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ABSTRACT 

Many methods for geoid determination exist and are in use around the world. One of the 
most advantageous methods is the Stokes-Helmert approach developed at the University of 
New Brunswick. The main theoretical developments of this method is attributed to Vaníček, 
along with the contribution of other authors, such as Martinec, Sjöberg, Kleusberg, Heck and 
Grafarend. The theoretical aspects of the UNB approach were published in more than fifty 
contributions (see References) and the general principles are summarized in Vaníček and 
Martinec (1994), Vaníček et al. (1999), Novák (2000), and Vaníček and Janák (2001). The 
main idea of this contribution is to offer to readers, in a more detailed form, the basic 
theoretical aspects of the Stokes-Helmert approach for geoid determination. Another purpose 
is to summarize publications related to this topic. 
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1 Introduction 

In the classical sense of Gauss and Listing, the geoid is defined as an equipotential 
surface of the Earth’s gravity field with the gravity potential value W . Gauss (1828) was the 
first to define this surface in the strict mathematical sense as a surface which is intersected 
everywhere by directions of gravity at right angle and which best approximates the mean sea 
level over the whole Earth. Later, Bessel (1837) stipulated this equipotential surface as a 
reference for all geodetic applications. Finally, Listing (1873) called this surface “geoid”.  

o

Stokes (1849) derived a theorem, which forms a theoretical foundation for estimation of 
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the geoid based on gravity observations that refer to the geoid (assuming as harmonic the 
space above the geoid). The requirement of harmonicity was difficult to fulfill in practical 
applications of the Stokes theory since the distribution of actual topographical density 
between the geoid and the Earth’s surface is not known with sufficient accuracy.  

The first attempt to satisfy this requirement can be attributed to Helmert (1884). Helmert 
suggested that the Earth’s topographical masses can be replaced by an infinitesimal 
condensation layer of a surface density that is equal to the product of the mean topographical 
density and height of the Earth’s surface above the geoid. This layer could be located 
anywhere on or beneath the geoid without violating the required assumption of harmonicity. 
In the second condensation method that Helmert formulated, the condensation layer is placed 
right on the geoid (Lambert, 1930; Heck, 1992; Martinec et al., 1993).  

According to Newton’s theory of gravity, Martinec and Vaníček formulated principles 
for the description of the effect of topographical masses on the gravitational potential and 
attraction in the case of laterally varying topographical density distribution and for the 
spherical approximation of the geoid (Martinec, 1993; Martinec and Vaníček, 1994a, b). 
Sjöberg (1998 and 1999) and Novák (2000) studied the effect of the atmospheric masses in 
the Stokes-Helmert method of geoid determination. 

Based on Molodensky’s theory (Molodensky et al., 1960), Vaníček and Kleusberg (1987) 
introduced the idea of modification of the Stokes function to separate the reference and 
higher-degree gravity field. Theory of the reference gravity field and the spheroid, and the 
reformulation of Stokes’s boundary-value problem for the higher-degree reference spheroid. 
were described by Vaníček and Kleusberg (1987), Vaníček and Sjöberg (1991), Vaníček et 
al. (1995), Vaníček and Featherstone (1998).  

The solution of Dirichlet’s boundary-value problem by applying the Poisson integral 
equation for the downward continuation of Helmert’s gravity anomalies was investigated by 
Martinec (1996), Vaníček et al. (1996), Sun and Vaníček (1998) and Huang (2002). 

The principle of the Stokes-Helmert scheme of geoid determination can be summarized 
in the following scheme (Vaníček et al., 1999; Vaníček and Janák, 2001): 

- Formulation of the boundary-value problem of the third kind on the Earth’s surface. 
- Transformation of the boundary-value problem into a harmonic space, i.e., 

transformation of gravity anomalies from the real to Helmert space (according to the 
second condensation technique where the topographical and atmospheric masses are 
condensed directly onto the geoid).  
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- Solution of Dirichlet’s boundary-value problem by applying the Poisson integral 
equation, i.e., the downward continuation of Helmert’s gravity anomalies from the 
Earth’s surface to the geoid. 

- Reformulation of the geodetic boundary-value problem by decomposition of Helmert’s 
gravity field into a low and high-frequency gravity field. 

- Solution of the Stokes boundary-value problem for the high-frequency Helmert gravity 
field (by using the modified spheroidal Stokes kernel) and evaluation of Helmert’s 
reference spheroid (from a satellite geopotential model). 

- Transformation of the equipotential surface from the Helmert space back into the real 
space. 

2. Geodetic boundary-value problem in the real space 

Let us begin with the definition of the disturbing gravity potential ( )( )ΩtrT  which is 
reckoned at the Earth’s surface, ( ) ( ) ( )Ω+Ω=ΩΩ∈Ω O

O : Hrr gt

))
, as the difference of the 

Earth’s gravity potential W  and the normal gravity potential (( Ωtr ( )( )ΩtrU  generated by 
the reference geocentric ellipsoid of revolution (Somigliana, 1929; Pizzeti, 1894 and 1911) 

:OΩ∈Ω ( )( ) ( )( ) ( )( )Ω−Ω=Ω ttt rUrWrT , (2.1) 

where  stands for the geocentric radius of the Earth’s surface, ( )Ωtr ( )Ωgr  is the geocentric 

radius of the geoid and  is the orthometric height. A pair of the geocentric 

coordinates 

( )ΩOH

φ  and λ  represent the geocentric direction ( )λφ ,=Ω  while OΩ  stands for the 

total solid angle [ ]π2,0,2/ ∈λπ,2/π−∈φ

o

. Eqn. (2.1) is valid only if the normal 

gravity potential U  on the reference ellipsoid equals to the gravity potential W  on the 
geoid. 

o

Approximating the geoid by the geocentric sphere of radius R , i.e., ( ) Rrg ≈ΩΩ∈Ω :O , 
the radial derivative of the disturbing gravity potential ( )( )ΩtrT  reads (Vaníček et al., 1999)  

:OΩ∈Ω∀   

( ) ( ) ( )
=

∂
Ω∂

−
∂

Ω∂
=

∂
Ω∂

Ω+=Ω+=Ω+= OOO

),(),(),(

HRrHRrHRr r
rU

r
rW

r
rT  

( )( ) ( )( )( ) ( )( ) ( )( )( )oo rgradgradrgradgrad ,cos,cos ΩΩ−ΩΩ= tttt rUrUrWrW , (2.2) 
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where r  is the unit vector in the radial direction. The vertical gradient of the gravity 
potential W  and the vertical gradient of the normal gravity potential define gravity 

 and normal gravity 

o

)
( )( Ωtr

)
)

(( Ωtrg ( )( )Ωtrγ : 
 

:OΩ∈Ω∀ ( )( ) ( )( ) ( )( )Ω−=Ω−=Ω ttt rgrrW ggrad , (2.3) 

:OΩ∈Ω∀ ( )( ) ( )( ) ( )( )Ω−=Ω−=Ω ttt rrrU γγgrad . (2.4) 
 

The angle between the plumb line and the radial direction ( )org ,−∠ , and the angle 
between the normal to the reference ellipsoid and the radial direction ( )orγ ,−∠  can be 
written with sufficient accuracy as follows (Vaníček et al., 1999) : 

( )
2

1,cos
2
gβ−≅− org , (2.5) 

( )
2

1,cos
2
γβ−≅− orγ . (2.6) 

 
Substituting Eqns. (2.3-2.6) back to Eqn. (2.2), the radial derivative of the disturbing gravity 
potential becomes (Vaníček et al., 1999)   
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( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) =Ω

Ω
−Ω

Ω
+Ω+Ω−=
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Ω+=

t
t
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t
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HRr

r
r

r
rg

rrg
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rT 22

22
),(

O
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γ
βγ  

 ( )( ) (( Ω+Ω−= tgt rrg δ ))εδ , (2.7) 
 
where the difference of gravity ( )( )Ωtrg  and normal gravity ( )( )Ωtrγ  defines the gravity 
disturbance, ( )( ) ( )( ) ( )( )Ω−Ω=Ω tt rgrg trγδ ,  ( )( )Ωtg rδε  is the „ellipsoidal correction to the 
gravity disturbance“ (ibid) 
 

:OΩ∈Ω∀  

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )Ω
Ω

+ΩΩΩ+
Ω

Ω=Ω t
t

ttt
t

ttg r
rg

rrrg
r

rgr 2
2

22
θξβ

β
δε γ

γ
δ ,  (2.8) 

 
and ξ , η  stand for the components of the deflection of a vertical θ , 22 ηξθ += .  
The angle γβ  is the difference of the geodetic latitude ϕ  and geocentric latitude φ  that is 
given by Bomford (1971) 
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ϕβγ 2sinf≅ , (2.9) 
 
where  is the first geometric flattening of the reference ellipsoid. ( ) abaf /−=
 

Considering only the second term on the right-hand side of Eqn. (2.8), the ellipsoidal 
correction to the gravity disturbance ( )( )Ωtg rδε  can be evaluated with sufficient accuracy by 
(Vaníček et al., 1999) 

:OΩ∈Ω∀ ( )( ) ( )( ) ( )( ) ( )
( )
ϕ

ϕξϕεδ ∂
Ω∂

Ω
−≅ΩΩ≅Ω

,2sin2sin rT
r

frfrgr
t

tttg . (2.10) 

 
Since the computation of normal gravity ( )( )Ωtrγ  on the Earth’s surface requires the 

knowledge of the geodetic height ( )Ωh  above the reference ellipsoid, the gravity disturbance 
( )( Ωtrg )δ  is transformed into the gravity anomaly ( )( )Ω∆ trg . Gravity anomaly is given as a 

difference of gravity  on the Earth’s surface and normal gravity ( )( Ωtrg ) ( )( )ΩNHγ  on the 
telluroid, i.e., ∀ , see (Vaníček et al., 1999)  )(N Ω)(Ωro) +≅∈Ω H(:O ΩΩ r

:OΩ∈Ω∀  
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )Ω+Ω−Ω+Ω=Ω−Ω=Ω∆ tgtttt rHrrgHrgrg δεγγδγ NN , (2.11) 

 
where  is the geocentric radius of the reference ellipsoid and  stands for the 
normal height (Molodensky, 1945). 

)(Ωor )(N ΩH

 
Considering Molodensky’s approach (Molodensky et al., 1960), the difference of normal 

gravity ( )( Ωtr )γ  on the Earth’s surface, ( ) ( ) ( ) ( ) (Ω+Ω≅Ω+Ω=ΩΩ∈ hrHrr ogt
O

O : )Ω , and 

normal gravity ( )( )ΩNHγ  on the telluroid can be defined as 

:OΩ∈Ω∀ ( )( ) ( )( ) ( )( ) ( ) ( )
( )

( )Ω
∂

Ω∂
=ΩΩ=Ω−Ω

Ω+=

ςγςγγγ
On

,N

HRr
tt

rrHr grad , (2.12) 

 
where the derivative of normal gravity is taken with respect to the normal  to the reference 
ellipsoid and 

n
(Ω)ς  is the height anomaly (Molodensky et al., 1960). Using Bruns’s spherical 

formula (Bruns, 1878), the expression on the right-hand side of Eqn. (2.12) can be rewritten 
as (Vaníček et al., 1999)  
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:OΩ∈Ω∀ ( )
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Substituting Eqn. (2.13) into Eqn. (2.11), the fundamental boundary condition takes the 
following form  

:OΩ∈Ω∀ ( )( ) ( )( ) ( )( ) ( )
( )

( )( )
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Applying the following spherical approximation 
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)) , (2.15) 

 
the boundary condition in Eqn. (2.14) becomes (Vaníček et al., 1999) 
 

:OΩ∈Ω∀  

( )( ) ( )
( )

( )( ) ( )( ) (( Ω−Ω
Ω

−Ω+
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tt

t
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r
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2,
O

εεδ )). (2.16) 

 
The „ellipsoidal correction for the spherical approximation“ ( )( )Ωtrnε  can be derived in the 
following form (Vaníček and Martinec, 1994) 
 

:OΩ∈Ω∀ ( )( ) ( )( )
R

rTfmr t
t

Ω














 −+≅Ω

3
12cos2n ϕε , (2.17) 

 
where  stands for the Clairaut constant (Heiskanen and Moritz, 1967),  
is the geocentric gravitational constant, 

GMam /32ω= GM
ω  is the mean angular velocity of the Earth’s 

rotation, and the mean radius of the Earth R  can be evaluated by the following formula 
(Vaníček and Krakiwsky, 1986) 
 

3 2baR = . (2.18) 

3. Geodetic boundary-value problem in the Helmert space 

To investigate the geodetic boundary-value problem in the Helmert space, „Helmert’s 
disturbing gravity potential“ ( )( )Ωtr

HT  referred to the Earth’s surface is defined by Vaníček 
et al. (1999) 
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:OΩ∈Ω∀ ( )( ) ( )( ) ( )( ) ( )( )Ω−Ω−Ω=Ω t
a

t
t

tt rVrVrTrT δδH , (3.1) 
 
where  and  are the so-called residual gravitational potentials of 
topographical and atmospheric masses. 

( )( Ωt
t rVδ ) )( )( Ωt

a rVδ

 
Assuming the mean angular velocity ω  of the Earth’s rotation is equal to the mean 

angular velocity of rotation of the reference ellipsoid, the disturbing gravity potential 
 is harmonic everywhere above the geoid, i.e., ( Ω,H rT ) ( ) :,O Ω>Ω∈Ω∀ grr  

 in the Helmert space. ( ) 0=,H Ω∆ rT

„Helmert’s gravity“  is related to actual gravity ( )( Ωtrg H ) ( )( )Ωtrg  as follows (Vaníček et 
al., 1999): 
 

:OΩ∈Ω∀ ( )( ) ( )( ) ( )
( )
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∂
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+
∂

Ω∂
+Ω=Ω

OO

,,H

HRr

a

HRr

t

tt r
rV

r
rVrgrg δδ  (3.2) 

 
„Helmert’s gravity disturbance“ ( )( )Ωtrg Hδ  defined as the negative vertical gradient of the 
Helmert disturbing gravity potential can be described as a sum of the negative radial 
derivative of the Helmert disturbing gravity potential ( )( )Ωtr

HT  and the ellipsoidal 
correction ( )( Ωtg rδ )ε  to the gravity disturbance  
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The relation between the gravity disturbance ( )( )Ωtrg Hδ  and gravity anomaly  in 
the Helmert space can be obtained from the boundary condition (Heiskanen and Moritz, 
1967)  

( )( )Ω∆ trg H
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( )( ) ( )( ) ( ) ( )
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N ) , (3.4) 

 
where ( )φγ o  is normal gravity on the reference ellipsoid (Somigliana, 1929). 
 

If Helmert’s orthometric height ( )ΩOH  is used (Helmert, 1890), the „geoid-quasigeoid 
correction“ has to be applied to the boundary condition formulated in the Helmert space 
(Vaníček et al., 1999). The geoid-quasigeoid correction, i.e., the difference of the normal and 
orthometric heights, can be approximately described as a function of the simple Bouguer 
gravity anomaly , see (Martinec, 1993), ( )( Ω∆ trg SB )

:OΩ∈Ω∀ ( ) ( ) ( ) ( )( )
( )φγ o

trg
HHH

Ω∆
Ω≅Ω−Ω

SB
OON . (3.5) 

 
The formula for the simple Bouguer gravity anomaly ( )( )Ω∆ trg SB  reads (Heiskanen and 
Moritz, 1967) 
 

:OΩ∈Ω∀ ( )( ) ( )( ) ( )( ) ( )Ω−Ω−Ω=Ω∆ OOSB π2 HGHrgrg ott ργ , (3.6) 
 
where G  is the Newton (universal) gravitational constant. The third term on the right-hand 
side of Eqn. (3.6) stands for gravitational attraction generated by the infinite Bouguer plate 
(with the mean topographical density oρ  and thickness equal to the orthometric height 

 at the computation point). Substituting Eqn. (3.5) into the boundary condition in 
Eqn. (3.4), Helmert’s gravity anomaly 

(ΩOH )
( )( )Ωtr

H∆g  becomes (Vaníček et al., 1999) 
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Introducing the free-air gravity anomaly (Heiskanen and Moritz, 1967) 
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and applying the spherical approximation from Eqn. (2.15), the boundary condition in Eqn. 
(3.7) can subsequently be written in the form (Vaníček et al., 1999) 
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The second and third term on the right-hand side of Eqn. (3.9) are the direct topographical 
and atmospheric effects on gravitational attraction. The fifth term stands for the „geoid-
quasigeoid correction to the boundary-value problem“, and the sixth and seventh terms 
represent the secondary indirect topographical and atmospheric effects on gravitational 
attraction. 
 

Helmert’s gravity anomaly can be also formulated as a function of the Bouguer gravity 
anomaly. The complete Bouguer gravity anomaly ( )( )Ω∆ trg CB  is defined by the following 
formula (Heiskanen and Moritz, 1967) 

:OΩ∈Ω∀  
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) +Ω−Ω−Ω=Ω+Ω∆=Ω∆ OOSBCB π2 HGHrgrgrgrg ott

tc
tt ργδ  

( )( ) ( )( ) ( ) ( )( )Ω+Ω−Ω∆=Ω+ t
tc

ott
tc rgHGrgrg δρδ OFA π2 , (3.10) 

 
where  is the „gravimetric terrain correction“ (Vaníček et al., 1999), i.e., the 
correction for gravitational attraction of topography taken relative to the height of the 

( )( Ωt
tc rgδ )
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evaluation point . The curvature effect -( Ω,r ) ( )[ ] RHG o /π 2O Ωρ

∆

8  is usually not considered 
in the definition of the complete Bouguer gravity anomaly (Vaníček and Krakiwsky, 1986). 
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Substituting Eqn. (3.10) into Eqn. (3.9), the relation between the Helmert gravity 

anomaly  and the complete Bouguer gravity anomaly  is given by 
Vaníček et al. (1999) 
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4. Effect of topographical masses on gravitational attraction 

To evaluate the Helmert gravity anomaly  on the Earth’s surface according to 
Eqn. (3.9), the topographical effect on gravitational attraction has to be computed. The 
topographical effect on gravitational attraction, which is reckoned on the Earth’s surface, is 
represented by the direct and secondary indirect topographical effects (Martinec, 1993; 
Martinec and Vaníček, 1994a, b; Martinec et al., 1995 and 1996; Vaníček et al., 1995a and 
1999; Novák et al., 2001; Huang et al., 2001). 

4.1 Residual gravitational potential of topographical masses 

The „residual gravitational potential of topographical masses“  is defined as 
a difference of the gravitational potential 

( )( Ωt
t rVδ )

(V  of topographical masses and gravitational 
potential V  of topographical masses condensed according to the Helmert second 
condensation method directly onto the geoid (Martinec et al., 1993) 

t

( ,rct

,O ℜ∈Ω∈Ω∀ r ( ) ( ) −Ω=Ω ,, VrVr ctt . (4.1) 
 
The „gravitational potential of topographical masses“ V  is given by the Newton 
volume integral (Martinec, 1993) 
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where ( Ω,r )ρ  is the actual density of topographical masses (i.e., masses between the geoid 
and the Earth’s surface). The spatial distance ( )[ ]rrl ′Ω′Ω ,,,ψ  between two points with the 
geocentric positions  and ( Ω,r ) )( Ω′′,r  reads   
 

:,,, O
+ℜ∈′Ω∈Ω′Ω∀ rr ( )[ ] ( )Ω′Ω′−′+=′Ω′Ω ,cos2,,, 22 ψψ rrrrrrl , (4.3) 

 
and the spherical distance ( )Ω′Ω,ψ , π,0∈ψ , is given by the law of cosines 
 

:, OΩ∈Ω′Ω∀ ( ) ( )λλφφφφψ −′′+′=Ω′Ω coscoscossinsin,cos . (4.4) 
 
The „gravitational potential of condensed topographical masses“ ( )Ω,rctV  can be computed 
by the Newton surface integral (Martinec, 1993) 
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where (Ω)σ  is the surface density of topographical masses condensed onto the geoid. 
 

Approximating the geoid by the geocentric sphere of radius R , i.e., 
, and the actual density ( ) Rrg ≈ΩΩ∈Ω∀ :O ( )Ω,rρ  of topographical masses by the 

laterally varying topographical density ( )Ωρ , see (Martinec, 1993), 
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the gravitational potential V  of topographical masses in Eqn. (4.2) takes the following 
form (Martinec, 1993)  
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The surface density (Ω)σ  of condensed topographical masses is according to the principle of 
mass-conservation of topographical masses (Wichiencharoen, 1982), i.e., the mass of the 
condensation layer is equal to the mass of actual topographical masses, in an integral 
representation (Martinec, 1993) 
 

:OΩ∈Ω∀ ( ) ( ) ( ) ΩΩ=ΩΩ ∫∫∫∫ ∫
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=
ddd 22

O

σρ Rrr
HR

Rr
. (4.8) 

 
According to Eqn. (4.8) the surface density ( )Ωσ  becomes (Martinec and Vaníček, 1994a) 
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The gravitational potential V  of condensed topographical masses, see Eqn. (4.5), is 
then (Martinec, 1993) 

( Ω,rct )
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Considering the gravitational potential ( )Ω,rtV  of topographical masses in Eqn. (4.7) and 
the gravitational potential V  of condensed topographical masses in Eqn. (4.10), the 
residual gravitational potential 

( Ω,rct )
( )Ω,rV tδ  of topographical masses (in the spherical 

approximation of the geoid ( )rg R≈ΩΩ∈Ω∀ ) becomes (Martinec, 1993) :O
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The radial integral of the reciprocal spatial distance ( )[ ]rrl ′Ω′Ω− ,,,1 ψ  multiplied by 2r′  can 
be described by the analytical form (Gradshteyn and Ryzhik, 1980) 
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4.2 Direct topographical effect  

The radial derivative of the residual gravitational potential ( )Ω,rV tδ  of topographical 
masses in Eqn. (4.1) referred to the Earth’s surface defines the „direct topographical effect 
on gravitational attraction“ (Martinec, 1993; Martinec and Vaníček, 1994a) 
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The „gravitational attraction of the topographical masses“ is given by the radial derivative 
of the gravitational potential V  of topographical masses, see Eqn. (4.7), referred to the 
Earth’s surface (Martinec and Vaníček, 1994a) 
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The radial derivative of the gravitational potential ( )Ω,rctV  of condensed topographical 
masses, see Eqn. (4.10), which is also reckoned on the Earth’s surface, represents the 
„gravitational attraction of condensed topographical masses“ (Martinec and Vaníček, 
1994a) 
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The radial integral of the radial derivative of the reciprocal spatial distance 

 multiplied by ( )[ rrrl ∂′Ω′Ω∂ − /,,,1 ψ ] 2r′  can be expressed analytically as follows 
(Martinec, 1993): 
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To remove the weak singularity of the Newton integral (Kellogg, 1929) in the computation 
point, the gravitational attraction of the spherical Bouguer shell with the lateral topographical 
density (Ω)ρ  and thickness ( )ΩOH  equal to the orthometric height of the computation point 
can be subtracted from and added to gravitational attraction of topographical masses 
(Martinec, 1993; Martinec et al., 1995). The gravitational potential V  of the 
spherical Bouguer shell with the topographical density 

( Ω,rshell )
( )Ωρ  and thickness  is equal 

to (Wichiencharoen, 1982) 
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(4.17) 

 
Moreover, gravitational attraction ( ) rrV shell ∂Ω∂ /,  of the spherical Bouguer shell is 
(Vaníček et al., 2001) 
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(4.18) 
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Subtracting and adding gravitational attraction of the spherical Bouguer shell, gravitational 
attraction of topographical masses in Eqn. (4.14) becomes (Martinec, 1993) 
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A similar procedure can be applied to remove the weak singularity of the Newton surface 
integral from gravitational attraction of condensed topographical masses, see Eqn. (4.15). 
The gravitational potential V  of the spherical condensation layer with the surface 
density 

( Ω,rlayer )
( )Ωσ  is (Martinec, 1993) 
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(4.20) 

and gravitational attraction  of the spherical condensation layer is ( ) rrV layer ∂Ω∂ /,
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Subtracting and adding gravitational attraction of the spherical condensation layer to Eqn. 
(4.15), gravitational attraction of condensed topographical masses takes the following form 
(Martinec, 1993) 
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Comparing gravitational attraction of the spherical Bouguer shell referred to the Earth’s 
surface, that is given by the first term on the right-hand side of Eqn. (4.19), with gravitational 
attraction of the spherical condensation layer referred to the Earth’s surface, that is given by 
the first term on the right-hand side of Eqn. (4.22), they are equal. Substituting gravitational 
attraction of topographical masses in Eqn. (4.19) and gravitational attraction of condensed 
topographical masses in Eqn. (4.22) back into Eqn. (4.13), the direct topographical effect on 
gravitational attraction becomes (Martinec, 1993) 
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Separating the laterally varying topographical density ( )Ωρ  into the mean value 

 and the laterally varying anomalous topographical density 3g.cm67.2 −=oρ ( )Ωδρ : 
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and substituting them into Eqn. (4.9), the surface density ( )Ωσ  becomes (Martinec, 1993) 
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Applying the above mentioned decomposition of densities into gravitational attraction of 
topographical masses and of condensed topographical masses, the direct topographical effect 
on gravitational attraction finally takes the following form (Martinec, 1993) 
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The first term on the right-hand side of Eqn. (4.26) is the so-called „spherical terrain 
correction“, and the second term stands for the „spherical condensed terrain correction“ 
(Martinec and Vaníček, 1994a). The third and fourth terms represent together the 
contribution of the laterally varying topographical density to the direct topographical effect.    

4.3 Secondary indirect topographical effect 

The „secondary indirect topographical effect on gravitational attraction“, which refers to the 
Earth’s surface, is given by the following equation (Martinec and Vaníček, 1994b)  
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Dividing the laterally varying topographical density ( )Ωρ  into the mean and laterally 
varying anomalous topographical density, see Eqn. (4.24), the gravitational potential 

 of topographical masses given by Eqn. (4.7) takes the following form (Martinec, 
1993)  
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where the first term stands for the gravitational potential of the spherical Bouguer shell 
referred to the Earth’s surface, see Eqn. (4.17). Similarly, the gravitational potential 

 of condensed topographical masses, see Eqn. (4.10), becomes (Martinec, 1993) ( )( Ωt
ct rV )

 

148 GGE TR 218 Robert Tenzer 



Honoring the Academic Life of Petr Vaníček 

:OΩ∈Ω∀  

( )( ) ( )
( ) ( ) ( ) ( )[ ]∫∫

Ω∈Ω′

− +Ω′Ω′ΩΩ
Ω−Ω′

+
Ω

=Ω
O

d,,,
3

π4 1
332

Rrl
rr

G
r
RGrV t

tt
o

t
ot

ct ψρσ  

( ) ( ) ( ) ( )[∫∫
Ω∈Ω′

− Ω′Ω′ΩΩ
−Ω′

Ω′+
O

d,,,
3

1
33

Rrl
Rr

G t
t ψδρ ] , (4.29) 

 
where the first term on the right-hand side represents the gravitational potential of the 
spherical condensation layer at the point above the geoid, see Eqn. (4.20).                     
 

Considering the gravitational potential ( )( )Ωt
t rV  of topographical masses, see Eqn. 

(4.28), and the gravitational potential ( )Ω,rV  of condensed topographical masses, see Eqn. 
(4.29), the secondary indirect topographical effect in Eqn. (4.27) can be written as follows 
(Martinec, 1993) 
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The gravitational potential of the spherical Bouguer shell and the gravitational potential of 
the spherical condensation layer are subtracted from Eqn. (4.30), because, if reckoned on the 
Earth’s surface, they are equal. 

5. Effect of atmospheric masses on gravitational attraction 

Transforming the boundary-value problem, as formulated in the real space by Eqn. 
(2.16), into the Helmert space according to Eqn. (3.9), the effect of atmospheric masses on 
gravitational attraction is represented by the direct and secondary indirect atmospheric 
effects. 
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5.1 Residual gravitational potential of atmospheric masses 

Similarly to the residual gravitational potential of topographical masses, the „residual 
gravitational potential of atmospheric masses“ ( )Ω,rV aδ  is given by the difference of the 
gravitational potential V  of atmospheric masses and the gravitational potential 

 of atmospheric masses condensed (according to the Helmert second condensation 
method) onto the geoid (Vaníček et al., 1999) 

( Ω,ra )
)( Ω,rV ca

:,O
+ℜ∈Ω∈Ω∀ r ( ) ( ) ( )Ω−Ω=Ω ,,, rVrVrV caaaδ . (5.1) 

 
Under the spherical approximation of the geoid ( ( ) Rrg ≈ΩΩ∈Ω∀ :O ), the „gravitational 

potential of atmospheric masses“ ( )Ω,raV  reads (Novák, 2000) 
 

:,O
+ℜ∈Ω∈Ω∀ r  
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− Ω′′′′Ω′ΩΩ′=Ω
O

lim

O
dd,,,,, 21r

HRr

aa rrrrlrGrV ψρ , (5.2) 

 
where  is the actual atmospheric density and  is the upper limit of the 
atmosphere where the atmospheric density becomes negligible (approximately 50 km above 
the sea level).  

( Ω,raρ ) limr

 
The „gravitational potential of condensed atmospheric masses“ ( )Ω,rcaV  is (Novák, 2000) 
 

:,O
+ℜ∈Ω∈Ω∀ r ( ) ( ) ( )[ ]∫∫

Ω∈Ω′

− Ω′Ω′ΩΩ′=Ω
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d,,,, 12 RrlGRrV aca ψσ , (5.3) 

 
where  is the surface density of condensed atmospheric masses. ( )Ωaσ
 

Using the laterally homogenous atmospheric density distribution  

 

( ) :,, lim
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O rHRr Ω+∈Ω∈Ω∀ ( ) ( ) ΩΩ
Ω
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Ω

d,1 rr aa ρρ , (5.4) 

 
the gravitational potential V  of atmospheric masses in Eqn. (5.2) can be written in the 
following form (Novák, 2000) 

( Ω,ra )
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:,O
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According to the principle of the mass conservation, the atmospheric surface density ( )Ωaσ  
is defined by (Novák, 2000) 
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Substituting Eqn. (5.6) for the atmospheric surface density ( )Ωaσ  into Eqn. (5.3), the 
gravitational potential V  of condensed atmospheric masses takes the following form 
(Novák, 2000) 
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Formally, the Earth’s atmospheric masses can be split into the spherical shell bounded by 

the maximum geocentric radius of the topography and of the upper limit of the atmosphere, 
, and the roughness term bounded by the Earth’s surface, 

 and the maximum geocentric radius of the topography  
(Novák, 2000). 
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(Novák, 2000) 
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Dividing also the integration domain of the atmospheric surface density  in Eqn. (5.6) 
as follows  
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the gravitational potential V  of condensed atmospheric masses becomes (Novák, 
2000) 

( Ω,rca )
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5.2 Direct atmospheric effect 

The „direct atmospheric effect on gravitational attraction“ is defined as the radial 
derivative of the residual gravitational potential ( )( )Ωt

a rVδ  of atmospheric masses referred 
to the Earth’s surface (Vaníček et al., 1999; Novák, 2000) 
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Since the gravitational attraction of the atmospheric spherical shell (bounded by the 
geocentric radii of the upper limit of topography and of the upper limit of the atmosphere) at 
the inner point r  is equal to zero (Mac Millan, 1930) limHR +<
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the „gravitational attraction of atmospheric masses“ is given as the radial derivative of the 
gravitational potential of the atmospheric roughness term. The roughness term, which 
represents gravitational attraction of the atmosphere between the topography 
( ) and the upper limit of topography (: ( ) ( )Ω+=Ω OHRrtOΩ∈Ω∀ :OΩ∈Ω∀  

), is given by (Novák, 2000)  limHRr +=
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Considering that gravitational attraction of the spherical condensation layer with the surface 
atmospheric density  at the outer point above the condensation layer  is equal to 
a constant (Mac Millan, 1930) 
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„gravitational attraction of condensed atmospheric masses“ becomes  
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Substituting gravitational attraction of atmospheric masses in Eqn. (5.13) and the 
gravitational attraction condensed atmospheric masses in Eqn. (5.15) back into Eqn. (5.11), 
the direct atmospheric effect on gravitational attraction takes the following form  
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5.3 Secondary indirect atmospheric effect 

The „secondary indirect atmospheric effect on gravitational attraction“, stipulated as 
being on the Earth’s surface, can be described by the following expression (Novák, 2000) 
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If Eqns. (5.8) and (5.10) are considered, the residual gravitational potential  in 
Eqn. (5.17) takes the following form  
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6. Downward continuation of Helmert’s gravity anomalies 

To obtain gravity anomalies on the geoid, that are needed for solving the Stokes 
boundary-value problem, the downward continuation of gravity anomalies from the Earth’s 
surface to the geoid in the Helmert space has to be evaluated. The downward continuation is 
evaluated by the Poisson integral equation, which is the inverse operation to Poisson’s 
integral. 

Since topographical and atmospheric masses are condensed onto the geoid, the Helmert 
space above the geoid (approximated by the geocentric sphere of radius R , i.e., 

) is harmonic. Helmert’s gravity anomaly ( )Ω≈Ω∈Ω∀ grR:O ( )( )∆ trg H Ω  multiplied by 
the geocentric radius of the Earth’s surface ( )Ωtr  then satisfies the Laplace differential 
equation in the space everywhere above the geoid 

( ) :,O Rrt >ΩΩ∈Ω∀ ( ) ( )( )[ ] 0=H Ω∆Ω∆ tt rgr  (Vaníček et al., 1996). „Poisson’s integral“ is 
given by the following formula (Kellogg, 1929) 
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where ( ) ( )[ Rrt ,,,K Ω′ΩΩ ]ψ  is the „spherical Poisson integral kernel“ (Sun and Vaníček, 
1998) 
 

( ) :,, O Rrt ≥ΩΩ∈Ω′Ω∀  
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The discrete form of „Poisson’s integral equation“ which generic form is the Fredholm 
integral equation of the first kind, can be expressed as (Martinec, 1996; Huang, 2002) 
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where ∆  is the vector of Helmert’s gravity anomalies on the Earth’s surface, 

 is the vector of Helmert’s gravity anomalies on the co-geoid (approximated 
again by the reference sphere), and 
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( ) ( )[ ]Rrt ,,, Ω′ΩΩ ψK  is the matrix of values of the Poisson 

integral kernel multiplied by the factor ( )ΩtrR /  and constant 1 .  π4/
 

According to Jacobi’s iteration approach (Ralston, 1965) for solution of a system of 
linear algebraic equations, the matrix ( ) ( )[ ]Rrt ,,, Ω′ΩΩ ψK  can be expressed in the form 

( ) ( )[ ] ( ) ( )[ RrRr tt ,,,,,, ]Ω′ΩΩ−=Ω′ΩΩ ψψ BEK , (6.4) 
 
where E  is the unit matrix. Substituting Eqn. (6.4) into Eqn. (6.3), the following system of 
algebraic equations is obtained (Martinec, 1996) 
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The system of Eqns. (6.5) may be solved iteratively starting with the vector ( )( )Ωtr

FAg∆  
of free-air gravity anomalies on the Earth’s surface (because of free-air gravity anomalies on 
the Earth’s surface are similar to Helmert’s gravity anomalies on the geoid) 
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The k-th stage of iteration ( ) 0>k ( )
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(Martinec, 1996) 
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When the difference of results from two successive steps ( ) ( )
1

,,
−

Ω′−Ω′
kk

RR HH ∆g∆g  is 

smaller than some tolerance ε , the iterative process stops. The result of this operation yields 
the solution of Eqn. (6.3), see (Martinec, 1996), 
 

( ) ( )( ) ( )∑
=

Ω′+Ω=Ω′
k

k
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1
,, HHH ∆g∆g∆g , (6.8) 

where k  is the final number of iteration steps.  

7. Reference field and spheroid in the Helmert space 

To solve the Stokes boundary-value problem, the gravity anomalies over the entire 
boundary surface are required. To reduce the truncation errors, i.e., the far-zone contribution 
in the Stokes integration, the low and high-frequency parts of Helmert’s gravity field are 
defined (Vaníček and Sjöberg, 1991). 

The reference gravity field of degree n  can be expressed by the „reference gravity 
potential“ W  as (Vaníček et al., 1995) ),(ref Ωr
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where  are the geopotential coefficients of the harmonic expansion of the Earth’s 
gravity field,  are the normalized spherical functions of degree  and order , a  is an 
arbitrary parameter of length (usually the major semi-axis of the reference ellipsoid), and 

mn,W

mn,Y n m o

n  
stands for the maximum degree of retained harmonics. In the Helmert space the reference 
gravity potential W  reads  ),(H

ref Ωr
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where  and  are the reference residual gravitational potentials of the 
topographical and atmospheric masses. 

),(ref ΩrV tδ ),(ref ΩrV aδ

 

7.1 Reference residual gravitational potential of topographical masses 

According to Eqn. (4.1) the „reference residual gravitational potential of topographical 
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masses“  can be defined as the difference of the „reference gravitational potential 
of topographical masses“ V  (Vaníček et al., 1995) 
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and the „reference gravitational potential of condensed topographical masses“ 

(Novák, 2000) ),(ref ΩrV ct
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For points ∀  outside the Brillouin sphere (minimal geocentric sphere 
containing all the Earth’s mass), the reference gravitational potential V  of 
topographical masses in Eqn. (7.3) takes the following form (Vaníček et al., 1995) 
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Differencing the reference gravitational potential V  of topographical masses, see 
Eqn. (7.5), and the reference gravitational potential V  of condensed topographical 
masses, see Eqn. (7.4), the reference residual gravitational potential  of 
topographical masses becomes (Novák, 2000) 
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Since for  the summation over  converges very quickly (Vaníček et al., 
1995), Eqn. (7.6) can be rewritten into the following form (Novák, 2000) 
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Expressing the surface harmonics of the orthometric height as (Kellogg, 1929) 
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the reference residual gravitational potential  of topographical masses becomes 
(Novák, 2000) 
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7.2 Reference residual gravitational potential of atmospheric masses 

The „reference gravitational potential of atmospheric masses“ V  can be 
described in the form (Novák, 2000) 
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To define the reference residual gravitational potential  of the atmospheric 
masses, the atmospheric density 

),(ref ΩrV aδ
( )raρ  given by Eqn. (5.4) can be replaced by the laterally 
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symmetrical density model (Sjöberg, 1998; Novák, 2000) 
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where  is the atmospheric density at the sea level, and the positive integer constant 

  ( ) determines the atmospheric density distribution model. 
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If the integration over the geocentric radius r  from the Earth’s surface  to the upper 

limit  of the atmosphere is evaluated by using the atmospheric model density from Eqn. 
(7.11) 
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the reference gravitational potential V  of the atmospheric masses can be written as 
(Novák, 2000) 
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 (7.13) 
Applying the binomial theorem to the evaluation of the surface atmospheric density ( )Ωaσ , 
see (Novák, 2000), 
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the „reference gravitational potential of condensed atmospheric masses“ V  takes the 
following form (Novák, 2000) 
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The „reference residual gravitational potential of atmospheric masses“  is then 
obtained as the difference of the reference gravitational potential 

( Ω,ref rV aδ
( )Ω,ref raV  of atmospheric 

masses, see Eqn. (7.13), and the reference gravitational potential ( )Ω,ref rcaV  of condensed 
atmospheric masses, see Eqn. (7.15) and (Novák, 2000), 
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7.3 Reference gravity potential in the Helmert space 

The reference gravity potential W  in the Helmert space in Eqn. (7.2) can be 
expressed by the following formula (Vaníček et al., 1995) 
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Since the summation in the expansion of Helmert’s reference gravity potential W  

is finite, i.e., the validity of this expression is not limited to the outside of the Brillouin 
sphere (in the case of the topographical effect) and of the upper limit of atmosphere (in the 
case of the atmospheric effect), the series in Eqn. (7.17) can be used at the geoid to evaluate 
the reference gravity field in the Helmert space (Vaníček et al., 1995). If this surface is 
unknown, the appropriate approximation of the geoid by the reference ellipsoid (

),(H
ref Ωr

:OΩ∈Ω∀  
) can be applied (Vaníček et al., 1995) ( ) ( )Ω≈Ω og rr
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:OΩ∈Ω∀ ( ) ( ) ( )ϕ2sin1 farr og −≅Ω≈Ω . (7.18) 
 
Substituting the term (Vaníček et al., 1995) 
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into Eqn. (7.17), „Helmert’s reference gravity potential“ in the ellipsoidal approximation 
takes the following form (Vaníček et al., 1995) 
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7.4 Reference gravity anomaly and reference spheroid in the Helmert space 

According to the boundary condition (Heiskanen and Moritz, 1967), „Helmert’s 
reference gravity anomaly“ can be expressed as follows 
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where ( )( ) ( )( ) ( )( ) ( )φogog UrWrTr −Ω=Ω≅Ω H

ref
H

ref
H

refT  is „Helmert’s reference disturbing  
potential“. The „reference spheroid“ is given by the reference co-geoidal heights ( )ΩH

refN . 
Applying Bruns’s spherical formula (Bruns, 1878) to Helmert’s reference disturbing 
potential ( )( )ΩgrH

refT , the reference co-geoidal height ( )ΩH
refN  can be expressed by the 

equation  
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8. Stokes’s boundary-value problem in the Helmert space 

The equipotential boundary surface in the Helmert space, which is given by co-geoidal 
heights , can be evaluated from Helmert’s gravity anomalies  referred to 
the reference sphere of radius 

( )ΩHN ( Ω∆ ,H Rg )
R  by applying the Stokes integral formula (Stokes, 1849) and 

the Bruns spherical formula (Bruns, 1878) into the following equation (Heiskanen and 
Moritz, 1967) 
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The homogenous spherical Stokes function ( )( )Ω′Ω,Sψ , see (Stokes, 1849), can be described 
in the following spectral and spatial form (Heiskanen and Moritz, 1967) 
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To evaluate the co-geoidal height ( )ΩHN  by a surface integration according to the Stokes 
integral in Eqn. (8.1), the gravity anomalies ( )Ω∆ ,H Rg  have to be known over the entire 
Earth. 

8.1 Spheroidal Stokes’s function 

In practice, the gravity anomalies over the entire Earth are not available. For this reason 
Vaníček and Kleusberg (1987) introduced the idea to separate the summation over  in the 
Stokes function in Eqn. (8.2) into low and high-degree parts: 
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The second term on the right-hand side of Eqn. (8.3) represents the „spheroidal Stokes 
function“ (( Ω′Ω> ,S nn ))ψ , see (Vaníček and Kleusberg, 1987; Vaníček and Featherstone, 
1998), 
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Substituting the decomposition of the Stokes spherical function ( )( )Ω′Ω,Sψ  into Eqn. (8.1), 
the co-geoid can be split into the low and high-frequency part (Martinec, 1993) 
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The reference co-geoid (spheroid) of degree n  is given by the reference co-geoidal heights 
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( )ΩH
refN , and ( )Ω>

H
nnN  represents the high-frequency part of the co-geoid (Novák et al., 

2001). According to this approach the reference spheroid determined from the satellite data is 
assumed (Vaníček and Kleusberg, 1987). The surface integration by the Stokes integral 
formula can be employed to compute the high-frequency part of the co-geoid only from 
terrestrial data.  
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8.2 Modified spheroidal Stokes’s function 

Values of the spheroidal Stokes function ( )( )Ω′Ω> ,nnS ψ  diminish with the growing 
spherical distance ( Ω′Ω, )ψ . The integration domain OΩ  of Stokes’s integral formula can be 
divided into the near-zone integration sub-domain 

oψ
Ω  (defined on the interval oψψ ,0∈ ) 

and the far-zone integration sub-domain 
oψO Ω−Ω  (on the interval π,oψψ ∈ ), see 

(Vaníček and Kleusberg, 1987): 
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The near-zone contribution to the high-frequency co-geoidal height ( )ΩΩ′>

H
, oψnnN  is (Martinec, 

1993) 
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and far-zone contribution to the high-frequency co-geoidal height ( )ΩΩ′−Ω′>
H

, oψOnnN  is given by 

(Martinec, 1993) 
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According to Molodensky et al. (1960), Vaníček and Kleusberg (1987) proposed to 

modify the spheroidal Stokes function ( )( )Ω′Ω> ,nnS ψ  so that the far-zone contribution 
(truncation error) ( )ΩΩ′−Ω′>

H
, oψOnnN  is minimal in the least-squares sense. The „modified 

spheroidal Stokes’s function“ ( )( )Ω′Ω> ,,nnS ψψ o  can be expressed as (Vaníček and 
Kleusberg, 1987)  
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and then expanded into the series of Legendre polynomials 
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where Q (( Ω′Ω,,n ))ψψ o  are „truncation coefficients for the modified spheroidal Stokes 
function“ (( Ω> ,,S nn ))Ω′ψψ o  , see (Molodensky et al., 1960). Multiplying Eqn. (8.10) by the 
Legendre polynomials ( )( )Ω′Ω,cosmP ψ , 
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and integrating the result over the interval π,0∈ψ , the following expression can be found  
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Using the orthogonality property of the Legendre polynomials (Hobson, 1931) 
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and substituting for (( Ω ))′Ω> ,,nnS ψψ o

)
 from Eqn. (8.9), the truncation coefficients 

(( Ω′Ω,,Qn )ψψ o  of the modified spheroidal Stokes function become (Molodensky et al., 
1960) 
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8.3 Near-zone contribution to the high-frequency co-geoid 

 

Helmert’s gravity anomaly referred to the co-geoid can be divided into the low-frequency 
(reference) gravity anomaly ( ) ( )Ω∆≡Ω< ,, H

ref
H RgRg nn∆  and the high-frequency (residual) 

gravity anomaly ( Ω∆ > ,H Rg nn ) .  The low-frequency Helmert’s gravity anomalies ( )Ω,H
ref Rg∆  

are evaluated according to Eqn. (7.21). The high-frequency Helmert’s gravity anomalies 
( Ω∆ > ,H Rg nn )  are evaluated by subtracting the reference gravity anomalies  from 

Helmert’s gravity anomalies downward continued onto the co-geoid according to Eqn. (6.5).  
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Taking Eqn. (8.6) into the account, the near-zone contribution of the high-frequency 
Helmert gravity anomalies to the co-geoidal height ( )ΩΩ′>

H
, onnN  can be described by (Novák, 

2000) 
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The Stokes integral is only weakly singular for the spherical distance 0=ψ  (Martinec, 
1993). A classical method for treating a removable singularity consists of adding and 
subtracting the value of gravity anomaly at the singular point, see (Martinec, 1993), 
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8.4 Far-zone contribution to the high-frequency co-geoid 

The far-zone contribution of high-frequency Helmert’s gravity anomalies ( )Ω∆ > ,H Rg nn  to 
the co-geoidal height ( )ΩΩ′−Ω′>

H
, oψOnnN  is given by  
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If gravity anomalies are not available over the entire Earth, the numerical computation 
can be done by using the following equation (Novák, 2000) 
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9. Primary indirect effect on the geoidal height 

After evaluation of the Stokes boundary-value problem in the Helmert space, an 
equipotential surface in the Helmert space, i.e., the co-geoid, is obtained. To find the geoid in 
the real space, the primary indirect topographical and atmospheric effects on the geoidal 
height have to be evaluated (Vaníček and Martinec, 1994b). Helmert’s disturbing gravity 
potential referred on the co-geoid (in the spherical approximation) reads  

:OΩ∈Ω∀ ( ) ( ) ( ) ( )Ω−Ω−Ω=Ω ,,,,H RVRVRTRT at δδ . (9.1) 
 

Applying Bruns’s spherical formula (Bruns, 1878) to the disturbing gravity potential 
 and Helmert’s disturbing gravity potential ( Ω,RT ) ( )Ω,H RT :  
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the following relation between the geoidal height ( )ΩN  and the co-geoidal height  
can be found (Martinec, 1993)  
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The first term on the right-hand side of Eqn. (9.4), i.e., ( ) ( )φγδ o
t RV /,Ω , is the „primary 

indirect topographical effect on the geoidal height“, and the second term ( ) ( )φγδ o
a RV /,Ω  

stands for the „primary indirect atmospheric effect on the geoidal height“.  
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9.1 Primary indirect topographical effect 

Considering the decomposition of the laterally varying topographical density ( )Ωρ  into 
the mean and laterally varying anomalous topographical density, as described by Eqn. (4.24), 
and removing the weak singularity of Newton’s integral, the gravitational potential ( )Ω,RV  
of topographical masses (stipulated as being on the geoid) can be written as follows 
(Martinec, 1993)  

t
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where the first term on the right-hand side is the gravitational potential of the spherical 
Bouguer shell referred to the geoid, see Eqn. (4.17).  
 

Similarly, the gravitational potential ( )Ω,RctV  of condensed topographical masses 
referred on the geoid can be described as (Martinec, 1993) 
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where the first term on the right-hand side represents the gravitational potential of the 
spherical condensation layer. 
 

Substituting the gravitational potential ( )Ω,RtV  of topographical masses in Eqn. (9.5) 
and the gravitational potential ( )Ω,RctV  of condensed topographical masses in Eqn. (9.6) 
into the residual gravitational potential of topographical masses ( )Ω,RV tδ , the primary 
indirect topographical effect on the geoidal height takes the following form (Martinec, 1993) 

:OΩ∈Ω∀  
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9.2 Primary indirect atmospheric effect 

The primary indirect atmospheric effect on the geoidal height can be described in the 
following basic form (Novák, 2000)  
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10. Conclusions 

To solve the geodetic boundary-value problem in the Helmert space, mean values of 
Helmert’s gravity anomalies are evaluated on the Earth’s surface. In the UNB approach, the 
mean values are considered for 5’x 5’ cells. It follows from Eqn. (3.9) that the mean values 
of Helmert’s gravity anomalies are functions of mean values of the free-air gravity 
anomalies, see Eqn. (3.8), ellipsoidal correction to the gravity disturbance, see Eqn. (2.10), 
ellipsoidal correction for the spherical approximation, see Eqn. (2.17), direct topographical 
and atmospheric effects, see Eqns. (4.26) and (5.16), secondary indirect topographical and 
atmospheric effects, see Eqns. (4.30) and (5.18), and geoid-quasigeoid correction to the 
boundary-value problem given by the fifth term on the right-hand side of Eqn. (3.9).  
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In the case of the ellipsoidal corrections to the gravity disturbance and for the spherical 
approximation, discrete values of Helmert’s gravity anomalies computed from the 
geopotential model at the mid-points of corresponding cells can be considered as mean 
values, because they are smooth and change the geoid only by a few centimeters (as it can be 
seen from numerical results shown by Vaníček et al. (1999)). Similarly, the direct 
atmospheric effect and secondary indirect topographical effects can be evaluated as discrete 
values in the regular grid of 5’x 5’ (as it follows from the numerical results in Novák (2000)). 
The mean values of the geoid-quasigeoid correction to the boundary-value problem are 
sufficiently (with an error < 10 µgal) computed for the mean orthometric heights of 
corresponding cells. The secondary indirect atmospheric effect is negligible (Novák, 2000).  

Since the free-air gravity anomalies are not suitable for interpolation (Heiskanen and 
Moritz, 1967), their mean values are computed from the mean complete Bouguer gravity 
anomalies by subtracting average values of the gravimetric terrain correction and the 
gravitational attraction of the Bouguer plate with the mean topographical density and mean 
orthometric height (Janák and Vaníček, 2002). Mean values of the complete Bouguer gravity 
anomalies are given by averaging a certain number of discrete values, which are predicted on 
the regular grid from the complete Bouguer gravity anomalies at the observation points.  

Mean values of the direct topographical effect have to be averaged from a sufficient 
number of discrete values. The number of discrete values needed for the precise evaluation of 
mean values of the direct topographical effect depends on the terrain roughness. The relation 
between the terrain roughness and the number of discrete values was investigated (at the 
Canadian Rocky Mountains) by Janák et al. (2001). In some areas, hundreds of discrete 
values (for one cell of size 5’x 5’) must be computed to obtain sufficient accuracy.  

To compute the effects of topographical masses, integration is carried out over the 
laterally varying topographical densities. When the geoid is to be determined with high 
accuracy (< 1 cm), the effect of lake water must also be considered. Numerical values for the 
lake Superior showed that the correction to the geoidal height due to the direct topographical 
effect on gravitational attraction lies within –1.1 and 1.3 cm, and the correction to the 
primary indirect topographical effect on the geoidal height is within –0.2 and 0.0 cm 
(Martinec et al., 1995). On the other hand, the effect of the laterally varying anomalous 
topographical density can cause changes of the geoid up to 10 cm (in Canada), see (Martinec, 
1993; Huang et al., 2001; Huang, 2002), so that at least the laterally varying model of 
topographical density has to be considered.  

Solving Dirichlet’s boundary-value problem, the mean Helmert gravity anomalies are 
downward continued to the geoid by applying the discrete Poisson integral equation, see 
Eqn. (6.3). The Fredholm integral equation of the first kind (generic form of Poisson’s 
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integral equation) is known to be an unstable problem due to the fact that a comparatively 
smooth gravity anomaly on the Earth’s surface is used to obtain a rougher gravity anomaly 
on the geoid. Solving the downward continuation for the 5’x 5’ grid of Helmert’s gravity 
anomalies, the ill effect of the instability might be partly reduced. Heck (1993) realized that 
space without topography is more suitable for the downward continuation than the Helmert 
space. For this reason, only the effect of topographical masses on the gravitational attraction 
can be subtracted from the gravity anomalies on the earth surface. The gravitation attraction 
of condensed topographical masses is then added to gravity anomalies downward continued 
onto the geoid.    

The reference gravity anomalies and the spheroid in the Helmert space are evaluated 
from the satellite geopotential coefficients up to degree 20 according to Eqns. (7.21) and 
(7.22). 

To solve the Stokes boundary-value problem in the modification for higher than the 
second-degree reference field (Vaníček and Sjöberg, 1991), the Stokes integration is 
employed for numerical integration over the 6° spherical cap, see Eqn. (8.17). The far-zone 
contribution is evaluated from the combined geopotential model. Usually EGM-96 up to 
degree 120 of the geopotential coefficients (Novák, 2000) is used according to Eqn. (8.19). 

To obtain the geoid, the co-geoid (given by the discrete co-geoidal heights) is finally 
transformed into the real space by evaluation of discrete values of the primary indirect 
topographical and atmospheric effects. The primary indirect topographical effect can be 
computed by Eqn. (9.7) while the primary indirect atmospheric effect given by Eqn. (9.8) can 
be considered constant (equal to –0.6 cm), see (Sjöberg, 1998; Novák, 2000). 

Evaluating the topographical and atmospheric effects on the gravitational potential and 
attraction, the integration domain is split into the near and far-zone integration sub-domains, 
where the near zone can be given by the 3° spherical cap, i.e., o3,0∈ψ . The near-zone 
contributions are then evaluated by numerical integration over the sufficiently dense grid of 
heights from the digital terrain model (especially numerical integration of the topographical 
effect and condensed topographical effect requires high density of elevation data (1″ or 3″) at 
the intermediate area surrounding the computation point. The spectral forms of Newton’s 
integrals for evaluation of the far-zone contributions from the global elevation model were 
formulated by Novák (2000).      

The actual accuracy of geoid determination is limited first of all by accuracy and spatial 
distribution of terrestrial gravity observations and orthometric heights. Other important 
attributes are the correctness of theoretical formulation and accuracy of numerical solutions. 
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Main factors limiting the theory of geoid determination by the UNB approach are the 
approximation of the actual topographical density by the laterally varying topographical 
density, resolution of gravity data for the downward continuation and primary indirect 
topographical effect, and spherical approximation of the geoid in the case of evaluation of 
topographical effects.      

Computing the topographical and atmospheric effects on the gravitational potential and 
attraction, the geoid is approximated by the reference sphere of the geocentric radius 

. This approximation yields a relative error  at most which then causes 
errors of 6 mm at most in the geoidal heights (Martinec, 1993). Since the density distribution 
of topographical masses between the geoid and Earth’s surface is not available, the errors of 
geoid determination from the approximation of actual topographical density 

( )Ω≈ grR 3103 −×

( Ω,r )ρ  by the 
laterally varying topographical density ( )Ωρ  are difficult to predict. Considering that the 
effect of laterally varying anomalous topographical density can cause changes of the geoid 
up to 10 cm (Martinec, 1993; Huang et al., 2001; Huang, 2002), the vertical variation of 
topographical density may cause changes of the geoid at most a few centimeters.     

The surface density (Ω)σ  of condensed topographical masses in the definition, see Eqn. 
(4.8), is chosen according to the principle of mass-conservation condensation 
(Wichiencharoen, 1982; Martinec, 1993), i.e., the mass of the condensation layer is equal to 
the mass of lateral topographical masses. Under this assumption, the disturbing gravity 
potential T  in the Helmert space has no spherical harmonic of degree zero but it 
contains spherical harmonics of the first degree (because the so-called Hörmander’s 
condition is not satisfied, 

( Ω,H r )

( ) 0,H2 ≠ΩrTrlim
∞→r

). It means, that the centre of the Earth’s masses 

is shifted from the origin of the co-ordinate system. The magnitude of this shift represents 2 
cm at most in each co-ordinate component and can precisely be computed (Martinec, 1993). 
The accuracy of numerical solution mainly depends on the interpolation of free-air gravity 
anomalies, evaluation of the near-zone contribution to the direct topographical effect, and 
accuracy of the Poisson integral equation in the case of 5’x 5’ data. 
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