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Abstract. Height determination, like geoid 
modelling, is directly dependent on the gravity field. 
Hence it would be natural to link them for a 
comprehensive solution. It is known that the 
traditional methods for determining orthometric 
heights suffer from adopted approximations. In order 
to arrive at a more rigorous orthometric height, one 
must also account for the effects of the geoid-
generated gravity disturbance, the shape of the 
topographical surface, and the density variations 
within topography. These effects are also considered 
for regional gravimetric geoid models. As a 
consequence, the implementation of the rigorous 
orthometric heights is simplified, further on, the 
heights become more compatible with regional 
geoid models. However, the two research areas have 
usually been discussed separately, and therefore the 
interrelation between them has only been vaguely 
considered. This contribution focuses on common 
features of geoid modelling and rigorous height 
determination. Relevant numerical results are 
presented and discussed.  
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1  Introduction 
 
The geoid plays an essential role in the national 
geodetic infrastructure, as the topographic heights 
and the depths of water bodies are reckoned from it. 
Over the past years, University of New Brunswick’s 
geodesy group has been using Stokes-Helmert’s 
method for regional geoid determination. Nowadays, 
many geodetic and engineering applications require 
that the two essential components of the vertical 
positioning – the height and the corresponding 
reference surface (geoid), are determined precisely. 
They both depend on the gravity field. It is thus 
appealing to examine the geoid and height 
computation issues together. With this in mind, we 
are herewith revisiting the principles of height 
determination.  

In the past, three main approximations have been 
applied in practice to evaluate the orthometric 
heights. The Helmert method, as described in 
Heiskanen and Moritz (1967, Chap. 4), applies the 
Poincaré-Prey vertical gradient of gravity in 

conjunction with the measured gravity (at Earth’s 
surface) for an estimation of the mean gravity. The 
Helmert height correction is simply proportional to 
the topographic heights. Niethammer (1932) and 
Mader (1954) refined the Helmert model by 
including the effect of the local shape of the 
topography. For a recent review of the three methods 
see Santos et al. (2006).  

The simplest of the three – the Helmert 
orthometric height – has been adopted as the basis of 
the national vertical datum in many countries. 
Tenzer et al. (2005) showed that this commonly used 
method contains inadmissible approximations. 
Santos et al. (2006) presented the complete 
methodology with which to convert Helmert’s 
heights to the rigorous orthometric heights.  

It should be noted that the computation of the 
new rigorous heights is more involved, especially 
compared with the traditional Helmert approach. 
Indeed, as will be shown later, a number of 
components are needed to calculate the rigorous 
orthometric height. More specifically, one must 
account for the effect of the gravity disturbance 
generated by the geoid (Vaníček et al., 2004), the 
shape of the topographical surface, and the effects of 
density variations within topography.  

The present contribution aims at demonstrating 
that the computations of the rigorous heights can be 
significantly simplified, if the Stokes-Helmert geoid 
modelling results are available. This is because 
several terms in this modelling are the same as those 
needed for computing the orthometric heights. Due 
to space limitations, however, the present 
contribution discusses only the most important 
causal relationships between the two research fields.  

As such, this paper could also be considered as a 
complement to the earlier contributions by Tenzer et 
al. (2005), Kingdon et al. (2005) and Santos et al. 
(2006). Discussion on the relations between the 
normal heights (adopted in some countries) and the 
rigorous orthometric heights is considered to be 
outside the scope of the present contribution, but it 
can be found in Tenzer et al. (2005).    

In Section 2 we continue with a brief 
recapitulation of the Stokes-Helmert geoid 
modelling principles. Section 3 is a review of the 
theory behind the rigorous orthometric heights. 
Section 4 deals with the assessment of components 
of the rigorous mean gravity. The relations between 



the constituents of Stokes-Helmert’s geoid 
modelling and those needed for the rigorous heights 
are spelled out as well. Section 5 presents the results 
of the numerical investigations along a profile in the 
Canadian Rockies. A brief summary concludes the 
paper.  
 
2  Helmert’s condensation and solution 
to Stokes’s boundary value problem 
 
The solution of the boundary value problem by 
Stokes’s (1849) method requires gravity to be 
known on the geoid, while in reality gravity 
measurements are taken at the topographic surface. 
Thus to satisfy the boundary condition gravity 
anomalies need to be downward continued to the 
geoid level. Harmonic quantities are needed for 
downward continuation; thus a number of different 
corrections related to the existence of topographic 
masses need be accounted for very carefully. 
[Strictly speaking, the effect of the atmospheric 
masses should also be considered in the geoid and 
rigorous orthometric height computations. Due to 
space limitations, however, these small effects are 
not discussed in this contribution]. One way of 
estimating the effect of topographical masses is to 
use Helmert’s (1890) second condensation model. 
According to this model the Earth’s topographical 
masses are replaced by an infinitesimally thin 
condensation layer on the geoid. So constructed 
gravity field becomes slightly different from the 
actual gravity field. The resulting Helmert 
anomalies, ( ),hg r∆ Ω , differ from the commonly 
used free-air anomalies, ( ),g r∆ Ω . The relation 
between the two anomaly types can be expressed as 
(cf. Vaníček et al., 1999) 
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where VT(r,Ω) and VCT(r,Ω) are the potentials of 
topographic masses and condensation layer, 
respectively. The geocentric position (r,Ω) is 
represented by the geocentric radius  r(Ω) and a pair 
of geocentric spherical coordinates Ω = ( ),φ λ , 
where φ  and λ  are the latitude and longitude, 
respectively. All the quantities in Eq. (1) are referred 
to the surface of the Earth, ( ) ( ) ( )o

t gr r HΩ = Ω + Ω , 

where ( )gr Ω  is the geocentric radius of the geoid 

surface and ( )oH Ω  is the orthometric height. The 

term ( ),ellips trε Ω  represents the ellipsoidal 
correction needed to account for the deviation of the 
actual shape of the Earth from the spherical 
approximation employed in fundamental gravimetric 
equation (Vaníček et al., 1999). The topographic 
terms in Eq. (1) can be evaluated by using the 
topographic elevation/density models in numerical 
quadrature methods (see e.g., Martinec, 1998). For 
more details on estimation of the components of Eq. 
(1), see e.g., Vaníček and Martinec (1994), Martinec 
(1998), Vaníček et al. (1999) and references therein. 
A recent review can also be found in Ellmann and 
Vaníček (2007). 

Importantly, the product of corresponding 
Helmert anomaly and geocentric radius, ∆gh⋅ r, is 
harmonic above the geoid (Vaníček et al., 1996), and 
therefore such a field can be continued downward to 
the geoid level (note that this is not the case for the 
free-air anomalies!). For more details the reader is 
referred to (Vaníček et al., 1996). Thereafter the 
Helmert gravity anomalies serve as an input when 
solving the Stokes boundary value problem. The 
geoidal heights, N(Ω), after the application of the 
Helmert condensation are expressed as follows:  
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where R is the mean radius of the Earth, 

( )( ),S ψ ′Ω Ω  is Stokes’s function (Heiskanen and 

Moritz, 1967, Eq. 2-164), ( ),ψ ′Ω Ω  is the 
geocentric angle between the computation Ω and 
integration points Ω´;  ( )0γ φ  is the normal gravity 
(a function of latitude) at the reference ellipsoid, dΩ´ 
is the area of the integration elements. 

The geoid determination by the original Stokes 
formula requires the global coverage of gravity 
anomalies, 0 / 2, / 2 , 0, 2φ π π λ πΩ =  ∈ − ∈   . 
Nowadays it is customary to use modifications of 
Stokes’s formula (originally proposed by 
Molodensky et al., 1960) in conjunction with some 
global geopotential model. Here we skip the aspects 
of our usual modification scheme, since these are not 
relevant in the context of the present paper. For 
more details the interested reader is referred to 
Vaníček and Sjöberg (1991). 

Recall that Stokes’s integral employs Helmert’s 
gravity anomalies. Note that Eq. (2) consists of two 
parts. The Stokesian integration (i.e. the first term on 



the right hand side of Eq. (2)) over these Helmert’s 
anomalies results in the Helmert co-geoid. The 
Helmert condensation of the topographic masses 
yields the co-geoid which does not coincide with the 
actual geoid. The effect causing this change is called 
the primary indirect topographic effect (PITE). 
Accordingly, the last term in the right hand side of 
Eq. (2) is PITE, which transfers the Helmert co-
geoid into the real geoid model.  
 
3  Theoretical background of the 
rigorous orthometric heights 
 
The orthometric height ( )oH Ω  of a point on the 
Earth’s surface is defined as the length of the 
somewhat curved plumb-line (reckoned from the 
geoid!) and is given by (e.g., Heiskanen and Moritz 
1967, Eq. 4-21): 
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where ( )g Ω  is the mean value of gravity between 
the geoid and the Earth’s surface (along the plumb-
line). C(rt,Ω) is the geopotential number (see e.g. 
Heiskanen and Moritz, 1967, Chap. 4-2), which can 
be deduced from gravity measurements and spirit-
levelling. Hence, the problem reduces to the 
determination of the mean gravity. The mean gravity 
is defined in an integral sense (e.g., Heiskanen and 
Moritz 1967, p. 166): 
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where dr is an element of the plumb-line. Note that 
the integral is taken in radial direction, rather than 
along the (curved) plumb-line. This simplification is 
admissible, since this has a negligible influence (< 1 
mm) on the orthometric height (Tenzer et al., 2005). 
Because the actual values of gravity g(r,Ω) cannot 
be measured inside the topographic masses, the 
integral-mean gravity ( )g Ω  has to be computed 
from the observed surface gravity g(rt,Ω), using a 
realistic and physically meaningful model of the 
vertical gravity gradient. For instance, in the 
computations of Helmert’s mean gravity, ( )Hg Ω , 
the approximate Poincaré-Prey vertical gradient is 
adopted as follows (Heiskanen and Moritz, 1967, 
Eq. 4-25):  
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where / hγ∂ ∂  is the linear vertical gradient of 
normal gravity (evaluated at the surface) and 0ρ  is 
the mean topographic density (2670 kg/m3). The 
Poincaré-Prey constant (= 0.0424 mGal/m) is thus 
obtained as a sum of the attraction of the Bouguer 
plate (+0.1119 mGal/m) and a half of the (negative) 
linear vertical gradient (-0.3086 mGal/m) of normal 
gravity. Consequently, the corresponding “Helmert 
correction to the measured surface gravity” is 
directly proportional to the topographic heights. 

On the other hand, when computing the mean 
gravity rigorously one has to consider several terms. 
The gravity at a point g(r,Ω) can be decomposed 
into two terms; one comprising gravity generated by 
the masses inside geoid, gNT(r,Ω) (in accordance 
with Vaníček et al. (2004) we call it NoTopography 
(NT) gravity, since the effect of the global 
topography has been subtracted from the “full” 
gravity), and another part, the gravity generated by 
the topography gT(r,Ω). The geoid-generated gravity 
can be further decomposed into the contribution of 
the normal gravity and that of gravity disturbance 
caused by the masses inside the geoid (i.e. the 
NoTopography gravity disturbance, cf. Vaníček et 
al. 2004). This decomposition of the mean gravity 
can be expressed as follows (cf. Tenzer et al., 2005): 
 

( ) ( ) ( ) ( ) ( ) ( )
NTNT T Tg g g g gγ δΩ ≈ Ω + Ω ≈ Ω + Ω + Ω
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where the approximate sign is due to neglecting the 
contribution of the atmosphere. Tenzer et al (2005, 
Appendix 1) have shown that this contribution is 
insignificant and can be neglected. To distinguish 
between ( )g Ω  and the approximate Helmert mean 
gravity (Eq. (5)), the former will be referred to as  
‘rigorous mean gravity’.  
 
4  Components of the rigorous mean 
gravity 
 
The computation of the integral-mean (along the 
plumb-line) value of normal gravity, ( )γ Ω , in Eq. 
(6) is a rather trivial task. It can be evaluated 
accurately enough using a second-order Taylor 
expansion for the analytical downward continuation 
of normal gravity from the Earth’s surface to the 
geoid. The final expression for computing the mean 



normal gravity can be found in Santos et al. (2006, 
Eq. 19).  

It can be shown that the mean value of the 
topography-generated gravity can be evaluated (cf., 
Tenzer et al. 2005, Eqs. 16-18): 
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In other words, the estimation of the ( )Tg Ω  term 
reduces to the evaluation of the topographic 
potential at two points in the space: one at the 
surface of the earth and another one on the geoid 
level. Note that the terms in the numerator of Eq. (7) 
are already estimated during the Stokes-Helmert 
geoid determination, see Eqs. (1) and (2). If these 
terms (usually given on a grid) are made available, 
then evaluating Eq. (7) is quite straightforward.  

Now we focus on the mean NT-gravity 
disturbance, the estimation of which is somewhat 

more involved. ( )NT
gδ Ω  is also evaluated as the 

integral mean in the radial direction, i.e. analogically 
to Eq. (4). Further on, since the geoid-generated 
gravity disturbance ( ),NTg rδ Ω  multiplied by r is 
harmonic above the geoid (because the NT-
quantities by definition do not contain the 
contribution of the topographical masses!), then 

( )NT
gδ Ω  can be evaluated by making use of 

Poisson’s integral for upward continuation (Kellogg, 
1929). Applying the integration limits the definite 
integral can be simplified (Santos et al., 2006, Eq. 
37) as  
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where [ , ( , '), ]tK r Rψ Ω Ω  stands for the averaged 
Poisson’s kernel. This new kernel is a function of 
two inverse distances relating: (i) the computation 
point (on the geoid level) and the integration 
element; and, (ii) the surface computation point and 
the integration element on the geoid (see also Santos 
et al., 2006, Eq. 38). Therefore, by no means this 
new kernel can be considered as an upward 

continuation of δgNT(rg ,Ω) to some location in the 
space (e.g. geometrical mean between the geoid and 
the earth’s surface), but just an integral average of 
δgNT(r,Ω) in radial direction. The complete 
derivation of Eq. (8) can be found in Santos et al. 
(2006, Appendix A).  

Equation (8) requires the NT gravity disturbance 
to be known on the geoid. To get it we make use of 
the Helmert gravity anomaly. The geoid-generated 
gravity disturbance δgNT(rg ,Ω) for Eq. (8) is obtain-
ned (cf. Vaníček et al., 1999; Vaníček et al., 2004) 
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As this expression shows, the NT-disturbance can be 
expressed as a collection of different terms, all 
related to the geoid level.  

Considering the well-known Bruns (1878) 
formula, ( ) ( )0, ( )gT r N γ φΩ = Ω ⋅ , the disturbing 

potential T(rg,Ω) can be taken from a regional geoid 
model. By denoting the PITE (the last term in Eq. 
(2)) as δNI (Ω) Eq. (9) takes the following form:  
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Note that the three first terms on the right hand side 
are intermediate results of the Stokes-Helmert geoid 
determination. The remaining term in Eq. (10), the 
attraction of the condensation layer, need be 
evaluated on the geoid level (a suitable form of 
numerical expression can be deduced from Martinec, 
1998). However, the latter term can also be 
computed as a geoid determination by-product. For 
this a relatively simple sub-routine can be added into 
the computer codes used in the Stokes-Helmert 
geoid modelling. 

The resulting δgNT(rg ,Ω) values are inserted into 
Eq. (8), providing the needed integral mean 

( )NT
gδ Ω . This completes the methodology of 

linking the Stokes-Helmert geoid determination 
theory/results with the determination of rigorous 
orthometric heights. We see, that the availability of 
the Stokes-Helmert geoid results has important 
implications in the computational aspects of the 
rigorous orthometric heights.  



 5  Numerical Investigations 
 
Using Canadian gravity and topographic data 
(provided by the Geodetic Survey Division of 
Natural Resources Canada) the rigorous mean 
gravity (cf. Eq. (6)) was computed along a profile 
across the Canadian Rocky Mountains. This profile 
coincides with the parallel 51°N and spans the 
longitudes between 235°E and 245°E. The mean 
topographic heights (with a spacing of 5 arc-
minutes) range from 510 to 2384 m (with a mean of 
1524 m). Due to high topographic elevations and 
very rugged landscape the mean gravity variations 
are expected to become significant.  

Most of the terms in Eqs. (7) and (10) were 
‘borrowed’ from the Stokes-Helmert geoid 
modelling results  (Ellmann and Vaníček, 2007). We 
discuss only a few important aspects of the 
numerical estimation of Eq. (8), since it is the most 
laborious part of approach. Note that generally, the 
NT-gravity disturbances are negative over 
mountainous regions (as a rule of thumb, the larger 
the average of the local topography the larger the 
negative NT-disturbance). The δgNT(rg ,Ω) is also a 
very smooth quantity (for an illustration see 
Kingdon et al., 2005, Fig. 4, erratum). Therefore, in 

spite to the high elevations, the mean ( )NT
gδ Ω  

values remain very similar to the initial δgNT(rg,Ω) 
field. The differences ( ) ( , )

NT NT
gg g rδ δΩ − Ω  along 

the test profile do not exceed 10 mGal. At the same 
time the maximum upward continuation effect of 
δgNT(rg,Ω) from the geoid level to the earth’s surface 
by using the Poisson integral formula remained 
smaller than 15 mGal.  

The estimated Helmert mean gravity agrees 
generally well with ( )g Ω . Nevertheless, in most 
cases ( )Hg Ω  appears to be slightly weaker than the 
rigorous mean gravity (a few exceptions can be 
found inside of deep valleys). Along the selected 
profile the differences ( ) ( )Hg gΩ − Ω  range 
between –21 and +30 mgal (with a mean of +6 
mGal). These gravity differences can be then 
converted into the differences between the rigorous 
and Helmert orthometric heights (e.g. by using an 
approach in Heiskanen and Moritz, 1967, p.169). 
The height differences vary from –3.5 to +6.1 cm 
(with a mean of +1.1 cm). According to Kingdon et 
al. (2005) the differences at the higher elevations (> 
3 km) may easily exceed a dm level. In a few 
extreme cases (at high elevations and very rugged 
areas), however, the relative height differences (due 
to ( ) ( )Hg gΩ − Ω ) disagree in about 7-8 cm for points 
located only some 10-20 km apart, see Fig. 1. 

In most of the cases, especially over the mountain 
peaks, the Helmert orthometric heights appear to be 
higher than the corresponding rigorous mean 
heights, i.e. ( ) ( )o o

H rigH HΩ > Ω . This is due to the 
fact that the mean gravity has a ‘reverse’ effect on 
the height: the larger the mean gravity in the 
denominator the smaller the resulting height. As it 
was mentioned above, inside of some deep valleys 

( ) ( )Hg gΩ > Ω , yielding thus ( ) ( )o o
H rigH HΩ < Ω . 

Intuitively, this can be explained by the fact that in 
the Helmert approach the irregularity of the 
surrounding topography is entirely neglected (cf. Eq. 
(5)). In other words, the contributions due the mass 
deficiencies and excesses (with respect to the 
Bouguer plate, which is embedded in the Poincaré-
Prey gradient) around the computation points are not 
accounted for. For instance, due to the mass 
deficiency around a computation point located on a 
mountain top the magnitude of g H(Ω) becomes 
underestimated (in Eq. (5) note the opposite signs 
for the constants in the brackets!). This gives an 
unreasonable rise to the resulting Helmert height. 
Conversely, the mass excess (with respect to the 
Bouguer plate) exists for the computation points 
inside of deep valleys. The magnitude of ( )Hg Ω  is 
overestimated, the resulting Helmert height is thus 
lower than the rigorous orthometric height. We 
conclude that the quality of the rigorously computed  
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Fig. 1 Comparison among the rigorous and Helmert 
orthometric heights along a profile at 51°N across the 
Canadian Rocky Mountains. Thin black line represents 

( ) ( ) ( ) ( ), /tg g r H g Ω − Ω ⋅ Ω Ω   and the dotted line shows 

( ) ( ) ( ) ( ), /H
tg g r H g Ω − Ω ⋅ Ω Ω  . Note the two corrections 

to the measured heights are negative; the opposite sign is 
assigned here to illustrate their correlation with the 
topographic surface. The topographic heights, downscaled by 
the factor 0.0001, are denoted by the bold grey line. The bold 
black line represents the differences between the resulting 
orthometric heights, ( ) ( )o o

H rigH HΩ − Ω . Units in centimetres. 



orthometric heights prevails over the traditional 
Helmert’s heights. This effect becomes particularly 
transparent over mountainous regions. 

Note that approaches by Mader (1954) and 
Niethammer (1932) attempt to improve the Helmert 
heights by accounting for the roughness of the 
topography. The resulting heights are more 
compatible with the rigorous orthometric height, see 
a numerical study by Santos et al. (2006).   
  
6  Summary and conclusions 
 
The aim of this paper is to demonstrate that the 
computations of the rigorous orthometric heights can 
be significantly simplified by making use of the 
typical by-products of the Stokes-Helmert geoid 
determination. Accordingly, the implementation of 
the rigorous height system becomes a relatively 
simple and straightforward task. An additional bonus 
is that the resulting orthometric heights are more 
compatible with regional gravimetric geoid models. 
Let us hope that these circumstances encourage 
those who currently use Helmert’s approximate 
orthometric heights to upgrade them to a more 
rigorous height system.  

The improved orthometric heights have a wide 
range of the practical and engineering applications. 
Therefore, the national agencies and organisations 
currently holding the Stokes-Helmert geoid 
determination results, should make them available to 
the users. For instance, both the Stokes-Helmert 
geoid methodology and the orthometric height 
system are adopted by the national agencies of the 
three North-American countries: Canada (Huang et 
al., in press), the U.S.A. (Roman et al., 2004) and 
Mexico (Hernandez, 2003). The existence of the 
needed components would allow the North-
American users more easily to implement the 
rigorous orthometric heights, without having to 
recreate many of the results already calculated and 
held by their government agencies. 

Note that the concept of the NT-gravity (as 
introduced in Vaníček et al., 2004) is exploited in 
this study. Hence, the usage of the NT-quantities, 
besides of its obvious value for different geophysical 
studies, has very promising geodetic applications as 
well.  
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