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ABSTRACT 
 
In this work we discuss developments related to neutral 
atmosphere delay prediction models at UNB. We are 
introducing a new model, which was designed to provide 
better predictions for different regions inside a delimited 
wide area. The goal of this new development is to have a 
more reliable model for wide area augmentation system 
users, with some homogeneity in terms of performance 

over the area of interest. The approach to create the new 
wide area neutral atmosphere model for North America 
(UNBw.na) is comprehensively described and discussed. 
All result analyses took into consideration the most recent 
version of UNB models, until now, UNB3m. Results for 
meteorological parameters prediction showed that the new 
grid-based model could perform better than a latitude 
(only) based model (such as UNB3m). The general results 
do not show a spectacular improvement for the new 
model, however it is consistently better than its 
predecessor, and, the improvement for certain regions is 
more significant than others. Regions where the 
performance of the old model was not satisfactory had 
results significantly improved with the new model. A 
validation of UNBw.na predicted zenith delays was 
realized using radiosonde-derived delays as reference. 
This analysis showed that different regions of the 
continent manifested improvement for the estimations 
with the new model. Investigation of the performance of 
both models (UNBw.na and UNB3m) with radiosonde 
ray-raced delays at a few sample stations showed that 
UNBw.na generally has a better fit to the yearly behavior 
of the zenith delays. It was also possible to notice that 
results from UNBw.na are more consistent between 
stations at different locations than when using UNB3m. 
UNBw.na was shown to be consistently better than 
UNB3m in several aspects, and the adopted procedure for 
the grid calibration works in an adequate way, resulting in 
a reliable model. 
 
 
INTRODUCTION 
 
Mitigating the neutral atmosphere refraction is a crucial 
step in GNSS positioning. Also often called tropospheric 
delays, the neutral atmosphere delays are one of the main 
sources of measurement errors in GNSS. One usual way 
to account for these effects is using prediction models. 
There are also other alternatives for neutral atmosphere 
delay mitigation, such as the parameterization of the 
zenith delay in the positioning model, when dual 
frequency carrier-phase measurements are available. 
However, even in this case, the parameter is commonly a 
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residual delay, to correct the initially predicted delay, 
which means that a prediction model is also needed. In 
most GNSS applications the prediction of the neutral 
atmosphere delay is required, even if only for an initial 
value for which a residual delay is computed. 
 
In this work we discuss developments related to neutral 
atmosphere delay prediction models at UNB. A number 
of UNB models have been developed over the past 
decade. Our latest model version is called UNB3m, and a 
comprehensive description of it can be found in Leandro 
et al. [2006]. 
 
UNB neutral atmosphere models have their algorithm 
based on the prediction of surface meteorological 
parameter values, which are used to compute hydrostatic 
and non-hydrostatic zenith delays using the Saastamoinen 
models. The slant delays are determined applying the 
Niell mapping functions [Niell, 1996] to the zenith delays. 
 
In order to account for the seasonal and regional variation 
of the neutral atmosphere behavior, meteorological 
parameters (barometric pressure, temperature, relative 
humidity, temperature lapse rate (β) and water vapour 
pressure height factor (λ)) are used as functions of time 
(day of year) and position in UNB models. Each 
meteorological parameter is modeled with two 
components: the average (mean) and amplitude of a 
cosine function with one year period. By definition, the 
origin of the yearly variation is day of year 28. This 
procedure is similar to the one used in the Niell mapping 
functions computation.  
 
After average and amplitude of a given meteorological 
parameter are determined, the parameter value is 
estimated for the desired day of year according to: 
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where doyX  represents the computed parameter value for 
day of year ( doy ), and Avg  and Amp  are the average 
and amplitude values respectively. This procedure is 
followed for each of the previously mentioned five 
parameters. 
 
Once all parameters are determined for a given position 
and day of year, the zenith delays are computed according 
to: 
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where 
 
• z

hd  and z
nhd  are the hydrostatic and non-hydrostatic 

zenith delays, respectively; 
 
• T0, P0, e0, β, and λ are the meteorological parameters 
 computed according to (1); 
 
• H is the orthometric height in km; 
 
• R is the gas constant for dry air (287.054 J kg-1 K-1); 
 
• gm is the acceleration of gravity at the atmospheric 
 column centroid in m s-2 and can be computed from 
 
 gm = 9.784 1− 2.66x10−3 cos 2φ( )− 2.8x10−7 H( )    (4) 
 
• g is the standard acceleration of gravity (9.80665 m s-2); 
 
• Tm is the mean temperature of water vapour in K and 
 can be computed from 
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• ′λ = λ +1 (unitless) 
 
• k1, ′k2 , and k3 are refractivity constants with values 
77.60 K mbar-1, 16.6 K mbar-1 and 377600 K2 mbar-1, 
respectively. 
 
The total slant delay is computed according to 
 
dt =mhdh

z +mnhdnh
z ,                                                          (6) 

 
where hm  and nhm  stand for hydrostatic and non-
hydrostatic Niell [1996] mapping functions, respectively. 
 
The procedure above has been used in all versions of 
UNB models, with the difference between them 
depending on the way the meteorological parameters (T0, 
P0, e0, β, and λ) are determined. Other models have also 
been based on the same principles, such as the Galileo 
System Test Bed models developed by European Space 
Agency [Krueger et al., 2004]. In the case of UNB3m, a 
look-up table with average and amplitude of the 
meteorological parameters derived from the U.S. Standard 
Atmosphere Supplements, 1966 [COESA, 1966] is used. 
Table 1 shows the UNB3m look-up table. 
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Table 1. Look-up table of UNB3m model. 
 

Average 

Latitude 
(degrees) 

Pressure 
(mbar) 

Temperature 
(K) 

RH 
(%) 

β 
(K km-1) 

λ 
(-) 

15 1013.25 299.65 75.0 6.30 2.77 
30 1017.25 294.15 80.0 6.05 3.15 
45 1015.75 283.15 76..0 5.58 2.57 
60 1011.75 272.15 77.5 5.39 1.81 
75 1013.00 263.65 82.5 4.53 1.55 

Amplitude 

Latitude 
(degrees) 

Pressure 
(mbar) 

Temperature 
(K) 

RH 
(%) 

β 
(K km-1) 

λ 
(-) 

15 0.00 0.00 0.0 0.00 0.00 
30 -3.75 7.00 0.0 0.25 0.33 
45 -2.25 11.00 -1.0 0.32 0.46 
60 -1.75 15.00 -2.5 0.81 0.74 
75 -0.50 14.50 2.5 0.62 0.30 

 
Using the table above, UNB3m is able to predict total 
zenith delays with an average rms of 4.9 cm [Leandro et 
al., 2006]. Previous analysis showed that this rms value 
likely could be improved if more realistic meteorological 
parameter values were used. Collins and Langley [1998] 
showed that if UNB models are used with surface-
measured meteorological values, they can provide delays 
with an uncertainty of around 3.5 cm, which would be the 
performance of a UNB neutral atmosphere model if a 
perfect surface meteorology model could be implemented. 
Based on these numbers it is possible to state that a better 
model than the currently used UNB3m could provide 
zenith delays with uncertainties between 3.5 and 4.9 cm. 
One of the reasons why UNB3m is not capable of 
predicting delays with uncertainty close to 3.5 cm is the 
fact that the current look-up table is not able of 
accommodate the differences in the average surface 
meteorology of different regions. Part of this modeling 
inability is also due to day-to-day variation of 
meteorological parameters, however this variation 
impacts any prediction model, since the modeled behavior 
is always a smooth curve in time (in our case a cosine 
curve over the year) while real values are points scattered 
about this line. Figure 1 shows the day-to-day variation 
over several years for a station situated at approximately 
50o N, 66o W. The blue crosses are the surface 
measurements of temperature, pressure and water vapour 
pressure, and the red dots are the predicted values using 
UNB3m. 
 
The advantage of having a more realistic UNB model 
with the same functional model is improving the values of 
the yearly averages and amplitudes, as well as their 
geographical variation. This is the motivation for creating 
a new model, capable of describing the behavior of 
meteorological values more realistically. 
 

 
Figure 1. UNB3m surface meteorological parameter 
predictions compared to measured surface parameter 
values. 
 
UNB neutral atmosphere models have been used 
extensively in the context of SBAS (Satellite Based 
Augmentation Systems). This is the case of CDGPS 
(Canada-wide Differential GPS), which recommends the 
use of the UNB3 model by the users, WAAS (Wide Area 
Augmentation System) and WAAS compatible systems, 
which use a modified version of UNB3 model running in 
all WAAS-capable receivers. Although UNB3 is currently 
the most widely used version of UNB models, the most 
recent one is UNB3m, which offers a significant 
improvement in terms of non-hydrostatic zenith delay 
prediction compared to its predecessor. 
 
In this paper we are introducing a new model, which was 
designed to provide better predictions for different 
regions inside a delimited wide area. The goal is to have a 
more reliable model for wide area augmentation system 
users, with some homogeneity in terms of performance 
over the area of interest. These new models are called 
here wide area neutral atmosphere models, and are treated 
in more detail in the next section. 
 
WIDE AREA MODELS 
 
In this section the way the wide area models are generated 
is reviewed. The first important characteristic of these 
models is that they keep the same physical assumptions as 
before (Equations 1 to 5). The key difference in the new 
approach is the way the surface meteorological values are 
evaluated, in this case, using a two-dimension grid table 
instead of a latitude-band look-up table. 
 
One of the first aspects to be taken into account when 
generating a new model is the data available for its 
calibration. In this work, we used a data set with world 
wide hourly measurements of surface temperature, 
surface dew point temperature and mean sea level 
barometric pressure. The measurements were made 
between the years of 2001 and 2005 inclusive. This 
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dataset was provided by NOAA, from its Integrated 
Surface Hourly (ISH) Database. Figure 2 shows the 
global distribution of the ISH database, a total of 17,415 
stations. 
 

 
Figure 2. Distribution of ISH Database meteorological 
stations. 
 
The observations of surface temperature, pressure and 
dew point temperature are used to calibrate a grid with 
values of average and amplitude (to be used as in 
Equation 1) for each of the three parameters (In the case 
of dew point temperature, it is converted to relative 
humidity). Near surface temperature lapse rate and water 
vapor pressure height factor parameters can also be 
computed if desired. The functional model used for the 
grid interpolation is very simple, based on the four nearest 
grid nodes to the observation point (in case of grid 
calibration) or prediction point (in case of grid use). The 
value of interest can be computed according to the 
following formula: 
 

4321 pqxx)p1(qx)q1(px)q1)(p1(X +−+−+−−= ,  (7) 
 
where X is the computed value (it is either the average or 
amplitude of one of the modeled parameters), ix  is the 
parameter value at grid node i, and p and q are shown in 
Figure 3. 
 
In Figure 3 Dx and Dy represent the grid spacing in 
longitude and latitude, respectively. The black square in 
the middle of the grid represents the observation point, 
with coordinates pφ  and pλ . The values for p and q can 
be computed as: 
 

( ) Dx/p 1p λ−λ= ,      (8) 
 
and 
 

( ) Dy/q 1p φ−φ= ,      (9) 
 

where pλ  and pφ  are the longitude and latitude of the 
point of interest, and 1λ  and 1φ  are the longitude and 
latitude of grid node 1 (as represented in Figure 3). 
Therefore p and q can assume values between 0 and 1. 
 

 
Figure 3. Grid interpolation procedure 
 
Once all surface meteorological parameters for the point 
of interest are determined using the procedure above, the 
neutral atmosphere delays can be estimated using 
Equations 1 to 6. As can be seen, the use of the grid does 
not bring any significant complexity to the user, however 
the grid calibration is not a simple procedure. 
 
The establishment of the values for each grid node is 
carried out in three steps. The first one is the calibration 
of the temperature (T) grid, followed by pressure (P) and 
relative humidity (RH) grids. The computation is 
performed on a station-by-station basis, where all data (all 
measurements over the observed years) is processed at 
each station step. For each station, the computation is 
performed on a year-by-year basis. This procedure is used 
to improve processing time, since the amount of data is 
too large to be processed in one single batch adjustment. 
The general least-squares adjustment model (used in all 
three grid calibrations) is: 
 

( ) wPANAPAxx t1

P
t

0
−

++= ,   (10) 
 
where x  is the vector of updated parameters, 0x  is the 
vector of a-priori parameters (coming from previous 
updates), A  is the design matrix, P  is the weight matrix, 

PN  is the parameter normal matrix (coming from 
previous updates) and w  is the misclosure vector. The 
parameter normal matrix gets updated at each step, as 
follows: 
 

( )0p
t

pu NAPAN += ,    (11) 
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where puN  is the updated normal matrix and 0pN  is the 

a-priori normal matrix. The updated matrix is used as pN  
in (10) at the next parameter update, and then used as 

0pN  in (11), and so on. The observations involved in each 
update step are the surface meteorological measurements 
for the current station and current year. The parameters 
are adjusted for the four nearest grid nodes, using the 
same functional model as in (7). Therefore the functional 
model in the adjustment of each grid type (T, P, RH) is 
built considering (7) plus the relevant formulas (relating 
interpolated grid values to measurements) for the given 
parameter type. 
 
The first step, the temperature grid calibration, involves 
the adjustment of values for mean sea level temperature 
and optionally the temperature lapse rate. In case the lapse 
rates are not being adjusted, a-priori values from UNB3m 
are used as known values. The basic functional model for 
this step is given by: 
 

HTT 0 β−= ,     (12) 
 
or, introducing the yearly variation: 
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where T is the surface temperature measurement, avgT  
and ampT  are the mean sea level temperature yearly 
average and amplitude respectively and avgβ  and ampβ  are 
the temperature lapse rate yearly average and amplitude 
respectively. Using this function yields the partial 
derivatives: 
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where T is the surface temperature, the subscript p stands 
for parameters at the point of interest (not to be confused 
with p representing longitude difference and P 
representing pressure) and the subscript i stands for 
parameters at the grid node i. Partial derivatives of point 

values with respect to grid node values (
i

p

X
X

∂

∂
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evaluated as follows: 
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The derivatives in (18) are used in all steps (T, P, RH) of 
the adjustments of the grids. 
 
The design matrix for the temperature grid calibration is 
built according to: 
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where the superscripts 1 and n stand for the observation 
index (therefore, A is a matrix with n rows, for n 
observations). In case the lapse rates are not being 
adjusted, the design matrix has only two columns (the 
first two of Equation 19). The misclosure vector is 
computed according to: 
 

'TTw −= ,     (20) 
 
where T is the measured surface temperature and 'T  is 
the evaluated surface temperature according to (13). 
 
After the temperature grid is calibrated (meaning values 
of avgT , ampT , avgβ  and ampβ  have been established for all 
of the grid nodes) the relative humidity grid can be 
adjusted, or alternatively the pressure grid, which does not 
depend on temperature or relative humidity. 
 
The ISH database provides hourly measurements of MSL 
barometric pressure, no matter the height of the 
meteorological station. The consequence is that the 
pressure measurements have no relation with any lapse 
rate type parameter. In case of surface pressure, the 
respective lapse rate would be β , assuming the height 
variation of pressure relates to the temperature variation 
of pressure according to: 
 

ββ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ β
−=

R
g

0
0

R
g

0
0s T

TP
T
H1PP ,                                   (21) 

 

1914



where sP  stands for surface pressure. However, because 
the pressure measurements are related to mean sea level, 
the function model of the pressure grid adjustment 
becomes: 
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where P is the MSL pressure measurement and the yearly 
variation parameters ( avgP  and ampP ) are similar to the 
ones previously used for T and β (Eq. 13). Partial 
derivatives are also evaluated similarly to (14) and (15): 
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The design matrix then yields: 
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and the misclousure vector is computed according to: 
 

'PPw −= ,     (26) 
 
where P is the measured MSL pressure and 'P  is the 
evaluated MSL pressure according to (22). 
 
The calibration of the relative humidity grid involves a 
little more complexity than the previous ones because (1) 
it depends on temperature and pressure grids; and (2) the 
measurements are surface dew point temperature, but the 
height variation is modeled for water vapor pressure and 
the yearly variation is modeled for relative humidity. The 
transformation between these three types of parameters 
needs to be carried out and incorporated in the functional 
model for the grid adjustment. The first part of the 
functional model is the computation of the MSL relative 
humidity, done similarly to T and P: 
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where RH0 stands for MSL relative humidity and the 
subscripts avg and amp stand for yearly average and 
amplitudes, respectively. The relative humidity has then 
to be transformed in water vapour pressure, which will be 

used for height variation modeling. The relation between 
the two (relative humidity and water vapour pressure) is 
given by the following equation (according to IERS 
conventions 2003): 
 

0,w000 fesRHe ⋅⋅= ,    (28) 
 
where 0e  is the MSL water vapour pressure, 0es  is the 
saturation water vapour pressure and 0,wf  is the 
enhancement factor (both for MSL). Values for 0,se  and 

0,wf  can be computed according to: 
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and 
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The relation between MSL and surface water vapour 
pressure is expressed using the same physical assumption 
as in (3), as follows: 
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where e  stands for surface water vapour pressure. The 
last part of the functional model is the relation between e  
and dew point temperature, which can be derived from 
basic thermodynamic laws, resulting in: 
 

( ) s,wd fTese ⋅= ,     (32) 
 
where ( )dTes  is the saturation water vapour pressure for 
the dew point temperature dT , and can be computed from 
(29) substituting dT  for 0T , and s,wf can be computed 
from (30) substituting in values of pressure and surface 
temperature. After putting (28) to (32) together, the 
complete functional model “observation equation” for 
relative humidity calibration becomes: 
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Where, as before, subscripts s and 0 stand for surface and 
MSL values, respectively. In order to introduce average 
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and amplitude for the modeled parameters in (34), 0RH  
is replaced by the right hand side of (28) and 'λ  is 
replaced by: 
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The partial derivatives can then be evaluated as: 
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and the design matrix becomes: 
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The misclousure vector is computed according to: 
 

( ) ( )'TeTew dsds −= ,    (41) 
 
where ( )ds Te  is computed according to (30) using the 
measured dew point temperature and ( )'Te ds  is evaluated 

using (34). In case the lapse rate parameter ( 'λ ) is not 
being adjusted, the design matrix has only its two first 
columns (related to RH) and 'λ  values from UNB3m are 
used as known values. 
 
WIDE AREA MODEL FOR NORTH AMERICA – 
UNBw.na 
 
In this section the creation of a model for North America 
using the previously described procedure is discussed. 
The model is called UNBw.na, where w stands for wide 
area and na stands for North America. The grid was 
defined between latitudes 0 and 90 degrees, and 
longitudes between -180 and -40 degrees, with spacing of 
5 degrees in the two directions. Figure 4 shows the North 
American grid, which has a total of 551 grid nodes. 
 

 
Figure 4. UNBw.na grid (red lines). 
 

 
Figure 5. Distribution of meteorological stations over the 
UNBw.na grid 
 
The grid is first initialized with UNB3m values, and then 
the grid node values are updated (adjusted) using the 
previously described approach. The initialization of the 
grid is fundamental for its adjustment because 
meteorological stations in the ISH database do not cover 
every cell of the grid. In this case, the grid node receives 
no update, and the consequence is a value equal to 
UNB3m’s. The stations to be used in the calibration of the 
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grid were chosen simply taking database stations within 
the grid (In this case a total of around 4000 stations). 
Figure 5 shows the distribution of meteorological stations 
over the grid. 
 
In order to access the grid adjustment, 400 stations were 
randomly separated from the dataset to be used as control 
stations. This data was not used in the grid calibration, 
and after each adjustment step they were used to check 
results obtained for temperature, pressure and water 
vapour pressure. Figure 6 shows the distribution of the 
control stations (black dots) and calibration stations 
(green crosses). 
 

 
Figure 6. Distribution of the control stations (black dots) 
and the calibration stations (green crosses). 
 
As shown in the previous section, the temperature lapse 
rate and water vapour pressure height factor could be 
calibrated or not. The two approaches were tested for this 
data set, and it turned out that the model provided slightly 
better results when lapse rates from UNB3m were used as 
known and were not recalibrated. One of the reasons 
which could have caused this is the fact that stations 
within a given grid cell have similar heights, which causes 
difficulties in the decorrelation between temperature or 
water vapour pressure and their lapse rate parameters. 
Figure 7 shows the height (represented by color) of the 
stations, where it is possible to notice that apart from a 
few cells, the height of stations inside cells is usually very 
similar. 
 
The following results are presented only for the case 
when the lapse rates were not calibrated. Figure 8 shows a 
representation of average MSL temperature given by 
UNB3m and UNBw.na for all grid nodes of the model. It 
is possible to notice that UNBw.na shows lower 
temperatures for some northern regions. Also, for some 
regions, the temperature does not quite follow a variation 
dependent on latitude only. The two grids are practically 
the same for grid nodes outside the continent (over seas) 
because there is not enough data for grid calibration in 
these regions (see Figure 5), and UNB3m values from the 

initialization are almost unmodified by the calibration 
process. 
 

 
Fifure 7. Height (in meters – represented by color) of the 
meteorological stations. 
 

 
Figure 8. Average MSL temperature given by UNB3m 
and UNBw.na, in kelvins. 
 

 
Figure 9. MSL temperature difference between UNBw.na 
and UNB3m, in kelvins. 
 
Figure 9 shows the difference between the two models, in 
the sense of UNBw.na-UNB3m. It can be seen that 

1917



UNBw.na provides higher temperatures over the western 
part of North America, and lower temperatures for land 
mass with higher latitudes over the eastern part of the 
continent. 
 
With the estimation of temperature for control stations is 
possible to check if these differences are bringing 
improvement to the model or not. Figure 10 shows the 
biases encountered when estimating temperatures for 
control stations, using the two models, in the sense 
modeled value – observed value. It is possible to notice 
that there is a significant improvement in estimation for 
stations in the western part of North America, matching 
with differences of grid values (Figure 9) for the same 
region. It can also be noticed that UNB3m slightly 
overestimates the temperature for a localized region near 
the east coast. In terms of UNBw.na one can see that there 
is no trend related to longitude variation. 
 

 
Figure 10. Biases encountered when estimating 
temperature for control stations, in kelvins. 
 
General statistics for temperature estimation errors for the 
two models with respect to control station values can be 
seen in Table 2, where it is possible to notice the overall 
improvement brought by UNB3w.na in terms of 
temperature estimation. The values in Table 2 (and 
similar tables for pressure and water vapour) were 
computed using one value (bias, standard deviation and 
rms) per station, regardless the number of measurements 
available for each station. There is a significant 
improvement in the bias of the model (91%), showing that 
UNB3m generally underestimates the mean temperature. 
This systematic behavior is dominated by the temperature 
underestimation over the western part of the continent.  
 
Table 2. General statistics for temperature estimation 
errors (all values in kelvins). 
 Bias Std. Dev. RMS 
UNBw.na  0.06 5.57 5.80 
UNB3m -0.68 6.04 6.80 
 

The results of the following step in grid calibration (the 
pressure grid) is shown in Figure 11, where it can be 
noticed that UNBw.na also does not follow the latitude 
(only) dependence of UNB3m. Figure 12 shows the 
difference between average MSL pressure of the two 
models, in the sense of UNBw.na-UNB3m. It can be 
noticed that the major differences are encountered in 
regions situated in the northwest, northeast and southern 
parts of the continent. Differences vary up to around 10 
mbar, which means a difference of around 2 cm in 
hydrostatic delay estimation (according to Equation 2, if 
we consider a point at MSL, the delay rate with respect to 
pressure is around 0.0022 m/mbar). Figure 13 shows the 
biases of UNB3m and UNBw.na when estimating 
pressure for the control stations, where it can be seen that 
UNBw.na performs better than UNB3m for the regions 
where greater differences are found. Overall, the bias plot 
of UNBw.na is greener than UNB3m’s, which means it is 
usually closer to zero (green is zero on the color scale). 
 

 
Figure 11. Average pressure at grid nodes, given by 
UNBw.na and UNB3m, in mbar. 
 

 
Figure 12. Average MSL pressure difference between 
UNBw.na and UNB3m, in mbar. 
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Figure 13. Mean biases encountered when estimating 
pressure for control stations, in mbar. 
 
The general statistics for pressure estimation are shown in 
Table 3.  
 
Table 3. General statistics for pressure estimation errors 
(all values in mbar). 
 Bias Std. Dev. RMS 
UNBw.na 0.05 3.89 3.95 
UNB3m 0.02 3.95 4.12 
 
From Table 3 it can be noticed that the differences for 
bias, standard deviation and rms between the two models 
are low (considering estimated delays, 1 mbar  
corresponds to around 2 mm in the zenith direction). 
Although the general bias of UNBw.na is slightly worse 
than UNB3m’s, UNBw.na’s better fitting for different 
regions is translated into an improvement in standard 
deviation and rms. 
 
The last step of the model calibration is the relative 
humidity grid. Following the same procedure as for the 
other two steps in terms of reporting results, Figure 14 
shows the average MSL values of RH (in %) for all grid 
nodes, given by UNBw.na and UNB3m, where it can be 
seen that UNBw.na shows a drier area in the southwest 
part of the continent. This difference can be better 
visualized in Figure 15, which shows the difference in the 
average MSL values between the two models for each 
grid node, in the sense of UNBw.na-UNB3m (in %). 
 
The biases of the water vapour pressure estimation for 
control stations are shown in Figure 16, where we can 
notice that UNB3m overestimates the water vapour 
pressure for the southwest part of the continent, while 
UNBw.na does not. There is also a region with a small 
improvement in the northwest part of the continent (is this 
last case, UNB3m underestimates the WVP). 
 

 
Figure 14. Average MSL relative humidity for grid nodes, 
given by UNBw.na and UNB3m, in %. 
 
The general performance results can be seen in Table 4, 
where it can be noticed that there is a significant 
improvement (around 50%) in bias when estimating 
surface water vapour pressure with UNBw.na, compared 
to UNB3m. There is a small improvement in standard 
deviation, indicating a slightly better fitting to real 
conditions by UNBw.na. 
 

 
Figure 15. Difference between average MSL relative 
humidity provided by UNBw.na and UNB3m, in %. 
 

 
Figure 16. Mean biases encountered when estimating 
water vapour pressure for control stations, in mbar. 
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Table 4. General statistics for water vapour pressure 
estimation errors (all values in mbar). 
 Bias Std. Dev. RMS 
UNBw.na  -0.10 2.30 2.47 
UNB3m 0.20 2.43 2.65 
 
 
UNBw.na VALIDATION WITH RAY-TRACED 
DELAYS 
 
In order to verify if UNBw.na is more realistic than 
UNB3m in terms of delays estimation, a validation 
process was realized. In this approach radiosonde-derived 
delays were used as reference (“truth”). The radiosonde 
profiles of temperature, pressure, and dew point 
temperature were used to compute zenith delays by means 
of a ray-tracing technique. We used radiosonde soundings 
taken throughout North America and some neighboring 
territories through the years from 1990 to 1996 inclusive. 
A total of 222 stations were used, distributed as shown in 
Figure 17. 
 

 
Figure 17. Distribution of radiosonde stations in North 
America and some nearby territories. 
 
Each station usually has a balloon being launched twice a 
day, totaling 701,940 soundings for all stations, all years. 
For each one of the soundings, a total delay was predicted 
using UNBw.na and UNB3m, and then compared with the 
ray-traced total zenith delays. From this comparison, bias 
and rms values could be computed for each one of the 
stations shown in Figure 17. Figure 18 shows the mean 
biases found for all stations with the two models. 
 
In Figure 18, the zero value is green according to the 
color scale. It is possible to notice that the UNBw.na plot 
shows colors generally closer to green than UNB3m. It 
can also be noticed that in the western part of the 
continent, where UNB3m has its worse performance, 
there is a significant improvement with the new model. 
The rms values for the same stations can be seen in Figure 
19, where it is possible to see that UNBw.na plot presents 

colors generally closer to blue (in this plot zero is 
represented by dark blue), also with a good improvement 
for the region with worst results provided by UNB3m. 
 

 
Figure 18. Total zenith delay estimation biases for each 
station, in meters. 
 

 
Figure 19. Total zenith delay estimation rms values for 
each station, in meters. 
 
The general statistics of delay prediction performance of 
the two models are shown in Table 5, where we can see 
that there is a general improvement of absolute bias of 
around 30%, and small improvements in standard 
deviation (8%) and rms (9%). 
 
Table 5. General statistics of total zenith delay prediction 
performance (all values in mm). 
 Bias Std. Dev. RMS 
UNBw.na 3.6 44.8 45.0 
UNB3m -5.2 48.9 49.2 
 
Although the general rms doesn’t show a significant 
improvement, the major concern with UNB3m is not its 
overall performance, but its performance in localized 
areas. In order to access the performance of the models in 
different regions, the coverage area was divided into four 
analysis regions, trying to have approximately the same 
number of radiosonde stations in each one of them. Figure 
20 shows the division of the four regions. 
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Figure 20. Division of the four analysis regions. 
 
The statistics for each one of the analysis regions are 
shown in Table 6. 
 
Table 6. Statistics (bias, standard deviation and rms) for 
analysis regions (all values in cm). 

 UNBw.na UNB3m 
Region Bias SD RMS Bias SD RMS 

1 1.0 3.4 3.6 -0.9 3.5 3.7 
2 0.4 4.1 4.1 0.5 4.3 4.3 
3 0.6 4.4 4.4 0.2 5.7 5.7 
4 -0.3 5.4 5.5 -1.3 5.6 5.8 

 
In Table 6 it can be noticed that rms values for UNBw.na 
are better than UNB3m’s for all regions, with a significant 
improvement for region 3 (around 23%). The bias of 
region 3 for UNBw.na is higher than for UNB3m, 
however it does not mean UNB3m is better, because 
although the mean bias is less, the variation of biases 
(above and below zero) is much higher than for UNBw.na 
(as it can be noticed in Figure 18). This effect shows up in 
UNB3m’s standard deviation and rms in region 3, which 
are significantly higher than UNBw.na’s. Another way to 
show that is by computing the average absolute biases and 
their standard deviation, computed without considering 
bias sign. These vales are shown in Table 7, where it can 
be noticed that, indeed, the average absolute bias and its 
standard deviation is significantly higher for UNB3m in 
region 3 (UNBw.na shows an improvement of around 
25%). 
 
Table 7. Average absolute biases (aab) and their standard 
deviations (aab-sd) - all values in cm. 

 UNBw.na UNB3m 
Region aab aab-sd aab aab-sd 

1 2.8 2.2 2.8 2.3 
2 3.2 2.6 3.4 2.7 
3 3.4 2.9 4.5 3.6 
4 4.5 3.2 4.7 3.4 

 

One of the problems encountered in UNB neutral 
atmosphere modes is a systematic behavior with respect 
to height [Leandro et al., 2006]. In order to verify if the 
new model has the same problem, Figure 21 shows a plot 
of station biases with respect to station heights. The error 
bars are (one sigma) standard deviations of the bias 
computation for each of the stations, and the red line is 
the fitted (using the points shown in the plots) linear trend 
of the models. The upper plot shows results of UNBw.na 
and the lower one shows UNB3m’s results. 
 

 
Figure 21. Station biases with respect to station heights. 
 
It can be seen in Figure 21 that UNBw.na does not have a 
trend as significant as UNB3m, because while UNB3m 
biases tend to increase negatively as the height goes 
higher, UNBw.na biases are kept with values around zero 
no matter the height of the station. This difference can 
also be clearly seen comparing the two trend lines (red 
lines) of the models. 
 
In order to visualize the fit of the model estimations to the 
yearly variation of the zenith total delay, a few stations 
were selected for analysis. 
 

 
Figure 22. Total zenith delay estimation for station Belize. 
 
The stations selection was based on availability of data 
for given stations over the period of time of the data set 
1990-1996, having sample stations for different latitudes. 
The chosen stations are Belize, Pittsburgh, Salt Lake City, 
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Bethel and Eureka. Figures 22 to 26 show the radiosonde 
ray-raced total zenith delays compared with UNB3m and 
UNBw.na predictions for each of the stations. 
 
The estimations provided by UNB3m for station Belize 
have a problem with the annual amplitude of the delays. 
This effect is caused by the fact that UNB3m assumes that 
meteorological parameters do not vary over the year for 
latitudes between 15oN and 15oS. The problem with 
amplitude underestimation affects even stations at higher 
latitudes, as in the case of station Pittsburgh. UNBw.na 
shows a good improvement in terms of estimated annual 
amplitude, as it can be seen for these two stations. 
 

 
Figure 23. Total zenith delay estimation for station 
Pittsburgh. 
 
Another problem suffered by UNB3m in the case of 
Pittsburgh is the underestimation of the delays, which also 
occurs for Salt Lake City. The average of the delays 
provided by UNBw.na seem to match much beter with 
ray-traced delays than UNB3m’s for these stations. 
 

 
Figure 24. Total zenith delay estimation for station Salt 
Lake City. 
 
In the case of station Bethel both models seem to work 
fine, with a good fit with radiosonde-derived delays. 
However for the northern station, Eureka (80oN), UNB3m 
predictions are generally overestimating the delays, while 

UNBw.na is closer to the average values of the ray-traced 
delays over the years. 
 

 
Figure 25. Total zenith delay estimation for station 
Bethel. 
 

 
Figure 26. Total zenith delay estimation for station 
Eureka. 
 
Table 8 shows the numerical results for each of the five 
stations. With the exception of station Bethel, UNBw.na 
shows better results for all stations, with improvement of 
up to 2.8 cm in bias and 1.6 cm in rms (both for station 
Salt Lake City). If the biases for all stations are 
considered, it is possible to notice that UNBw.na has 
more consistent (homogeneous) results for different 
locations. 
 
Table 8. Numerical results for sample stations 
(reoresented by the first four characters of their names) – 
all values in cm. 

 UNBw.na UNB3m 
Station Bias RMS bias RMS 
BELI 1.4 4.7 2.1 5.3 
PITT 0.6 4.7 -1.8 5.3 
SALT 0.5 2.6 -3.3 4.2 
BETH 1.2 3.8 0.6 3.6 
EURE 0.5 2.9 1.5 3.2 
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CONCLUSIONS AND FUTURE WORK 
 
In this paper an approach for creation of wide area neutral 
atmosphere models was comprehensively described and 
discussed. A dataset with hourly surface meteorological 
measurements was used to create a new model for North 
America, called here UNBw.na. 
 
The calibration of surface temperature and water vapour 
pressure lapse rate parameters was performed, and after 
comparing results of a model calibration with fixed lapse 
rates it was concluded that better performance is achieved 
in the second case. One of the reasons behind this 
conclusion might be the fact that the current dataset 
(surface meteorological parameters) is not adequate to 
successfully decorrelate surface lapse rates from actual 
parameters, due to fact that stations nearby each other 
tend to have similar heights. 
 
The meteorological values derived from the grids of the 
new model were compared with actual surface 
measurements, realized at stations which were not used in 
the calibration process. All analyses took into 
consideration the most recent version of UNB models, 
until now UNB3m. 
 
Results for all three meteorological parameters showed 
that a grid-based model could perform better than a 
latitude (only) based model (such as UNB3m). The reason 
for that is the capability of accommodating longitude or 
regional climatic characteristics of the continent. In terms 
of temperature the general bias was pratically eliminated, 
with a reduction of 91% (-0.68 to 0.06 K), while rms was 
improved by 15% (6.8 to 5.8 K). Pressure estimations 
were also improved in the new model, with a reduction of 
more than 50% in bias (0.05 to 0.02 mbar) and a slight 
improvement in rms (4.12 to 3.95 mbar). Water vapour 
pressure predictions had their general bias reduced 50% 
(0.2 to -0.1 mbar), also with slight improvement in rms 
(2.65 to 2.47 mbar). Although the general results do not 
show a spectacular improvement, the new model is 
consistently better than its predecessor, and, the 
improvement for certain regions is more significant than 
others. Regions where the performance of the old model 
was not satisfactory had results significantly improved 
with the new model. 
 
A validation of UNBw.na predicted zenith delays was 
realized using radiosonde-derived delays as reference. 
Soundings carried out throughout North America and 
some neighboring territories through the years from 1990 
to 1996 inclusive were used in this analysis, totaling 222 
stations. General results from this analysis showed a 
general improvement of bias of around 30%, and small 
improvements in standard deviation (8%) and rms (9%). 
 

Because the main goal with the new model is predicting 
zenith delays with a consistent uncertainty for different 
areas, the continent was divided into four analysis 
regions. This was done to detect localized improvements 
when using UNBw.na. This analysis showed that all 
regions manifested improvement for the estimations with 
the new model. 
 
A problem with systematic behavior of biases (of zenith 
delay estimation) with height which has been previously 
detected in UNB neutral atmosphere models no longer 
exists in UNBw.na. Biases were shown to be consistently 
close to zero, no matter the height of the station. 
 
Investigation of the performance of both models 
(UNBw.na and UNB3) with radiosonde ray-raced delays 
at a few sample stations showed that UNBw.na generally 
has a better fit to the yearly behavior of the zenith delays. 
It was also possible to notice that results from UNBw.na 
are more consistent between sations at different locations 
than when using UNB3m. 
 
In terms of general conclusions, UNBw.na was shown to 
be consistently better than UNB3m in several aspects. 
The adopted procedure for the grid calibration worked in 
an adequate way, resulting in a reliable model. 
 
Future work involve investigation of lapse rate 
parameters, which were not calibrated in this work. The 
model for delay computation, which has not been 
modified so far, will also be reviewed. Assimilation of 
different data, such as numerical weather models or 
contemporary standard atmospheres, still needs to be 
investigated. 
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