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Abstract

Geoid computation according to the Stokes-Helmert scheme requires accurate

modelling of the variations of mass-density within topography. Current topo-

graphical models used in this scheme consider only horizontal variations,

although in reality density varies three-dimensionally. Insufficient knowledge of

regional three-dimensional density distributions prevents evaluation from real

data. In light of this deficiency, we attempt to estimate the order of magnitude

of the error in geoidal heights caused by neglecting the depth variations by

calculating, for artificial but realistic mass-density distributions, the difference

between results from 2D and 3D models.

Our previous work has shown that for simulations involving simple mass-

density distributions in the form of planes, discs or wedges, the effect of mass-

density variation unaccounted for in 2D models can reach centimeter-level

magnitude in areas of high elevation, or where large mass-density contrasts

exist. However, real mass-density distributions are more complicated than those

we have modeled so far, and involve multiple structures whose effects might

mitigate each other. We form a more complex structure by creating an array of

discs that individually we expect to have a very significant effect, and show that

while the contribution of such an array to the direct topographical effect on

geoidal height is sub centimeter (0.85 cm for our simulation), the resulting

primary indirect topographical effect may reach several centimeters or more

(5 cm for our simulation).

51.1 Introduction

Forward modeling of gravitational effects of three-

dimensionally varying density distributions has a

long history. Evaluation of the Newton kernel over

three-dimensionally varying mass distributions is an

important task in geophysics, and later geodesy. Early

attempts decompose crustal masses into prisms, over

which the Newton integral is evaluated analytically, to

determine either the effect of the masses on gravity
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(Mollweide 1813) or gravity potential (Bessel 1813).

More complex representations of crustal density bod-

ies model crustal masses as polyhedrons (Paul 1974)

or tesseroids (Seitz and Heck 2001), and may allow

vertical density variation within the bodies (e.g.

Pohánka 1998). In terms of geodesy, recent efforts

have relied heavily on forward modeling of crustal

mass effects, most prominently in creating synthetic

gravity models (e.g. Baran et al. 2006) useful for

testing geoid computation techniques. However,

three dimensional crustal density effects have not yet

been incorporated in Stokes-Helmert geoid modeling.

The Stokes-Helmert method of geoid modeling

requires determination of effects of all topographical

masses, i.e. crustal masses above the geoid. These

calculations have traditionally used a constant value

of topographical density (e.g. Vanı́ček and Kleusberg

1987), but numerous investigations have shown that to

obtain a precise geoid the effects of density variations

within topography must also be calculated (e.g.

Martinec 1993; Pagiatakis et al. 1999; Huang et al.

2001). These efforts have almost exclusively focused

on horizontal density variations. Since the actual topo-

graphical density varies with depth, two dimensional

topographical density models (2DTDMs) cannot

exactly model the real density distribution. Martinec

(1993) suggests a method of dealing with three-

dimensionally varying density by averaging density

in each topographic column to derive a laterally-

varying density distribution, and this approach is

applied by Martinec et al. (1995) to find effects of

lake waters on the geoid. However, in most situations

the information required to construct a 2DTDM using

averaged data along columns of topography is not

available, and so some other method is used, such as

assigning surface density values to a whole column of

topographical density (Huang et al. 2001), or applying

Monte Carlo methods (Tzaivos and Featherstone

2001).

Investigation into effects of three-dimensionally

varying density has been limited, because a three

dimensional topographical density model (3DTDM)

has not yet been developed with a high enough resolu-

tion and over a large enough area to be suitable for

geoid modeling (Kuhn 2003). This is because the 3D

density structure of the topography is known to a high

resolution only over small areas (for local geophysical

studies or prospecting), or to very coarse resolutions

over large areas (e.g. the CRUST 2.0 model developed

by Bassin et al. 2000). A more complete discussion on

the difficulties of creating a 3D density model for

geodetic purposes is given in Kingdon et al. (2009).

Despite the lack of suitable 3DTDMs for geoid

modeling, we can still guess some things about the

shortcomings of 2DTDMs. Kingdon et al. (2009)

recently showed that in the presence of a single body

of topographical density not accounted for in the

2DTDM, using only a 2DTDM might introduce errors

of up to several centimeters in areas of high topogra-

phy. In reality, topography does not contain only a

single body of anomalous density, but is a complex

arrangement of bodies of varying densities. Thus,

effects of a single body might be mitigated by the

effects of the bodies around it.

In this effort, we try to discover whether in extreme

cases adjacent density bodies mitigate each other’s

effects on the geoid. If effects of adjacent masses

cancel each other even in a hypothetical situation

created so that they are unlikely to do so, it is unlikely

that the less extreme situations existing in reality will

be of any concern. However, if the effects of the

adjacent masses remain significant then more work is

necessary to define situations where 3DTDMs are

needed. Once we know what constitutes a distribution

where 3DTDMs are needed, will we be ready to

choose some real data sets where these situations

exist, for further testing.

Our investigation is done within the framework

of the Stokes-Helmert scheme of geoid modeling,

following the methodology discussed in Sect. 51.2.

Section 51.3 will show and discuss our results using

this methodology, and finally we will present the

conclusions derived from our results and make

recommendations for future work in Sect. 51.4.

51.2 Methodology

51.2.1 3D Density Modeling in the
Stokes-Helmert Context

Stokes-Helmert geoid computation requires a model

of topographical density both for calculating the

transformation of gravity anomalies to the Helmert
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space (called the Direct Topographical Effect or

DTE), and for calculating the transformation of the

Helmert co-geoid back to the real space (the Primary

Indirect Topographical Effect or PITE) after the Stokes

integration (Martinec and Vanı́ček 1994a, b). Existing

models normally consider topography of constant den-

sity, r0 (usually 2,670 kg m�3), and may additionally

include laterally variations of density, dr with respect

to r0. For our modeling, we will consider the variation

of topographical density from the laterally varying

values, in a three dimensional sense. We label this

anomalous topographical density dr. It can be consid-

ered as a residual density term, such that:

rðr;OÞ ¼ r0 þ drðOÞ þ drðr;OÞ; (51.1)

where r is the geocentric radius of a point where

density is being represented, and O is a geocentric

direction, representing the point’s geocentric latitude

and longitude

Each of the transformations required in the Stokes-

Helmert method comprise an evaluation of the differ-

ence between the effect of real and of condensed

anomalous topographical density at the location of

each gravity anomaly. Here, we follow the approach

outlined in Kingdon et al. (2009), which is a generali-

zation of the approach given by Martinec (1998),

and uses Helmert’s second condensation method

(Martinec and Vanı́ček 1994a, b). The DTE on gravity

is calculated by the integral formula:

edrDTEðr;OÞ

¼
ðð
O02O0

@

@r

ðrtðO0Þ

r0¼rgðO0Þ

drðr0;O0ÞKðr;O; r0;O0Þr02dr0�

2
64

� dsðO0ÞKðr;O; rgðO0Þ;O0ÞrgðO0Þ�dO0

(51.2)

where edrDTE is the DTE on gravity at a point, and dr
is the anomalous density given by a 3DTDM for the

integration point at coordinates r0, O0. rt(O0) and rg(O0)
are the surface of the topography and the geoid,

respectively. The function K(r,O;r0,O0) is the Newton
kernel, equal to the inverse distance between the com-

putation and integration points.

The PITE on gravitational potential, edrPITEðrgðOÞ;OÞ,
is calculated by the formula:

edrPITEðrgðOÞ;OÞ

¼
ðð
O02O0

@

@r

ðrtðO0Þ

r0¼rgðO0Þ

drðr0;O0ÞKðr;O; r0;O0Þr02dr0�

2
64

� dsðO0ÞKðr;O; rgðO0Þ;O0Þrg2ðO0Þ
#
dO0:

(51.3)

Notice that the DTE for a particular computation

point is evaluated at the topographical surface, since it

is applied to gravity anomalies at the topographical

surface. The PITE is evaluated for a point on the geoid

surface, which we approximate for the evaluation of

the Newton kernels as a sphere of radius R

¼ 6371008.144 m, the mean radius of the Earth. The

condensation density referred to in these formulas is

calculated for a 3DTDM according to:

dsðOÞ ¼ 1

R2

ðrtðOÞ

r0¼rgðOÞ

r02drðr0;OÞdr0: (51.4)

For our investigation, we convert the effects in (51.2)

and (51.3) into effects on geoidal heights. In the case

of the DTE, the effect can be computed by applying

Stokes integration to the DTE on gravity:

dNdr
DTEðOÞB¼:

1

4pgðOÞ
ðð
O02O0

Sðc½O;O0�ÞedrDTEðO0ÞdO0;

(51.5)

where dNdr
DTE is the DTE on geoidal height, g (O) is the

normal gravity on the surface of the reference ellip-

soid, and S(c[O,O0]) is the Stokes kernel.
In the case of the PITE, the effect on geoidal height

is found by applying Bruns’s formula:

dNdr
PITEðOÞ ¼

edrPITEðOÞ
gðOÞ : (51.6)

These effects on geoidal height allow us to compare

the effects of masses to some meaningful tolerance
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to determine whether they are significant. In this

case, where we are looking for a 1 cm geoid, we will

consider any effect over 0.5 cm significant.

51.2.2 Numerical Considerations

The Newton kernel and its integrals and derivatives in

(51.2) and (51.3) can be computed numerically in

various ways. For our computation, we use the pris-

moidal method as summarized by Nagy et al. (2000,

2002) for integration near to the computation point,

and 2D numerical integration (Martinec 1998) farther

from the computation point.

Applying the prismoidal method to a 3DTDM, the

anomalous topographical masses are divided into

blocks, and the integral of the Newton kernel in planar

coordinates is evaluated over each block analytically.

The same procedure was applied in a slightly different

context by Kuhn (2003). This formulation captures

very well the behavior of the Newton kernel near to

the computation point, and in that region is superior to

2D numerical integration (Heck and Seitz 2007), even

though the 2D integration normally uses the more

accurate spherical expression of the Newton kernel.

The accuracy improvement from evaluating the kernel

analytically near to the computation points outweighs

the accuracy benefit of using a spherical formulation

(Nagy et al. 2000). The prismoidal formula is

inherently faster than other analytical methods such

as the polyhedral method, and is also faster than the

tesseroidal method near to the computation point.

The tesseroidal method is very fast when only the

zero-order and second-order terms of its Taylor series

representation are used, but these do not provide suffi-

cient accuracy near to the computation point (Heck

and Seitz 2007).

Comparison of the planar Newton kernels used in

the prismoidal approach and the spherical Newton

kernels shows that the kernels used to evaluate the

DTE are more than 1% different beyond 5 arc-minutes

from the computation point, and that those used to

evaluate the PITE are more that 1% different beyond

15 from the computation point. Fortunately, even for

computation points within these ranges of the compu-

tation point, the 2D numerical integration provides

identical results to the slower prismoidal approach,

and so these differences are moot.

The 2D integration employs the radial integrals of

the Newton kernel developed by Martinec (1998) to

perform the radial integration of the Newton kernel

over the vertical anomalous density variations in a

given topographical column, discretized as segments

of the column, thus evaluating the radial component of

the 3D integral analytically. The horizontal integration

is performed by summing the radial integral over each

particular column, and then summing the products of

the values of the integrands of (51.2) and (51.3) at the

cell centers with the cell areas. The 2D horizontal

integration is suitable beyond about 5 arc-minutes of

the computation point for the DTE, and beyond 1� of
the computation point for the PITE. For our

evaluations of the PITE, we use the prismoidal for-

mula within 5� of the computation point, to take

greater advantage of its superior accuracy near the

computation point. For the DTE, we use the prismoi-

dal formula only within 5 arc-minutes of the computa-

tion point. Beyond these limits, 2D integration is used.

With both of the methods we have chosen above, a

discretization error is present since the actual mass

distribution of the topography is represented as a series

of rectangular prisms of varying height. Such

discretization errors will be present unless the topo-

graphical density model exactly reflects the topo-

graphical density distribution, and is difficult to

quantify since its behavior changes for different mass

distributions. For example, discs of different size will

have different discretization errors. We can decrease

the error by using a smaller cell or prism size in our

integration procedures. By testing we have found that

for the discs used here a resolution of 1 � 1 arc-sec-

ond is sufficient. Using a higher resolution than 1 � 1

arc-second did not significantly change the results

(<0.01 mGal), while going from 1 � 1 arc-second to

3 � 3 arc-second step affected the results by up to

0.21 mGal.

To validate our computational procedures in this

investigation, we have tested our numerical integra-

tion for the case of a single disc of anomalous density,

against results from analytical formulas for the DTE

on gravity and PITE on gravity potential at the center

of the disc, similar to the approach of Heck and Seitz

(2007). This is the point where the PITE caused by the

disc is greatest, and a point where the DTE is very

large. In the test, we find errors of up to 18% in the

numerical integration for the DTE and 5% for the

PITE in extreme cases, but normally less than 5% for
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the DTE and 1% for the PITE. The larger errors occur

when the disc is very small, and consequently do not

indicate a large magnitude of overall error. In terms of

magnitude, the largest errors in the DTE are only

0.4 mGal, and in PITE on geoidal height only

0.5 mm. Errors in DTE and PITE were usually less

than 0.15 mGal and 0.3 mm in magnitude respectively.

We consider such errors admissible for determining

the order of magnitude of differences between results

from 3DTDMs and 2DTDMs.

51.2.3 Proposed Tests

Our question is: can the effect on geoidal height of an

anomalous density body, unaccounted for by a

2DTDM, be mitigated by the presence of adjacent

bodies of different anomalous density? To investigate

this, we take two extreme cases, each involving an

array of anomalous masses. In case A, we choose

masses that individually are known to have a particu-

larly large DTE, and investigate the effect of the

conglomerate of these masses on geoidal height. In

case B, we choose masses known to have a large PITE.

In each case, we integrate three dimensionally over the

masses considered unaccounted for in a 2DTDM, so

that the results of the integration will give us the

deficiency of the 2DTDM. If the effects mitigate

each other significantly, it is an indicator that we can

expect the same in any less extreme case.

In both cases A and B, we use an array of vertical

cylinders as our density model. The upper part of the

cylinders are assigned alternating density contrasts of

positive or negative 600 kg m�3, considered anoma-

lous relative to a laterally-varying density model. The

anomalous density outside the cylinders is zero; i.e.,

the 2DTDM is considered accurate outside of the

cylinders.

Our past work on individual mass bodies has shown

that the DTE and PITE are greatest when:

1. The topography involved is thick

2. Anomalous density is distributed away from the

geoid, and

3. There is a large density contrast

Regarding the horizontal size of the bodies, for

the PITE the larger the body the greater its effect

will be, although the rate at which the effect increases

becomes very low for bodies beyond about 110,000 m

wide. Therefore, we use a width of 110,000 m for the

discs in case B. Of course, the largest PITE would

be for a spherical shell, but such a model would not

allow us to test whether adjacent masses mitigate each

other, and so we have instead used a disc that induces

much of the effect that a spherical shell of the same

thickness would, but whose effect still might be

mitigated by adjacent discs of opposite anomalous

density.

For the DTE, by contrast, there is a range of disc

widths of about 3,300 m where the effect is greatest.

This is because the DTE is the difference between the

effect of a real anomalous mass on gravity at a com-

putation point, and the effect of the anomalous mass

condensed onto the geoid. At about 3,300 m from the

computation point, for the case of a disc as tested here,

these effects become similar, and thereafter the

condensed density of a given mass has a greater effect

on gravity at the computation point than its real den-

sity, so that the overall DTE becomes smaller. Thus,

we use 3,300 m as the disc diameter for case A.

In order to accommodate items 1 and 2 in the list

above, we choose flat topography 2,000 m thick, and

use discs extending from the surface of the topography

to 500 m depth. These can be thought of as anomalous

masses relative to a 2DTDM that accurately portrays

the density below the masses. An illustration of our

model, including possible cylinder densities that might

result in the +/�600 kg m�3 anomalous densities used

in our experiment, is given in Fig. 51.1.

We calculate results over a 1� by 1� area for our

case A simulation, and a 2� by 2� area for our case B

2700 kg m–3

2800 kg m–3

3300 kg m–3

(+600 kg m–3)

2200 kg m–3

(–600 kg m–3)

w

500 m

1500 m

Fig. 51.1 Topographical density distribution used for testing.

w ¼ 3,300 m for DTE tests, and w ¼ 110,000 m for PITE tests
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simulation, both described in Sect. 51.3 below. We use

a radius of 2� for Stokes integration, and so our array

of cylinders in case A extended over a 5� by 5� area to
capture most of their effect.

51.3 Results

51.3.1 Case A

The DTE on gravity for case A, as described in

Sect. 51.2.3, is given in Fig. 51.2.

The adjacent density anomalies do not significantly

mitigate each other’s effects on the DTE, which

reaches +/� 16 mGal. This is not surprising, since

the derivative of the Newton kernel, used to calculate

these effects, decreases very rapidly with distance

from the source masses. However, we are ultimately

interested in the DTE on geoidal height, resulting from

the Stokes integration (given by (51.5)) over the DTEs

on gravity, and shown in Fig. 51.3.

Under the smoothing influence of the Stokes

kernel, the adjacent masses attenuate each other’s

contributions to the DTE on the geoidal height,

which reaches about +/� 0.85 cm. This may not be

the case for density anomalies with greater horizontal

extent, since in such cases the Stokes integral would

do less to mitigate the effects of the anomaly on

gravity at its center, where the effect is largest.

It thus remains to find the maximum effect that masses

can have in a simulation like our own.

51.3.2 Case B

The PITE on gravity for case B, as described in

Sect. 51.2.3, is given in Fig. 51.4.

We see that for such large cylinders, the effect of

adjacent cylinders of opposite anomalous density is

minimal. Here the effects reach +/� 5 cm, but for larger

discs the magnitude would be somewhat greater and the

Fig. 51.2 DTE on gravity for case A

Fig. 51.3 DTE on geoidal height for case A

Fig. 51.4 PITE on geoidal height for case B
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attenuation even less significant, since it is hardly sig-

nificant even for the discs tested here. It is thus likely

that the PITE will only increase for wider cylinders.

Conclusions

The DTE on gravity and the PITE on geoidal height

for the anomalous masses (not modeled in

2DTDM) in our simulations are not significantly

diminished by the presence of adjacent anomalous

masses, even when there is an extreme density

contrast. The PITE still reaches about 5 cm, and

the DTE reaches about 16 mGal. This demonstrates

that the error in the PITE resulting from only using

a 2DTDM may be large even in the presence of

adjacent mass anomalies.

The DTE on geoidal height resulting from using

a 2DTDM is significantly diminished by the pres-

ence of adjacent masses, though it still approaches

1 cm level. However, this is entirely a result of

Stokes integration, which was not considered in

the development of our extreme case scenarios.

With this in mind, larger bodies of anomalous den-

sity that still have a significant impact on the DTE

on gravity may produce significantly larger effects

on geoidal heights.
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Huang J, Vanı́ček P, Pagiatakis S, Brink W (2001) Effect of

topographical density variation on geoid in the Canadian

Rocky Mountains. J Geod 74:805–815
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