous systems is the navigation, which
basically requires an accurate knowledge of the vehicle’s
position in the environment. Current developments have
mostly been using imagery sensors to identify the lanes.
However, imagery systems always depend on light and well
structured roads to correctly identify the edges of roads,
leading to failures in dark or to bright environments (Hillel
et al. 2014; Li et al. 2014).

Therefore, this work proposes an integration of GNSS and
road map information to address this problem. This inte-
gration is performed by merging a GNSS position solution
and lane centerline positions, from aerial orthophotos, into
a Kalman Filter and a map matching algorithm. To measure
the positioning error with respect to the reference lanes, a
conversion of positions to the road space is necessary. To
evaluate the results, a positioning accuracy limit, consider-
ing the road, vehicle dimensions, and the requirements for
ITLBS is also proposed. In the following section, methodol-
ogy, a satellite positions and map centerline approach using
Kalman filter and a map matching algorithm will be outlined.
In the sequence, in the section experiment and results, a study
case describes the performance of the methodology followed
by an statistical analysis of the off-track solutions, in the
section analysis. And then, the conclusions of this work are
discussed.

2 Methodology

This proposition integrates positions, from a satellite posi-
tioning technique, with the centerline position of the lanes,
into a Kalman Filter, with the objective of keeping the
estimated solutions in the center of lanes. At every satellite
position solution (zk), a map matching algorithm is executed
to correctly identify where the vehicle is likely to be in
the reference lanes (xref ). By using this map-matched point
(xmm) and the lanes orientation, the filter prediction step
(Oxk=k�1) is constrained to keep the next position and velocity
state, estimated in the filter update step (Oxk), in the lane. The
flowchart in Fig. 1 describes this procedure.

In the sequence, the map matching and kalman filter
algorithms are detailed.

2.1 Map Matching

The main purpose of a map matching algorithm is to identify
the correct road segments that a vehicle is travelling and
its correct position on that segment (Quddus et al. 2003).
Quddus et al. (2007) presented a complete review on the
different MM algorithms and its performances. To mention
a few techniques, map matching algorithms can range from
simple geometric searching techniques, to complexes ones
using fuzzy logic, Extended Kalman Filter (EKF), and Belief
Theory. These techniques can be categorized into four main
groups: geometric, topological, probabilistics, and advanced
algorithms.

Fig. 1 Filter flowchart
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KF UPDATE
Gain:

G(k)=P(k/k–1), R(k)
State:

x(k) = f(z,x(k/k–1))
P(k)=f(z,P(k/k–1))



Assessment of GNSS and Map Integration for Lane-Level Applications in the Scope of Intelligent Transportation. . .

d2

d1

d3

d4

Closest point
Closest point

Matched point

Fig. 2 Map matching step 1 (left) and step 3 (right)

The type of algorithm may be chosen depending on the
type of data fed to the map matching process. In this work,
positions coming from either the vehicle and the lane are
used, therefore a simple geometric map matching is selected
and explained in the sequence.

The first step of the map matching is to determine a
position in the reference lane that is closest to the satellite
position solution. This situation is depicted on the left side
of Fig. 2, where the satellite position is represented as a
blue triangle, the reference lane candidates as red crosses.
The candidate with the shortest distance (di) to the satellite
position is chosen as the closest point. Then, the second step
is to fit a line equation in the reference lane neighbouring
candidates so that a perpendicular projection of the satellite
position can be made onto this line. The intersection of the
projection in this line gives the map-matched position xmm.
The right side of Fig. 2 depicts this second step. For the sake
of illustration the line fit is made over a well spaced candidate
points, which results on a line being not in the lane centerline,
however in the experiments, on a real scenario, the points
spacing are close enough to consider the line as the adjusting
geometry.

From this step, the map-matched position and line ori-
entation, or azimuth, are used in the navigation filter, as it
explained in the sequence.

It should be noted that in the experiments the map
contains only the lanes where the vehicle navigated, thus
road identification is not necessary in this map matching
approach. This way, there is no concerns with road
ambiguous selection, for instance in intersections.

2.2 Navigation Algorithm

The information extracted from the lanes are used to
constrain the navigation filter. The mathematical model uses
local coordinates and the horizontal position and the velocity

are the states to be estimated:

nk D nk�1 C v � dt � cos.�/

ek D ek�1 C v � dt � sin.�/

vk D vk�1 C wk

(1)

where, n; e are the local north and east components, v is
the vehicle horizontal velocity, � is the azimuth, wk is the
velocity process noise, and dt is the time between observa-
tions.

The Kalman Filter (KF) is an optimal estimation frame-
work to solve the dynamic system presented in Eq. (1)
(Grover and Hwang 1992). This system and measurement
models can be represented in the following form, respec-
tively:

xk D Fk�1xk�1 C vk�1

zk D Hk�1xk C wk
(2)

where xk is the state vector, Fk�1 and Hk�1 are the Jaco-
bian matrices of the functions with respect to the state
vector xk, of the state and measurement functions, respec-
tively. The noise sequences vk�1 and wk are assumed to be
white with known probability density function and mutually
independent, with respectively covariance matrices: Qk�1

and Rk .
The Kalman filter is a recursive process with the predic-

tion and update steps. In the prediction step, the state and
error covariance are estimated from previous timestep:

Oxk=k�1 D Fk�1 Oxk�1 C vk�1

Pk=k�1 D Qk�1 C Fk�1Pk�1FT
k�1

(3)

where Pk is the state error covariances.
In this proposition, the state vector prediction is provided

by the map matching (xmm). The navigation orientation (�),
which will impact the matrix Fk�1, is obtained from the
map. This quantities along with the measurements (zk), the
vehicle positions in this case, are the inputs for the Kalman
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filter update:

Oxk D Oxk=k�1 C Kk.zk � Hk Oxk=k�1/

Pk D .I � KkHk/Pk=k�1
(4)

where Kk D Pk=k�1HT
k .HkPk=k�1HT

k CRk/�1 is the Kalman
gain.

The dynamics of the problem is a car navigating in the
streets of a city and according to tests made by Hu et
al. (2003), 0.1 m/s2 were the best dynamic noise for this
situation and is the value considered in this work. For details
on the application of the Kalman filter several textbooks or
papers provides its flow (Miller and Leskiw 1987; Hu et al.
2003; Ristic et al. 2004).

2.3 Positioning Accuracy Limit

The position errors with respect to the lane centerline should
be within a limit to evaluate the methodology. An accuracy
threshold that considers the vehicle (vw) and lane (lw) dimen-
sions is proposed and depicted in Fig. 3.

Considering the average lane sizes where vehicle nav-
igates and the vehicle lateral widths, the following lane
threshold can be developed,

�lim D .lw=2/ � .vw=2/ (5)

Fig. 3 Vehicle navigation threshold

The threshold �lim represents the very limit of the lane, to
be more conservative, an appropriate value for a safer limit
would be �lim=2. For this experiment, the accuracy threshold
value is �lim=2 D 0:49 m.

3 Experiment and Results

A satellite dataset was collected in the streets of Fredericton,
New Brunswick, Canada. Two geodetic dual-frequencies
receivers were mounted on the roof of a vehicle for
the collections. The position solution was obtained from
a post-processed kinematic (PPK) technique with a
short baseline station (<8 km). The data was processed
using the open source RTKlib package for satellite
positioning, details can be seen at Takasu (2018). The
road centerlines positions were digitized from a 15-cm
resolution orthophotos provided by the city of Fredericton.
The positions representing the trajectory were generated at
every 0.5 m in the road centerline. The dataset was processed
separately for each receiver thus the solutions are seen
separately.

In a first moment, position performances will be visual-
ized during GNSS outages. In Figs. 4 and 5, the estimated
positions of the vehicle using the Kalman filter (as green
stars) and the PPK solution (colored circles) are visualized
along with the reference lane centerlines (yellow dots). The
same stretch of the road are seen for receiver 1 and 2
respectively at the left and right side of the figures.

Figure 4 show the filter performance after a complete and
quick outage when the vehicle passed underneath a walking
bridge. The direction of navigation is from the bottom to
the upper part of the figures. After the complete outage, the
PPK solution suffers a quick reconvergence and can only
determine a position using the low accurate pseudorange
observable, also known as single point positioning (SPP,
represented as red circles). The KF solution showed a better
performance where it kept the position correctly on the lane
before and even after the outage.

Figure 5 shows the vehicle coming from the upper part
and taking the exit ramp and passing underneath the bridge.
Both receiver solutions have similar behaviours. The RTK
and KF solutions are practically together before passing
under the bridge. After the complete signal blockage, PPK
solutions went away of the lane of navigation while the
KF solutions were mostly in right lane of navigation.
It is observed when PPK solutions are float the filter
trusts more the road centerline information. However,
when the PPK solution fix ambiguities, thus with a
small standard deviation, the filter trusts more the GNSS
positions.
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Fig. 4 Receivers 1 (left) and 2 (right) KF (green stars) and PPK (circles) performances passing underneath a walking bridge

Fig. 5 Receivers 1 (left) and 2 (right) KF (green stars) and PPK (circles) performances passing underneath a walking bridge

One delicate situation was noticed when the vehi-
cle passed inside a urban canyon where the occur-
rence of multipath was high. During this situation the
receiver observes measurements from reflected signals
which makes the filter to determine with confidence
a wrong position. This situation in seen in Fig. 6, in
which a wrong PPK fix mislead the Kalman filter
solution, which judged the position as being cor-
rect.

4 Analysis

The methodology is assessed by determining the off-track
of PPK and KF solutions to the reference lanes, for both
receivers 1 and 2. The processing was separated by the
navigation direction, going to the halfway trajectory point
(Lanes 1) and coming back to the starting point (Lanes 2),
visualized in Fig. 7.
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Fig. 6 Wrong filter positioning due to a wrong GNSS position fixes on a urban canyon

Fig. 7 Off-track for receivers 1 (left) and 2 (right) in the lanes 1 (top) and 2 (bottom)

Table 1 Off-track accuracy analysis

PPK KF

avg (m) std (m) 95% (m) avg (m) std (m) 95% (m)

0.74 0.70 2.10 0.56 0.58 1.89

Statistics of the off-track measure were grouped for both
receivers into one, and are shown as the average off-track
(avg), its standard deviation (std), at 95% confidence level
for PPK and KF solutions, in Table 1. Satellite obstructions
were disregarded in the statistics due to the great impact in
the PPK solutions.

The results showed that 95% of the time the KF off-track
performances were within 1.89 m in average for the 4 runs,
while PPK had an average of 2.10 m. An improvement of
10% KF had over the PPK off-track performances. Consid-
ering the lane threshold standard deviation proposed in this
work for the off-track evaluation, �lim D C= � 0:49 m, the
KF average performance was 0.56 m, only 7 cm above the
limit. However, when considering 95% of the data, the KF
solutions were 1.88 m, more than 3 times the limit. The PPK
mean was above the limit for 25 cm. And, 95% of the data
were under 2.09 m. This way, for the required limit of 0.49 m,
the proposed methodology did not achieve the active control
limit 95% of the time.
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5 Conclusion

This work proposed an integration of GNSS positions and
lane centerlines into a Kalman Filter and map matching
approach, with the main objective of keeping the vehicle
position in the lane center. Mostly, the KF off-track perfor-
mances follows the PPK solution. The main limiting points
are the long periods of GNSS outages affecting the quality
of the KF positions and wrong PPK fixed positions due to
multipath. The improvements obtained by the approach are
during short and complete signal outages where the map aids
the filter with the satellite observations blockages making a
continuous solution while keeping it in the correct lane.

The concern from the community towards low-cost single
frequency navigation systems was reasonable few years
ago, however, in a few years from now, the cost versus
performance of dual frequencies against single frequency
receivers will be justified as the prices lower and the need for
performance increases especially for safety of life navigation
applications.

The main challenges for future tests is to develop a filter
that integrates the map information with satellite measure-
ments to exclude wrong fixes due to multipath signals and
improve the solution continuity in any duration of satellite
outages.
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