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Abstract

In this paper we investigate the fitting of ray-tracing results to closed-form

expressions. We focus on the variation of the delay with elevation angle and

azimuth. For the elevation angle-dependence we compare the continued fraction

form of Yan and Ping (Astron J 110(2):934–993, 1995) with that of Marini (Radio

11 Sci 7(2):223–231, 1972) (normalized to yield unity at zenith and found

negligible differences between the two functional formulations for the hydrostatic

case, while for the non-hydrostatic case, the Yan and Ping model performed

marginally better. Since the ray-tracing results do not necessarily assume azi-

muthal symmetry, we have to account for the azimuth-dependence. For that we

compare the linear gradient model of Davis et al. (Radio Sci 28(6):1003–1018,

1993) with the inclusion of second order terms (Seko et al., J Meteorol Soc Jpn 82

(1B):339–350, 2004) and arbitrary spherical harmonics. These functional forms

performed very well for the hydrostatic case, although for the non-hydrostatic

case there were some large biases, particularly in the spherical harmonics of order

1, degree 1 and the 2nd order polynomial case.

102.1 Introduction

As electromagnetic signals propagate through the atmo-

sphere they experience path delays due to the electri-

cally neutral atmosphere. At the zenith, this delay

roughly has a magnitude of 2.3 m (at sea level) and

can grow to tens of meters near the horizon (Langley

1998). The ultimate goal in geodesy is to mitigate the

tropospheric delay, in order to remove any bias from the

resulting position estimates. To model the tropo-

spheric delay, it is convenient to separate the delay

into a hydrostatic and a non-hydrostatic component

contributing to the delay experienced in the zenith

direction. A mapping function then models the eleva-

tion dependence of the tropospheric delay:

DLðeÞ ¼ khðeÞ � DLzh þ knhðeÞ � DLznh (102.1)

where DL is the total along path delay, kh and knh are
the hydrostatic and non-hydrostatic mapping functions

dependent only on elevation angle, DLzk and DLznk are

the hydrostatic and non-hydrostatic zenith delay and

e the elevation angle of the satellite.
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Various elevation angle-dependent mapping func-

tions have been suggested in the past, many which

were systematically tested by Mendes (1999),

although under the assumption of a spherically sym-

metric atmosphere. With the improvement of space

geodetic observations, the asymmetric nature of the

atmosphere has been shown to have an impact on the

resulting station position (MacMillan 1995). This has

led to the development of mapping functions which

attempt to model the variation of the delay, not only

as a function of elevation angle, but also as a function

of azimuth.

The purpose of this contribution will be to compare

the functional forms used in tropospheric delay model-

ing. Rather than focus on specific mapping functions, we

work with the functional forms themselves in order to

identify which ones provide the most realistic represen-

tation of the tropospheric delay.

The end goal of this research is to identify the most

realistic models of the tropospheric delay, expressed in

a convenient closed-form manner, which can then be

used to either predict or estimate the effect of tropo-

spheric delay in space geodetic data analysis.

102.2 Decomposing the Delay

Following Nievinski (2009), the tropospheric delay in

its most general form, is a function of date and time (t),

receiver location (latitude f, longitude l; and

height h) and satellite location given in the topocentric

frame (elevation angle e, and azimuth a):

DL ¼ f ðt; f; l; h; e; aÞ: (102.2)

The delay is most often decomposed as:

DL ¼ DLz � k (102.3)

where DLz is the zenith delay, defined as:

DLz ¼ f ðt; f; l; h; e ¼ 90�; aÞ: (102.4)

In this way, the variation of the slant delay to a

given satellite is confined to the slant factor, k ¼ DL
DLz ,

a unitless ratio. A mapping function can then be

described as a model for the variation of the slant

factor values with respect to the independent variables.

This allows us to distinguish between the slant factor

model or mapping function (denoted k) from a parti-

cular slant factor value (denoted k), resulting from the

evaluation of the former at a specific epoch ðt ¼ t0Þ,
position ðf ¼ f0; l ¼ l0; h ¼ h0Þ, and direction

ðe ¼ e0; a ¼ a0Þ:

k ¼ kðt0; f0; l0; h0; e0; a0Þ (102.5)

It is helpful to further distinguish between the func-

tional form (Boehm and van Dam 2009) and the reali-

zation of a mapping function. The functional form

describes how the slant factor varies with respect to

some parameter. The most common functional form

in use today is Marini’s (1972) continued fraction

expansion of 1
sinðeÞ , normalized to yield unity at zenith,

as given by Herring (1992):

kðeÞ ¼

1þ a

1� b

1� c

. . .
sinðeÞ þ a

sinðeÞ þ b

sinðeÞ þ c

. . .

(102.6)

The variation with respect to azimuth is, most of the

time, neglected, and sometimes accounted for with

a single main direction of asymmetry (Davis et al.

1993):

dk ðe; aÞ ¼ k0ðeÞ cotðeÞ ½GN cosðaÞ þ GE sinðaÞ�
(102.7)

where k0 represents the symmetric mapping function,

GNandGEare the north and east coefficients describing

the direction and magnitude of asymmetry exhibited

by slant factors and a is the azimuth of the observation.

The realization of the mapping functions described

in (102.6) and (102.7) can take several different forms

as shown in Niell (1996) and Boehm et al. (2006).

The troposphere gradient terms, GN and GE can also

be determined by using a profile method (Boehm and

Schuh 2007) or three dimensional ray-tracing (Chen

and Herring 1997) and it is also possible to have

various gradient mapping functions k0.
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So it can be seen that although the underlying

functional forms for the mapping functions described

above are the same, the realization of those models

are quite different. The comparison can become even

more complex if we consider mapping functions

which require the use of external parameters directly

in the mapping functions such as the generator func-

tion method described in Yan and Ping (1995).

Due to these differences in the realization of the

functional forms, the evaluation is typically of the

mapping function itself, as is the case for Mendes

(1999). In order to avoid this downfall, we use a

homogenous approach to both derive the mapping

functions based on the functional forms as well as

in the evaluation.

102.3 Functional Formulations

Various functional formulations have been developed

over the years to describe both the elevation angle- and

azimuth- dependence of the tropospheric delay.

Table 102.1 shows the functional forms tested along

with the number of coefficients to be estimated. For

those functional forms which consider the atmosphere

to by symmetrical, we have compared Marini’s (1972)

continued fraction form, described in (102.6), for both

the 3 coefficient expansion and the 4 coefficient

expansion, Yan and Ping’s (1995) generator function

method and the simplification of Marini’s (1972)

expression using empirical values for the b and c

coefficients as done in the Vienna Mapping Functions

(VMF) described in Boehm et al. (2006). To ensure

consistency with the truth values, the a coefficient in the

VMF was calculated using the same ray-tracing scheme

as the other models, although under the assumption of

spherical osculating atmosphere, to be consistent with

the approach used in Boehm et al. (2006).

For the asymmetric delay, the standard, linear

gradient formulation described in Davis et al. 1993

was compared to the 2nd order polynomial expansion

developed by Seko et al. (2004) as well as the possi-

bility of using spherical harmonics as described in

Boehm and Schuh (2001).

102.4 Experiment Description

The atmospheric parameters required for three dimen-

sional ray-tracing were obtained through the Canadian

Regional NWM, produced by the Canadian Meteoro-

logical Center (CMC). This NWM has a spatial reso-

lution of 15 km horizontally, and contains 28 isobaric

levels plus a surface level.

Although at this resolution small scale pertur-

bations which may be due to cloud like structures are

not detectable, larger scale “gradient like” structures

in the troposphere have been shown to be detectable

(Davis et al. 1993). As these small scale perturbations

fluctuate rapidly it would be more appropriate to treat

them with a statistical model rather than attempt to

model them in the functional form. That said, the use

of a finer mesh NWM, may lead to further insights into

the accuracy of the functional forms.

A site-specific approach, similar to the approach

used for the rigorous VMF1 site, was followed

(Boehm et al. 2006). A total of 29 ray-traced

observations at elevation angles of (3�, 4�, 6�, 8�,
14�, 30�, 70� and 90�) and azimuths of (0�, 90�, 180�

and 270�) were used to estimate the coefficients

through a least squares procedure.

To evaluate the functional forms, truth values

computed at a regularly spaced interval of 15� in

Table 102.1 Functional formulations and coefficients

Formulation Number of unknowns Coefficients

Marini 3 coefficient 3 a, b, c

Marini 4 coefficient 4 a, b, c, d

Yan and Ping 4 d1, d2, d3, d4

Modified VMF 1 a (UNB ray-tracing scheme to determine “a”)

Linear gradient model 5 a, b, c, GN, GE

Spherical harmonics 3 + harmonic coefficients a, b, c, a10, a11, b11, . . . , anm, bnm
2nd order polynomial 8 a, b, c, GN, GE, GNN, GEE, GNE
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azimuth and at elevation angles of 3�, 5�, 7� and 10�

were computed. The truth values as well as the fitted

values were determined for every 5th day of 2008 at

epoch 00:00h UTC, for station CAGS located in

Gatineau, Canada, totalling 73 days.

Slant factors were computed, using (102.3) for the

truth and fitted observations. The difference between

the slant factors were then multiplied by a nominal

2.3 m for the hydrostatic and 0.22 m for the non-

hydrostatic to obtain the error of the delay in units of

meters.

102.5 Results and Discussion

The residuals of the least squares estimation for each

formulation were sorted by elevation angle and the

mean and standard deviation computed. For the

modified VMF, there was no estimation involved so it

is not included in the residual analysis. Figure 102.1

shows the mean of the residuals for the hydrostatic

mapping functions. The largest bias of the symmetric

mapping functions is present in the Marini four coeffi-

cient expression while the Yan and Ping expression

exhibits a bias which is larger at higher elevation angles

but seems to perform better than the Marini three coef-

ficient model at the low elevation angles, although the

differences are marginal. The standard deviations at

each elevation angle, shown in Table 102.2, are very

similar for all three symmetric cases which was

expected as they are unable to model the azimuthal

variation of the tropospheric delay.

The asymmetric mapping functions exhibit biases

of similar magnitude as the Marini 3 coefficient when

binned by elevation. This is expected as the Marini 3

coefficient expression is part of the formulation used

in the asymmetric mapping functions ðk0Þ. The

standard deviations shown in Table 102.2 shows that

above 14� elevation angle there is really no benefit to

using the asymmetric functional forms over the sym-

metric expressions. As we move to lower elevation

angles, we start to see the improvement in the fit of the

asymmetric expressions, especially in the standard

deviation which is much smaller for the asymmetric

cases.

Next we consider the bias present between the truth

observations and those computed using the derived

mapping functions described above. Figure 102.2

shows that the Marini 3 coefficient model performs

very well, exhibiting nearly a zero bias for the hydro-

static case. There appears to be no significant change

to adding a fourth coefficient to the Marini expression.

The mVMF, which uses empirical values for the

2nd and 3rd coefficient in the Marini expression, has a

small bias but, even at 5� it is less than 1 cm, which

again confirms the validity of using this approach for

high accuracy applications. The biases are comparable

for the asymmetric case. The real advantage of the

asymmetric models can be seen in the standard

deviations, shown in Table 102.3. For the spherical

harmonics model, the standard deviation at the 5�
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Fig. 102.1 Hydrostatic Residuals binned by elevation angles: (a) symmetric; (b) asymmetric

Table 102.2 Standard deviations of the residuals for the fitting

of the functional forms to the ray-traced hydrostatic delay

(units ¼ mm)

Formulation Elevation angle

3� 4� 6� 8� 14� 30� 70�

Marini 3 coefficient 57.2 41.8 24.0 15.1 5.6 1.4 0.1

Marini 4 coefficient 57.2 42.3 24.2 16.2 6.8 1.6 0.1

Yan and Ping 57.2 41.8 24.0 15.1 5.6 1.4 0.1

SH11 31.8 18.3 9.4 10.6 4.3 1.2 0.1

SH21 13.1 8.0 5.5 15.7 5.7 1.4 0.1

2nd order polynomial 5.1 4.0 6.0 4.8 2.1 0.7 0.1

Linear grad. 13.4 8.6 6.9 5.2 2.6 1.0 0.1
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elevation angle improves from 32.2 mm for the sym-

metric functional forms down to 6.9 mm for spherical

harmonics of degree 2 and order 1 (SH21).

Although the 2nd order polynomial performedwell in

the residual analysis, we see that it performed the worst

out of all of the asymmetric formulations. This may be

due to the number of azimuths used in the observation

scheme. If the number of azimuths used to fit the models

were increased from four to eight it is expected that we

would see an improvement in the results.

Figure 102.3 shows the non-hydrostatic results. For

the symmetric mapping functions there is a bias of

less than 1 mm, which can be considered negligible.

Although the Yan and Ping functional form was not

originally intended for non-hydrostatic use it did per-

form well, having the smallest mean at most elevation

angles. We did see a small improvement at low eleva-

tion angles as well as for the Marini 4 coefficient

model, although the slight improvement does not jus-

tify the added complexity of a fourth coefficient in the

estimation process.

For the asymmetric case there was a large bias for

spherical harmonics of, degree 1, order 1 (SH11) while

the other mapping functions performed similar to the
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Fig. 102.2 Discrepancy between truth and mapped hydrostatic delay: (a) symmetric; (b) asymmetric

Table 102.3 Standard deviation of the hydrostatic delay biases between the truth and mapped observations (units ¼ mm)

Formulation Elevation angle

10� 7� 5� 3�

Marini 3 coefficient 10.5 19.4 32.2 58.8

Marini 4 coefficient 12.0 20.0 32.3 58.9

Yan and Ping 10.5 19.3 32.2 58.8

mVMF 10.8 19.8 32.8 59.5

SH11 2.8 7.9 17.1 36.7

SH21 6.2 4.9 6.9 17.6

2nd order polynomial 9.3 19.0 37.3 104.1

Linear grad. 5.8 12.2 26.2 82.2
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Fig. 102.3 Non-hydrostatic residuals binned by elevation angles: (a) symmetric; (b) asymmetric
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symmetric mapping functions. The real improvement

once again came when considering the standard

deviations, shown in Table 102.4, which for the asym-

metric mapping functions were much lower than the

symmetric cases. The 2nd order model performed the

best with an 8 mm standard deviation at 3� while

the symmetric mapping functions exhibited a standard

deviation of nearly 148 mm. Once again, for higher

elevation angles above 15� there is no advantage to

using the asymmetric models.

For the non-hydrostatic case the bias for the three

coefficient Marini expression based mapping functions

are very similar to the mVMF (Fig. 102.4). The bias is

typically around 7 mm. For the Yan and Ping formula-

tion the bias is much better typically less than 1 mm.

For the asymmetric expressions we see that now

a bias appears in SH11 at low elevation angles. This

is similar to the residual analysis which saw poor

performance in the case of SH11. SH21 and the

standard linear gradient formulation performed the

best both having biases of about 1 cm at 3� elevation
angle. The 2nd order polynomial, which performed

very well in the residual analysis, was not able to

adequately model the variation of the delay with

respect to azimuth and large discrepancies were seen.

Once again this may be a result of the low number of

azimuths used in the estimation of the coefficients.

102.6 Conclusion and Future Work

Closed-form mapping functions will continue to play

an important role in the processing of space geodetic

data for years to come. By using three dimensional

ray-tracing through a NWP model it was possible to

test some of the most common mathematical models

in use today.

In this contribution we choose to put the time-

variation of the tropospheric delay out of the scope

and focus on developing site and epoch specific

mapping functions, similar to the manner used in the

VMF1-site.

Both symmetric and asymmetric formulations were

tested. It was found that all of the symmetric mapping

functions tested were able to adequately model the

elevation angle dependence of the tropospheric delay

above an elevation angle of 14�. Even using empirical

values for several of the coefficients as done for the

VMFs only introduced a slight bias and at elevation

angles below 5�. However, since they do not consider

the variation with respect to azimuth they possess large

standard deviations. On the other hand, the use of

spherical harmonics was shown to be an improvement

over other models such as the standard linear gradient

expression and the 2nd order polynomial model.

Table 102.4 Standard deviation of the residuals for fitting the functional forms to the non-hydrostatic delay (units ¼ mm)

Formulation Elevation angle

3� 4� 6� 8� 14� 30� 70�

Marini 3 coefficient 148.3 106.2 60.5 38.0 13.9 3.1 0.3

Marini 4 coefficient 148.3 106.2 60.5 38.0 13.9 3.2 0.6

Yan and Ping 148.2 106.1 60.4 37.9 13.8 3.1 0.3

SH11 79.0 95.5 26.8 39.8 13.3 2.8 0.1

SH21 22.3 14.5 14.1 39.4 14.3 3.2 0.1

2nd order polynomial 8.1 7.8 8.6 7.2 7.0 3.4 0.6

Linear grad. 24.6 17.1 18.2 13.9 6.0 1.6 0.2
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Fig. 102.4 Discrepancy between truth and mapped non-hydrostatic delay: (a) symmetric; (b) asymmetric
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For the non-hydrostatic delay, the Yan and Ping

formulation performed very well exhibiting only a

small bias in elevation angle where as the Marini

expressions had a bias of nearly 8 mm. The asymmet-

rical models on the other hand experienced some dif-

ficulty and were not able to properly model the delay

to the degree that was expected. Further research

will need to be done to identify the problem, but by

including more observations at different azimuths it

is believed it would improve the fit of the models.

Also experimenting with different gradient mapping

functions, such as those suggested by Chen and Herring

(1997) should be attempted. It is also necessary to

expand the test locations to include more stations at

various latitudes and elevations.
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