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Abstract The main problem of the rigorous definition of
the orthometric height is the evaluation of the mean value of
the Earth’s gravity acceleration along the plumbline within
the topography. To find the exact relation between rigor-
ous orthometric and Molodensky’s normal heights, the mean
gravity is decomposed into: the mean normal gravity, the
mean values of gravity generated by topographical and atmo-
spheric masses, and the mean gravity disturbance generated
by the masses contained within geoid. The mean normal
gravity is evaluated according to Somigliana–Pizzetti’s the-
ory of the normal gravity field generated by the ellipsoid
of revolution. Using the Bruns formula, the mean values of
gravity along the plumbline generated by topographical and
atmospheric masses can be computed as the integral mean
between the Earth’s surface and geoid. Since the disturb-
ing gravity potential generated by masses inside the geoid
is harmonic above the geoid, the mean value of the gravity
disturbance generated by the geoid is defined by applying
the Poisson integral equation to the integral mean. Numeri-
cal results for a test area in the Canadian Rocky Mountains
show that the difference between the rigorously defined or-
thometric height and the Molodensky normal height reaches
∼0.5 m.
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1 Introduction

The orthometric height is the distance, measured positive out-
wards along the plumbline, from the geoid (zero orthometric
height) to a point of interest, usually on the topographic sur-
face (e.g., Heiskanen and Moritz 1967, chap 4; Vanı́ček and
Krakiwsky 1986; chap 16.4). The curved plumbline is at ev-
ery point tangential to the gravity vector generated by the
Earth, its atmosphere and rotation. The orthometric height
can be computed from the geopotential number, if available,
using the mean value of the Earth’s gravity acceleration along
the plumbline between the geoid and the Earth’s surface.
Alternatively and more practically, it can be computed from
spirit levelling measurements using the so-called orthometric
correction, embedded in which is the mean value of gravity
(cf. Strang van Hees 1992). Ignoring levelling errors and the
many issues surrounding practical vertical datum definition
(see, e.g., Drewes et al. 2002; Lilje 1999), the rigorous deter-
mination of the orthometric height reduces to the accurate
determination of the mean value of the Earth’s gravity accel-
eration along the plumbline between the geoid and the point
of interest.

An appropriate method for the evaluation of the mean
gravity has been discussed for more than a century. The first
theoretical attempt is attributed to Helmert (1890). In Helm-
ert’s definition of the orthometric height, the Poincaré–Prey
gravity gradient is used to evaluate the approximate value
of mean gravity from gravity observed on the Earth’s sur-
face (also see Heiskanen and Moritz 1967, chap 4; Vanı́ček
and Krakiwsky 1986; chap 16.4). Later, Niethammer (1932)
and Mader (1954) took into account the mean value of the
gravimetric terrain correction within the topography. He-
iskanen and Moritz (1967, p 165) also mentioned a gen-
eral method for calculating mean gravity along the plumbline
that includes the gravitational attraction of masses above a
certain equipotential surface, thus accounting for the shape
of the terrain. More recently, Vanı́ček et al. (1995), Allister
and Featherstone (2001) and Hwang and Hsiao (2003) intro-
duced further corrections due to vertical and lateral variations
in the topographical mass-density. In addition to the above
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theoretical developments, numerous empirical studies have
been published on the orthometric height (e.g., Ledersteger
1955; Rapp 1961; Krakiwsky 1965; Strange 1982; Sünkel
1986; Kao et al. 2000; Tenzer and Vanı́ček 2003; Tenzer et
al. 2003; Dennis and Featherstone 2003).

Asserting that the topographical density and the actual
vertical gravity gradient inside the Earth could not be deter-
mined precisely, Molodensky (1945, 1948) formulated the
theory of normal heights. Here, the mean actual gravity within
the topography is replaced by the mean normal gravity be-
tween the reference ellipsoid and the telluroid (also see
Heiskanen and Moritz 1967, chap 4). Normal heights have
been adopted in some countries, whereas (usually Helmert)
orthometric heights have been adopted in others. An approx-
imate formula relating normal and orthometric heights is
given in Heiskanen and Moritz (1967, Eqs. (8–103)), with a
more refined version given by Sjöberg (1995). Given that the
principal difference between orthometric and normal heights
is governed by the effect of physical quantities (i.e., the grav-
itational effects of the topography and atmosphere, and the
gravity disturbance generated by the masses contained within
the geoid) on the mean gravity, these are investigated in this
article. It can also be argued that Molodensky’s objection to
the orthometric height is no longer so convincing because
more and more detailed information is becoming available
about the shape of (i.e., digital elevation models) and mass–
density distribution inside the topography (e.g., from geolog-
ical maps, cross-sections, boreholes and seismic surveys).

Finally, when we claim our theory to be rigorous, this
does not imply that orthometric heights determined accord-
ing to this theory are error-free. There will be errors even in
the proposed rigorous orthometric heights, which originate
from the errors in the field process of spirit levelling as well
as in the evaluation of the mean gravity along the plumb-
line. The errors in the mean gravity values will depend on the
distribution and accuracy of gravity, digital terrain and topo-
graphical mass–density data and the accuracy of numerical
methods used for a computation.

2 Mean gravity along the plumbline

Let us begin with the ‘classical’ definition of the orthometric
heightHO(�), (e.g., Heiskanen and Moritz 1967, Eq. (4–21))

∀ � ∈ �O : HO(�) = C [rt (�)]

ḡ(�)
, (1)

where C [rt (�)] is the geopotential number of the point of
interest, which in this case will be taken on the Earth’s sur-
face [rt (�)], and ḡ(�) is the mean value of the magnitude
of gravity along the plumbline between the Earth’s surface(
rt (�) ∼= rg(�)+HO(�)

)
and the geoid surface for which

the geocentric radius is denoted by rg(�). To describe a 3D
position, the system of geocentric coordinates φ, λ and r is
used throughout this paper, where φ and λ are the geocentric
spherical coordinates � = (φ, λ),

(− π/2 ≤ φ ≤ π/2;
0 ≤ λ < 2π

)
, and r is the geocentric radius

(
r ∈ �+)

. The

unit sphere is denoted by �O, and �+ represents the real
numbers at the interval 〈0, +∞) .

The mean gravity ḡ(�) along the plumbline in Eq. (1) is
defined by
∀ � ∈ �O :

ḡ(�) = 1

HO(�)

rg(�)+HO(�)∫

r=rg(�)
g(r,�) cos

(−g(r,�), ro) dr,

(2)
where cos (−g(r,�), ro) is the cosine of the deflection of the
plumbline from the geocentric radial direction, and ro is the
unit vector in the geocentric radial direction. Equation (2) is
equivalent to the integral taken along the curved plumbline
as given in Heiskanen and Moritz (1967, Eq. (4–20)).

In order to analyse the mean gravity along the plumb-
line, the actual gravity g(r,�) in Eq. (2) is decomposed into
the normal gravity γ (r, φ), the gravity disturbance generated
by masses inside the geoid δgNT(r,�), and the gravitational
attraction of topographical and atmospheric masses gt (r,�)
and ga(r,�), respectively, so that (Tenzer et al. 2003)
∀ � ∈ �O, r ∈ �+ :

g(r,�) = γ (r, φ)+ δgNT(r,�)+ gt (r,�)+ ga(r,�). (3)
Applying the above decomposition to Eq. (2), the mean grav-
ity ḡ(�) becomes

∀�∈�O : ḡ(�)= γ̄ (�)+δgNT
(�)+ḡt (�)+ ḡa(�). (4)

The relation between the mean normal gravity γ̄ (�) within
the topography in Eq. (4) and Molodensky’s mean normal
gravity is formulated in Appendix A.

The main problem to be discussed in the sequel is the
evaluation of the mean gravity disturbance generated by the

masses inside the geoid δg
NT
(�), and the mean topography-

generated gravitational attraction ḡt (�). The superscript NT
is used here in accordance with the notation introduced in
Vanı́ček et al. (2004) to denote a quantity reckoned in the so-
called “no-topography” space, where the gravitational effect
of the topographic and atmospheric masses has been removed
and treated separately. The last term in Eq. (4), i.e., the mean
atmosphere-generated gravitational attraction ḡa(�), is de-
rived in Appendix B.

3 Mean gravity disturbance generated by masses within
the geoid

The mean gravity disturbance generated by the geoid δg
NT
(�)

in Eq. (4) is given exactly by
∀ � ∈ �O :

δg
NT
(�) = 1

HO(�)

×
rg(�)+HO(�)∫

r=rg(�)
δgNT (r,�) cos

(−g (r,�) , ro) dr.

(5)
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In a spherical approximation (rg(�) ≈ R, where R is the
mean radius of the Earth, see Bomford 1971), Eq. (5)
reduces to

∀� ∈ �O :

δg
NT
(�) ∼= 1

HO(�)

R+HO(�)∫

r=R
δgNT (r,�) dr. (6)

Considering an accuracy of <1 mm, the spherical approx-
imation of the geoid surface cannot be applied directly to
the evaluation of the mean gravity in Eq. (2). This is be-
cause the Earth’s gravity is at least 1.5 × 103 larger than
the geoid-generated gravity disturbance and topography-gen-
erated gravity. Therefore, the correction to the orthometric
height due to the deflection of the vertical is investigated in
Appendix A. Assessing from the estimation of the maximum
magnitude of the correction of mean normal gravity due to
the deflection of the plumbline, the spherical approximation
in Eq. (6) causes, at most, a fewµGal error in the computation

of δg
NT
(�), which propagates as an error in the orthometric

height of <1 mm.
In order to evaluate the geoid-generated gravity distur-

bance δgNT (r,�) on the right-hand-side of Eq. (6), Poisson’s
solution to the Dirichlet boundary value problem is used. This
is described by the Poisson integral (e.g., Kellogg 1929)

∀ � ∈ �O, r ≥ R :

δgNT (r,�) = 1

4π

R

r

×
∫

�O

∫
K(r,�;R,�′)δgNT

[
rg(�

′)
]

d�′, (7)

where K(r,�; R,�′) is the spherical Poisson kernel, and
δgNT

[
rg(�)

]
denotes the geoid-generated gravity disturbance

specifically at the geoid surface. Inserting for δgNT (r,�) in

Eq. (6) from Eq. (7), the mean gravity disturbance δg
NT
(�)

becomes

∀ � ∈ �O :

δg
NT
(�) ∼= 1

4π

R

HO(�)

×
∫

�O

∫ R+HO(�)∫

r=R
r−1K(r,�;R,�′)dr

×δgNT
[
rg(�

′)
]

d�′. (8)

The radially integrated Poisson’s kernel K̄
(
r,�; R,�′) in

Eq. (8) can be formulated as follows:

∀ �,�′ ∈ �O, r ≥ R :

K̄
(
r,�; R,�′)

=
R+HO(�)∫

r=R
r−1K

(
r,�; R,�′) dr

=
∣
∣
∣
∣
∣
− 2R �−1

(
r,�; R,�′)

+ln

∣
∣
∣
∣
∣
R − r cos ψ + �

(
r,�; R,�′)

r sin ψ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

R+HO(�)

r=R
, (9)

where�
(
r,�; r ′,�′) is the direct Euclidean distance between

the computation and roving points, and the argumentψ stands
for the geocentric spherical distance.

To obtain the mean gravity disturbance from Eq. (8), the
gravity disturbances generated by the geoid have to be first
downward continued from the Earth’s surface onto the geoid.
Vanı́ček et al. (2004) define the gravity disturbances and
anomalies at the Earth’s surface as generated by the masses
inside the geoid, as well as the evaluation of the inverse Di-
richlet’s boundary value problem for the downward continua-
tion of the geoid-generated gravity anomalies. Alternatively,
the mean value of the geoid-generated gravity disturbance

δg
NT
(�) can be obtained directly from the gravity distur-

bances δgNT [rt (�)] at the Earth’s surface, which, in turn,
is obtained from the real gravity disturbances δg [rt (�)] by
subtracting the gravitational attraction of topographical and
atmospheric masses from them (ibid.), i.e.,

∀ � ∈ �O :

δgNT [rt (�)] = δg [rt (�)] − gt [rt (�)] − ga [rt (�)] . (10)

We shall now show how this is achieved for discrete val-
ues of the gravity disturbance.

The solution to the inverse Dirichlet’s boundary value
problem is described by the Poisson integral equation. To
define its discretized form, the surface integration domain
is split into a finite number N of ‘rectangular’ geographical
cells	�i = cos φi 	φi 	λi ; i ∈ 〈1, 2, . . . , N〉, where	φ
and	λ represent steps of numerical discretization in latitude
and longitude. For each geographical cell, the average value
of the geoid-generated gravity disturbance δgNT [rt (�i)];
i ∈ 〈1, 2, . . . , N〉 is evaluated at the Earth’s surface. Equiv-
alently for each corresponding geographical cell at the geoid
surface, the solution of the Poisson integral equation is param-
eterized by discrete values of δgNT

[
rg

(
�j

)]
; j ∈

〈1, 2, . . . , N〉.
The functional b

[
rt (�i) ; R,�j

]
of the Poisson inte-

gral that defines the relation between δgNT [rt (�i)] and δgNT
[
rg

(
�j

)]
is equal to

∀ i, j ∈ 〈1, 2, . . . , N〉 :

b
[
rt (�i) ; R,�j

]

= 1

4π

R

rt (�i)
K

[
rt (�i) ; R,�j

]
	�j

= 1

4π

R2

rt (�i)

r2
t (�i)− R2

�3
[
rt (�i) ; R,�j

] cos φj 	φj 	λj . (11)

Denoting the vector of the gravity disturbances δgNT [rt (�i)]
by �gNT [rt(�i)] and the vector of the gravity disturbances
δgNT

[
rg(�j )

]
by �gNT [

rg(�j)
]
, the discrete form of

Poisson’s integral equation is expressed by (Martinec 1996;
Vanı́ček et al. 1996; Sun and Vanı́ček 1998)
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Fig. 1 Effect of the mean gravity disturbance generated by masses inside the geoid on the orthometric height (units in cm)

(
�gNT [

rg(�j)
])T = B−1

[
rt(�i); R,�j

] (
�gNT [rt(�i)]

)T
,

(12)

where B
[
rt(�i); R,�j

]
is the matrix of coefficients

b
[
rt (�i) ; R,�j

]
.

Consequently, the discrete form of the radially integrated
Poisson’s integral in Eq. (8) can be formulated as follows.
The relation between the scalar value of the mean geoid-

generated gravity disturbance δg
NT
(�) and the vector of the

geoid-generated gravity disturbances referred to the geoid
surface �gNT [

rg
(
�j

)]
is introduced by

∀� ∈ �O :

δg
NT
(�)= b̄

[
r,�; R,�j

] (
�gNT [

rg
(
�j

)])T
, (13)

where b̄[r,�; R,�j] is the vector of radially integrated Pois-
son’s kernels K̄(r,�;R,�j) (Eq. 9). It reads

b̄
[
r,�; R,�j

] = 1

4π

R

HO (�)
K̄

(
r,� ; R,�j

)

× cos φj 	φj 	λj , j ∈ 〈1, 2, . . . , N〉 . (14)

Substituting Eq. (12) into Eq. (13), the mean gravity dis-
turbance generated by the geoid is obtained by solving the
following system of linear algebraic equations

δg
NT
(�) ∼= b̄

(
r,�; R,�j

)
B−1

(
rt(�i); R,�j

)

× (
�gNT [rt(�i)]

)T
, (15)

where the inequality shows that there remains only the dis-
cretization error.

To solve the system of linear equations for the computa-
tion of the mean gravity disturbance according to Eq. (15),
the direct inversion of the matrix B

[
rt(�i); R,�j

]
is prob-

lematic. The iterative methods are preferably used in practice.

The iterative method and the particular problems related to
this topic can be found for instance in Vanı́ček et al. (1996)
and Martinec (1996).

A numerical experiment was conducted in our test area in
the Canadian Rocky Mountains, for which digital elevation
and gravity data are available. This is the same test area used
for previous studies (e.g., Huang et al. 2001; Martinec 1996).
For the computation of the mean geoid-generated gravity dis-

turbances δg
NT
(�) by solving the system of linear algebraic

equations in Eq. (15), the geoid-generated gravity distur-
bances at the Earth’s surface averaged for 5′×5′ geographical
grid and corresponding mean orthometric heights have been
used. The number of equations has been reduced by solving
Eq. (15) only for the near-zone integration sub-domain, while
the far-zone contribution was estimated from a global gravity
model.

The optimal size and step of the numerical integration
for the near-zone depend on the shape of the topography and
the variation of the gravity disturbances. Therefore, the opti-
mal values of these parameters will vary depending on the
study area, but can be deduced empirically by varying them
until some predefined criterion (e.g., 1 mm) is satisfied. In
this study, the 5′ × 5′ step of the numerical integration has
been used for a 7◦ × 7◦ near-zone with the exclusion of the
immediate neighbourhood (15′×15′) of the integration point,
where a 1′′ × 1′′ step was used for the discretized numerical
integration.

From Fig. 1, the contribution of the mean gravity dis-
turbance generated by the geoid on the orthometric height
varies between −8 cm and +44 cm (corresponding to heights
ranging from 4 m to 2736 m, and geoid-generated gravity dis-
turbances at the Earth’s surface ranging from −153 mGal to
116 mGal).
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4 Mean topography-generated gravitational attraction

By analogy with Eq. (6), the spherical approximation of the
geoid surface is assumed to evaluate the mean value of the
topography-generated gravitational attraction; this gives

∀ � ∈ �O : ḡt (�) ∼= 1

HO(�)

R+HO(�)∫

r=R
gt (r,�) dr. (16)

Expressing the gravitational attraction gt (r,�) as a neg-
ative radial derivative of the gravitational potential of topo-
graphical masses V t(r,�), Eq. (16) is rewritten as

∀ � ∈ �O :

ḡt (�) ∼= − 1

HO(�)

R+HO(�)∫

r=R

∂V t (r,�)

∂ r
dr. (17)

According to the Bruns (1878) formula, the topography-
generated gravitational attraction ḡt (�) in Eq. (17) becomes

∀ � ∈ �O : ḡt (�) ∼= V t
[
rg(�)

] − V t [rt (�)]

HO(�)
. (18)

The gravitational potential of topographical masses V t(r,�)
is given by Newton’s volume integral (e.g., Martinec 1998),
which is evaluated at the points rg(�) and rt (�)

∀ � ∈ �O, r ∈ �+ :

V t(r,�) = G

∫

�O

∫ R+HO(�′)∫

r ′=R
ρ(r ′, �′)�−1(r,�; r ′, �′)r ′2 dr ′ d�′,

(19)

where G denotes Newton’s gravitational constant, and
ρ (r,�) is the actual density of the topographical masses.

The Newtonian integral (Eq. 19) can be rewritten as a
sum (superposition) of the contributions from the spherical
Bouguer shell (cf. Wichiencharoen 1982), ‘terrain roughness’
term (Martinec andVanı́ček 1994) and anomalous topograph-
ical density distribution. For the interior of topography r ∈〈
R , R +HO(�)

〉
, it reads (Wichiencharoen 1982; see also

Martinec 1998, Eq. 3.14)

V t(r,�)

= 2πGρo

[
R2 + 2RHO(�)+ [

HO(�)
]2− 2

3

R3

r
− 1

3
r2

]

+Gρo

∫

�O

∫ R+HO(�′)∫

r ′=R+H 0(�)

�−1(r,�; r ′, �′)r ′2dr ′d�′

+G
∫

�O

∫ R+HO(�′)∫

r ′=R
δρ(r ′, �′)�−1(r,�; r ′, �′)r ′2 d�′,

(20)

where the topographical density ρ (r,�) is divided between
the mean topographical density ρo and anomalous
topographical density δρ (r,�), such that ρ (r,�) = ρo +
δρ (r,�).

Substitution of Eq. (20) into Eq. (18) yields

∀ � ∈ �O : ḡt (�) ∼= 2π G ρoH
O (�)

[
1 + 2

3

HO (�)

R

]

+ G ρo

HO (�)

∫

�O

∫ R+HO(�′)∫

r ′=R+HO(�)

(�−1(R,�; r ′, �′)

−�−1[rt (�); r ′, �′])r ′2dr ′ d�′

+ G

HO(�)

∫

�O

∫ R+HO(�′)∫

r ′=R
δρ(r ′, �′)(�−1(R,�; r ′, �′)

−�−1[rt (�); r ′, �′])r ′2 dr ′d�′. (21)

Treating the spherical Bouguer shell and terrain rough-
ness terms separately, computations were performed in the
same test area of the Canadian Rocky Mountains (cf. Fig. 1).
The mean values of the gravitational attraction generated
by the spherical Bouguer term have been computed simply
according to the first term in Eq. (21), while for computation
of the mean spherical terrain corrections, a detailed 3′′ × 3′′
digital terrain model has been used for the numerical integra-
tion up to 3◦ of spherical distance ψ around the computation
point. Since the reciprocal spatial distances �−1

(
R,�; r ′,�′)

and �−1
[
rt (�) ; r ′,�′] are practically equal for ψ > 3o, the

far-zone contribution in the second term on the right-hand-
side of Eq. (21) is negligible. The effect of the spherical Bou-
guer shell on the orthometric heightHO(�), given by the first
term on the right-hand-side of Eq. (21), ranges from 0 cm
to −74.4 cm (Fig. 2). Likewise, the effect of terrain rough-
ness term on the orthometric height HO (�) ranges between
−10 cm and +6 cm (Fig. 3). These values assume a constant
topographical mass–density of 2,670 kg m−3.

Disregarding water bodies, the variation of actual
topographical mass density is mostly within ±300 kg m−3

of the commonly adopted mean value ρo = 2, 670 kg m−3

(e.g., Martinec 1998). Therefore, the influence of laterally
anomalous topographical density δρ (r,�) amounts to about
10% of the total effect of topographical masses (Huang et al.
2001). However, larger topographical mass density variations
(20–30%) are encountered in some other parts of the world
(e.g., Tziavos and Featherstone 2001). Mass–density lateral
variations are documented to generate centimeter to decime-
ter effects on the orthometric height (Vanı́ček et al. 1995;
Tenzer et al. 2003; Tenzer and Vanı́ček 2003; cf. Hwang and
Hsiao 2003; Allister and Featherstone 2001). In the test area
used here, this effect ranges from −7 to +2 cm (Fig. 4), where
the lateral topographical mass density data are the same as
those used by Huang et al. (2001). At the moment, very little
is known about the effect of radial variations of topographical
density, which will have to be investigated in the near future.
Finally, the total effect of topography (including only lateral
density variations) on the orthometric height, as described
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Fig. 2 Effect of the spherical Bouguer shell’s gravitation on the orthometric height (units in cm)

Fig. 3 Effect of terrain roughness term’s gravitation on the orthometric height (units in cm)

by Eq. (21), varies between +0.1 cm and −86.5 cm in the test
area (Fig. 5).

5 Discussion and conclusions

The definition of mean gravity along the plumbline in Eq.
(4), which is essential to rigorously compute the orthometric
height, can be considered to consist of two parts.The first part,
independent of the actual gravity field, represents the mean
normal gravity (Appendix A), while the second part defines

the mean value of the actual gravity disturbance between the
geoid and Earth’s topography surface. According to Eq. (4),
this mean gravity disturbance is further decomposed into the
mean gravity disturbance generated by the geoid (Sect. 3) and
the mean values of the gravitational attraction of topographi-
cal masses, comprising the Bouguer shell, terrain roughness
and lateral density variations (Sect. 4), and the smaller valued
atmospheric masses (Appendix B).

It follows from the theoretical investigation in Appendix
A that the mean normal gravity between the Earth’s surface
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Fig. 4 Effect of anomalous topographical density distribution on the orthometric height (units in cm)

Fig. 5 Combined effect of the topography (i.e., Bouguer shell, terrain roughness term, and anomalous topographic density) on the orthometric
height (units in cm)

and the geoid is defined in terms of Molodensky’s mean
normal gravity between the telluroid and the ellipsoid sur-
face, plus the reductions of mean normal gravity due to the
deflection and curvature of the plumbline, the height anom-
aly and the geoid-to-quasigeoid separation. Considering their
global effects, the correction of mean normal gravity due
to the height anomaly is introduced in Eq. (33). For the

maximum value of the height anomaly ∓100.0 m, this cor-
rection reaches ±31 mGal, which in turn corresponds to an
influence on the orthometric height of up to 25 cm. Con-
sidering that the maximum vertical displacement between
the geoid and quasigeoid is ∼2 m (e.g., Sjöberg 1995), the
geoid-to-quasigeoid correction to the mean normal gravity
can reach up to 0.3 mGal. Based on Eq. (35), the maximum
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Fig. 6 Differences between the rigorous orthometric height and normal height (units in cm)

magnitude of the correction of mean normal gravity due to
the deflection of the plumbline is estimated to be ∼2.1 mGal
for an extreme 2-arc-minute deflection. Hence, the geoid-
to-quasigeoid correction to the mean normal gravity and the
correction of mean normal gravity due to the deflection of
the plumbline cause, at most, a few millimetre change in the
rigorous orthometric height.

From the numerical investigations conducted in a high-
elevation and rugged part of the Canadian Rocky Mountains
(Sects. 3 and 4), the effect of topography and the effect due
to the gravity disturbance generated by the masses inside
the geoid cause up to several dm of change in the ortho-
metric height. The total influence of these two effects on the
orthometric height, which is identical to the difference be-
tween the rigorous orthometric height defined here and Mol-
odensky normal height, varies from −0.1 cm to −45.6 cm
(Fig. 6). The absence of positive difference values in this
test area is because the dominant part of the influence is
caused by the spherical Bouguer term (Fig. 2). On the other
hand, from Appendix B and Tenzer et al. (2004), the mean
atmosphere-generated gravitational attraction varies between
−0.01 mGal, and−0.10 mGal, and thus has a negligible influ-
ence (<< 1 mm) on the orthometric height.

Acknowledgements The research described here was conducted under
the auspices of the “GEOIDE Network of Centres of Excellence” in
Canada and Australian Research Council grant DP0211827. The data
used were kindly supplied by the Geodetic Survey Division of Natural
Resources Canada. We would also like to thank the reviewers for their
constructive comments.

Appendix A

Mean normal gravity within the topography

The mean normal gravity γ̄ (�) in Eq. (4) reads

∀ � ∈ �O :

γ̄ (�) = 1

HO(�)

×
rg(�)+HO(�)∫

r=rg(�)
γ (r, φ) cos θ (r,�) cos

(−g (r,�) , ro) dr ,

(22)

where cos θ(r,�) reduces the normal gravity along the ellip-
soidal normal to the plumbline.

The deflection of the plumbline from the geocentric radial
direction is given by (Vanı́ček et al. 1999)

∀ � ∈ �O, r ∈ �+ :

cos
(−g (r,�) , ro) ≈ 1 − (f sin 2ϕ + ξ (r,�)) 2

2

−η
2 (r,�)

2
, (23)

whereϕ denotes the geodetic latitude,f is the flattening of the
geocentric reference ellipsoid, and ξ(r,�) and η(r,�) are,
respectively, the meridian and prime vertical components of
the deflection of the vertical θ(r,�); θ2(r,�) = ξ 2(r,�)+
η2(r,�).
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The cosine of the deflection of the plumbline θ(r,�) can
be expressed by (Vanı́ček and Krakiwsky 1986)

∀ � ∈ �O, r ∈ �+ :

cos θ(r,�) ≈ 1 − θ2 (r,�)

2
= 1 − ξ 2 (r,�)

2
− η2 (r,�)

2
.

(24)

Multiplying Eqs. (23) and (24) gives the following rela-
tion:

∀ � ∈ �O, r ∈ �+ : cos θ(r,�) cos
(−g (r,�) , ro)

≈ 1 − ξ (r,�) f sin 2ϕ − θ2 (r,�)− f 2 sin 22ϕ

2
. (25)

With reference to Eq. (25), the mean normal gravity γ̄ (�) in
Eq. (22) is rewritten as

∀ � ∈ �O :

γ̄ (�) ∼= 1

HO(�)

×
rg(�)+HO(�)∫

r=rg(�)
γ (r, φ)

(
1 − ξ (r,�) f sin 2ϕ − θ2 (r,�)

−f
2 sin 22ϕ

2

)
dr. (26)

Molodensky’s (1945, 1960) mean normal gravity γ̄ N(�)
between the telluroid ro(φ)+HN(�) and the surface of the
geocentric reference ellipsoid ro(φ) reads

∀ � ∈ �O :

γ̄ N(�) = 1

HN (�)

×
ro(φ)+HN(�)∫

r=ro(φ)
γ (r, φ) cos

(−� (r, φ) , ro) dr, (27)

where � (r, φ) is the vector of normal gravity, and HN(�) is
the Molodensky normal height. Using the relation between
geocentric and geodetic latitudes (Bomford 1971), i.e.,

∀ φ ∈ 〈−π/2, π/2〉 :

cos
(−� (r, φ) , ro)

= cos (f sin 2ϕ) ≈ 1 − 1

2
f 2 sin 22ϕ , (28)

Equation (27) further takes the form

∀ � ∈ �O :

γ̄ N(�) = 1

HN(�)

×
ro(φ)+HN(�)∫

r=ro(φ)
γ (r, φ)

(
1− 1

2
f 2 sin 22ϕ

)
dr. (29)

The first term on the right-hand-side of Eq. (26), i.e., the mean
normal gravity along the radial direction, can be defined as

the difference of the normal gravity potentials referred to the
geoid and Earth’s surface

∀ � ∈ �O :

γ̄ (�) ∼= 1

HO(�)

rg(�)+HO(�)∫

r=rg(�)
γ (r, φ) dr

= U
[
rg(�)

] − U [rt (�)]

HO(�)
. (30)

By analogy with Eq. (30), the first term of Molodensky’s
mean normal gravity in Eq. (29) is defined as the difference
of the normal gravity potentials referred to the ellipsoid sur-
face and telluroid, so that

∀ � ∈ �O :

γ̄ N(�) ∼= 1

HN (�)

ro(φ)+HN(�)∫

r=ro(φ)
γ (r, φ) dr

= U [ro (φ)] − U
[
ro (φ)+HN(�)

]

HN(�)
. (31)

Comparing Eqns. (30) and (31), the following relation is ob-
tained:

∀ � ∈ �O :

γ̄ (�)− γ̄ N (�) ∼= ∂ γ (r, φ)

∂n

∣∣∣∣
r=ro(φ)

×ς(�)− 1

2

∂ γ (r, φ)

∂n

∣∣∣∣
r=ro(φ)

× (
HO(�)−HN(�)

)
, (32)

where ς(�) is the height anomaly, and ∂γ (r, φ)/∂n is the
normal gravity gradient.

It therefore follows from Eq. (32) that two corrections are
needed to reduce Molodensky’s mean normal gravity γ̄ N(�)
to the mean normal gravity γ̄ (�) between the geoid and the
Earth’s surface: one due to the height anomaly, and another
due to the geoid-to-quasigeoid separation.

1. The correction of mean normal gravity due to the height
anomaly εςγ̄ (�) represents the shift of the integration
interval from the telluroid to the Earth’s surface

∀ � ∈ �O :

ε
ς

γ̄ (�)
∼= ∂ γ (r, φ)

∂n

∣∣∣∣
r=ro(φ)

×ς(�) ≈ −2γo (φ)

a
ς(�), (33)

where γo(φ) is the normal gravity on the ellipsoid sur-
face.

2. The geoid-to-quasigeoid correction to the mean nor-
mal gravity εHγ̄ (�) caused by a different length of the
integration intervals is given by
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∀ � ∈ �O :

εHγ̄ (�)
∼= − 1

2

∂ γ (r, φ)

∂n

∣
∣
∣
∣
r=ro(φ)

(
HO(�)−HN(�)

)

≈ γo (φ)

a

(
HO(�)−HN(�)

)
. (34)

Comparing the second-order terms in Eqs. (26) and (29), the
correction of mean normal gravity due to the deflection of
the plumbline εθγ̄ (�) is written finally as

∀ � ∈ �O :

εθγ̄ (�)
∼= − 1

HO (�)

rg(�)+HO(�)∫

r=rg(�)
γ (r, φ)

× (
ξ (r,�) f sin 2ϕ + θ2 (r,�)

)
dr. (35)

Appendix B

Mean atmosphere-generated gravitational attraction

By analogy with Eq. (18), the mean value of the atmosphere-
generated gravitational attraction ḡa(�) in Eq. (4) reads

∀ � ∈ �O :

ḡa(�) ∼= 1

HO(�)

R+HO(�)∫

r=R
ga (r,�) dr

= V a
[
rg(�)

] − V a [rt (�)]

HO(�)
, (36)

where V a (r,�) is the gravitational potential of the atmo-
spheric masses.

Considering only the radially distributed atmospheric
mass-density ρa(r), the gravitational potential V a(r,�) of
atmospheric masses is given by (Sjöberg 1999, 2001; Novák
2000)

∀ � ∈ �O, r ∈ �+ :

V a(r,�) ∼= G

∫∫

�O

∫ R+Hmax∫

r ′=R+HO(�′)

ρa(r ′)�−1(r,�; r ′, �′)

×r ′2dr ′ d�′ +G

∫

�O

∫ rlim∫

r ′=R+Hmax

ρa(r ′)

×�−1(r,�; r ′, �′)r ′2dr ′ d�′. (37)

The volume integration domain within the Earth’s atmo-
sphere in Eq. (37) is divided into an ‘atmospheric spheri-
cal shell’ and an ‘atmospheric roughness term’ (analogously
with the treatment of the topographic masses). The atmo-
spheric spherical shell is defined between the upper limit of
the topography r = R + Hmax

(
Hmax = maxHO (�)

)
and

the upper limit of the atmosphere r = rlim. The atmospheric
roughness term is enclosed by the Earth’s surface and the
upper limit of topography.

Since the gravitational potential of atmospheric spheri-
cal shell (given by the second integral on the right-hand side
of Eq. 37) is constant in the interior r < R + Hmax (e.g.,
MacMillan 1930)

G

∫

�O

∫ rlim∫

r ′=R+Hmax

ρa(r ′)�−1(r,�; r ′, �′)r ′2 dr ′ d�′

= 4π G

rlim∫

r ′=R+Hmax

ρa(r ′) r ′ dr ′ , (38)

the mean value ḡa(�) of the atmosphere-generated gravita-
tional attraction in Eq. (36) reduces to

∀ � ∈ �O :

ḡa(�) ∼= G

HO(�)

∫

�O

∫ R+Hmax∫

r ′=R+HO(�′)

ρa(r ′)
(
�−1(R,�; r ′, �′)

−�−1
[
rt (�); r ′, �′]) r ′2 dr ′ d�′. (39)
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