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ABSTRACT

Many methods for geoid determination exist and are in use around the world. One of the
most advantageous methods is the Stokes-Helmert approach developed at the University of
New Brunswick. The main theoretical developments of this method is attributed to Vanicek,
along with the contribution of other authors, such as Martinec, Sjoberg, Kleusberg, Heck and
Grafarend. The theoretical aspects of the UNB approach were published in more than fifty
contributions (see References) and the general principles are summarized in Vanic¢ek and
Martinec (1994), Vanicek et al. (1999), Novak (2000), and Vanicek and Janak (2001). The
main idea of this contribution is to offer to readers, in a more detailed form, the basic
theoretical aspects of the Stokes-Helmert approach for geoid determination. Another purpose
is to summarize publications related to this topic.
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1 Introduction

In the classical sense of Gauss and Listing, the geoid is defined as an equipotential
surface of the Earth’s gravity field with the gravity potential value W, . Gauss (1828) was the

first to define this surface in the strict mathematical sense as a surface which is intersected
everywhere by directions of gravity at right angle and which best approximates the mean sea
level over the whole Earth. Later, Bessel (1837) stipulated this equipotential surface as a
reference for all geodetic applications. Finally, Listing (1873) called this surface “geoid”.

Stokes (1849) derived a theorem, which forms a theoretical foundation for estimation of
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the geoid based on gravity observations that refer to the geoid (assuming as harmonic the
space above the geoid). The requirement of harmonicity was difficult to fulfill in practical
applications of the Stokes theory since the distribution of actual topographical density
between the geoid and the Earth’s surface is not known with sufficient accuracy.

The first attempt to satisfy this requirement can be attributed to Helmert (1884). Helmert
suggested that the Earth’s topographical masses can be replaced by an infinitesimal
condensation layer of a surface density that is equal to the product of the mean topographical
density and height of the Earth’s surface above the geoid. This layer could be located
anywhere on or beneath the geoid without violating the required assumption of harmonicity.
In the second condensation method that Helmert formulated, the condensation layer is placed
right on the geoid (Lambert, 1930; Heck, 1992; Martinec et al., 1993).

According to Newton’s theory of gravity, Martinec and Vanicek formulated principles
for the description of the effect of topographical masses on the gravitational potential and
attraction in the case of laterally varying topographical density distribution and for the
spherical approximation of the geoid (Martinec, 1993; Martinec and Vanicek, 1994a, b).
Sjoberg (1998 and 1999) and Novék (2000) studied the effect of the atmospheric masses in
the Stokes-Helmert method of geoid determination.

Based on Molodensky’s theory (Molodensky et al., 1960), Vanicek and Kleusberg (1987)
introduced the idea of modification of the Stokes function to separate the reference and
higher-degree gravity field. Theory of the reference gravity field and the spheroid, and the
reformulation of Stokes’s boundary-value problem for the higher-degree reference spheroid.
were described by Vanicek and Kleusberg (1987), Vanicek and Sjoberg (1991), Vanicek et
al. (1995), Vanicek and Featherstone (1998).

The solution of Dirichlet’s boundary-value problem by applying the Poisson integral
equation for the downward continuation of Helmert’s gravity anomalies was investigated by
Martinec (1996), Vanicek et al. (1996), Sun and Vanicek (1998) and Huang (2002).

The principle of the Stokes-Helmert scheme of geoid determination can be summarized
in the following scheme (Vanicek et al., 1999; Vanicek and Jandk, 2001):

- Formulation of the boundary-value problem of the third kind on the Earth’s surface.

- Transformation of the boundary-value problem into a harmonic space, i.e.,
transformation of gravity anomalies from the real to Helmert space (according to the
second condensation technique where the topographical and atmospheric masses are
condensed directly onto the geoid).
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- Solution of Dirichlet’s boundary-value problem by applying the Poisson integral
equation, i.e., the downward continuation of Helmert’s gravity anomalies from the
Earth’s surface to the geoid.

- Reformulation of the geodetic boundary-value problem by decomposition of Helmert’s
gravity field into a low and high-frequency gravity field.

- Solution of the Stokes boundary-value problem for the high-frequency Helmert gravity
field (by using the modified spheroidal Stokes kernel) and evaluation of Helmert’s
reference spheroid (from a satellite geopotential model).

- Transformation of the equipotential surface from the Helmert space back into the real
space.

2. Geodetic boundary-value problem in the real space

Let us begin with the definition of the disturbing gravity potential 7’ (r[ (Q)) which is
reckoned at the Earth’s surface, Q € Q, : 7.(Q) = r, (Q)+ H°(Q), as the difference of the

Earth’s gravity potential #(r,(Q2)) and the normal gravity potential U(r,(2)) generated by
the reference geocentric ellipsoid of revolution (Somigliana, 1929; Pizzeti, 1894 and 1911)

QeQ, : T(,(Q)=1((Q)-U((Q). 2.1)

@)

(0]
radius of the geoid and H (Q) is the orthometric height. A pair of the geocentric

where (Q) stands for the geocentric radius of the Earth’s surface, s is the geocentric

coordinates # and 4 represent the geocentric direction Q= (¢’ /1) while 2 stands for the

[pe(-n/2,m/2), 1e(0,2n)]

total solid angle . Eqn. (2.1) is valid only if the normal

gravity potential Y, on the reference ellipsoid equals to the gravity potential W, on the
geoid.

Approximating the geoid by the geocentric sphere of radius R, i.e., Qe Q, :7, (Q) ~R,
the radial derivative of the disturbing gravity potential 7’ (r, (Q)) reads (Vanicek et al., 1999)

VQeQ,:
oT(r,Q) oW (r,Q) YUY

Or | rn) Or | rn(o) Or | o)
=|grad (r,(Q))| cos( grad (1,(Q)).r° )- | gradU(r,(Q))| cos( gradU(r,(Q)).r° ), (2.2)
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where r° is the unit vector in the radial direction. The vertical gradient of the gravity
potential W(r, (Q)) and the vertical gradient of the normal gravity potential define gravity

g((Q)) and normal gravity y(r,(Q)):

VQeQ, :|gradi (r(Q))| = gl (@) = -2(~(Q)), 23)
VQeQ,:|gradU(r, ()| = v(r Q)| = (Q)). (2.4)

The angle between the plumb line and the radial direction L(— g,r’ ), and the angle

between the normal to the reference ellipsoid and the radial direction L(—y , r") can be
written with sufficient accuracy as follows (Vanicek et al., 1999) :

cos(—g,r“)zl—%gz, 2.5)
cos(—y , r“); 1—%72. (2.6)

Substituting Eqns. (2.3-2.6) back to Eqn. (2.2), the radial derivative of the disturbing gravity
potential becomes (Vanicek et al., 1999)

VQeQ,:
D] @) ) g, ) - 2D g ) -
(@) + 2, (5(0), o

where the difference of gravity g(r,(Q2)) and normal gravity »(r(Q)) defines the gravity
disturbance, dg(r(Q)) = g(1,(Q))-7(n(Q)), & 5 (r(Q)) is the ,.ellipsoidal correction to the
gravity disturbance* (ibid)

VQeQ,:

0 (@)= 206, @ 7Y L @) (@) @)+ 25D ). s

and &, 7 stand for the components of the deflection of a vertical 8, 8 = /&> +1° .
The angle g, is the difference of the geodetic latitude ¢ and geocentric latitude ¢ that is
given by Bomford (1971)
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B, = fsin2p, (2.9)
where f = (a — b)/ a 1s the first geometric flattening of the reference ellipsoid.

Considering only the second term on the right-hand side of Eqn. (2.8), the ellipsoidal
correction to the gravity disturbance ¢, (r,(Q)) can be evaluated with sufficient accuracy by

(Vanicek et al., 1999)

_ fsin2¢ oT(r,Q)

L@ oy (19

V00, 6, (1(Q)= £ (@) fsin20 £ (@)=

Since the computation of normal gravity y(r(€2)) on the Earth’s surface requires the
knowledge of the geodetic height h(Q) above the reference ellipsoid, the gravity disturbance
5¢((Q)) is transformed into the gravity anomaly Ag(r(2)). Gravity anomaly is given as a

difference of gravity g(r, (Q)) on the Earth’s surface and normal gravity 7(H N (Q)) on the
telluroid, i.e., V Qe Q, : r(Q) =7, (Q)+ H"(Q), see (Vanitek et al., 1999)

VQeQ,:
Ag(r,(Q)) = g(r,(Q) - AH™ (@)= G, (Q) + 71, (@) - AE™ (@) + £, (1, (@), (2.11)

where 7, (Q) is the geocentric radius of the reference ellipsoid and H ™ () stands for the
normal height (Molodensky, 1945).

Considering Molodensky’s approach (Molodensky et al., 1960), the difference of normal
gravity y(r(Q)) on the Earth’s surface, Qe Q, : 7:(Q) = r, Q)+ H°(Q)=r,(Q)+h(Q), and

normal gravity y(H N (Q)) on the telluroid can be defined as

oy(r,Q)
on

@), @12

r=R+H°(Q)

v QeQ,: y(r(Q)-H(HY(Q)=|grady(r, (@) s(@) =

where the derivative of normal gravity is taken with respect to the normal n to the reference
ellipsoid and g(Q) is the height anomaly (Molodensky et al., 1960). Using Bruns’s spherical

formula (Bruns, 1878), the expression on the right-hand side of Eqn. (2.12) can be rewritten
as (Vanicek et al., 1999)
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87/(7/, Q)
on

VQeQ,: 1(;(Q)) (2.13)

on

r=R+H°(Q) r=R+H®(Q)

Substituting Eqn. (2.13) into Eqn. (2.11), the fundamental boundary condition takes the
following form

Y0, 8a(5(0) = 205 £, (5(0) + 22 o ﬂTL(—‘(;)))) (2.14)

Applying the following spherical approximation

1 6}/(1*,(2)
7(HN (Q)) on

VQeQ,:

r=R+H°(Q)
the boundary condition in Eqn. (2.14) becomes (Vanicek et al., 1999)
VQeQ,:

4oy (1(Q) - ——T(1 (@) - 2, (). (2.16)

Aglr(Q))=-—==

The ,.ellipsoidal correction for the spherical approximation® &, (r, (Q)) can be derived in the
following form (Vanic¢ek and Martinec, 1994)

VQE(%:gAMQ»EZ{m+f(um2¢—%ﬂz£%92, (2.17)

where m = w”a’ / GM stands for the Clairaut constant (Heiskanen and Moritz, 1967), GM
is the geocentric gravitational constant, @ is the mean angular velocity of the Earth’s

rotation, and the mean radius of the Earth R can be evaluated by the following formula
(Vanicek and Krakiwsky, 1986)

R=a. (2.18)

3. Geodetic boundary-value problem in the Helmert space

To investigate the geodetic boundary-value problem in the Helmert space, ,,Helmert’s
disturbing gravity potential* T" (r, (Q)) referred to the Earth’s surface is defined by Vanicek

et al. (1999)
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VQeQ,: T (1 (Q)=T(;(Q))- o' (1 (Q))- oV (r(22)), (3.1

where oV (r,(Q)) and &V “(r,(Q)) are the so-called residual gravitational potentials of
topographical and atmospheric masses.

Assuming the mean angular velocity @ of the Earth’s rotation is equal to the mean
angular velocity of rotation of the reference ellipsoid, the disturbing gravity potential
7" (r,Q) is harmonic everywhere above the geoid, i.e., V Qe Q, r > r, (Q):

AT"(r,Q)=0 in the Helmert space.

JHelmert’s gravity g" (r,(Q)) is related to actual gravity g(r(Q2)) as follows (Vanicek et
al., 1999):

V0, ' (h(0)-glrle) LA V)

r=R+H°(Q)

(3.2)

r=R+H°(Q)

LHelmert’s gravity disturbance dg" (r, (Q)) defined as the negative vertical gradient of the

Helmert disturbing gravity potential can be described as a sum of the negative radial
derivative of the Helmert disturbing gravity potential 7" (r,(€2)) and the ellipsoidal

correction &, (r(Q)) to the gravity disturbance

VQeQ,:
' r@)=-T2) L )-
r=R+H°(Q)
= (@) A5 (@) £ (r () D) S (0) (3)
* or r=R+H°(Q) or r=R+H°(Q)

The relation between the gravity disturbance dg" (r,(Q)) and gravity anomaly Ag" (r,(Q)) in

the Helmert space can be obtained from the boundary condition (Heiskanen and Moritz,
1967)

VQeQ,:
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=&" @)+ Q) -7, 07 ( )HN(Q)—
_ 1 87/(1’,9) (y LoV (r +e. (r .
j/(HN (Q)) on ;~_R+HO(Q)[5V ( t(Q)) oV ( t(Q)) ] ag( t(Q))’ (3.4)

where 7, (¢) is normal gravity on the reference ellipsoid (Somigliana, 1929).

If Helmert’s orthometric height H° (Q) is used (Helmert, 1890), the ,,geoid-quasigeoid
correction’ has to be applied to the boundary condition formulated in the Helmert space
(Vanicek et al., 1999). The geoid-quasigeoid correction, i.e., the difference of the normal and
orthometric heights, can be approximately described as a function of the simple Bouguer
gravity anomaly Ag*®(r,(Q)), see (Martinec, 1993),

HO(Q)M. (3.5)

VQeQ,: HNQ)-H°(Q) o)

N

The formula for the simple Bouguer gravity anomaly Ag*®(r,(Q)) reads (Heiskanen and
Moritz, 1967)

VQeQ,: Ag”(r(Q)=g(r(Q)- y(H°(Q))-2n Gp, HO(Q), (3.6)

where G is the Newton (universal) gravitational constant. The third term on the right-hand
side of Eqn. (3.6) stands for gravitational attraction generated by the infinite Bouguer plate
(with the mean topographical density p, and thickness equal to the orthometric height

H° (Q) at the computation point). Substituting Eqn. (3.5) into the boundary condition in
Eqn. (3.4), Helmert’s gravity anomaly Ag" (rt (Q)) becomes (Vanicek et al., 1999)

VQeQ,:

H0<Q>[1+_Agi<(';<)9»}_

r=R+H°(Q)
ooV (r,Q ooV “ (r,(Q
- (@) s @) + 221 b))
r r=R+H°(Q) r r=R+H°(Q)
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@) -7, )~ 72

6V (1 (@) + oV (1, Q)]+ &, (1, (). (3.7)

r=R+H°(Q)

1 or(r.Q)
y(HY (@) on

Introducing the free-air gravity anomaly (Heiskanen and Moritz, 1967)

VQeQ,

2™ (1(0) = £l (@)~ {1 (@) - gl (@) -7, (¢) - 22

H°(Q), (3.8)

and applying the spherical approximation from Eqn. (2.15), the boundary condition in Eqn.
(3.7) can subsequently be written in the form (Vanicek et al., 1999)

VQeQ,

A" ()= 8™ (@) + D BVIRR) ),
r=R+H°(Q) r=R+H°(Q)

O8O+ oV O+ o (:(0) 6, (7 (0) (.9

The second and third term on the right-hand side of Eqn. (3.9) are the direct topographical
and atmospheric effects on gravitational attraction. The fifth term stands for the ,,geoid-
quasigeoid correction to the boundary-value problem®, and the sixth and seventh terms
represent the secondary indirect topographical and atmospheric effects on gravitational
attraction.

Helmert’s gravity anomaly can be also formulated as a function of the Bouguer gravity
anomaly. The complete Bouguer gravity anomaly Ag " (r, (Q)) is defined by the following

formula (Heiskanen and Moritz, 1967)

VQeQ,
Ag (1, (@)= Ag™ (r, (@) + 6" (@)

= )= 7(H°(@Q))- 27 Gp,H(Q)+
+52“(r,(Q))=Ag™ ((Q)) - 2n Gp, H® (Q) + &

@
5" (r(Q)), (3.10)

gl
)+

where 5g“(r,(Q)) is the ,.gravimetric terrain correction® (Vanicek et al., 1999), i.e., the
correction for gravitational attraction of topography taken relative to the height of the
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evaluation point (r,Q). The curvature effect -8 Gp, [H © (Q)]z/ R 1s usually not considered
in the definition of the complete Bouguer gravity anomaly (Vanicek and Krakiwsky, 1986).

Substituting Eqn. (3.10) into Eqn. (3.9), the relation between the Helmert gravity
anomaly Ag" (r (Q)) and the complete Bouguer gravity anomaly Ag“® (rt (Q)) is given by

t

Vanicek et al. (1999)

VQeQ,:

Ag" (1, (Q))=Ag ™ (1, (Q)) + 21 Gp, H° () - & “ (1, (Q)) + £ (r,(2)) - &, (, (V) +

N ooV (r,Q) N ooV (r,Q)
or or

+

r=R+H°(Q)

(1 (Q)) + — = OV (1, (©2). (3.11)

r,(Q)

r=R+H°(Q)

+ 2 H0(Q) 4™ (@)

2
r,(Q)

4. Effect of topographical masses on gravitational attraction

To evaluate the Helmert gravity anomaly Ag" (r,(€2)) on the Earth’s surface according to

Eqn. (3.9), the topographical effect on gravitational attraction has to be computed. The
topographical effect on gravitational attraction, which is reckoned on the Earth’s surface, is
represented by the direct and secondary indirect topographical effects (Martinec, 1993;
Martinec and Vanicek, 1994a, b; Martinec et al., 1995 and 1996; Vanicek et al., 1995a and
1999; Novék et al., 2001; Huang et al., 2001).

4.1 Residual gravitational potential of topographical masses

The ,,residual gravitational potential of topographical masses* 5V (r,(Q)) is defined as
a difference of the gravitational potential V' (r,Q) of topographical masses and gravitational

potential ¥V (r, Q) of topographical masses condensed according to the Helmert second
condensation method directly onto the geoid (Martinec et al., 1993)

VQeQ,,reR V' (r,Q)=V"(r,Q)-V(r,Q). (4.1)

The ,.gravitational potential of topographical masses V' (r,Q) is given by the Newton
volume integral (Martinec, 1993)
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‘v’QeQO,reﬂ%+'

(rnQ)=G || j (. Q) [ (), ] dr' dQY, (4.2)

Q'eQ

where p(r,Q) is the actual density of topographical masses (i.e., masses between the geoid
and the Earth’s surface). The spatial distance /[r,y(Q,Q'),#'] between two points with the
geocentric positions (r,Q) and (+,Q’) reads

VO,Q ey, rr e R [rp(Q,Q) =P + 17 = 2r Fcosp(Q,Q), (4.3)
and the spherical distance l//(Q,Q'), V&S < 0,7 > , 1s given by the law of cosines
VQ,0 €, cosy(Q,Q)=sing sing + cos@’ cosgcos(A' - 1). (4.4)

The ,.gravitational potential of condensed topographical masses* V' (r,Q) can be computed
by the Newton surface integral (Martinec, 1993)

VQeQ, reR ¥ (rnQ)=G [[o@)[y(@)r @) (@)d, (4.5)

Q'eQq
where O'(Q) is the surface density of topographical masses condensed onto the geoid.

Approximating the geoid by the geocentric sphere of radius R, i.e.,
VQeQ,:r, ()~ R, and the actual density p(r,Q) of topographical masses by the

laterally varying topographical density p(Q), see (Martinec, 1993),

VQeQ,: p(Q)= p(r,Q)r* dr, (4.6)

the gravitational potential V' (r,Q) of topographical masses in Eqn. (4.2) takes the following
form (Martinec, 1993)

J-R+H (@)

R

VQeQ,, reR :V'(r,Q)=G ”p

Q'eQq

M w(Q,Q),r'] 7 dr' dQY' . 4.7)
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The surface density O'(Q) of condensed topographical masses is according to the principle of

mass-conservation of topographical masses (Wichiencharoen, 1982), i.e., the mass of the
condensation layer is equal to the mass of actual topographical masses, in an integral
representation (Martinec, 1993)

R+H°(Q)

vQeQ,: [[p@)] r* drdQ =R’ [[o(Q)dQ. (4.8)

According to Eqn. (4.8) the surface density G(Q) becomes (Martinec and Vanicek, 1994a)

VQeQ,:
o(0) = P}g‘}) [ 4 = ple)o(@)| 142 OR@ N ;(53)]2 _ p(g)ﬂi‘#. (49)

The gravitational potential V' (r, Q) of condensed topographical masses, see Eqn. (4.5), is
then (Martinec, 1993)

+ ct ! ’QS(Q')_R3 -1 ! ’
VQeQ,,reR v (rQ)=G [[ pl@ )#1 [r.w(Q,Q),R]dQY' . (4.10)

Q'eQ

Considering the gravitational potential V'’ (r,Q) of topographical masses in Eqn. (4.7) and
the gravitational potential (r,Q) of condensed topographical masses in Eqn. (4.10), the

residual gravitational potential oV ’(r, Q) of topographical masses (in the spherical
approximation of the geoid VQ e Q, : 7, (Q) =~ R) becomes (Martinec, 1993)

VQeQ,,reR":

'(rQ)=G [[pl@)] ) e Q) ] dr A -

r'=
Q'eQ

=l p(Q')MZ‘I [rp(Q,Q),R]dQY. (4.11)

Q'eQq

The radial integral of the reciprocal spatial distance /™' [r, l,//(Q,Q’), r’] multiplied by "> can
be described by the analytical form (Gradshteyn and Ryzhik, 1980)
VQeQ,:

IR+H°(Q’)1_1 [rw(Q,Q),F]r? dr = %[r’+3r cosy(Q, Q)] i,y (Q. ), r']+
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5 R+HO(Q)

+ % (3 cos’ w(Q,Q')- l)ln\ r —rcosy(Q,Q) + I[r,p(Q,Q'),r] (4.12)

r'=R

4.2 Direct topographical effect

The radial derivative of the residual gravitational potential oV ’(r, Q) of topographical

masses in Eqn. (4.1) referred to the Earth’s surface defines the ,,direct topographical effect
on gravitational attraction* (Martinec, 1993; Martinec and Vanicek, 1994a)

_ 85V’(F,Q)

vaeq,: _or'nQ)

or

_ ov'(r,Q)

. (4.13)

or r=R+H°(Q)

r=R+H°(Q) r=R+H°(Q)
The ,,gravitational attraction of the topographical masses* is given by the radial derivative
of the gravitational potential V' (r, Q) of topographical masses, see Eqn. (4.7), referred to the

Earth’s surface (Martinec and Vanicek, 1994a)

VQeQ,:
t +HO (O -1 ’ ’
aVa(raQ) =G J-J‘ p(Q!) J:i: (Q)a ) [ral/:a(Q:Q )7r] rr2 dl"' er (414)
r r=R+H°(Q) Q'eQ, r r=R+H°(Q)

The radial derivative of the gravitational potential (r, Q) of condensed topographical

masses, see Eqn. (4.10), which is also reckoned on the Earth’s surface, represents the
»gravitational attraction of condensed topographical masses* (Martinec and Vanicek,
1994a)

VQeQ,:
ct -1 ’

or(ne) =GR [[ o) ol ry(0.0) R] o' (4.15)
ar r=R+H°(Q) Qe or r=R+H°(Q)

The radial integral of the radial derivative of the reciprocal spatial distance
ol [r,t//(Q,Q'), r']/ o r multiplied by 7> can be expressed analytically as follows
(Martinec, 1993):

VQeQ,:
J.MHO(Q,) e [r,l//(Q,Q'), rr] e _J~R+H0(Q') 7 —7r'cos l//(Q,Q') 2 dp =
r'=R or p r=R r [’”, '//(Q, Q')’ ’”']
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|7 cosy(Q, Q)+ 377 cosy(Q, Q')+ ' — 6 71 cos” w(Q, Q) .
) lry(@.Q).r]
R+HC(Q')
+r (3 cos’ w(Q,Q') - 1) In| 7' — reosy (Q,Q) + I[r,y(Q, '), ]| : (4.16)

r'=R

To remove the weak singularity of the Newton integral (Kellogg, 1929) in the computation
point, the gravitational attraction of the spherical Bouguer shell with the lateral topographical

density p(Q) and thickness H° (Q) equal to the orthometric height of the computation point
can be subtracted from and added to gravitational attraction of topographical masses
(Martinec, 1993; Martinec et al., 1995). The gravitational potential yshell (r,Q) of the
spherical Bouguer shell with the topographical density p(Q) and thickness H° (Q) is equal
to (Wichiencharoen, 1982)

VQeQ,
VShe”(r Q ”J-MH r l// Q Q) ]r'2 dr' dQ' =
0'eQ
2 (6] (6] 2
4nGp(Q)R—HO(Q){1 A @) + [ (gf | , r>R+H°(Q),
r R 3R
3
- 271;(;,)(9){}32 +2RHO(Q)+ [HO(Q)]Z—ER——%W} , R<r<R+HO(Q), (417
r
4nGp(Q)H0(Q)[R %m@)}, <R,

Moreover, gravitational attraction V" (r,Q)/d r of the spherical Bouguer shell is
(Vanicek et al., 2001)

vYQeQ,
o 0| _ Q) ff [ 2 ey
or Q'eQ, or r

—4nGp(Q)]:—;HO(Q)[1+H; [H3R ]} r=R+H°(Q),

R<r<R+H°(Q), (4.18)

0, r<R.
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Subtracting and adding gravitational attraction of the spherical Bouguer shell, gravitational
attraction of topographical masses in Eqn. (4.14) becomes (Martinec, 1993)

VQeQ,
t 2 o) o) 2
v'(rQ) - aGp@) R _mo@1+ 2 @), i (?)] +
or | o) 2 (Q) R 3R
Lo ” IM @8 17 [r,w(Q,Q), 7] ey
Qe or r=R+H°(Q)
(@) jR+H°(Q)a I [rw(Q,Q), 7] s “.19)
TR or r=R+H°(Q)

A similar procedure can be applied to remove the weak singularity of the Newton surface
integral from gravitational attraction of condensed topographical masses, see Eqn. (4.15).

The gravitational potential V'@ (r,Q) of the spherical condensation layer with the surface
density o(Q) is (Martinec, 1993)

VQeQ,
RZ
4nGo(Q)—, r>R,
v (r,Q) =GR o(Q) [[ 17'[rp(Q.Q) R]dQ" = r (4.20)
<0, 4nGo(Q)R, r<R,

and gravitational attraction 6V " (r,Q)/d r of the spherical condensation layer is
VQeQ,

R2
‘ -4 Q) — R
v (r,Q) =GR’o(Q) || ol [N//QQ)R] dQ’ = il )rw " @21

or

r Q'eQ r O, r<R.

Subtracting and adding gravitational attraction of the spherical condensation layer to Eqn.
(4.15), gravitational attraction of condensed topographical masses takes the following form
(Martinec, 1993)

VQeQ,

ove(r,Q) R’

= ~AnGo(Q)——+
or r=R+H°(Q) h (Q)
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+GR* [ [o(@)-o(Q)] ol [”"/’a(?’ﬂ')’R] Q. (4.22)

Qe r=R+H°(Q)

Comparing gravitational attraction of the spherical Bouguer shell referred to the Earth’s
surface, that is given by the first term on the right-hand side of Eqn. (4.19), with gravitational
attraction of the spherical condensation layer referred to the Earth’s surface, that is given by
the first term on the right-hand side of Eqn. (4.22), they are equal. Substituting gravitational
attraction of topographical masses in Eqn. (4.19) and gravitational attraction of condensed
topographical masses in Eqn. (4.22) back into Eqn. (4.13), the direct topographical effect on
gravitational attraction becomes (Martinec, 1993)

VQeQ,
or F=R+H°(Q Qe or r=R+H°(Q)
B p(Q) J-R+HO(Q) a Z_l [I", l//(Q, Q’), l"’] 7”2 dr/ dQ! _
reR or r=R+H°(Q)
-1 '
“6#° [[ [ola)-ol0) ol [r,v;(Q,Q )R] 4o (4.23)
e, r r=R+H°(Q)

Separating the laterally varying topographical density p(Q) into the mean value
-3

p, =2.67 g.em ™ and the laterally varying anomalous topographical density 5,0((2):
VQeQ,: p(Q)=p, +5p(Q), (4.24)

and substituting them into Eqn. (4.9), the surface density O'(Q) becomes (Martinec, 1993)

VQeQ,:0(Q)=0c, +50(Q)=[p, +5p(Q)]|H° (Q)[l A (;fg) + L ;S})]z } : (4.25)

Applying the above mentioned decomposition of densities into gravitational attraction of
topographical masses and of condensed topographical masses, the direct topographical effect
on gravitational attraction finally takes the following form (Martinec, 1993)

VQeQ,
oV (r,Q) R <Q'> [r.y (@), 2 0
or _Gp" .U I =R+H°® or T dridQy’ -
r=R+H°(Q) Qe r=R+H°(Q)
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_Gp, ” ©@ar'[r, Wa(QQ)R] s
Q'eQ r r=R+H°(Q)
0 (e -1 i '
e ” 5,0(9')]“1 @31 [r,y(Q,Q),r] 2 4 QY —
Q'eQ, r=k or r=R+H°(Q)
-G [[ sl (Q) R 017 r Q)R] o’ . (4.26)
Q'eQq or r=R+H°(Q)

The first term on the right-hand side of Eqn. (4.26) is the so-called ,,spherical terrain
correction®, and the second term stands for the ,,spherical condensed terrain correction‘
(Martinec and Vanicek, 1994a). The third and fourth terms represent together the
contribution of the laterally varying topographical density to the direct topographical effect.

4.3 Secondary indirect topographical effect

The ,,secondary indirect topographical effect on gravitational attraction*, which refers to the
Earth’s surface, is given by the following equation (Martinec and Vanicek, 1994b)

VQeQ, (1 (Q)) = — =V (1(Q)) - ——V " (5(©). 4.27)

(@) r.(Q) r,(Q)

v,

Dividing the laterally varying topographical density p(Q) into the mean and laterally
varying anomalous topographical density, see Eqn. (4.24), the gravitational potential
V'(r,(Q)) of topographical masses given by Eqn. (4.7) takes the following form (Martinec,
1993)

vQeQ,
, _ R o HO(Q) [He@Q)

V' (r(Q))=4nGp, o (@) 1+ T

+Gp, ” J.RziH ll[rt )J/’(Q,Q'),r'] 2 440 +

+G [[apler IM Mr@)y(Q)r ] dr de, (4.28)

where the first term stands for the gravitational potential of the spherical Bouguer shell
referred to the Earth’s surface, see Eqn. (4.17). Similarly, the gravitational potential
V<(r,(Q)) of condensed topographical masses, see Eqn. (4.10), becomes (Martinec, 1993)
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VQeQ,
Ve (r(Q))=4r Go, T Q)—i-Gpn ” )Z’l[r,(Q),t//(Q,Q'),R]dQ'+
+G ” 5p(Q')Mz [r(Q),w(Q,Q'),R]dQ’, (4.29)

where the first term on the right-hand side represents the gravitational potential of the
spherical condensation layer at the point above the geoid, see Eqn. (4.20).

Considering the gravitational potential ' (r,(Q)) of topographical masses, see Eqn.

(4.28), and the gravitational potential ¥ (r,Q) of condensed topographical masses, see Eqn.

(4.29), the secondary indirect topographical effect in Eqn. (4.27) can be written as follows
(Martinec, 1993)

VQeQ,
R+H®
@ -2, ([ [ o)) s
QEQO
2 - ' '
I ﬂ )ll[n(Q),t//(Q,Q),R]dQ+
t Q'eQ
-1 ' [
@ o J“ Q) g
rt Q Q'en, or r=R+H°(Q)
(Q)-Rr?
F(Q —G || 5@ ) 1" (@ y(Q.Q) R]d". (4.30)
t Q'eQq

The gravitational potential of the spherical Bouguer shell and the gravitational potential of
the spherical condensation layer are subtracted from Eqn. (4.30), because, if reckoned on the
Earth’s surface, they are equal.

5. Effect of atmospheric masses on gravitational attraction
Transforming the boundary-value problem, as formulated in the real space by Eqn.
(2.16), into the Helmert space according to Eqn. (3.9), the effect of atmospheric masses on

gravitational attraction is represented by the direct and secondary indirect atmospheric
effects.
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5.1 Residual gravitational potential of atmospheric masses

Similarly to the residual gravitational potential of topographical masses, the ,,residual
gravitational potential of atmospheric masses* oV * (r, Q) is given by the difference of the

gravitational potential V' “ (r, Q) of atmospheric masses and the gravitational potential

V“(r,Q) of atmospheric masses condensed (according to the Helmert second condensation
method) onto the geoid (Vanicek et al., 1999)

VQeQ,,reR oV (r,Q)=V(rQ)-V“(r,Q). (5.1)

Under the spherical approximation of the geoid (VQeQ, :7, (Q)z R), the ,.gravitational
potential of atmospheric masses* V* (r,Q) reads (Novak, 2000)

VQeQ,,reR":
v(r.Q)=G [[ jfj‘i:“’[e+Ho(Q,)p“(r,Q')l-l[r,y/(Q,Q'),r']r'2 dr' dQ’, (5.2)

Q'eQ
where p (r,Q) is the actual atmospheric density and 7, is the upper limit of the
atmosphere where the atmospheric density becomes negligible (approximately 50 km above

the sea level).

The ,,gravitational potential of condensed atmospheric masses V (r,Q) is (Novak, 2000)

VQeQ,, reR 7V (rQ)=GR* [[o*(Q)1 " [rp(@ ) R]d, (5.3)

Q'eQq
where ¢“(Q) is the surface density of condensed atmospheric masses.

Using the laterally homogenous atmospheric density distribution
VQeQ,re(R+H(Q),r, ): p(r)=—=[[ p'(r.0)dQ, (5.4)

the gravitational potential V' “ (r,Q) of atmospheric masses in Eqn. (5.2) can be written in the
following form (Novak, 2000)
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VQeQ,reR 1V (rQ)=G [ [” () (@), ] dr dQY. (5.5)

=R+H°(Q
Q'eQq

According to the principle of the mass conservation, the atmospheric surface density o (Q)
is defined by (Novak, 2000)
Ve, o' (Q)=—= ™ () dr. (5.6)

R? dr=R+H°(0)
Substituting Eqn. (5.6) for the atmospheric surface density o (Q) into Eqn. (5.3), the
gravitational potential V' (r,Q) of condensed atmospheric masses takes the following form

(Novak, 2000)
VQeQ,reR 1V (rnQ)=G [[ [" F) e de 1 [ (QQ).R]AQ . (5.7)

=R+HO(Q
Q'eQq

Formally, the Earth’s atmospheric masses can be split into the spherical shell bounded by
the maximum geocentric radius of the topography and of the upper limit of the atmosphere,

VQeQ, :r=r,,,and the roughness term bounded by the Earth’s surface,
VQeQ,:7(Q)= R+ H°(Q) and the maximum geocentric radius of the topography

(Novak, 2000).

The gravitational potential }“ (r,Q) of atmospheric masses can then be described by
(Novék, 2000)

VQEQO,reﬂ?+‘

“(rnQ)=G ] jR:H ) 1 [ (@), ] 7 dr Ay +
Q'eQq
+G [ L‘M P o (Q,Q7), 7] dr dOY. (5.8)
Q'eQ

Dividing also the integration domain of the atmospheric surface density o (Q) in Eqn. (5.6)
as follows

VOeQ, o (@)= [ pr( ) dr [ po() 2 dr, (5.9)

R2 r=R+H°(Q) R? Jr(@)=Rr+mH,,
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the gravitational potential V (r,Q) of condensed atmospheric masses becomes (Novak,
2000)

VQeQ,,reR":
R+H ’ , , ,
m r Q GQL[ I =R+HO(Q tdr'n [F’W(Q’Q )9R]dQ +
+GJ£ [ooen, P ) & P [ry(Q.Q) RldQ (5.10)

5.2 Direct atmospheric effect

The ,,direct atmospheric effect on gravitational attraction* is defined as the radial
derivative of the residual gravitational potential 6V “(r,(Q)) of atmospheric masses referred

to the Earth’s surface (Vanicek et al., 1999; Novak, 2000)

ooV (r,Q) _or(ne)
or or

3 oV« (r, Q)

Ve, :
or

(5.11)

r=R+H°(Q) r=R+H°(Q) r=R+H°(Q)

Since the gravitational attraction of the atmospheric spherical shell (bounded by the
geocentric radii of the upper limit of topography and of the upper limit of the atmosphere) at
the inner point » < R+ H,,, is equal to zero (Mac Millan, 1930)

(r') ol [r,y/(Q,Q’),r']

r'?dr'dQ' =0, (5.12)
or

I

Vr<R+H, : G” I_M

Q'eQ

the ,,gravitational attraction of atmospheric masses* is given as the radial derivative of the
gravitational potential of the atmospheric roughness term. The roughness term, which
represents gravitational attraction of the atmosphere between the topography
(VQeQ,:r (Q) =R+H° (Q)) and the upper limit of topography (V Q e Q

t

r=R+H, ), is given by (Novak, 2000)

VQeQ,

T Y FLa 2715 [PV
or r=R+H°(Q) QeQ, " or r=R+H°(Q)
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Considering that gravitational attraction of the spherical condensation layer with the surface
atmospheric density o* (Q) at the outer point above the condensation layer » > R is equal to
a constant (Mac Millan, 1930)

V r>R:

2
G “‘J‘ - ’2dr'8l rp( Q)R] doy = _47[(;R2 pr) P, (5.14)
g, =R+H,,,, or ) y° 9r'=R+H,,

»gravitational attraction of condensed atmospheric masses* becomes

VQeQ,
ca 2
2ong) - 4nG—— J‘mm “(F) ' dr
or r=R+H°(Q) 7, (Q) r'=R+Hyy,
+G [] IMm p° () dr ol [ry(Q.Q).R] 4oy’ (5.15)
feit? or : .
e r=R+H°(Q)

Substituting gravitational attraction of atmospheric masses in Eqn. (5.13) and the
gravitational attraction condensed atmospheric masses in Eqn. (5.15) back into Eqn. (5.11),
the direct atmospheric effect on gravitational attraction takes the following form

VQeQ,
aa'Va (r,Q) 6 ] IR+RH+}10 o) O [r,l//a(Q,Q'),r'] 4 dOy s
r r=R+H°(Q) Q'eQ, r r=R+H°(Q)
R2 Tiim 2
471G a1 dp —
tan 2(Q) Ir’:R+H,imp () r dr
=G [ [P ) dr Ay Q)R] dQ'. (5.16)
o R+H®(Q or RO
<Q, r=R+H°(Q)

5.3 Secondary indirect atmospheric effect

The ,,secondary indirect atmospheric effect on gravitational attraction®, stipulated as
being on the Earth’s surface, can be described by the following expression (Novak, 2000)

VQeQ,: —— 8 (1(Q) =¥ (1 (Q)) - — = (1 (). (5.17)
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If Eqns. (5.8) and (5.10) are considered, the residual gravitational potential oV ”(rt (Q)) in
Eqn. (5.17) takes the following form

VQeQ,
a af. 1 ' ' R2 Tim af 1 , ,

oV ( (Q)) 4nG | re P (r)r dr —4nGmLR+Hhmp (r)r 2dr +

G [ [ P @) e -
Q'eQy,

-G jj JR+::[O ,) r,z dr'l_l [’?(Q)’W(Q’Ql)’R] 4o’ (5.18)
Q'eQ,

6. Downward continuation of Helmert’s gravity anomalies

To obtain gravity anomalies on the geoid, that are needed for solving the Stokes
boundary-value problem, the downward continuation of gravity anomalies from the Earth’s
surface to the geoid in the Helmert space has to be evaluated. The downward continuation is
evaluated by the Poisson integral equation, which is the inverse operation to Poisson’s
integral.

Since topographical and atmospheric masses are condensed onto the geoid, the Helmert
space above the geoid (approximated by the geocentric sphere of radius R, i.e.,

VQeQ,:R=r, (Q)) is harmonic. Helmert’s gravity anomaly Ag" (r,(Q)) multiplied by
the geocentric radius of the Earth’s surface 7,(Q2) then satisfies the Laplace differential
equation in the space everywhere above the geoid

VQeQ,,rn(Q)>R: A[}; (Q@)ag"(r, (Q))] =0 (Vanicek et al., 1996). ,,Poisson’s integral* is
given by the following formula (Kellogg, 1929)
VQeQ,,rn(Q)=R:

Ag" (1, (@)

R ” K[ (@) ()R] Ag" (R, ') e, ©6.1)

Q eQq

where K[r,(Q),y(Q,Q'),R] is the ,.spherical Poisson integral kernel* (Sun and Vanicek,
1998)

VQQ eQ,, n(Q)=R:
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Kb a)l- 3 re) ] peosvio.0)-

~ PQ-R 1 3R ,
A rh@u@a)s 1@ 2@ ”Qgﬂ' ©2

t

The discrete form of ,,Poisson’s integral equation‘ which generic form is the Fredholm
integral equation of the first kind, can be expressed as (Martinec, 1996; Huang, 2002)

Ag" (,(Q) =K[r, (@ w(Q. Q). R] Ag" (R,QY), (6.3)

t

where Ag"(r(Q)) is the vector of Helmert’s gravity anomalies on the Earth’s surface,

AgH(R,Q’) is the vector of Helmert’s gravity anomalies on the co-geoid (approximated
again by the reference sphere), and K[r(Q),y(Q,Q'),R] is the matrix of values of the Poisson
integral kernel multiplied by the factor R /7, (Q2) and constant 1/4r .

According to Jacobi’s iteration approach (Ralston, 1965) for solution of a system of
linear algebraic equations, the matrix K[r:(Q),y(Q,Q'),R] can be expressed in the form

K[1,(Q).y(.9).R]= E - B[;,(Q).y(. Q). R]. (6.4)

where E is the unit matrix. Substituting Eqn. (6.4) into Eqn. (6.3), the following system of
algebraic equations is obtained (Martinec, 1996)

Ag"(RQY)=Ag"(r,(2))- B[, (Q)w(2 @) R] Ag"(R,QY). (6.5)
The system of Eqns. (6.5) may be solved iteratively starting with the vector Ag ™ (7; (Q))

of free-air gravity anomalies on the Earth’s surface (because of free-air gravity anomalies on
the Earth’s surface are similar to Helmert’s gravity anomalies on the geoid)

VQ=0Q" Ag"(RQ)

=A™ (r(Q). (6.6)

The k-th stage of iteration (kK >0) Ag" (R, Q’) ‘k is carried out according to equation
(Martinec, 1996)

Ag"(R.Q)| =B (QLw(Q )R] Ag"(R.Q)| . (6.7)

1
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When the difference of results from two successive steps ‘ Ag"(R,QY)

—Ag"(RQY)

‘ 1S
k-1

smaller than some tolerance ¢, the iterative process stops. The result of this operation yields
the solution of Eqn. (6.3), see (Martinec, 1996),

Ag" (R.Y)=Ag" (;(Q)+ Y Ag" ()

k=1
where k is the final number of iteration steps.

(6.8)

k b

7. Reference field and spheroid in the Helmert space

To solve the Stokes boundary-value problem, the gravity anomalies over the entire
boundary surface are required. To reduce the truncation errors, i.e., the far-zone contribution
in the Stokes integration, the low and high-frequency parts of Helmert’s gravity field are
defined (Vanicek and Sjoberg, 1991).

The reference gravity field of degree n can be expressed by the ,,reference gravity
potential“ W, (r,C2) as (Vanicek et al., 1995)

— n+l n
VQEQO?”Z’?(Q):VVref(rsQ)zGM_ (al’] ZWn,m Yn,m(Q)’ (71)
2

7

m=—n

where W, are the geopotential coefficients of the harmonic expansion of the Earth’s
gravity field, Y, are the normalized spherical functions of degree n and order m, a, is an

arbitrary parameter of length (usually the major semi-axis of the reference ellipsoid), and n
stands for the maximum degree of retained harmonics. In the Helmert space the reference
gravity potential W} (r,Q) reads

VQeQ,, reR:WheQ) =W, (r,Q) -V, Q) -V (r,Q), (7.2)

where oV

ref

(r,Q) and oV (r,Q) are the reference residual gravitational potentials of the
topographical and atmospheric masses.

7.1 Reference residual gravitational potential of topographical masses

According to Eqn. (4.1) the ,,reference residual gravitational potential of topographical
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masses* 6V . (r,Q) can be defined as the difference of the ,,reference gravitational potential
of topographical masses“ V.. (r,Q) (Vanicek et al., 1995)

VQeQ,,r>R+H

lim *

Vi (nQ)~Gp, [ j Z[“HJ (cosy(QQ))(R+H')* dH' dCY, (1.3)

QeQ, H'=0 T n=0

and the ,reference gravitational potential of condensed topographical masses*

V< (r,Q) (Novak, 2000)

n+l
VQeQy,r>R:Vi(rQ)~GR [[ of (Rj P (cosy(Q,Q))dQy' . (7.4)

Q'eQ

For points VQ e Q. :r> R+ H outside the Brillouin sphere (minimal geocentric sphere

ref (l" Q) Of
topographical masses in Eqn. (7.3) takes the following form (Vanicek et al., 1995)

containing all the Earth’s mass), the reference gravitational potential V.

VQeQ,,r>R+H

hm .

re)anr S5 LS 1 [ peovaanar. as

n+315 o', R

Differencing the reference gravitational potential V... (r,Q) of topographical masses, see

Eqn. (7.5), and the reference gravitational potential V¢

ref

(r,Q) of condensed topographical

masses, see Eqn. (7.4), the reference residual gravitational potential oV . (r,Q) of

ref

topographical masses becomes (Novak, 2000)

VQeQ,,r>R+H

11m .

am;f<r,a>:GpoR2§(§]"“{ LS 0 p vt an-

n+3 5 oo,

R
J‘J‘ HO |: R []‘[(;R2 ] j|P (cos(//QQ dQ} (76)
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Since for H° (Q’) << R the summation over k& converges very quickly (Vanicek et al.,
1995), Eqn. (7.6) can be rewritten into the following form (Novak, 2000)

‘V’QEQO,r>R+H

hm .

)= G S ( SR g Ry
”+3 ” [HO P (cosy(Q, Q))dQ}. (7.7)

Expressing the surface harmonics of the orthometric height as (Kellogg, 1929)

[ HO@)P, (cosp(@.Q))d2' =2 31, (@)Y, (@), (7.8)

e, n+ 1 m=—n

the reference residual gravitational potential 6V, (r,Q) of topographical masses becomes
(Novak, 2000)

VQeQ,,r>R+H, (Q):

7 n+l n
(@)= 2mGp, 3 "{% SH (@)Y, (Q)+

‘o 2n+1r m—n
2n = n(n+3)( R\ & s
—G — H' (Q)Y,  (Q). 7.9
260, S B S @)y, ) 79

7.2 Reference residual gravitational potential of atmospheric masses

The ,,reference gravitational potential of atmospheric masses* V.. (r,€2) can be
described in the form (Novak, 2000)
VQEQO,I">VHmZ
a1 rn+2 i '
Ve (r,Q) =G Z — [[ P.(cosy(@,0 ))£ P () "2 dr' dQY' . (7.10)

Qe

To define the reference residual gravitational potential &V (,Q2) of the atmospheric

masses, the atmospheric density p“(r) given by Eqn. (5.4) can be replaced by the laterally
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symmetrical density model (Sjoberg, 1998; Novak, 2000)

VQer,re<R+HO(Q),r“m >,V>2/\V€S+ ; p“(r)=pf[$o(g)} , (7.11)

where p! is the atmospheric density at the sea level, and the positive integer constant

ve 3" (3" =1,2,...) determines the atmospheric density distribution model.

If the integration over the geocentric radius  from the Earth’s surface 7 (Q) to the upper

limit 7, of the atmosphere is evaluated by using the atmospheric model density from Eqn.
(7.11)

VQeQ,,v>2aveI ,n=12..,n

Nim a e+ a Fim R v .
L%m%mp G”’zdr:poLR#wm{_J r (7.12)

r

the reference gravitational potential V'
(Novak, 2000)

< (r,Q) of the atmospheric masses can be written as

~+
VQGQO,r>er,v>2/\veJ

/n v+3  |/lim

Ver(”aQ)E GRV:Oo il ,”

=0T aa,

P (cosy(Q,Q"))dQ' =

r'=R+H° (QY)

RV n3(p 43 ( —R)k _[HO(Q;)]/{
=GR’ P 0,0'))dQ’".
p" n=0 1" ”*1 Q[Z[ n—v+ 3 k 1 ( k j Rk ' (COSW( , ))

n— v+3

(7.13)
Applying the binomial theorem to the evaluation of the surface atmospheric density o* (Q),
see (Novak, 2000),

VQeQ,,v>2AveI:

a 5 Tiim R Y
c'(Q)= L _[ (9)(7) rrdr =

R? dr=r+u°

RS () ) ol

; 7.14
3,4k (7.14)
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the ,,reference gravitational potential of condensed atmospheric masses* V (r Q) takes the
following form (Novak, 2000)

~+ .
VQer,r>rIim,v>2/\ve\S :

V()= 92 Z[EJ IR

n=0 \ T’ Q'eQ,

=GLZ(EJ I Rmvf VJ ("i“’_R)k_[HO(Q')]k P, (cosy(QO) Q. (7.15)

1-v
R n=0 \ 7" Qe

P (cosy(Q,Q'))dQ’ =

(r,Q) is then

obtained as the difference of the reference gravitational potential ¥, (r,Q) of atmospheric

The ,,reference residual gravitational potential of atmospheric masses* oV ¢

ref

masses, see Eqn. (7.13), and the reference gravitational potential V& (r Q) of condensed

ref

atmospheric masses, see Eqn. (7.15) and (Novak, 2000),

~+ .
VQeQ,,r>rn, ,v>2Aved :

n n R n+l
ovilr,Q)z 2nGp! — H Q -
ref(r ) n ponzllzn_i_l(r) Z nm )
Pl Enln-2v+3)( R &,
-2nG=2 — H. (Q)Y (Q). 7.16
w623 2N RSk @)Y, (@) 716

7.3 Reference gravity potential in the Helmert space

The reference gravity potential W[} (»,Q) in the Helmert space in Eqn. (7.2) can be
expressed by the following formula (Vanicek et al., 1995)

VQeQ,,r>R:WH

ref

I n+l n
(r0)=M _ Z[“" ) > WE Y, (@) (7.17)
n=2 m=—n

r r

Since the summation in the expansion of Helmert’s reference gravity potential W, (r,Q)

is finite, i.e., the validity of this expression is not limited to the outside of the Brillouin
sphere (in the case of the topographical effect) and of the upper limit of atmosphere (in the
case of the atmospheric effect), the series in Eqn. (7.17) can be used at the geoid to evaluate
the reference gravity field in the Helmert space (Vanicek et al., 1995). If this surface is
unknown, the appropriate approximation of the geoid by the reference ellipsoid (V Q € Q3

r (Q) =7, (Q)) can be applied (Vanicek et al., 1995)

g
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VQGQO:rg(Q)zro(Q);a(l—fsinzgo). (7.18)

Substituting the term (Vanicek et al., 1995)

n+l
VQeQ,,n=12,..,n: {“—} =1+(n+1)fsin’p—..., (7.19)
()

g

into Eqn. (7.17), ,,Helmert’s reference gravity potential in the ellipsoidal approximation
takes the following form (Vanicek et al., 1995)

VQeQ,,r>R: Wk (Q)=~ %—Zn:[l+(n+l)fsin2 o] YW Y, (). (7.20)
l"o m=-n

n=2

7.4 Reference gravity anomaly and reference spheroid in the Helmert space

According to the boundary condition (Heiskanen and Moritz, 1967), ,,Helmert’s
reference gravity anomaly* can be expressed as follows

H
vaea,: aghl@)s- T2 o) 21
r
=, (©)

where T\ (rg (Q)) =78 (r (Q)=w}h (rg (Q))— U,(p) is ,.Helmert’s reference disturbing
potential“. The ,reference spheroid* is given by the reference co-geoidal heights N (Q)

ref
Applying Bruns’s spherical formula (Bruns, 1878) to Helmert’s reference disturbing
potential 75 (rg (Q)i the reference co-geoidal height N " (Q) can be expressed by the

ref
equation

T (r, (@)

VQeQ,:NL(Q)= ;7 (7.22)

8. Stokes’s boundary-value problem in the Helmert space

The equipotential boundary surface in the Helmert space, which is given by co-geoidal
heights N"(Q), can be evaluated from Helmert’s gravity anomalies Ag" (R, Q) referred to

the reference sphere of radius R by applying the Stokes integral formula (Stokes, 1849) and
the Bruns spherical formula (Bruns, 1878) into the following equation (Heiskanen and
Moritz, 1967)
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VQeQ,: N"(Q)= i f ) j [ag" (R,Q)S(y(Q.Q))de. (8.1)

The homogenous spherical Stokes function S(y(Q,Q')), see (Stokes, 1849), can be described
in the following spectral and spatial form (Heiskanen and Moritz, 1967)
VQ,0eQ,

S(w(Q.Q)) = i 20 +11 P (cosy(Q,Q')) =1+ cosec W(Qz’ ) _6sin W(Qz,Q ) B

n=2 -
~5cosy(Q, Q') - 3cosy(Q, Q')ln(sin@ +sin’ Mj . (8.2)

To evaluate the co-geoidal height N (Q) by a surface integration according to the Stokes
integral in Eqn. (8.1), the gravity anomalies Ag" (R,Q) have to be known over the entire
Earth.

8.1 Spheroidal Stokes’s function

In practice, the gravity anomalies over the entire Earth are not available. For this reason
Vanicek and Kleusberg (1987) introduced the idea to separate the summation over 7 in the
Stokes function in Eqn. (8.2) into low and high-degree parts:

VO,0 e, S(.a)=Y 2" +11 P (cosp(@. )+ 3 +11 P (cosy(Q,Q)). (8.3)

n=2 N n=n+1 N —
The second term on the right-hand side of Eqn. (8.3) represents the ,,spheroidal Stokes

function® S _- (y/(Q, Q’)), see (Vanicek and Kleusberg, 1987; Vanicek and Featherstone,
1998),

VO.Q'eQ,:8,,00.0)= ¥ 2P, (cosp(Q.9). (8.4

n=n+l N —

Substituting the decomposition of the Stokes spherical function S(l//(Q, Q’)) into Eqn. (8.1),
the co-geoid can be split into the low and high-frequency part (Martinec, 1993)
vVQeQ,

NQ)= N Q)+ N (Q) ”A 321+ L p (cosp (@, Q) dey +
47'E 7/0 Qer - 2 -1
2n +1
Ag" P 0.0'))dqQ" . 8.5
47'[ }/o QJ;E[O n= n+1 n _1 ! (COS y/( ’ )) ( )

The reference co-geoid (spheroid) of degree n is given by the reference co-geoidal heights
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H
N ref

(Q), and N! (Q) represents the high-frequency part of the co-geoid (Novék et al.,

2001). According to this approach the reference spheroid determined from the satellite data is
assumed (Vanicek and Kleusberg, 1987). The surface integration by the Stokes integral
formula can be employed to compute the high-frequency part of the co-geoid only from
terrestrial data.

8.2 Modified spheroidal Stokes’s function

Values of the spheroidal Stokes function S,_ (w(Q,Q’)) diminish with the growing
spherical distance y/(Q,Q’). The integration domain Q, of Stokes’s integral formula can be

divided into the near-zone integration sub-domain Q, (defined on the interval y € < 0, l//0> )

and the far-zone integration sub-domain Q. —€Q, (on the interval y € < v, 7t> ), see
(Vanicek and Kleusberg, 1987):

”dQ: ”dQ+ ﬂdQ. (8.6)

QeQ, QEQ‘V QeQy-Q
o

Vo

The near-zone contribution to the high-frequency co-geoidal height N iﬁ,% (Q) is (Martinec,
1993)

VQeQ N, (@)= _R_ [[ A¢"(R,Q)S,.;(w(Q ) dey, (8.7)
" 47:]/0 (¢) Q’GQWO

and far-zone contribution to the high-frequency co-geoidal height & iﬁ’% ™ (Q) is given by

(Martinec, 1993)

VQeQ,: Niﬁ,Q’O—Q(I,O (Q) A IJ Ag" (R,Q') Spon (t//(Q,Q')) dQ’. (8.8)

- 471:7/0 (¢) Q'EQO—Q%

According to Molodensky et al. (1960), Vanicek and Kleusberg (1987) proposed to

modify the spheroidal Stokes function S__((€2, Q")) so that the far-zone contribution

H
7,0

spheroidal Stokes’s function” S___ (v, ,y(Q,Q')) can be expressed as (Vaniéek and
Kleusberg, 1987)

(truncation error) N (Q) is minimal in the least-squares sense. The ,,modified
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0 <
8.9
S, W (QQ)), v ely,.m), (8.9)

Sps W, W (QQ))= {

and then expanded into the series of Legendre polynomials

Yy e(0.m):s, 1, v(QQ)= X 20, )P osp(@e), (310

where Q (l//o ,W(Q, Q')) are ,truncation coefficients for the modified spheroidal Stokes

function* S,__(v,,w(Q,Q')) , see (Molodensky et al., 1960). Multiplying Eqn. (8.10) by the
Legendre polynomials P, (cosy(Q,Q')),

Ve <O, n> :
Suos (W, W(Q.Q)) P, (cosp(Q, Q') =

-3 20, w2, osn(0. 0P, (cosp(0,0),

(8.11)

and integrating the result over the interval v € <0, n> , the following expression can be found

T

[ Sua (v, 0(Q.Q) P, (cosy (2, Q) siny(Q, Q) dy =

w=0

- 3 22500,y w0.2) [P, o (@) P, (o (@ )sinpl@. )y

(8.12)
n=n+l w=0
Using the orthogonality property of the Legendre polynomials (Hobson, 1931)
Ve <O, n>, n#Em: IPH (cosy(Q,Q)) P, (cosy(Q,Q'))sinw(Q,Q)dy =0, (8.13)
w=0
Ve <0, n>, n=m: J.[Pn (cosy(Q, Q) sinp(Q,Q")dy = 5 2 T (8.14)
V20 n+

and substituting for S,__ (v, ,y(Q,Q’)) from Eqn. (8.9), the truncation coefficients

Q, (v, w(Q,Q")) of the modified spheroidal Stokes function become (Molodensky et al.,
1960)

VQeQ,:
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Uy

QW w(QQ)= [ .4, w(Q.Q)P, (cosy(Q,Q))siny(Q,Q)dy . (8.15)

w=0

8.3 Near-zone contribution to the high-frequency co-geoid

Helmert’s gravity anomaly referred to the co-geoid can be divided into the low-frequency
(reference) gravity anomaly Ag!' (R, Q)= Agh (R, Q) and the high-frequency (residual)
gravity anomaly Ag!_(R,Q). The low-frequency Helmert’s gravity anomalies Ag! (R,Q)
are evaluated according to Eqn. (7.21). The high-frequency Helmert’s gravity anomalies
Ag!_(R,Q) are evaluated by subtracting the reference gravity anomalies Ag" (R,Q) from
Helmert’s gravity anomalies downward continued onto the co-geoid according to Eqn. (6.5).

Taking Eqn. (8.6) into the account, the near-zone contribution of the high-frequency
Helmert gravity anomalies to the co-geoidal height N (Q) can be described by (Novak,

n>n Q)
2000)

VQeQ,: N (Q):L _” Ag, (RS, (v, w(Q.Q)d. (8.16)
v 47:]/0 (¢) Q'eQ) o
The Stokes integral is only weakly singular for the spherical distance y =0 (Martinec,

1993). A classical method for treating a removable singularity consists of adding and
subtracting the value of gravity anomaly at the singular point, see (Martinec, 1993),

VQeQ,:
R ! ! !
Niz,ﬂ’w (Q) = j_[ [Agiﬁ (RaQ )_ A, (R:Q) ]Sn>ﬁ (Woa '//(Q=Q )) dQ’+
’ 471:70 (¢) Q'EQW0
R
+———Ag(R,Q S,osly,, w(Q,Q)dQY . (8.17)
) [ va)

8.4 Far-zone contribution to the high-frequency co-geoid

The far-zone contribution of high-frequency Helmert’s gravity anomalies Ag!' (R,Q) to
the co-geoidal height N (Q) is given by

>0 -,
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VQeQ,: Niﬁ,ﬂb—g'w (Q):L ” Agiﬁ(R,Q') Sn>ﬁ(l/luﬂ ‘//(QaQ’)) dQ’. (8.18)
’ 47[}/0 (¢) Q'eQy-Q

If gravity anomalies are not available over the entire Earth, the numerical computation
can be done by using the following equation (Novak, 2000)

Vo

VQeQ,: Niﬁ,(z'o—g'% (Q):_ Z Qn( oa'//(Q’Ql)) ZTfm Yn,m(Q)' (8.19)

n=n+l,...

0. Primary indirect effect on the geoidal height

After evaluation of the Stokes boundary-value problem in the Helmert space, an
equipotential surface in the Helmert space, i.e., the co-geoid, is obtained. To find the geoid in
the real space, the primary indirect topographical and atmospheric effects on the geoidal
height have to be evaluated (Vanicek and Martinec, 1994b). Helmert’s disturbing gravity
potential referred on the co-geoid (in the spherical approximation) reads

vVQeQ, : T"(R,Q)=T(R,Q)-V'(R,Q)-5V"(R,Q). 9.1)

Applying Bruns’s spherical formula (Bruns, 1878) to the disturbing gravity potential
T(R,Q) and Helmert’s disturbing gravity potential 7" (R,Q):

voeq,: N@Q)=1 y(R(’;)z) , 9.2)
gy TM(R,Q)  T(R,Q)-V'(R,Q)-5V(R,Q)
vy NHa)=— O - 7(6) ’ )

the following relation between the geoidal height N (Q) and the co-geoidal height N" (Q)

can be found (Martinec, 1993)

VQeQ,:

N(Q)= N(Q)- N"(Q) = T(RQ) T"(RQ)_&'(RQ), 5V"(R,Q). ©0.4)
A AC) 7,(9) 7,(9)

The first term on the right-hand side of Eqn. (9.4), i.e., oV (R, Q)/ v, (¢), is the ,,primary

indirect topographical effect on the geoidal height*, and the second term oV ¢ (R, Q)/ 7, (¢)
stands for the ,,primary indirect atmospheric effect on the geoidal height*.
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9.1 Primary indirect topographical effect

Considering the decomposition of the laterally varying topographical density p(Q) into
the mean and laterally varying anomalous topographical density, as described by Eqn. (4.24),
and removing the weak singularity of Newton’s integral, the gravitational potential V' (R, Q)

of topographical masses (stipulated as being on the geoid) can be written as follows
(Martinec, 1993)

vVQeQ,
V’(R,Q):4nGp0HO(Q)[R+%HO(Q)}+
+Gp, || puj“:Ho R ()] dr' dO +
Q'eQ
' R+HO(Q’) -1 i ’ 12 i i
+G |[opl@)] TRy (@) & dY, (9.5)
Q'eQ,

where the first term on the right-hand side is the gravitational potential of the spherical
Bouguer shell referred to the geoid, see Eqn. (4.17).

Similarly, the gravitational potential ¥ (R,Q) of condensed topographical masses
referred on the geoid can be described as (Martinec, 1993)

vVQeQ,
3
Ve (R,Q)= 4nGpo 4G I} p, (Q)zl(R,W(Q,Q'),R)dQ'+
Qe
’ I";(Q,)—R} -1 ' '
+G [[ dple) = —— I"(Ry(Q Q) R)deY, 9.6)
Q'eQ

where the first term on the right-hand side represents the gravitational potential of the
spherical condensation layer.

Substituting the gravitational potential V‘(R,Q) of topographical masses in Eqn. (9.5)
and the gravitational potential V' (R,Q) of condensed topographical masses in Eqn. (9.6)

into the residual gravitational potential of topographical masses oV (R, Q), the primary
indirect topographical effect on the geoidal height takes the following form (Martinec, 1993)

vVQeQ,
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V'(ROQ) G o [HO@) ’33(9)—R3}
B 4np, | RHC(Q -
)@ e )-R],
7UG¢ ” JM:HO MRy (QQ)r]r? dr deY -
70(‘/5 Qﬂz )ll(Raw(Q,Q’),R)dQ'+
) n(¢)9[£f” fmf R )] -
” Sp(Q r, (Q)-R* I (R,p(Q,Q),R)dQY . 9.7)
7/" QEQO

9.2 Primary indirect atmospheric effect

The primary indirect atmospheric effect on the geoidal height can be described in the
following basic form (Novak, 2000)

vVQeQ,
IV (RQ)_V'(RQ) V(RQ)
70(¢) ~7,9) 70(¢) )

” [ P )V Ry (QQ).]r ' de -

Qe o

U [ o ()7 @ P Ry (Q. Q) R) QY 9.8)
Qe o

10. Conclusions

To solve the geodetic boundary-value problem in the Helmert space, mean values of
Helmert’s gravity anomalies are evaluated on the Earth’s surface. In the UNB approach, the
mean values are considered for 5’x 5° cells. It follows from Eqn. (3.9) that the mean values
of Helmert’s gravity anomalies are functions of mean values of the free-air gravity
anomalies, see Eqn. (3.8), ellipsoidal correction to the gravity disturbance, see Eqn. (2.10),
ellipsoidal correction for the spherical approximation, see Eqn. (2.17), direct topographical
and atmospheric effects, see Eqns. (4.26) and (5.16), secondary indirect topographical and
atmospheric effects, see Eqns. (4.30) and (5.18), and geoid-quasigeoid correction to the
boundary-value problem given by the fifth term on the right-hand side of Eqn. (3.9).
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In the case of the ellipsoidal corrections to the gravity disturbance and for the spherical
approximation, discrete values of Helmert’s gravity anomalies computed from the
geopotential model at the mid-points of corresponding cells can be considered as mean
values, because they are smooth and change the geoid only by a few centimeters (as it can be
seen from numerical results shown by Vanicek et al. (1999)). Similarly, the direct
atmospheric effect and secondary indirect topographical effects can be evaluated as discrete
values in the regular grid of 5°x 5’ (as it follows from the numerical results in Novak (2000)).
The mean values of the geoid-quasigeoid correction to the boundary-value problem are
sufficiently (with an error < 10 pgal) computed for the mean orthometric heights of
corresponding cells. The secondary indirect atmospheric effect is negligible (Novak, 2000).

Since the free-air gravity anomalies are not suitable for interpolation (Heiskanen and
Moritz, 1967), their mean values are computed from the mean complete Bouguer gravity
anomalies by subtracting average values of the gravimetric terrain correction and the
gravitational attraction of the Bouguer plate with the mean topographical density and mean
orthometric height (Janak and Vanicek, 2002). Mean values of the complete Bouguer gravity
anomalies are given by averaging a certain number of discrete values, which are predicted on
the regular grid from the complete Bouguer gravity anomalies at the observation points.

Mean values of the direct topographical effect have to be averaged from a sufficient
number of discrete values. The number of discrete values needed for the precise evaluation of
mean values of the direct topographical effect depends on the terrain roughness. The relation
between the terrain roughness and the number of discrete values was investigated (at the
Canadian Rocky Mountains) by Jandk et al. (2001). In some areas, hundreds of discrete
values (for one cell of size 5’x 5°) must be computed to obtain sufficient accuracy.

To compute the effects of topographical masses, integration is carried out over the
laterally varying topographical densities. When the geoid is to be determined with high
accuracy (< 1 cm), the effect of lake water must also be considered. Numerical values for the
lake Superior showed that the correction to the geoidal height due to the direct topographical
effect on gravitational attraction lies within —1.1 and 1.3 cm, and the correction to the
primary indirect topographical effect on the geoidal height is within —0.2 and 0.0 cm
(Martinec et al., 1995). On the other hand, the effect of the laterally varying anomalous
topographical density can cause changes of the geoid up to 10 cm (in Canada), see (Martinec,
1993; Huang et al., 2001; Huang, 2002), so that at least the laterally varying model of
topographical density has to be considered.

Solving Dirichlet’s boundary-value problem, the mean Helmert gravity anomalies are
downward continued to the geoid by applying the discrete Poisson integral equation, see
Eqn. (6.3). The Fredholm integral equation of the first kind (generic form of Poisson’s
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integral equation) is known to be an unstable problem due to the fact that a comparatively
smooth gravity anomaly on the Earth’s surface is used to obtain a rougher gravity anomaly
on the geoid. Solving the downward continuation for the 5°x 5” grid of Helmert’s gravity
anomalies, the ill effect of the instability might be partly reduced. Heck (1993) realized that
space without topography is more suitable for the downward continuation than the Helmert
space. For this reason, only the effect of topographical masses on the gravitational attraction
can be subtracted from the gravity anomalies on the earth surface. The gravitation attraction
of condensed topographical masses is then added to gravity anomalies downward continued
onto the geoid.

The reference gravity anomalies and the spheroid in the Helmert space are evaluated
from the satellite geopotential coefficients up to degree 20 according to Eqns. (7.21) and
(7.22).

To solve the Stokes boundary-value problem in the modification for higher than the
second-degree reference field (Vanic¢ek and Sjoberg, 1991), the Stokes integration is
employed for numerical integration over the 6° spherical cap, see Eqn. (8.17). The far-zone
contribution is evaluated from the combined geopotential model. Usually EGM-96 up to
degree 120 of the geopotential coefficients (Novak, 2000) is used according to Eqn. (8.19).

To obtain the geoid, the co-geoid (given by the discrete co-geoidal heights) is finally
transformed into the real space by evaluation of discrete values of the primary indirect
topographical and atmospheric effects. The primary indirect topographical effect can be
computed by Eqn. (9.7) while the primary indirect atmospheric effect given by Eqn. (9.8) can
be considered constant (equal to —0.6 cm), see (Sjoberg, 1998; Novak, 2000).

Evaluating the topographical and atmospheric effects on the gravitational potential and
attraction, the integration domain is split into the near and far-zone integration sub-domains,

where the near zone can be given by the 3° spherical cap, i.e., i € <O, 3°> . The near-zone

contributions are then evaluated by numerical integration over the sufficiently dense grid of
heights from the digital terrain model (especially numerical integration of the topographical
effect and condensed topographical effect requires high density of elevation data (1" or 3”) at
the intermediate area surrounding the computation point. The spectral forms of Newton’s
integrals for evaluation of the far-zone contributions from the global elevation model were
formulated by Novak (2000).

The actual accuracy of geoid determination is limited first of all by accuracy and spatial
distribution of terrestrial gravity observations and orthometric heights. Other important
attributes are the correctness of theoretical formulation and accuracy of numerical solutions.
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Main factors limiting the theory of geoid determination by the UNB approach are the
approximation of the actual topographical density by the laterally varying topographical
density, resolution of gravity data for the downward continuation and primary indirect
topographical effect, and spherical approximation of the geoid in the case of evaluation of
topographical effects.

Computing the topographical and atmospheric effects on the gravitational potential and
attraction, the geoid is approximated by the reference sphere of the geocentric radius
R=~r, (Q) This approximation yields a relative error 3x10~ at most which then causes
errors of 6 mm at most in the geoidal heights (Martinec, 1993). Since the density distribution
of topographical masses between the geoid and Earth’s surface is not available, the errors of
geoid determination from the approximation of actual topographical density p(r, Q) by the
laterally varying topographical density p(Q) are difficult to predict. Considering that the
effect of laterally varying anomalous topographical density can cause changes of the geoid

up to 10 cm (Martinec, 1993; Huang et al., 2001; Huang, 2002), the vertical variation of
topographical density may cause changes of the geoid at most a few centimeters.

The surface density O'(Q) of condensed topographical masses in the definition, see Eqn.

(4.8), is chosen according to the principle of mass-conservation condensation
(Wichiencharoen, 1982; Martinec, 1993), i.e., the mass of the condensation layer is equal to
the mass of lateral topographical masses. Under this assumption, the disturbing gravity

potential 7" (r,Q2) in the Helmert space has no spherical harmonic of degree zero but it

contains spherical harmonics of the first degree (because the so-called Hormander’s

condition is not satisfied, lim7>7"(r,Q)# 0). It means, that the centre of the Earth’s masses
r—>0

is shifted from the origin of the co-ordinate system. The magnitude of this shift represents 2
cm at most in each co-ordinate component and can precisely be computed (Martinec, 1993).
The accuracy of numerical solution mainly depends on the interpolation of free-air gravity
anomalies, evaluation of the near-zone contribution to the direct topographical effect, and
accuracy of the Poisson integral equation in the case of 5’x 5’ data.
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